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Abstract

Soft deformation paths and domain patterns in nematic elastomers are analyzed through the minimization of a nonconvex
free-energy recently proposed in the literature. The free-energy density has multiple wells, and is not restricted to small defor-
mations. The problems of calculating the quasiconvex hull of the energy wells and the quasiconvex envelope of the free-energy
density are formulated and solved (the latter only in two spatial dimensions). This leads to a complete characterization of the
set of soft deformations paths available to a given material, and of its effective macroscopic energy. ©2000 Elsevier Science
B.V. All rights reserved.
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1. Introduction

Nematic elastomers consist of networks of cross-linked liquid crystalline polymer chains. The review paper
[18] discusses some of the history of their development, their properties and physical behavior, and it contains an
extensive list of references. Since the cross-linked chains realize a percolating network, nematic elastomers are
rubbery solids: they are elastic and the mechanism of their elastic response is entropic. Since the chains contain
nematic mesogens (rigid rod-like molecules pendant to the polymeric backbone chain: this is the case of side chain
nematics to which we will confine our attention), nematic elastomers are optically uniaxial below the nematic
transition temperature: at each point of the sample, the common local orientation of the aligned nematic mesogens
singles out a distinguished optical axis.

Contrary to nematic liquids, however, the orientational degrees of freedom of the mesogens are coupled to
the translational degrees of freedom of an underlying elastic solid (the rubbery polymer network). This coupling
makes nematic elastomers very interesting as a model physical system, and it is also at the root of their potential
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Fig. 1. A schematic illustration of the coupling mechanism between mesogen orientation and minimum energy states of distortion of the polymer
network (backbone anisotropy parametes 1): the chains stretch in the direction along which the aligned elongated mesogens need more
room. The deformation of the cross-links from the configuration (a) to the configuration (b) is accommodated by mesogen reorientations at no
energy cost.

technological interest. Indeed, on one hand, orientational thermal fluctuations are hindered, and the material is
optically transparent. On the other hand, the direction of the distinguished optical axis is tunable by imposing
suitable strains. However, the envisaged applications (light-guiding substrates for integrated optics, bifocal contact
lenses) have not (yet?) reached the development stage. Another speculative application, making no use of special
optical properties, is to artificial muscles [10].

Nematic elastomers display interesting material instabilities. These are a byproduct of the symmetry breaking
transformation occurring with the establishment of the orientational order characteristic of the nematic phase. At
high temperatures, the nematic mesogens are randomly oriented due to thermal fluctuations, and nematic elastomers
behave like isotropic rubbers. Upon cooling through the nematic transition temperature, the nematic mesogens align
and the rubber network deforms uniaxially, as dictated by symmetry, with distinguished axis parallel to the common
direction of the mesogens. Thus, there exists a continuum of energetically equivalent preferred states of distortion for
the network (one for each direction on the unit sphere parallel to which the mesogens may align). These states may
coexist in a sample, giving rise to domain patterns observable under polarized light (regions where the mesogens
are differently oriented may appear opaque or transparent when observed under crossed polarizers). Moreover,
they allow nematic elastomers to respond to imposed macroscopic deformations with negligible internal stress,
whenever the imposed strains may be accommodated by simply reorienting the nematic mesogens (see Fig. 1).
Both the occurrence of domains, in a characteristic striped tektuned the existence of “soft” deformation modes
have been observed experimentally [11]. An expression for the system’s free-energy has been proposed, and it has
been shown how the observed phenomena can be interpreted as attempts of the system to minimize the proposed
(nonconvex) free-energy [18].

2 Striped domain patterns are also observditjirid nematics. In this case, however, they arise through a different physical mechanism, namely,
convectivenstabilities under applied electric fields, see [7].
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Fig. 2. Strains in two symmetry breaking transformations: (a) isotropic to uniaxial (backbone anisotropy parametgib) cubic to tetragonal.

Our interest in nematic elastomers stems from the striking analogies that can be drawn between their mechanical
behavior and that of crystalline solids undergoing martensitic phase transformations. The latter exhibit domains
and soft deformations modes just like the former, and through similar mechanisms (rearrangement of twinned
martensitic variants). For crystalline solids, the symmetry breaking transformations of interest involve parent phases
with discrete crystallographic symmetry, and they deliver only a finite number of distinct product phases. For a cubic
totetragonal transformation, for example, there are three preferred states of distortions describing the product phases,
corresponding to three uniaxial stretchdyg, i = 1, 2, 3, along unit vectors; parallel to the edges of the cubic
cell of the parent phase (see Fig. 2). Since superimposed rigid body rotations leave the energy invariant, each of the
three uniaxial stretches defines an energy “well”, and the stress-free (or “natural”) states of the product phase are
defined by the union of these wells, namely, by a set of the fdrm U?ZlSO(S)Un,., where SO(3) is the group of
rotations inR3. Viewed from this perspective, nematic elastomers provide us with an infinite dimensional version
of the last formula, namelj = U,,_;2SQ(3)Un, whereS? is the unit sphere iiR>.

