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Abstract

Soft deformation paths and domain patterns in nematic elastomers are analyzed through the minimization of a nonconvex
free-energy recently proposed in the literature. The free-energy density has multiple wells, and is not restricted to small defor-
mations. The problems of calculating the quasiconvex hull of the energy wells and the quasiconvex envelope of the free-energy
density are formulated and solved (the latter only in two spatial dimensions). This leads to a complete characterization of the
set of soft deformations paths available to a given material, and of its effective macroscopic energy. ©2000 Elsevier Science
B.V. All rights reserved.
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1. Introduction

Nematic elastomers consist of networks of cross-linked liquid crystalline polymer chains. The review paper
[18] discusses some of the history of their development, their properties and physical behavior, and it contains an
extensive list of references. Since the cross-linked chains realize a percolating network, nematic elastomers are
rubbery solids: they are elastic and the mechanism of their elastic response is entropic. Since the chains contain
nematic mesogens (rigid rod-like molecules pendant to the polymeric backbone chain: this is the case of side chain
nematics to which we will confine our attention), nematic elastomers are optically uniaxial below the nematic
transition temperature: at each point of the sample, the common local orientation of the aligned nematic mesogens
singles out a distinguished optical axis.

Contrary to nematic liquids, however, the orientational degrees of freedom of the mesogens are coupled to
the translational degrees of freedom of an underlying elastic solid (the rubbery polymer network). This coupling
makes nematic elastomers very interesting as a model physical system, and it is also at the root of their potential
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Fig. 1. A schematic illustration of the coupling mechanism between mesogen orientation and minimum energy states of distortion of the polymer
network (backbone anisotropy parameterr > 1): the chains stretch in the direction along which the aligned elongated mesogens need more
room. The deformation of the cross-links from the configuration (a) to the configuration (b) is accommodated by mesogen reorientations at no
energy cost.

technological interest. Indeed, on one hand, orientational thermal fluctuations are hindered, and the material is
optically transparent. On the other hand, the direction of the distinguished optical axis is tunable by imposing
suitable strains. However, the envisaged applications (light-guiding substrates for integrated optics, bifocal contact
lenses) have not (yet?) reached the development stage. Another speculative application, making no use of special
optical properties, is to artificial muscles [10].

Nematic elastomers display interesting material instabilities. These are a byproduct of the symmetry breaking
transformation occurring with the establishment of the orientational order characteristic of the nematic phase. At
high temperatures, the nematic mesogens are randomly oriented due to thermal fluctuations, and nematic elastomers
behave like isotropic rubbers. Upon cooling through the nematic transition temperature, the nematic mesogens align
and the rubber network deforms uniaxially, as dictated by symmetry, with distinguished axis parallel to the common
direction of the mesogens. Thus, there exists a continuum of energetically equivalent preferred states of distortion for
the network (one for each direction on the unit sphere parallel to which the mesogens may align). These states may
coexist in a sample, giving rise to domain patterns observable under polarized light (regions where the mesogens
are differently oriented may appear opaque or transparent when observed under crossed polarizers). Moreover,
they allow nematic elastomers to respond to imposed macroscopic deformations with negligible internal stress,
whenever the imposed strains may be accommodated by simply reorienting the nematic mesogens (see Fig. 1).
Both the occurrence of domains, in a characteristic striped texture2 , and the existence of “soft” deformation modes
have been observed experimentally [11]. An expression for the system’s free-energy has been proposed, and it has
been shown how the observed phenomena can be interpreted as attempts of the system to minimize the proposed
(nonconvex) free-energy [18].

2 Striped domain patterns are also observed inliquid nematics. In this case, however, they arise through a different physical mechanism, namely,
convectiveinstabilities under applied electric fields, see [7].



A. DeSimone, G. Dolzmann / Physica D 136 (2000) 175–191 177

Fig. 2. Strains in two symmetry breaking transformations: (a) isotropic to uniaxial (backbone anisotropy parameterr > 1), (b) cubic to tetragonal.

Our interest in nematic elastomers stems from the striking analogies that can be drawn between their mechanical
behavior and that of crystalline solids undergoing martensitic phase transformations. The latter exhibit domains
and soft deformations modes just like the former, and through similar mechanisms (rearrangement of twinned
martensitic variants). For crystalline solids, the symmetry breaking transformations of interest involve parent phases
with discrete crystallographic symmetry, and they deliver only a finite number of distinct product phases. For a cubic
to tetragonal transformation, for example, there are three preferred states of distortions describing the product phases,
corresponding to three uniaxial stretchesUni , i = 1,2,3, along unit vectorsni parallel to the edges of the cubic
cell of the parent phase (see Fig. 2). Since superimposed rigid body rotations leave the energy invariant, each of the
three uniaxial stretches defines an energy “well”, and the stress-free (or “natural”) states of the product phase are
defined by the union of these wells, namely, by a set of the formK = ∪3

i=1SO(3)Uni , where SO(3) is the group of
rotations inR3. Viewed from this perspective, nematic elastomers provide us with an infinite dimensional version
of the last formula, namely,K = ∪n∈S2SO(3)Un, whereS2 is the unit sphere inR3.

