

Two-dimensional modelling of soft ferromagnetic films

BY ANTONIO DESIMONE¹, ROBERT V. KOHN², STEFAN MÜLLER¹, Felix Otto³ and Rudolf Schäfer⁴

> ¹Max Planck Institute for Mathematics in the Sciences, Inselstr. 22–26, D-04103 Leipzig, Germany
> ²Courant Institute of Mathematical Sciences, 251 Mercer Street, New York, NY 10012, USA
> ³Institut für Angewandte Mathematik, Universität Bonn, Wegelerstr. 10, D-53115 Bonn, Germany
> ⁴Institut für Festkörper-und Werkstofforschung, Helmholtzstr. 20, D-01069 Dresden, Germany

> > Received 7 March 2001; accepted 24 April 2001

We examine the response of a soft ferromagnetic film to an in-plane applied magnetic field by means of both theory and experiment. In the thin-film limit, we uncover a separation of scales in the rough energy landscape of micromagnetics: leading-order terms generate constraints which eliminate degrees of freedom, terms of second order in the film thickness lead to a (new) reduced variational model, higher-order terms are related to wall, vortex and anisotropy energies. We propose a new strategy to compute low-energy domain patterns, which proceeds in two steps: we determine first the magnetic charge density by solving a convex variational problem, then we construct an associated magnetization field using a robust numerical method. Experimental results show good agreement with the theory. Our analysis is consistent with prior work by van den Berg and by Bryant and Suhl, but it goes much further; in particular it applies even for large fields which penetrate the sample.

Keywords: micromagnetics; thin films; permalloy; gamma convergence; domain structures

1. Introduction

Soft ferromagnetic films are of great interest both for applications and as a model physical system. Their sensitive response to applied magnetic fields makes them useful for the design of many devices, including inductive or giant-magnetoresistive (GMR) sensors, and magnetoelectronic memory elements (Prinz & Hathaway 1995). Therefore, soft thin films have been the object of much experimental and computational study (Hubert & Schäfer 1998). The large variety of relatively simple domain patterns they display makes such films a convenient paradigm for analysing the microstructural origin of magnetic hysteresis. More generally, they provide a crucial example for studying the response of systems evolving through the multiplicity of metastable states resulting from a rough energy landscape (Bertotti 1998).

Proc. R. Soc. Lond. A (2001) 457, 2983–2991

 \bigodot 2001 The Royal Society

A. DeSimone and others

Most current modelling of soft thin films is based on direct micromagnetic simulation (Fidler et al. 1997; Zhu et al. 1997). This is demanding due to the longrange nature of dipolar interactions, and to the necessity of resolving several small length-scales simultaneously. Numerical simulation is surely the right tool for the quantitative study of hysteresis and dynamic switching (Koch et al. 1998; Lu et al. 1999). However, it is natural to seek a more analytical understanding of the equilibrium configurations. The origin of domain patterns is intuitively clear: they arise through a competition between the magnetostatic effects (which favour polefree in-plane magnetization) and the applied field (which tends to align the magnetization). A two-dimensional model based on this intuition was developed by van den Berg (1986) in the absence of an applied field, and extended in Bryant & Suhl (1989) and Suhl & Bryant (1989) to the case of a sufficiently weak in-plane applied field. In van den Berg's model magnetic domain patterns are represented using two-dimensional, unit-length, divergence-free vector fields, determined using the method of characteristics; the caustics where characteristics meet are domain walls. In Bryant & Suhl's model, the presence of a weak applied field is accounted for through an electrostatic analogy: the 'charges' associated with the magnetic domain pattern should be such as to expel the applied field from the interior of the sample, as occurs in an electrical conductor. The domain patterns predicted by Bryant & Suhl have, in fact, been observed experimentally (Rührig et al. 1990). The electrostatic analogy is restricted, however, to sufficiently small applied fields: since the magnetization vector has a constrained magnitude, the field generated by its divergence cannot be arbitrarily large. Therefore, Bryant & Suhl's model breaks down at a critical field strength beyond which the external field penetrates the sample.

This paper extends and clarifies the models described above. Our extension is twofold: we permit large applied fields which penetrate the sample, and we replace the method of characteristics with a robust numerical scheme. Our clarification is also two-fold: we identify the regime in which these two-dimensional models are valid and, while providing them with a variational formulation, we explain their relation to classical micromagnetics. Indeed, the energy functional of the dimensionally reduced model is the thin-film limit (in the sense of gamma-convergence (De Giorgi & Franzoni 1975)) of the three-dimensional energy functional of micromagnetics. In this respect, our work extends previous results of Gioia & James (1997) in this direction. Finally, to assess our proposed model, we compare its predictions with experiments on Permalloy thin-film elements with square cross-section. The agreement between theory and experiment is remarkable, even in the field-penetration regime.