There is a well-developed mathematical literature on variational approaches to phase transitions in crystalline
solids (see, e.g., [2] or the lecture notes [12]). Many relevant questions on the mechanical response of materials
described by multiwell energies can thus be given a precise mathematical formulation. In particular, given a material
with its characteristic set of stress-free stdes natural question is to identify all the macroscopic deformations
that can be accommodated by states belongirig.t®his set of soft macroscopic deformations turns out to be a
generalized convex hull of the sit, its quasiconvex hulK9¢. More generally, one may ask what is the relaxed
(or effective) energy of the system corresponding to an arbitrary imposed deformation. That is, what is the energy
cost of imposing an affine deformation at the boundary of a sample, while the system is allowed to relax in the
interior, e.g., by developing internal domain structures if this is energetically advantage@uss the system’s
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free-energy, theiK is its zero level set (note that whenever the latter is nonconvex, as in the multiwell examples
above, the former is nonconvex). The relaxed free-energy of the system is then a generalized convex envelope of
W, its quasiconvex envelop@9°, whose zero level set I€9¢. GivenW or K, it is usually a very difficult task to
computeW ¢ or K9€. The goal of this paper is to perform such computations for the case of nematic elastomers.
The reason for our partial success is precisely the high symmetry of the isotropic parent phase.

2. Free-energy and energy wells

Within a continuum theory, nematic elastomers can be described using two state variables: a tenBor field
the deformation gradient, and a vector figldthe director’ The deformation gradient must satisfy a kinematic
compatibility condition: it must be the gradient of a continuous funcgievhich maps the reference configuration
£2 into the deformed configuration(£2). Thus,

F(X) = Vy(x), xe€ £,

for some continuouy. Typically, the forces necessary to produce volume changes are much larger than those
required to impose shears, leading to the customary assumption of incompressibility:

detFx) =1, xef2.
The director fielch is a unit vector field,
Inx)| =1, xes2,

describing at each point of the body the average orientation of the nematic mesogens pendant to the polymeric
chains. Here we are assuming that the specimen under consideration is at a fixed temperature, lower than the
isotropic to nematic transition temperature. Bladon et al. [3] have derived an expression for the free-energy of
nematic elastomers by modeling them as cross-linked networks of anisotropic gaussian chains. This expression can
be reduced tb

EF.n) = % <r1/3 [tr(FFT) S —— . LN n} - 3) . 2.1)

HereF T denotes the transposefftr stands for trace, while andr are two positive material constants, respectively,
the rubber energy scale (i.e., the shear modulus corresponding:-tlh) and the backbone anisotropy parameter
(i.e., the mean ratio of chain dimensions in the directions parallel and perpendicular to the directes: fothe
chains are spherical random coils). Note thatfet 1, the value of the backbone anisotropy parameter above the
nematic transition temperature, (2.1) becomes the standard (neo-hookean) isotropic free-energy density, a function
of the deformation gradient only, which is minimizedrat= |, the identity tensor.
Forr # 1, however, the situation is more interestifdet us examine first the case of a prolate backbone, i.e.,
r > 1. Observe that
min E(F, n) = % <r1/3 [x% +224+22- r%lmax{)\z, 22, xg}} - 3) , 2.2)

Inj|=1

3 In fact, a more cautious choice would be to use a traceless tensor field, the order tensor. For a uniaxial order tensor, the director describes the
orientation of the distinguished axis. This level of generality will prove sufficient for the purposes of our paper.

4As in [8], we simply perform an affine change of variables, amounting to assume as reference the stress-free configuration of the isotropic
parent phase rather than one of the stress-free configurations of the uniaxial product phase. This choice of a “virtual” reference configuration
makes the expression for the free-energy more symmetric, and easier to analyze.

5In fact, this will lead us to a scenario already envisaged in [13,16].
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Fig. 3. A sketch of the energy wells for nematic elastom@randQ are arbitrary rotations.

wherex2, A3, A2 are the eigenvalues &F ', is attained by taking as the eigenvector &F' corresponding to its
largest eigenvalue. Furthermore, using the classical inequality between arithmetic and geometric mean, we get that

min  E(F,n) = min (min E(F, n)) =0,
detF=1,|n|=1 detF=1 \ |n|=1
which is attained by taking, say,

1
A =25=25=r"13 (2.3)
,

Summarizing, every paitUn, n), wheren is a unit vector and

Un=r"*n@n+rY%01 -nen

(here® denotes the tensor product of two vectors), is a minimizéf.dflote that the deformation described by

is the one that maps a ball of radius 1 onto a prolate spheroid with major@Xiparallel ton. Since, by frame
indifference,E (RF, Rn) = E(F, n) for every rotatiorR, the energy wells of the material at hand can be described
by the formula