There is a well-developed mathematical literature on variational approaches to phase transitions in crystalline
solids (see, e.g., [2] or the lecture notes [12]). Many relevant questions on the mechanical response of materials
described by multiwell energies can thus be given a precise mathematical formulation. In particular, given a material
with its characteristic set of stress-free statesK, a natural question is to identify all the macroscopic deformations
that can be accommodated by states belonging toK. This set of soft macroscopic deformations turns out to be a
generalized convex hull of the setK, its quasiconvex hullKqc. More generally, one may ask what is the relaxed
(or effective) energy of the system corresponding to an arbitrary imposed deformation. That is, what is the energy
cost of imposing an affine deformation at the boundary of a sample, while the system is allowed to relax in the
interior, e.g., by developing internal domain structures if this is energetically advantageous. IfW is the system’s
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free-energy, thenK is its zero level set (note that whenever the latter is nonconvex, as in the multiwell examples
above, the former is nonconvex). The relaxed free-energy of the system is then a generalized convex envelope of
W , its quasiconvex envelopeWqc, whose zero level set isKqc. GivenW orK, it is usually a very difficult task to
computeWqc orKqc. The goal of this paper is to perform such computations for the case of nematic elastomers.
The reason for our partial success is precisely the high symmetry of the isotropic parent phase.

2. Free-energy and energy wells

Within a continuum theory, nematic elastomers can be described using two state variables: a tensor fieldF,
the deformation gradient, and a vector fieldn, the director.3 The deformation gradient must satisfy a kinematic
compatibility condition: it must be the gradient of a continuous functiony which maps the reference configuration
Ω into the deformed configurationy(Ω). Thus,

F(x) = ∇y(x), x ∈ Ω,
for some continuousy. Typically, the forces necessary to produce volume changes are much larger than those
required to impose shears, leading to the customary assumption of incompressibility:

detF(x) = 1, x ∈ Ω.
The director fieldn is a unit vector field,

|n(x)| = 1, x ∈ Ω,
describing at each point of the body the average orientation of the nematic mesogens pendant to the polymeric
chains. Here we are assuming that the specimen under consideration is at a fixed temperature, lower than the
isotropic to nematic transition temperature. Bladon et al. [3] have derived an expression for the free-energy of
nematic elastomers by modeling them as cross-linked networks of anisotropic gaussian chains. This expression can
be reduced to4

E(F,n) = µ

2

(
r1/3

[
tr(FFT)− r − 1

r
(FFT)n · n

]
− 3

)
. (2.1)

HereFT denotes the transpose ofF, tr stands for trace, whileµ andr are two positive material constants, respectively,
the rubber energy scale (i.e., the shear modulus corresponding tor = 1) and the backbone anisotropy parameter
(i.e., the mean ratio of chain dimensions in the directions parallel and perpendicular to the director: forr = 1 the
chains are spherical random coils). Note that forr = 1, the value of the backbone anisotropy parameter above the
nematic transition temperature, (2.1) becomes the standard (neo-hookean) isotropic free-energy density, a function
of the deformation gradient only, which is minimized atF = I , the identity tensor.

For r 6= 1, however, the situation is more interesting:5 let us examine first the case of a prolate backbone, i.e.,
r > 1. Observe that

min
|n|=1

E(F,n) = µ

2

(
r1/3

[
λ2

1 + λ2
2 + λ2

3 − r − 1

r
max{λ2

1, λ
2
2, λ

2
3}

]
− 3

)
, (2.2)

3 In fact, a more cautious choice would be to use a traceless tensor field, the order tensor. For a uniaxial order tensor, the director describes the
orientation of the distinguished axis. This level of generality will prove sufficient for the purposes of our paper.

4 As in [8], we simply perform an affine change of variables, amounting to assume as reference the stress-free configuration of the isotropic
parent phase rather than one of the stress-free configurations of the uniaxial product phase. This choice of a “virtual” reference configuration
makes the expression for the free-energy more symmetric, and easier to analyze.

5 In fact, this will lead us to a scenario already envisaged in [13,16].
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Fig. 3. A sketch of the energy wells for nematic elastomers.R andQ are arbitrary rotations.

whereλ2
1, λ

2
2, λ

2
3 are the eigenvalues ofFFT, is attained by takingn as the eigenvector ofFFT corresponding to its

largest eigenvalue. Furthermore, using the classical inequality between arithmetic and geometric mean, we get that

min
detF=1,|n|=1

E(F,n) = min
detF=1

(
min
|n|=1

E(F,n)
)

= 0,

which is attained by taking, say,

1

r
λ2

1 = λ2
2 = λ2

3 = r−1/3. (2.3)

Summarizing, every pair(Un,n), wheren is a unit vector and

Un = r1/3n ⊗ n + r−1/6 (I − n ⊗ n)

(here⊗ denotes the tensor product of two vectors), is a minimizer ofE. Note that the deformation described byUn

is the one that maps a ball of radius 1 onto a prolate spheroid with major axisr1/3 parallel ton. Since, by frame
indifference,E(RF,Rn) = E(F,n) for every rotationR, the energy wells of the material at hand can be described
by the formula

K =
⋃

n∈S2

SO(3)(Un,n), (2.4)

whereS2 is the sphere of radius 1 describing the unit vectors ofR
3, while SO(3) is the group of proper rotations in

R
3. Fig. 3 gives a schematic description of the setK.
The caser < 1 (oblate backbone) is analyzed in a similar fashion: (2.2) becomes

min
|n|=1

E(F,n) = µ

2

(
r1/3

[
λ2

1 + λ2
2 + λ2

3 + 1 − r

r
min{λ2

1, λ
2
2, λ

2
3}

]
− 3

)
, (2.5)

and the minimizers ofE have again the structure (2.4), but in this caseUn maps the ball of radius 1 onto an oblate
spheroid, with minor axisr1/3 parallel ton. In the remainder of the paper, our analysis will focus on the energies

W(F) := µ

2

(
r1/3

[
tr(FFT)− r − 1

r
max
|n|=1

|FTn|2
]

− 3

)
, r > 1, (2.6)

Wob(F) := µ

2

(
r1/3

[
tr(FFT)+ 1 − r

r
min
|n|=1

|FTn|2
]

− 3

)
, 0< r < 1, (2.7)



180 A. DeSimone, G. Dolzmann / Physica D 136 (2000) 175–191

obtained fromE by minimizing out the director.6 This amounts to assuming that no physical mechanism hinders
the director from relaxing, at each pointx ofΩ, to the minimum energy state compatible with the local deformation
F(x).