At a more fundamental level, this paper is a contribution to the study of systems governed by rough energy landscapes. At the heart of our approach is an asymptotic analysis of the micromagnetic energy in the thin-film limit. This limit process reveals a hierarchical structure in the energy, which separates into low-order terms, 'essential part', and higher-order terms. The low-order terms lead to constraints (e.g. the component of the magnetization along the thickness direction must vanish) and hence to the elimination of degrees of freedom. The essential part is the term of second order in the film thickness: it leads to a (new) reduced variational principle which sets the charge density. Wall energies and anisotropy contribute only at higher order. The higher-order terms are not irrelevant: they provide the

Proc. R. Soc. Lond. A (2001)

2984

energy barriers which are the source of magnetic hysteresis. Moreover, they break the degeneracy in the reduced theory. Our analysis indicates, however, that in spite of the non-uniqueness of domain patterns, certain quantities (namely, the charge density, the region of field penetration, and the magnetization in the penetrated region) are uniquely predicted by the reduced model and should have little or no hysteresis.

2. Micromagnetics: from three to two dimensions

The free-energy functional of micromagnetics in units of $J_s^2 L^3/2\mu_0$ is

$$E_d(m) = (\kappa d)^2 \int_{\Omega_d} |\nabla m|^2 \, \mathrm{d}x + Q \int_{\Omega_d} \varphi(m) \, \mathrm{d}x + \int_{\mathbb{R}^3} |h_d|^2 \, \mathrm{d}x - 2 \int_{\Omega_d} h'_e \cdot m \, \mathrm{d}x.$$
(2.1)

Here *m* is the magnetization (in units of the saturation magnetization $J_{\rm s}$), a unit vector field defined on the film Ω_d with cross-section ω and thickness *d*, where all lengths are measured in units of a typical lateral dimension *L* (the diameter for ω a circle, the edge-length for ω a square). Moreover, κ is the ratio between exchange length $D_{\rm BL}$ and film thickness, where $D_{\rm BL} = (2\mu_0 A/J_{\rm s}^2)^{1/2}$ is the Bloch line width, and *A* is the exchange constant; *Q* is the quality factor measuring the strength of the magnetic anisotropy φ relative to that of dipolar interactions; h_d is the stray field in units of $J_{\rm s}/\mu_0$, and the corresponding integral is the magnetostatic energy; h'_e is the applied field in units of $J_{\rm s}/\mu_0$, which we assume to be uniform and parallel to the film's cross-section. In what follows, a prime will always denote a two-dimensional field or operator.

For $d \ll 1$ a hierarchical structure emerges in the energy landscape of (2.1), see table 1, as it can be checked with direct calculations. Variations of m of order one along the thickness direction x_3 give rise to an exchange energy per unit area (of the cross-section) of order $\kappa^2 d$. An out-of-plane component m_3 of order one determines a magnetostatic contribution per unit area of order d. The component of the in-plane magnetization m' orthogonal to the lateral boundary $\partial \omega$ of the film's cross-section ω leads to a magnetostatic contribution of order $d^2 \ln(1/d)$ per unit length. The same mechanism penalizes jumps $[m' \cdot \nu']$ of the normal component of the magnetization across a line of discontinuity of m' with normal ν' . These lines of discontinuity arise by approximating domain walls as sharp interfaces. At order d^2 we find the magnetostatic energy per unit area due to surface 'charges' proportional to the inplane divergence div' m'. Finally, the energy per unit length of a Néel or asymmetric Bloch wall and the energy of a single vortex are indicated in the table. In the regime

$$H'_{\rm e} = \frac{h'_{\rm e}}{d} \sim 1, \qquad \frac{Q}{d} \ll 1, \qquad d \ll \kappa^2 \ll \frac{1}{d\ln(1/d)},$$
 (2.2)

the low-order terms penalizing m_3 , $\partial m/\partial x_3$ and $[m' \cdot \nu']$ become hard constraints, while the energetic cost of anisotropy, of the wall type of minimal energy,[†] and of vortices become higher-order terms. The energy is thus determined, at principal order, by the competition between the aligning effect of $H'_{\rm e}$ and the demagnetizing effects due to div' m'.

[†] Note that (2.2) probes a range of film thicknesses over which different wall types are to be expected (see Hubert & Schäfer 1998). Typical values of the material parameters for Permalloy are $Q = 2.5 \times 10^{-4}$ and $D_{BL} = 5$ nm. Thus, for a circular element with diameter 1 µm and thickness 10 nm we have d = 0.01 and $\kappa = 0.5$.