K= U SO(3)(Up, n), (2.4)
nes?2

wheres? is the sphere of radius 1 describing the unit vectoi@dfwhile SO(3) is the group of proper rotations in
RR3. Fig. 3 gives a schematic description of theKet
The case < 1 (oblate backbone) is analyzed in a similar fashion: (2.2) becomes

1-—
min £(F,n) = % (r1/3 [AE +32422+ = mina2 22, A%}] — 3) : (2.5)
nj= r

and the minimizers of. have again the structure (2.4), but in this cllgemaps the ball of radius 1 onto an oblate
spheroid, with minor axis!/3 parallel ton. In the remainder of the paper, our analysis will focus on the energies

-1
W(F) = % <r1/3 |:tr(FFT) - r—|m|a>l(|FTn|2] - 3> . or>1, (2.6)
r nl=

1-—
Wop(F) = % <r1/3 [tr(FFT) + Trlmi—nl|FTn|2:| - 3) , O<r<1, (2.7)
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obtained fromE by minimizing out the directof. This amounts to assuming that no physical mechanism hinders
the director from relaxing, at each poibf £2, to the minimum energy state compatible with the local deformation
F(x).

3. Soft deformations

Consider a sheet of nematic elastomer parallel to/thglane, which is initially in the zero energy configuration
described by = Ue,, No = €3 (hereey, e, e3 are the three orthonormal vectors parallel tothe axes of a given
right-handed cartesian frame), and assume that the specimen is stretched along the y axis, so that the macroscopic
deformation of the sheet is

r6 0 0
FF=| 0 @ 0 . Y8 =0 < A(r) < A1) = V3, (3.1)
0 0 rY8/r)

with A(z) an increasing function of € [0, 1]. Here, we are assuming> 1. Clearly, with the definition above,
F1 = Ue,. Since fort # 0, 1 the eigenvalues d%,F] do not satisfy (2.3), the uniform deformation with gradient
F, has positive energy. However, f#(t) = (1/A(t))(A2(t) — r~Y3)(r2/3 — 12(t)), the tensors

r=8 0 0
Fr=| 0 A0) +80) |, FF—F =2(ex®es (3.2)
0 0 rY¥8/0(t)

satisfy the eigenvalue conditions guaranteeing ﬂj"ate Kel. Therefore, ifn,i is the eigenvector corresponding
to the maximum eigenvalue @F;5)(F)T, the pairs(F,", nj), (F,, n,) lie on the energy wells. In addition, as
shown by the second formula in (3.2), they differ by the rank-one terfgoye3 ® es. It follows that we can in fact
construct a continuous deformation whose gradient takes the \&ly€s™ on stripes orthogonal tes. Indeed, for

k integer, and denoting by the one-periodic function taking the value zero in%@ and the value one in%[, 1),
the deformation

kx-e3
yEx) = Fyx + @ezfo x(s)ds

has the required properties. Note th#k is proportional to the width of the stripes, andkas> oo, y* converges
uniformly to the affine deformation

y(x) = (%F; + %F,*) X = FX,

where the factor% arise from the fact thd,” andF,” occupy the same volume fraction (nam%)/pf the specimen.

The discussion above summarizes Warner and Terentjev’s interpretation [18] of the experimental observation of
striped domain patterns by Kundler and Finkelmann [11]. From the energetic viewpoint, the key fact is that for
t # 0,1 the free-energy¥ is not convex along the rank-one segment that j&ifisandF;” in matrix space. In the
midpoint of this segment

Fo=F +3F -F)),

6 Note that both (2.6) and (2.7) are isotropic, see (A.2), and that their energy wells are of tHedoru, . 2 SO(3)Uy. Starting from Section
4, we will simplify the notation by writindk, rather tharKg, for the set of energy wells of (2.6) and (2.7).



A. DeSimone, G. Dolzmann/Physica D 136 (2000) 175-191 181

..................
..................
..................

.................. 0 0000000000000

®0 0000000000000 00
....................................
..................
®0 0000000000000
,,,,,,,,,,,,,,,,,, 0000000000000

..................

..................

..................

..................

...................................

0000000000000
.................. 000 s00c0v00eseecooe

Fig. 4. The observed domain patterns resolving the soft deformation path (3.1Yfoftop left) toUe, (bottom right). Here, as in the picture
below, the difference in the size of the dots hints at the different optical contrast induced in polarized light by the director.

we have
w(F+3E —FD) = WE) + E(WEH - WED) =0, (3.3)

Thus, itis always energetically advantageous to replace the uniform macroscopic defofpaifitira nonuniform
(mesoscopic) domain pattern with macroscopic aveFagbut such that the deformation gradients are lodajly
andF;,". AsA(r) is increased from =1/ to /3, the sheet may follow a zero-energy path (hence a path along which
the system could, in principle, evolve without developing internal stresses) joining the(blgtes) and(Us,, €2),
finally resulting in the macroscopic stretel3/r=1/6 = ./ along they axis (see Fig. 4).