3. Soft deformations

Consider a sheet of nematic elastomer parallel to theyz plane, which is initially in the zero energy configuration
described byF0 = Ue3, n0 = e3 (heree1,e2,e3 are the three orthonormal vectors parallel to thexyz axes of a given
right-handed cartesian frame), and assume that the specimen is stretched along the y axis, so that the macroscopic
deformation of the sheet is

Ft =

 r−1/6 0 0

0 λ(t) 0
0 0 r1/6/λ(t)


 , r−1/6 = λ(0) ≤ λ(t) ≤ λ(1) = r1/3, (3.1)

with λ(t) an increasing function oft ∈ [0,1]. Here, we are assumingr > 1. Clearly, with the definition above,
F1 = Ue2. Since fort 6= 0,1 the eigenvalues ofFtFT

t do not satisfy (2.3), the uniform deformation with gradient
Ft has positive energy. However, forδ2(t) = (1/λ(t))(λ2(t)− r−1/3)(r2/3 − λ2(t)), the tensors

F±
t =


 r−1/6 0 0

0 λ(t) ±δ(t)
0 0 r1/6/λ(t)


 , F+

t − F−
t = 2δ(t)e2 ⊗ e3 (3.2)

satisfy the eigenvalue conditions guaranteeing thatF±
t ∈ Kel. Therefore, ifn±

t is the eigenvector corresponding
to the maximum eigenvalue of(F±

t )(F
±
t )

T, the pairs(F+
t ,n

+
t ), (F

−
t ,n

−
t ) lie on the energy wells. In addition, as

shown by the second formula in (3.2), they differ by the rank-one tensor 2δ(t)e2 ⊗ e3. It follows that we can in fact
construct a continuous deformation whose gradient takes the valuesF+

t , F−
t on stripes orthogonal toe3. Indeed, for

k integer, and denoting byχ the one-periodic function taking the value zero in [0, 1
2) and the value one in [1

2,1),
the deformation

yk(x) = F−
t x + 2δ(t)

k
e2

∫ kx·e3

0
χ(s)ds

has the required properties. Note that 1/k is proportional to the width of the stripes, and ask → ∞, yk converges
uniformly to the affine deformation

y(x) =
(

1
2F−

t + 1
2F+

t

)
x = Ftx,

where the factors12 arise from the fact thatF+
t andF−

t occupy the same volume fraction (namely,1
2) of the specimen.

The discussion above summarizes Warner and Terentjev’s interpretation [18] of the experimental observation of
striped domain patterns by Kundler and Finkelmann [11]. From the energetic viewpoint, the key fact is that for
t 6= 0,1 the free-energyW is not convex along the rank-one segment that joinsF+

t andF−
t in matrix space. In the

midpoint of this segment

Ft = F−
t + 1

2(F
+
t − F−

t ),

6 Note that both (2.6) and (2.7) are isotropic, see (A.2), and that their energy wells are of the formKel = ∪n∈S2SO(3)Un. Starting from Section
4, we will simplify the notation by writingK, rather thanKel, for the set of energy wells of (2.6) and (2.7).
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Fig. 4. The observed domain patterns resolving the soft deformation path (3.1) fromUe3 (top left) toUe2 (bottom right). Here, as in the picture
below, the difference in the size of the dots hints at the different optical contrast induced in polarized light by the director.

we have

W
(
F−
t + 1

2(F
+
t − F−

t )
)
> W(F−

t )+ 1
2

(
W(F+

t )−W(F−
t )

) = 0. (3.3)

Thus, it is always energetically advantageous to replace the uniform macroscopic deformationFt with a nonuniform
(mesoscopic) domain pattern with macroscopic averageFt , but such that the deformation gradients are locallyF−

t

andF+
t . Asλ(t) is increased fromr−1/6 to r1/3, the sheet may follow a zero-energy path (hence a path along which

the system could, in principle, evolve without developing internal stresses) joining the states(Ue3,e3) and(Ue2,e2),
finally resulting in the macroscopic stretchr1/3/r−1/6 = √

r along they axis (see Fig. 4).