$\partial m/\partial x_3$	$\kappa^2 d$	
m_3	d	
$[m'\cdot u']$	$\ln(1/d)d^2$	
$\operatorname{div}' m'$	d^2	
external field energy	$h_{ m e}'d$	
anisotropy energy	Qd	
asymmetric Bloch wall	$\kappa^2 d^2$	
Néel wall	$(\ln(1/\kappa^2 d))^{-1} d^2$	
vortex	$\ln(1/\kappa d)\kappa^2 d^3$	

Table 1. Scaling of various energy sources

In view of this separation of energy scales in the regime (2.2), the following reduced theory emerges naturally. We call an in-plane vector field m'(x') on ω 'regular' if it satisfies $[m' \cdot \nu'] = 0$ across all possible discontinuity lines and at $\partial \omega$. Our reduced theory states that the magnetization m'(x') minimizes

$$E(m') = \int_{\mathbb{R}^3} |H_d|^2 \, \mathrm{d}x - 2 \int_{\omega} H'_{\mathrm{e}} \cdot m' \, \mathrm{d}x', \qquad (2.3)$$

where $H_d(x) = -\nabla U$ is determined by

$$\nabla^2 U = 0 \quad \text{in } \mathbb{R}^3 \text{ outside of } \omega,$$
$$\left[\frac{\partial U}{\partial x_3}\right] = \operatorname{div}' m' \quad \text{on } \omega,$$

among all regular in-plane vector fields m' of unit length

$$|m'| = 1 \quad \text{in } \omega. \tag{2.4}$$

Our formula for the induced field H_d is naturally consistent with that commonly used for two-dimensional micromagnetic simulations (Blue & Scheinfein 1991). In fact, the argument in support of our reduced theory is not only based on heuristics. We have actually proved gamma-convergence of $1/d^2$ times the energy functional (2.1) to (2.3), but the technical (and rather lengthy) arguments which are required to establish this result are beyond the scope of the present paper, and will be published elsewhere (DeSimone *et al.* 2001).

We now make two crucial observations.

(i) The functional E depends on m' only via the surface charge $\sigma = -\operatorname{div}' m'$, and it is strictly convex in σ . Indeed,

$$\int_{\mathbb{R}^3} |H_d|^2 \,\mathrm{d}x$$

is a quadratic functional of σ , and an integration by parts shows that

$$\int_{\omega} H'_{\rm e} \cdot m' \, \mathrm{d}x'$$

is a linear functional of σ .

(ii) For any regular m'_0 of at most unit length, that is

$$|m_0'| \leqslant 1 \quad \text{in } \omega, \tag{2.5}$$

there exist many regular m' of unit length with the same surface charge: div' $m' = \operatorname{div'} m'_0$. Indeed, we may write

$$m' = \nabla^{\perp}\psi + m'_0, \quad \text{where } \nabla^{\perp}\psi = \left(-\frac{\partial\psi}{\partial x_2}, \frac{\partial\psi}{\partial x_1}\right)$$

and the continuous function $\psi(x')$ on ω solves the boundary-value problem

$$|\nabla^{\perp}\psi + m_0'| = 1 \quad \text{in } \omega, \tag{2.6}$$

$$\psi = 0 \quad \text{on } \partial \omega. \tag{2.7}$$

One can generate many solutions of this problem by imposing the additional condition $\psi = 0$ on an arbitrary curve contained in ω .

These observations have two important consequences. First, the minimizer of the reduced energy E is not uniquely determined. Indeed, according to (i), E depends only on the surface charge, and according to (ii) a regular in-plane vector field of unit length is not uniquely determined by its surface charge. The second consequence is that the surface charge and thus the stray field are uniquely determined. Indeed, according to (i), E is a strictly convex function of the surface charge, and according to (ii) the set of surface charges which can be generated by regular in-plane vector fields of unit length is convex. (This is true despite the fact that the set of regular in-plane vector fields with unit length is not convex.)

Any minimizer m' of (2.3), (2.4) satisfies the Euler-Lagrange equation

$$H'_d + H'_e = \lambda m' \quad \text{in } \omega, \tag{2.8}$$

where $\lambda(x')$ is the Lagrange multiplier associated with the pointwise constraint (2.4). Since H_d is uniquely determined, the region $\{H'_d + H'_e \neq 0\}$ of ω , where the external field is not expelled from the sample, is uniquely determined. Within this penetrated region, m' is also uniquely determined in view of (2.8).