4. Quasiconvexity: motivation

The energetic interpretation of the emergence of domain patterns discussed in the previous section is based on the
fact that a system may find an energetic advantage in letting its state variables develop fine scale spatial oscillations,
while their macroscopic averages are held fixed. One may ask oneself for conditions on the free-energy of the
system which lead to or forbid this kind of behavior. In particular, one may ask which convexity properties of
the free-energy, sag > 0, guarantee that a uniform deformation is always the energy minimizer under its own
boundary conditions:

o) < @ (F 4+ Vu(x)) dx, (4.1)

1
vqume(Q),/Q
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whereu(x) is a smooth perturbation of the affine deformation vanishing on the boundary ¢, but otherwise
arbitrary. A function® that satisfies the inequality above is called quasiconvex. This property is ‘intermediate’
between the weaker notion of rank-one convexity (the property of being convex along rank-one lines), and the
stronger notion of polyconvexity (a polyconvex functionrofs a convex function of the minors &). Convexity
is even stronger, but all these notions collapse onto the same one when the state variable is a scalar or a vector.
Although quasiconvexity seems the property more closely linked to physical intuition, it is the hardest to check. On
the contrary, it is relatively easy to check for rank-one convexity or polyconvexity, but there is a gap between these
two notions’ , and quasiconvexity sits in the middle. Interestingly, with nematic elastomers we jump from one to
the other side of this gap when crossing the nematic transition temperature. At low temperaturesyi£.Ifor
Eq. (3.3) shows that the free-ener@y fails to be rank-one convex: indeed we can lower the system’s energy by
layering along rank-one lines. In the high temperature isotropic phasel() the free-energyV is polyconvex ,
hence quasiconvex, and uniform deformations prevail.

Assume now thaf is a deformation gradient for which (4.1) fails. TheérF) gives little information about the
energy cost (per unit volume) required to enforce the macroscopic defornkatiRether, the infimum

. 1
”Jf {\m/(zqﬁ (F 4+ Vu(x)) dx} (4.2)

is the physically relevant quantity, and the only one experimentally accessible with a macroscopic measurement
(of course, provided that energy minimization is the physically relevant mechanism for the material’'s response).
Thus, we refer to (4.2) as the relaxed or effective energy of the system. It turns out that (4.2) is ebtfaFo
the quasiconvex envelope éf (see, e.g., [12]). Moreover, K is the zero level set ab, then the zero level set of
@Y9°(F) is K9, the quasiconvex hull dK. ThusKY is the set of macroscopic deformations that can be imposed at
zero energy cost, i.e., the soft deformations. Any curve containEd9mefines then a soft deformation path, i.e.,
a path along which the system may (in principle) evolve without developing internal stresses.

In the next two sections, we turn to the actual calculation of the relaxed eWelgijor a two-dimensional version
of W, suitable to describe plane strain geometries) and of the set of soft defornf@ffofts nematic elastomers.
For this purpose, it proves expedient to rewrite (2.6) and (2.7) in amore manageable fofne B, detF = 1,
letA2 > A2 > ... > 22 be the ordered eigenvalueskf'. Then (2.6) and (2.7) can be written as

WE =QL—r2+13+---+22—nl—oY", 0<e<1, (4.3)
Wop(F) =22+ 23+ + A+ a2 —n(1+Y", 0<é, (4.4)

where we have set = (r — 1)/r forr > 1,é = (1L —r)/r for0 < r < 1, and we have normalized to one the
multiplicative constantu /2) ()" (this is done without loss of generality since cleaplyV )¢ = A W9, va > 0).
Using, as before, the inequality between the arithmetic and the geometric mean we obtain that

M=A-oYt>1  M=-.=d=l-9Y" <1 (4.5)

)\2 e — )‘571 — (1+ g)l/n - 1’ )‘f,% — (1+ E)l/nfl <1 (46)
minimize, respectively, (4.3) and (4.4) under the constrainEdetl at the value zero.
my The interested reader should, at this point, refer to Appendix A for a summary of definitions and main results related to convexity

properties of free-energy densities that are used in the sequel.
8 By Lemma A.2, convexity fails due to the incompressibility constraint.
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5. Atwo-dimensional model problem

Forn = 2 the free-energies (4.3) and (4.4) become
W(F) = (1 — e) max{x2, A3} + min{r%, 13} — 2¢/1 — ¢,
Wob(F) = max(A2, A3} 4+ (1 + &) min{x2, A3} — 2//1 + ¢,
which, fori1A2 = 1, are minimized at the value zero by taking, respectively,
maxis, A2} = 1—e) Y4 > 1, min{ig, Al =1L—e)Y* <1,
maxii, 22} = A+ Y4 > 1, min{ig, a2} =146 Y4 <1
Thus, the energy wells for botly and Wy, can be described by the formula
K= | Jso®2 (n(e® e + —(eL ®el)> (5.1)
eest

where, fore = (cos®, sin®), et is the vector— siny, cosy), and we take; = (1 — €)~* in the prolate case,
n = (14 &)Y%in the oblate cas®.