4. Quasiconvexity: motivation

The energetic interpretation of the emergence of domain patterns discussed in the previous section is based on the
fact that a system may find an energetic advantage in letting its state variables develop fine scale spatial oscillations,
while their macroscopic averages are held fixed. One may ask oneself for conditions on the free-energy of the
system which lead to or forbid this kind of behavior. In particular, one may ask which convexity properties of
the free-energy, sayΦ ≥ 0, guarantee that a uniform deformation is always the energy minimizer under its own
boundary conditions:

Φ(F) ≤ 1

volume(Ω)

∫
Ω

Φ (F + ∇u(x))dx, (4.1)
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whereu(x) is a smooth perturbation of the affine deformationFx, vanishing on the boundary ofΩ, but otherwise
arbitrary. A functionΦ that satisfies the inequality above is called quasiconvex. This property is ‘intermediate’
between the weaker notion of rank-one convexity (the property of being convex along rank-one lines), and the
stronger notion of polyconvexity (a polyconvex function ofF is a convex function of the minors ofF). Convexity
is even stronger, but all these notions collapse onto the same one when the state variable is a scalar or a vector.
Although quasiconvexity seems the property more closely linked to physical intuition, it is the hardest to check. On
the contrary, it is relatively easy to check for rank-one convexity or polyconvexity, but there is a gap between these
two notions7 , and quasiconvexity sits in the middle. Interestingly, with nematic elastomers we jump from one to
the other side of this gap when crossing the nematic transition temperature. At low temperatures, i.e., forr 6= 1,
Eq. (3.3) shows that the free-energyW fails to be rank-one convex: indeed we can lower the system’s energy by
layering along rank-one lines. In the high temperature isotropic phase (r = 1) the free-energyW is polyconvex8 ,
hence quasiconvex, and uniform deformations prevail.

Assume now thatF is a deformation gradient for which (4.1) fails. ThenΦ(F) gives little information about the
energy cost (per unit volume) required to enforce the macroscopic deformationF. Rather, the infimum

inf
u

{
1

volume(Ω)

∫
Ω

Φ (F + ∇u(x)) dx
}

(4.2)

is the physically relevant quantity, and the only one experimentally accessible with a macroscopic measurement
(of course, provided that energy minimization is the physically relevant mechanism for the material’s response).
Thus, we refer to (4.2) as the relaxed or effective energy of the system. It turns out that (4.2) is equal toΦqc(F),
the quasiconvex envelope ofΦ (see, e.g., [12]). Moreover, ifK is the zero level set ofΦ, then the zero level set of
Φqc(F) isKqc, the quasiconvex hull ofK. ThusKqc is the set of macroscopic deformations that can be imposed at
zero energy cost, i.e., the soft deformations. Any curve contained inK

qc defines then a soft deformation path, i.e.,
a path along which the system may (in principle) evolve without developing internal stresses.

In the next two sections, we turn to the actual calculation of the relaxed energyWqc (for a two-dimensional version
of W , suitable to describe plane strain geometries) and of the set of soft deformationsK

qc for nematic elastomers.
For this purpose, it proves expedient to rewrite (2.6) and (2.7) in a more manageable form. ForF ∈Mn×n, detF = 1,
let λ2

1 ≥ λ2
2 ≥ · · · ≥ λ2

n be the ordered eigenvalues ofFFT. Then (2.6) and (2.7) can be written as

W(F) = (1 − ε)λ2
1 + λ2

2 + · · · + λ2
n − n(1 − ε)1/n, 0< ε < 1, (4.3)

Wob(F) = λ2
1 + λ2

2 + · · · + (1 + ε̄)λ2
n − n(1 + ε̄)1/n, 0< ε̄, (4.4)

where we have setε = (r − 1)/r for r > 1, ε̄ = (1 − r)/r for 0 < r < 1, and we have normalized to one the
multiplicative constant(µ/2)(r)1/n (this is done without loss of generality since clearly(λW)qc = λWqc, ∀λ ≥ 0).
Using, as before, the inequality between the arithmetic and the geometric mean we obtain that

λ2
1 = (1 − ε)1/n−1 > 1, λ2

2 = · · · = λ2
n = (1 − ε)1/n < 1, (4.5)

λ2
1 = · · · = λ2

n−1 = (1 + ε̄)1/n > 1, λ2
n = (1 + ε̄)1/n−1 < 1 (4.6)

minimize, respectively, (4.3) and (4.4) under the constraint detF = 1 at the value zero.

7 See [15]. The interested reader should, at this point, refer to Appendix A for a summary of definitions and main results related to convexity
properties of free-energy densities that are used in the sequel.

8 By Lemma A.2, convexity fails due to the incompressibility constraint.
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5. A two-dimensional model problem

Forn = 2 the free-energies (4.3) and (4.4) become

W(F) = (1 − ε)max{λ2
1, λ

2
2} + min{λ2

1, λ
2
2} − 2

√
1 − ε,

Wob(F) = max{λ2
1, λ

2
2} + (1 + ε̄)min{λ2

1, λ
2
2} − 2

√
1 + ε̄,

which, forλ1λ2 = 1, are minimized at the value zero by taking, respectively,

max{λ1, λ2} = (1 − ε)−1/4 > 1, min{λ1, λ2} = (1 − ε)1/4 < 1,

max{λ1, λ2} = (1 + ε̄)1/4 > 1, min{λ1, λ2} = (1 + ε̄)−1/4 < 1.

Thus, the energy wells for bothW andWob can be described by the formula

K =
⋃
e∈S1

SO(2)

(
η(e⊗ e)+ 1

η
(e⊥ ⊗ e⊥)

)
, (5.1)

where, fore = (cosϑ, sinϑ),e⊥ is the vector(− sinϑ, cosϑ), and we takeη = (1 − ε)−1/4 in the prolate case,
η = (1 + ε̄)1/4 in the oblate case9 .

Lemma 5.1. For η > 1, let

K =
⋃
e∈S1

SO(2)

(
η(e⊗ e)+ 1

η
(e⊥ ⊗ e⊥)

)
.

ThenKrc = Kqc = Kpc and any of these sets is given by{
F ∈M2×2 : detF = 1, F has singular valuesλi ∈

[
1

η
, η

]}
. (5.2)

Proof. Denote byA the set (5.2). Lett+ = max{0, t} and define

Φ(F) = (detF − 1)2 + sup
e∈S1

(|Fe|2 − η2)+.