There exists a finite critical field strength $H_{\rm crit}$, in the following sense: when the applied field is subcritical, $\lambda \equiv 0$ and the field is completely expelled from the sample, whereas when it is supercritical, λ is non-zero somewhere and the field penetrates that part of the sample. The critical field strength depends on the geometry of ω : for a circular disc of diameter one, its value is one.

3. Computation of domain patterns within the reduced theory

To derive quantitative predictions from our reduced model (2.3), (2.4) we proceed in two steps. The first step minimizes (2.3) among all regular in-plane vector fields m'_0 of length less than or equal to 1. Recall that replacing (2.4) by (2.5) does not change the minimum energy; therefore the m'_0 obtained this way has the correct reduced energy, though it typically violates (2.4). The second step postprocesses m'_0 by solving (2.6), (2.7) to obtain another minimizer m' of unit length. This m' is the desired magnetization.

Figure 1. Predictions of the theory: greyscale plots of the vertical component of magnetization. (a) H = 0.00, (b) H = 0.35, (c) H = 0.57, (d) H = 0.92, (e) H = 1.06 and (f) H = 1.20.

The first step is a convex (though degenerate) variational problem. We solve it using an interior point method (Vanderbei 1996). In more detail, the convex constraint is enforced by adding to the physical energy E a small multiple t of a selfconcordant barrier B. The unique stationary point of (the strictly convex) E + tBis computed by Newton's method; it serves as an initial guess for the minimizer of E + t'B, where t' < t. The parameter t is then slowly decreased by multiplicative increments. Within Newton's method, the Hessian of E + tB is inverted by a preconditioned conjugate gradient method, where the magnetostatic part of the Hessian is evaluated with the help of the fast Fourier transform (FFT).

For the second step, we recall that the solution of (2.6), (2.7) is not unique. However, there is a special solution ψ , known as the 'viscosity solution', which has special mathematical properties (Evans 1998). It is robust and can be computed efficiently using the 'level set method' (Sethian 1996). This is what we compute.

Our numerical scheme selects, automatically and robustly, one of the many minimizers m'. The selection principle implicit in this scheme is the same as the one proposed in Bryant & Suhl (1989) and Suhl & Bryant (1989). It appears to pick a minimizer with as few walls as possible. Thus it is not unlike the more physical selection mechanism of minimizing wall energy, represented as a higher-order correction to (2.3) (Aviles & Giga 1996; Jin & Kohn 2000). More complex configurations of (presumably) higher energy (in particular, remanent states showing more intricate wall structures) can also be generated, easily but not automatically, by setting $\psi = 0$ on curves contained in ω .

Figure 1 shows the predictions of our numerical scheme for a square film of edgelength one, subject to a monotonically increasing field applied along the diagonal. This rather special geometry was chosen to guarantee that non-trivial domain patterns could persist beyond field penetration, as illustrated by the 90° domain wall emerging from the bottom right-hand corner of the sample. To check our predictions, we have observed the response of two AC demagnetized Permalloy (Ni₈₁Fe₁₉, $J_{\rm s} = 1.0$ T) square samples of edge lengths L = 30 and 60 µm and thicknesses D = 40

Figure 2. Permalloy films: $L = 60 \ \mu\text{m}$, $D = 230 \ \text{nm}$. (a) H = 0.00, (b) H = 0.28, (c) H = 0.63, (d) H = 0.68, (e) H = 0.75, (f) H = 0.77, (g) H = 0.88, (h) H = 0.98 and (i) H = 1.11.

Figure 3. Permalloy films: $L = 30 \ \mu\text{m}$, $D = 40 \ \text{nm}$. (a) H = 0.00, (b) H = 0.30, (c) H = 0.61, (d) H = 0.91, (e) $H = 1.09 \ \text{and}$ (f) H = 1.21.

and 230 nm, respectively, in a digitally enhanced Kerr microscope. The observed domain patterns are given in figures 2 and 3, where the field intensity $h_{\rm e}$, measured in tesla, is scaled according to

$$H = \frac{L}{D} \frac{h_{\rm e}}{J_{\rm s}}.$$
(3.1)

Figure 4. The transition between expulsion and penetration regimes. Lines show the level curves of the potential of the penetrated field, arrows indicate the magnetization direction. (a) H = 0.71, (b) H = 0.78, (c) H = 0.85, (d) H = 0.92, (e) H = 0.99 and (f) H = 1.06.

In comparing figures 1, 2 and 3, one may speculate that the small lag in the strength of the applied field exhibited by the thinner samples may be due the fact that, for these films, the walls are of Néel type and they are repelled by the lateral boundary (a $\ln(1/d)d^2$ effect, according to table 1). This effect could be captured by an enhanced two-dimensional model in which higher-order terms in the film thickness are taken into account.