Lemmab5.1. Forn > 1,let

K= [Jso@ (n(e® e+ —(eL ® el))

eecst

ThenK' = K4 = KP® and any of these sets is given by
1

{F € M?*? : detF = 1, Fhassingular values [—, n“ ) (5.2)
n

Proof. Denote byA the set (5.2). Let™ = max0, ¢} and define
@ (F) = (detF — 1)? + sup(|Fe|> — n»)*.

eest
Thena is polyconvex andb (F) = 0 if and only if F € A. ThusKP® c 4. We claim thatd c K. SinceK is
invariant under orthogonal conjugation and under multiplication from the left by elements in SO(2) it suffices to
show that diagonal matricég?) = diag(z, 1/¢) belong toK™ for r € [1/7, n]. This follows from Lemma A.5 by
taking /n = a andn = b. We concludekP® c A c K™ c KP® and the assertion of the lemma follows. O

Proposition 5.2. Letn = (1 — ¢)~%# and definep : R2 — R by

(1 —e)ymax{x2, A2} + min{a2, A3} — 2T —€ if A1hp = 1,

(1, 22) = { +00 else

Assume thatv : M2*2 — R is given byW (F) = ¢(x1, A2), wherexs, andx, are the singular values d¥. Then
WPS(F) = WIS(F) = W'(F) = ¢ (11, A2), where
¢ (A1, 22) if o =1, max{iy, A2} > 7,
(A1, h2) =10 if A2 = 1, max(i1, A2} € [1, 9],
+o00 else

9 With this notation,, is always greater than 1 and the preferred director orientation corresponding to the defoffnatiofie ® €) +
(1/n)(e* ® eb) isein the prolate case, are in the oblate case.
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Proof. Recall from (5.1) thatv (F) = 0 if and only if

Fek=Jso@ <n(e®e) + %(eL ®&>> :

eest

Now let W(F) = ¢ (i1, A2). We will show thatW'™ < W = WP < WPC, This proves the assertion since in general
WPE < W€ < W', In order to establish the first inequality it suffices to show W&t(F) < W (F) for all F of the
form

F=R(z<e®e)+;1(eL®eL)), ReS02), ec St re[l,n).

By Lemma A.5 this is equivalent 6 € K' and thusW™(F) = 0 = W (F).
It remains to prove tha# is polyconvex. Let

0 ifr=1,
oo else

I1(t) = {

SinceW (F) = ¢ (A1, A2) + [1(A112), by Lemma A.2 it suffices to show thatis the restriction to the s¢t1i, = 1}

of a convex function which is nondecreasing in its variables. We will prove this by constructing a convex extension
¢ of ¢ which is nondecreasing in its variables. kg, yo) € R2 with xo + yo > 2 we denote by, ) and

(¢, ™) the two intersection points of the line+ y = xo + yo with the hyperbolary = 1, where

+ + y0)?
& Xotyo  [(otyo)T

1
2 4

Let 2.5‘(6) = (1 — 6)1/4 +(1- 6)71/4 and

o (s, ), tt(s,5)) ifs > s(e),
88 =19 if s € [0, s(e)].

Clearly g is nonnegative and continuous sinces (), s(€)) = n, t~(s(¢), s(¢)) = 1/n and¢(1/n, n) = 0. We
show next thag : [0, co) — R is convex and nondecreasing. Indeed ,sfof s(¢) > 1,

() = 2—€)(252 — 1) — 2esy/s2 —1—2J/1— ¢
and a short calculation shows that

53— (3/2)s

=81

) >0 fors > s(e) (5.3)

(this is because the fraction is negative foek < /3/2 and less than one fer> ,/3/2). Sinceg is nonnegative
with g(s(e)) = 0, (5.3) shows thag is convex and nondecreasing on [9). Now defineg : Ri — R by

$01.22) = g (301 +22)).