ThenΦ is polyconvex andΦ(F) = 0 if and only if F ∈ A. ThusKpc ⊂ A. We claim thatA ⊂ Krc. SinceK is
invariant under orthogonal conjugation and under multiplication from the left by elements in SO(2) it suffices to
show that diagonal matricesF(t) = diag(t,1/t) belong toKrc for t ∈ [ 1/η, η ]. This follows from Lemma A.5 by
taking 1/η = a andη = b. We concludeKpc ⊂ A ⊂ Krc ⊂ Kpc and the assertion of the lemma follows. �

Proposition 5.2. Letη = (1 − ε)−1/4 and defineφ : R2+ → R by

φ(λ1, λ2) =
{
(1 − ε)max{λ2

1, λ
2
2} + min{λ2

1, λ
2
2} − 2

√
1 − ε if λ1λ2 = 1,

+∞ else.

Assume thatW : M2×2 → R is given byW(F) = φ(λ1, λ2), whereλ1, andλ2 are the singular values ofF. Then
Wpc(F) = Wqc(F) = W rc(F) = φ̃(λ1, λ2), where

φ̃(λ1, λ2) =


φ(λ1, λ2) if λ1λ2 = 1, max{λ1, λ2} ≥ η,

0 if λ1λ2 = 1, max{λ1, λ2} ∈ [ 1, η ],
+∞ else.

9 With this notation,η is always greater than 1 and the preferred director orientation corresponding to the deformationF = η(e ⊗ e) +
(1/η)(e⊥ ⊗ e⊥) is e in the prolate case, ande⊥ in the oblate case.
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Proof. Recall from (5.1) thatW(F) = 0 if and only if

F ∈ K =
⋃
e∈S1

SO(2)

(
η(e⊗ e)+ 1

η
(e⊥ ⊗ e⊥)

)
.

Now letW̃ (F) = φ̃(λ1, λ2). We will show thatW rc ≤ W̃ = W̃pc ≤ Wpc. This proves the assertion since in general
Wpc ≤ Wqc ≤ W rc. In order to establish the first inequality it suffices to show thatW rc(F) ≤ W̃ (F) for all F of the
form

F = R
(
t (e⊗ e)+ 1

t
(e⊥ ⊗ e⊥)

)
, R ∈ SO(2), e ∈ S1, t ∈ [ 1, η].

By Lemma A.5 this is equivalent toF ∈ Krc and thusW rc(F) = 0 = W̃ (F).
It remains to prove that̃W is polyconvex. Let

I1(t) =
{

0 if t = 1,
∞ else.

SinceW̃ (F) = φ̃(λ1, λ2)+I1(λ1λ2), by Lemma A.2 it suffices to show thatφ̃ is the restriction to the set{λ1λ2 = 1}
of a convex function which is nondecreasing in its variables. We will prove this by constructing a convex extension
φ̂ of φ̃ which is nondecreasing in its variables. For(x0, y0) ∈ R2+ with x0 + y0 ≥ 2 we denote by(t−, t+) and
(t+, t−) the two intersection points of the linex + y = x0 + y0 with the hyperbolaxy = 1, where

t± = x0 + y0

2
±

√
(x0 + y0)2

4
− 1.

Let 2s(ε) = (1 − ε)1/4 + (1 − ε)−1/4 and

g(s) =
{
φ(t−(s, s), t+(s, s)) if s > s(ε),

0 if s ∈ [ 0, s(ε)].

Clearlyg is nonnegative and continuous sincet+(s(ε), s(ε)) = η, t−(s(ε), s(ε)) = 1/η andφ(1/η, η) = 0. We
show next thatg : [ 0,∞) → R is convex and nondecreasing. Indeed, fors ≥ s(ε) > 1,

g(s) = (2 − ε)(2s2 − 1)− 2εs
√
s2 − 1 − 2

√
1 − ε

and a short calculation shows that

g′′(s) = 8

(
1 − ε

s3 − (3/2)s

(s2 − 1)3/2

)
≥ 0 for s > s(ε) (5.3)

(this is because the fraction is negative for 1< s <
√

3/2 and less than one fors ≥ √
3/2). Sinceg is nonnegative

with g(s(ε)) = 0, (5.3) shows thatg is convex and nondecreasing on [ 0,∞). Now defineφ̂ : R2+ → R by

φ̂(λ1, λ2) = g
(

1
2(λ1 + λ2)

)
.

Sinceg is convex and nondecreasing,φ̂ is convex onR2+ and nondecreasing in its variables. Finally, since fort > 1,

t+
(

1

2

(
t + 1

t

)
,

1

2

(
t + 1

t

))
= t, t−

(
1

2

(
t + 1

t

)
,

1

2

(
t + 1

t

))
= 1

t
,
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we conclude

φ̂

(
t,

1

t

)
= g

(
1

2

(
t + 1

t

))
=



φ(1/t, t) if

1

2
(t + 1/t) > s(ε),

0 if
1

2
(t + 1/t) ∈ [ 0, s(ε)].

It is easy to see that12(t + 1/t) > s(ε) if and only if max{t,1/t} > η. Thusφ̂(t,1/t) = φ̃(t,1/t), i.e., φ̂ is the
desired extension. This proves the proposition. �

The last proposition enables us to computeW
qc
ob as well. We simply observe that, definingε(ε̄) := ε̄/(1+ ε̄), we

may writeWob as

Wob(F) = (1 + ε̄)φ̄(λ1, λ2),

where

φ̄(λ1, λ2) =
{
(1 − ε(ε̄))max{λ2

1, λ
2
2} + min{λ2

1, λ
2
2} − 2

√
1 − ε(ε̄) if λ1λ2 = 1,

+∞ else.