Sinceg is convex and nondecreasinigis convex oriRiEr and nondecreasing in its variables. Finally, since ferl,

GBI PG 3eD)-
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we conclude

if 1'(t +1/t) > s(e),

(1 1/ 1 o/t ity
¢(”?>:g(z(’+?))= 1

0 if E(t+1/t) € [0, s(e)].
It is easy to see thal(t + 1/1) > s(e) if and only if maxz, 1/1} > n. Thus(r, 1/1) = ¢(t,1/1), i.e., ¢ is the
desired extension. This proves the proposition. O

The last proposition enables us to compw@g as well. We simply observe that, definiag) := €/(1+ €), we
may write Wgp, as

Wob(F) = (1 + &) (A1, 12),
where

) (1—e(@®) maxa2, A3} + min{a2, 22} — 2/T— €@ if Mr2 =1,
d(A1, A2) =
400 else
Thus, settingo(é) = (1 — €(€))~ /4, Proposition 5.2 implies that
(1481, 2) if 1o =1, max{iy, A2} > 10(€),
Wob(F) = { 0 if A122 = 1, max(A1, A2} € [1, 10(E)],

400 else

6. The three-dimensional case
Forn = 3, the energy wells described by (4.5) and (4.6) take the form

1
K = U SO(3) (nz(e® e+-(—-e® e)) ,
ecs? g
wheren? = (1 —€)~¥2 > 1in the prolate case? = (1+ é)~%/3 < 1 in the oblate casé’
Proposition 6.1. For n > 0, let
1
K= U SO3) (nz(e® e + ;(I —-e® e)) .

ecSs?

ThenK' = K9 = KP®¢ and any of these sets is given by
iF e M3<3: detF = 1, F has principal values; € [, n+]} , (6.1)

wheren~ = min{n?, 1/}, andnt = max(n?, 1/n}.

10\jith this notation, the preferred director orientation corresponding to the defornfatiom?(e ® e) + (1/n)(I — e ® €) is e both in the
prolate and in the oblate case.
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Proof. Denote byA the set (6.1), let™ = max0, ¢}, and define

+ 1 \*
@ (F) = (detF — 1)° + sup(|Fe|2 - (n+)2) + sup(|(cof Fre? — (?7_)2> .

ecs? ecs?

Thena is polyconvex andb (F) = 0 if and only if F € A. ThusKP¢ C A.

We claim that4d c K. SinceK is invariant under orthogonal conjugation and multiplication from the left by
elements in SO(3) it suffices to show that diagonal matrices(diag,, A3) with A1ii3 = 1 andx; € [n~, nT]
belong toK'. We prove this for the casg> 1 (so that;~ = 1/n andn™ = 2) by applying Lemma A.5 several
times. Denote bfR; C SO(3) the set of all rotations abost. Since the axis of rotation is fixe®,; is in fact a copy
of SO(2). For everyry € [1/7, 2],

1 11 1 1\\'®
diag (Al, l, —) € (Rg diag <n2, - —) UTR3 diag(—, n?, —>> c K'°,
AL M nn n n

1 11 11 rc
diag(xl, -, i) € (deiag<n2, -, —) udeiag<—, -, n2>> c K'®,
n Al non non

because.1(/A1) = n%(1n). Now observe that1ioiz = 1, andr; € [1/n, 9?], i = 1, 2, 3, imply that ¥ < Aj <
n/r1, j = 2,3. Thus,

1 1 rc
diag(A1, A2, A3) € ('R,l diag(kl, l, —) UR1 diag(kl, -, i)) ,
AL 7 n A1

and the last set is contained(R1 K" U R1K")" = K'C,
We concludekP® c A c K™ c KPCand the assertion of the lemma follows. The proofifot 1, in which case
n~ =n?andyt = 1/7, is analogous. O

We have not yet been able to compute the quasiconvex envelope of the energy densities (4.3) and (4.48) for
The calculation is fundamentally more difficult than in the case 2 because the given densities must now be
modified also at points outsid&€’¢. We make this point more precise in the following proposition.

Proposition 6.2. Assume thaW is given by
W(F) =1 —e)r2+ 213 +13-301 -3
wherei1 > A2 > Az are the singular values df. LetK be the zero set d¥,
1
K = U ne®e+ (Il —e®e)
> n
ecs§
withn = (1 — €)~%6 > 1. Then there exist8 ¢ K9 such thatWI(F) < W (F).
Proof. Fora > n, define
1
Ky = | JePe®e+ (1 —ee),
o
ees?

and observe that the definition Bf' implies

WIF) < W (diag (az, l E)) forall F € K. (6.2)
o o
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Consider the curve in matrix space defined by

t—> Fyu(t) = diag(ﬁt, al, @) , te [%,a\/&} ,

and notice that, by Proposition 6.1,

Fo() € K, Fo(t) ¢ K€, 1€ [iaﬁ] (6.3)
aye
We claim that, forx — n > 0 small enough,
W(Fy (D) > W(Fy(aya) =W <diag<%, %,oﬂ)) : (6.4)

Indeed, the functiorf (a) := W (F4 (1)) — W (Fq(a4/a)) is continuous and positive i = 7. SettingF = Fy (1),
the proposition follows from (6.2)—(6.4). a