Thus, settingt0(ε̄) = (1 − ε(ε̄))−1/4, Proposition 5.2 implies that

W
qc
ob(F) =



(1 + ε̄)φ̄(λ1, λ2) if λ1λ2 = 1, max{λ1, λ2} ≥ t0(ε̄),

0 if λ1λ2 = 1, max{λ1, λ2} ∈ [1, t0(ε̄)],

+∞ else.

6. The three-dimensional case

Forn = 3, the energy wells described by (4.5) and (4.6) take the form

K =
⋃
e∈S2

SO(3)

(
η2(e⊗ e)+ 1

η
(I − e⊗ e)

)
,

whereη2 = (1 − ε)−1/3 > 1 in the prolate case,η2 = (1 + ε̄)−1/3 < 1 in the oblate case.10

Proposition 6.1. For η > 0, let

K =
⋃
e∈S2

SO(3)

(
η2(e⊗ e)+ 1

η
(I − e⊗ e)

)
.

ThenKrc = Kqc = Kpc and any of these sets is given by{
F ∈M3×3 : detF = 1, F has principal valuesλi ∈ [ η−, η+ ]

}
, (6.1)

whereη− = min{η2,1/η}, andη+ = max{η2,1/η}.

10 With this notation, the preferred director orientation corresponding to the deformationF = η2(e ⊗ e) + (1/η)(I − e ⊗ e) is e both in the
prolate and in the oblate case.
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Proof. Denote byA the set (6.1), lett+ = max{0, t}, and define

Φ(F) = (detF − 1)2 + sup
e∈S2

(
|Fe|2 − (η+)2

)+ + sup
e∈S2

(
|(cof F)e|2 − 1

(η−)2

)+
.

ThenΦ is polyconvex andΦ(F) = 0 if and only ifF ∈ A. ThusKpc ⊂ A.
We claim thatA ⊂ Krc. SinceK is invariant under orthogonal conjugation and multiplication from the left by

elements in SO(3) it suffices to show that diagonal matrices diag(λ1, λ2, λ3) with λ1λ2λ3 = 1 andλi ∈ [η−, η+]
belong toKrc. We prove this for the caseη > 1 (so thatη− = 1/η andη+ = η2) by applying Lemma A.5 several
times. Denote byRi ⊂ SO(3) the set of all rotations aboutei . Since the axis of rotation is fixed,Ri is in fact a copy
of SO(2). For everyλ1 ∈ [1/η, η2],

diag

(
λ1,

η

λ1
,

1

η

)
∈

(
R3 diag

(
η2,

1

η
,

1

η

)
∪R3 diag

(
1

η
, η2,

1

η

))rc

⊂ Krc,

diag

(
λ1,

1

η
,
η

λ1

)
∈

(
R2 diag

(
η2,

1

η
,

1

η

)
∪R2 diag

(
1

η
,

1

η
, η2

))rc

⊂ Krc,

becauseλ1(η/λ1) = η2(1η). Now observe thatλ1λ2λ3 = 1, andλi ∈ [1/η, η2], i = 1,2,3, imply that 1/η ≤ λj ≤
η/λ1, j = 2,3. Thus,

diag(λ1, λ2, λ3) ∈
(
R1 diag

(
λ1,

η

λ1
,

1

η

)
∪R1 diag

(
λ1,

1

η
,
η

λ1

))rc

,

and the last set is contained in(R1K
rc ∪R1K

rc)rc = Krc.
We concludeKpc ⊂ A ⊂ Krc ⊂ Kpc and the assertion of the lemma follows. The proof forη < 1, in which case

η− = η2 andη+ = 1/η, is analogous. �

We have not yet been able to compute the quasiconvex envelope of the energy densities (4.3) and (4.4) forn = 3.
The calculation is fundamentally more difficult than in the casen = 2 because the given densities must now be
modified also at points outsideKqc. We make this point more precise in the following proposition.

Proposition 6.2. Assume thatW is given by

W(F) = (1 − ε)λ2
1 + λ2

2 + λ2
3 − 3(1 − ε)1/3,

whereλ1 ≥ λ2 ≥ λ3 are the singular values ofF. LetK be the zero set ofW ,

K =
⋃
e∈S2

η2e⊗ e+ 1

η
(I − e⊗ e)

with η = (1 − ε)−1/6 > 1. Then there exists̄F /∈ Kqc such thatWqc(F̄) < W(F̄).