7. Conclusions and discussion

Let us begin by summarizing our results. In two dimensions, for the prolate-cask, we have found that all
possible soft macroscopic deformations are those representec l®/r@atrices with determinant equal to 1 and
singular values in the intervat T4, r1/4]. The relaxed energy has the expressiBfif(F) = ¢ (11, A2) with

+00 if AqAo £ 1,
¢(A1.22) =10 if M2 = 1, max{aq, A2} € [1, r¥/4,
n/2(rY2[(1/rymax(22, A2} + min{A2,23}] — 2) else

For the oblate case < 1, the possible soft deformations are those representedk¥ hatrices with determinant
equalto 1 and singular values inthe intervdlf, »~1/4]. The relaxed energy has the expressiglf(F) = (11, 12)
with
+00 if Ah2 #£ 1,
d(r1,22) =10 if A1A2 = 1, max{r1, A2} € [1, 7Y%,
w/2 (rV/2 [maxaz, A3} + (1/rymin{a2, A3}] — 2) else

In three dimensions, all possible soft macroscopic deformations are describeddayatrices with determinant
equal to 1 and singular values in the intervat{/®, »1/3]if r > 1, /Y3, r V9] if r < 1.

From a mathematical viewpoint, the natural problem left open by our analysis is that of finding the effective
macroscopic energy in three dimensions. In fact, experiments are typically performed by applying biaxial stresses to
rubber sheets, thus in a plane stress geometry, rather than in the plane strain geometry for which our two-dimensional
formulas would apply. Nevertheless, we hope that our results will be useful to set up numeric simulations of realistic
loading histories: as argued, e.g., in [4], algorithms based on relaxed energies may prove rather efficient.

From a physical viewpoint, there are two major areas where our analysis needs refinement. The first issue is the
multiplicity of energetically equivalent domain patterns, and our inability to predict their length scales within our
current approach. The second issue is the fact that, in reality, deformations paths like the one described in Section
3 are not really “soft” but only “semi-soft” (see [17]).

Regarding the first issue we observe that, as noted in [8], the path of macroscopic deformations (3.1) joining
the uniform stategUe,, €3) and (Ue,, €2) can be resolved microscopically by constructions with the deformation
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Fig. 5. Alternative domain patterns for the soft deformation path (3.1) fdap(top left) toUe, (bottom right).

gradients taking values only on the two wells S@B)Ue, and S@3)Ue,. These alternative domain patterns,
shown in Fig. 5, consist of fine layers contained in coarser layers, and are frequently observed in crystalline solids
undergoing cubic to tetragonal phase transformations. Although they are geometrically more complicated than the
ones actually observed in nematic elastomers, they are energetically equivalent from the point of view of the model
analyzed in this paper. In fact, a theory based simply on the free-energy density (2.1) is incapable of predicting the
length scale of the energetically optimal domain patterns: the ones shown in Figs. 4 and 5 should be understood as
snapshots of infinitely refining sequences of domain arrangements in the spirit of Ball and James [2]. Only in the
limit of infinite refinement do these patterns converge to (3.1) (and only in this limit can the two systems of fine layers
of Fig. 5 meet through a horizontal interface while being kinematically compatible). Length scales would appear
upon introduction of higher order gradients in the free-energy. The most natural such term is the Frank energy, which
in the one-constant approximation(is/2) [, |Vn|2, with « a positive material constant. A detailed mathematical
analysis of the resulting model has not yet been attempted (see, however, [9] for results in this direction).

For what concerns the issue of semi-soft behavior, i.e., the fact that an initial threshold stress needs to be overcome,
and then increasing stresses are required to drive the system along the path (3.1), several competing methods of
analysis are already available (see [9,19]). A consensus on the microscopic mechanisms explaining semi-softness,
and on a macroscopic model taking them into account, has yet to be reached. An extensive, quantitative campaign
of biaxial stress experiments (as in, e.g., [5]) could help settle controversies, and guide the development of a model
capable of describing semi-soft behavior along arbitrary loading paths.

11 This is not true in some transition layers of negligible size and energetic content, see [2]. Examples of such transition layers are the boundary
layers required for the piecewise affine deformation in Fig. 4 to meet an affine boundary condition, or the horizontal stripe joining the two
systems of slanted fine layers in Fig. 5.
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Appendix A. On notation and convexity

We denote by2 a bounded, open, smooth, connected subs&'oby M"*" the set of alln x n matrices, by
SQO(n) the group of proper rotations iR”. ForF € M"*", FT is its transpose, and we call singular valueg-of
the eigenvalues ofFF")%/2. We write F for the vector of all minors oF. Forn = 2, we haveF = (F, detF); for
n = 3, we havek = (F, cof F, detF), where deF is the determinant df, and coff is the cofactor matrix ofF (if
Fis invertible, cofF = (detF)(F~1)T). ThusF € RY, with N = 5if n = 2, andN = 19 if n = 3. Finally, we will
denote byR” = {x e R" : x; > 0,i =1, ..., n} the positive orthant iiR”, and bys”~! the unit sphere ifR".

Let f : M"™*" — R be a continuous function. We say that
e f isrank-one conveX for each matrixA € M"*" and each rank-one matrB& € M"*" the function: —

f(A + tB) is convex.

e f is quasiconvexf for each matrixA € M"*" and every smooth functiom: 2 — R”" compactly supported in
£2 the inequality

/f(A)dx §/f(A+Vu(x))dx
2 2

holds true. The class of quasiconvex functions is independef@t of

e fispolyconvexf f(A) is aconvex function of the minors of the mataxi.e., if f(A) = G(A) for some convex
functionG : RY — R.

It is well known (see [6]) that

f polyconvex= f quasiconvex= f rank-one convex (A.2)
We define theank-one convex envelopg&® of f by the formula
f'°(F) = supg(F) : grank-one convexg < f}.

Theqguasiconvex envelopéi® and thepolyconvex envelopgPC of 1 are defined analogously. It follows from (A.1)
and the respective definitions that in general

‘](‘pCS qu S fI’C E f

Objective and isotropic free-energies are of particular interest in mechanics. A fuftiobl”*" — R is
objective and isotropic if there exiss : R" — R, symmetric in its arguments, such that

W(F) = (p(U].’ A Uﬂ)v (A.2)
wherevs, .., v, are the singular values &f The following results are proved in [1].

Lemma A.l. Letn > 1.Let®(vy, ..., v,) be a symmetric real-valued function definedRih. For F € M"*"
define

WEF) =D, ..., v,),
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wherevs, ... , v, are the singular values oF. ThenW is convex orM"*" if and only if @ is convex and nonde-
creasing in each variable;.

Lemma A.2. Assume that/ = {F € M?*2: detF € K}, whereK C R, is convex. Let
W(F) = ¢ (v1, v2, v1v2),

wherevs, vy are the singular values oF € U, and wherey : R%r x K — Ris convex and satisfies
e Y(x1,x2,8) = Y¥(x2,x1,d) forall x1, xo e Ry, 8 € K,

e Y (x1, x2,8) is nondecreasing i, x.

ThenW is polyconvex irU.

Let K c M™*" be a compact set. We define itsk-one convex hulK' by

KC=({F: f(F) < supf(G)V f : M"™*" — R rank-one convex
GeK

The quasiconvex hulK9¢ and thepolyconvex hullKP® are defined analogously. It follows from (A.1) and the
respective definitions that in general

K c K ¢ K% ¢ KPC

We collect in the lemma below a few elementary properties of rank-one convex hulls which are useful for our
calculations.

LemmaA3. If K1 c K and Kz C K", thenK]® ¢ K" andKY c K If QK =K for someQ € SQ(n), then
QK' = K'®. Similarly, if QKQT = K thenQK™Q" = K'°.

Proof. The first two statements follow immediately from the definitiorkdf. To prove the third, assume first that
F € K', butQF ¢ K. By definition there exists a rank-one convex functjpsuch that/ (QF) > sup; /. Let
g(X) = f(QX). Theng is rank-one convex and

g(F) = f(FQ) > supf = supf = supg,
K QK K

contradictingF € K'. The remaining statement can be proven similarly. O
Our entire analysis rests on the following result proved in [14] (see also [2]).

LemmaA.4. LetK = SO(2)U; USO(2)U,, whereU; = b(e1®e1) +a(e2®e), Uy =a(e1®e) +b(e2®@ &),
0 < a < b, and(ey, &) is the standard basis 0R?. ThenF e K'® = K9 = KPC¢ if and only if

F:(yl y2>ul+<z1 zz)Uz
—Yy2 Y1 —372 21

with (y2 + y2)¥2 + (3 + 92 < 1,
We use repeatedly the following immediate consequence of Lemma A.4.

Lemma A.5. LetK = SO(2)U; USO(2)U,, whereU1 = b(e1 @ €) +a(@®e),Us =a(e1® e1) + (e Q@ &),
0 < a < b, and (e1, &) is the standard basis oRZ. Then every diagonal matrik, = diag(8, «) such that
af = ab anda € [a, b] belongs tdK'® = K¢ = KPC.

Proof. Fora € [a, b], «B = ab, we can writeF,, as
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(6 2)=(5 %) o)+ (& 2)( 2)

where
bB — ax ba — af

ylszO, ZlZmZQ

It follows from Lemma A.4 thaf, € K'® = KY€ = KP¢ because
B+a
= <1 O

y1+2z1 bra =
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