Proof. Forα > η, define

Kα =
⋃
e∈S2

α2e⊗ e+ 1

α
(I − e⊗ e),

and observe that the definition ofKqc
α implies

Wqc(F) ≤ W

(
diag

(
α2,

1

α
,

1

α

))
for all F ∈ Kqc

α . (6.2)
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Consider the curve in matrix space defined by

t 7→ Fα(t) = diag

(√
αt,

1

α
,

√
α

t

)
, t ∈

[
1

α
√
α
, α

√
α

]
,

and notice that, by Proposition 6.1,

Fα(t) ∈ Kqc
α , Fα(t) /∈ Kqc, t ∈

[
1

α
√
α
, α

√
α

]
. (6.3)

We claim that, forα − η > 0 small enough,

W(Fα(1)) > W(Fα(α
√
α)) = W

(
diag

(
1

α
,

1

α
, α2

))
. (6.4)

Indeed, the functionf (α) := W(Fα(1))−W(Fα(α
√
α)) is continuous and positive inα = η. SettingF̄ = Fα(1),

the proposition follows from (6.2)–(6.4). �

7. Conclusions and discussion

Let us begin by summarizing our results. In two dimensions, for the prolate caser > 1, we have found that all
possible soft macroscopic deformations are those represented by 2× 2 matrices with determinant equal to 1 and
singular values in the interval [r−1/4, r1/4]. The relaxed energy has the expressionWqc(F) = φ(λ1, λ2) with

φ(λ1, λ2) =



+∞ if λ1λ2 6= 1,
0 if λ1λ2 = 1, max{λ1, λ2} ∈ [1, r1/4],
µ/2

(
r1/2

[
(1/r)max{λ2

1, λ
2
2} + min{λ2

1, λ
2
2}

] − 2
)

else.

For the oblate caser < 1, the possible soft deformations are those represented by 2× 2 matrices with determinant
equal to 1 and singular values in the interval [r1/4, r−1/4]. The relaxed energy has the expressionW

qc
ob(F) = φ̃(λ1, λ2)

with

φ̃(λ1, λ2) =



+∞ if λ1λ2 6= 1,
0 if λ1λ2 = 1, max{λ1, λ2} ∈ [1, r−1/4],
µ/2

(
r1/2

[
max{λ2

1, λ
2
2} + (1/r)min{λ2

1, λ
2
2}

] − 2
)

else.

In three dimensions, all possible soft macroscopic deformations are described by 3×3 matrices with determinant
equal to 1 and singular values in the interval [r−1/6, r1/3] if r > 1, [r1/3, r−1/6] if r < 1.

From a mathematical viewpoint, the natural problem left open by our analysis is that of finding the effective
macroscopic energy in three dimensions. In fact, experiments are typically performed by applying biaxial stresses to
rubber sheets, thus in a plane stress geometry, rather than in the plane strain geometry for which our two-dimensional
formulas would apply. Nevertheless, we hope that our results will be useful to set up numeric simulations of realistic
loading histories: as argued, e.g., in [4], algorithms based on relaxed energies may prove rather efficient.

From a physical viewpoint, there are two major areas where our analysis needs refinement. The first issue is the
multiplicity of energetically equivalent domain patterns, and our inability to predict their length scales within our
current approach. The second issue is the fact that, in reality, deformations paths like the one described in Section
3 are not really “soft” but only “semi-soft” (see [17]).

Regarding the first issue we observe that, as noted in [8], the path of macroscopic deformations (3.1) joining
the uniform states(Ue3,e3) and(Ue2,e2) can be resolved microscopically by constructions with the deformation
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Fig. 5. Alternative domain patterns for the soft deformation path (3.1) fromUe3 (top left) toUe2 (bottom right).

gradients taking values only11 on the two wells SO(3)Ue3 and SO(3)Ue2. These alternative domain patterns,
shown in Fig. 5, consist of fine layers contained in coarser layers, and are frequently observed in crystalline solids
undergoing cubic to tetragonal phase transformations. Although they are geometrically more complicated than the
ones actually observed in nematic elastomers, they are energetically equivalent from the point of view of the model
analyzed in this paper. In fact, a theory based simply on the free-energy density (2.1) is incapable of predicting the
length scale of the energetically optimal domain patterns: the ones shown in Figs. 4 and 5 should be understood as
snapshots of infinitely refining sequences of domain arrangements in the spirit of Ball and James [2]. Only in the
limit of infinite refinement do these patterns converge to (3.1) (and only in this limit can the two systems of fine layers
of Fig. 5 meet through a horizontal interface while being kinematically compatible). Length scales would appear
upon introduction of higher order gradients in the free-energy. The most natural such term is the Frank energy, which
in the one-constant approximation is(κ/2)

∫
Ω

|∇n|2, with κ a positive material constant. A detailed mathematical
analysis of the resulting model has not yet been attempted (see, however, [9] for results in this direction).

For what concerns the issue of semi-soft behavior, i.e., the fact that an initial threshold stress needs to be overcome,
and then increasing stresses are required to drive the system along the path (3.1), several competing methods of
analysis are already available (see [9,19]). A consensus on the microscopic mechanisms explaining semi-softness,
and on a macroscopic model taking them into account, has yet to be reached. An extensive, quantitative campaign
of biaxial stress experiments (as in, e.g., [5]) could help settle controversies, and guide the development of a model
capable of describing semi-soft behavior along arbitrary loading paths.

11 This is not true in some transition layers of negligible size and energetic content, see [2]. Examples of such transition layers are the boundary
layers required for the piecewise affine deformation in Fig. 4 to meet an affine boundary condition, or the horizontal stripe joining the two
systems of slanted fine layers in Fig. 5.
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Appendix A. On notation and convexity

We denote byΩ a bounded, open, smooth, connected subset ofR
n, byMn×n the set of alln × n matrices, by

SO(n) the group of proper rotations inRn. For F ∈ Mn×n, FT is its transpose, and we call singular values ofF
the eigenvalues of(FFT)1/2. We writeF̂ for the vector of all minors ofF. Forn = 2, we haveF̂ = (F,detF); for
n = 3, we havêF = (F, cof F,detF), where detF is the determinant ofF, and cofF is the cofactor matrix ofF (if
F is invertible, cofF = (detF)(F−1)T). ThusF̂ ∈ RN , withN = 5 if n = 2, andN = 19 if n = 3. Finally, we will
denote byRn+ = {x ∈ Rn : xi ≥ 0, i = 1, . . . , n} the positive orthant inRn, and bySn−1 the unit sphere inRn.

Let f :Mn×n → R be a continuous function. We say that
• f is rank-one convexif for each matrixA ∈ Mn×n and each rank-one matrixB ∈ Mn×n the functiont 7→
f (A + tB) is convex.

• f is quasiconvexif for each matrixA ∈ Mn×n and every smooth functionu : Ω → R
n compactly supported in

Ω the inequality∫
Ω

f (A)dx ≤
∫
Ω

f (A + ∇u(x))dx

holds true. The class of quasiconvex functions is independent ofΩ.
• f is polyconvexif f (A) is a convex function of the minors of the matrixA, i.e., iff (A) = G(Â) for some convex

functionG : RN → R .
It is well known (see [6]) that

f polyconvex⇒ f quasiconvex⇒ f rank-one convex. (A.1)

We define therank-one convex envelopef rc of f by the formula

f rc(F) = sup{g(F) : g rank-one convex, g ≤ f }.
Thequasiconvex envelopef qc and thepolyconvex envelopef pc of f are defined analogously. It follows from (A.1)
and the respective definitions that in general

f pc ≤ f qc ≤ f rc ≤ f.

Objective and isotropic free-energies are of particular interest in mechanics. A functionW : Mn×n → R is
objective and isotropic if there existsΦ : Rn → R, symmetric in its arguments, such that

W(F) = Φ(v1, . . . , vn), (A.2)

wherev1, .., vn are the singular values ofF. The following results are proved in [1].

Lemma A.1. Let n ≥ 1. LetΦ(v1, . . . , vn) be a symmetric real-valued function defined onRn+. For F ∈ Mn×n

define

W(F) = Φ(v1, . . . , vn),
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wherev1, . . . , vn are the singular values ofF. ThenW is convex onMn×n if and only ifΦ is convex and nonde-
creasing in each variablevi .

Lemma A.2. Assume thatU = {F ∈M2×2 : detF ∈ K}, whereK ⊂ R+ is convex. Let

W(F) = ψ(v1, v2, v1v2),

wherev1, v2 are the singular values ofF ∈ U , and whereψ : R2+ ×K → R is convex and satisfies
• ψ(x1, x2, δ) = ψ(x2, x1, δ) for all x1, x2 ∈ R+, δ ∈ K,
• ψ(x1, x2, δ) is nondecreasing inx1, x2.
ThenW is polyconvex inU .

LetK ⊂Mm×n be a compact set. We define itsrank-one convex hullKrc by

K
rc = {F : f (F) ≤ sup

G∈K
f (G)∀ f :Mm×n → R rank-one convex}.

The quasiconvex hullKqc and thepolyconvex hullKpc are defined analogously. It follows from (A.1) and the
respective definitions that in general

K ⊂ Krc ⊂ Kqc ⊂ Kpc.

We collect in the lemma below a few elementary properties of rank-one convex hulls which are useful for our
calculations.

Lemma A.3. If K1 ⊂ K and K2 ⊂ Krc, thenKrc
1 ⊂ Krc andKrc

2 ⊂ Krc. If QK = K for someQ ∈ SO(n), then
QKrc = Krc. Similarly, if QKQT = K thenQKrcQT = Krc.

Proof. The first two statements follow immediately from the definition ofKrc. To prove the third, assume first that
F ∈ Krc, but QF /∈ Krc. By definition there exists a rank-one convex functionf such thatf (QF) > supKf . Let
g(X) = f (QX). Theng is rank-one convex and

g(F) = f (FQ) > sup
K

f = sup
QK
f = sup

K

g,

contradictingF ∈ Krc. The remaining statement can be proven similarly. �

Our entire analysis rests on the following result proved in [14] (see also [2]).

Lemma A.4. LetK = SO(2)U1 ∪ SO(2)U2, whereU1 = b(e1 ⊗ e1)+ a(e2 ⊗ e2), U2 = a(e1 ⊗ e1)+ b(e2 ⊗ e2),
0< a < b, and(e1,e2) is the standard basis ofR2. ThenF ∈ Krc = Kqc = Kpc if and only if

F =
(
y1 y2

−y2 y1

)
U1 +

(
z1 z2

−z2 z1

)
U2

with (y2
1 + y2

2)
1/2 + (z2

1 + z2
2)

1/2 ≤ 1.

We use repeatedly the following immediate consequence of Lemma A.4.

Lemma A.5. LetK = SO(2)U1 ∪ SO(2)U2, whereU1 = b(e1 ⊗ e1)+ a(e2 ⊗ e2), U2 = a(e1 ⊗ e1)+ b(e2 ⊗ e2),
0 < a < b, and (e1,e2) is the standard basis ofR2. Then every diagonal matrixFα = diag(β, α) such that
αβ = ab andα ∈ [a, b] belongs toKrc = Kqc = Kpc.

Proof. Forα ∈ [a, b], αβ = ab, we can writeFα as
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β 0
0 α

)
=

(
y1 0
0 y1

) (
b 0
0 a

)
+

(
z1 0
0 z1

) (
a 0
0 b

)
,

where

y1 = bβ − aα

b2 − a2
≥ 0, z1 = bα − aβ

b2 − a2
≥ 0.

It follows from Lemma A.4 thatFα ∈ Krc = Kqc = Kpc because

y1 + z1 = β + α

b + a
≤ 1. �
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