Figure 4 examines more closely the predictions of our theory for $|H'_{\rm e}|$ near $H_{\rm crit}$. We have superimposed on each greyscale plot the level curves of the potential v of the penetrated field, defined by $-\nabla v = H'_d + H'_{\rm e}$. Regions where the field lines concentrate are regions where $\nabla v \neq 0$, i.e. where the external field has penetrated the sample. Within them, (2.8) implies that m' is parallel to ∇v . Our theory predicts that m' can have no walls in the penetrated region. The pictures confirm this, and show quite clearly that two apparently independent phenomena—the expulsion of the domain walls from the interior of the sample and the penetration of the external field—are in fact two manifestations of the same event.

4. Discussion

In summary, our model describes the response of a soft ferromagnetic thin film to an applied magnetic field. It determines the micromagnetic energy to principal order and certain associated physical quantities that should have little or no hysteresis: the charge density, the region of field penetration, and the magnetization in the penetrated region. In addition, our scheme provides a specific magnetization pattern which is consistent with experimental observation and may well be the ground state. Of course, the magnetization of a soft thin film is not uniquely determined by the applied field: the multiplicity of metastable states is a primary source of hysteresis. Our reduced model simplifies the energy landscape: among the many micromagnetic equilibria, only those with low energy survive, and they can be computed effectively. Our approach does not yet provide a model for hysteresis or a classification of stable

structures, but it does suggest a strategy of attack, namely, through the analysis of higher-order terms in the micromagnetic energy.

We thank Sergio Conti for valuable discussions and suggestions.

References

- Aviles, P. & Giga, Y. 1996 The distance function and defect energy. Proc. R. Soc. Edinb. A 126, 923.
- Bertotti, G. 1998 Hysteresis in magnetism. Academic.
- Blue, J. L. & Scheinfein, M. R. 1991 Using multipoles decreases computation time for magnetostatic self-energy. *IEEE Trans. Magn.* 27, 4778.
- Bryant, P. & Suhl, H. 1989 Thin-film magnetic patterns in an external field. *Appl. Phys. Lett.* 54, 78, 2224.
- DeSimone, A., Kohn, R. V., Müller, S. & Otto, F. 2001 (In preparation.)
- De Giorgi, E. & Franzoni, T. 1975 Su un tipo di convergenza variazionale. Atti Accad. Naz. Lincei 58, 842.
- Evans, L. C. 1998 *Partial differential equations*, §10.1. Providence, RI: American Mathematical Society.
- Fidler, J., Schrefl, T., Kirk, K. & Chapman, J. N. 1997 Domain structures and switching mechanisms in patterned magnetic elements. J. Magn. Magn. Mater. 175, 193.
- Gioia, G. & James, R. D. 1997 Micromagnetics of very thin films. Proc. R. Soc. Lond. A 453, 213.
- Hubert, A. & Schäfer, R. 1998 Magnetic domains. Springer.
- Jin, W. & Kohn, R. V. 2000 Singular perturbation and the energy of folds. J. Nonlin. Sci. 10, 355.
- Koch, R. H., Deak, J. G., Abraham, D. W., Trouilloud, P. L., Altman, R. A., Lu, Yu., Gallagher,
 W. J., Scheuerlein, R. E., Roche, K. P. & Parkin, S. S. P. 1998 Magnetization reversal in micron-sized magnetic thin films. *Phys. Rev. Lett.* 81, 4512.
- Lu, Yu., Rüdiger, U., Kent, A. D., Thomas, L. & Parkin, S. S. P. 1999 Micromagnetism and magnetization reversal in micron-scale (110) Fe thin-film magnetic elements. *Phys. Rev.* B 60, 7352.
- Prinz, G. & Hathaway, K. (eds) 1995 Special issue on magnetoelectronics. *Phys. Today* 48, 24–63.
- Rührig, M., Bartsch, W., Vieth, M. & Hubert, A. 1990 Elementary magnetization processes in a low-anisotropy circular thin film disk. *IEEE Trans. Magn.* **26**, 2807.
- Sethian, J. A. 1996 Level set methods. Cambridge University Press.
- Suhl, H. & Bryant, P. 1989 The nonlinear horrors of realistic magnetization fields. Springer Lecture Notes in Physics, vol. 337, p. 59.
- Vanderbei, R. J. 1996 Linear programming: foundations and extensions. Kluwer.
- van den Berg, H. A. M. 1986 Self-consistent domain theory in soft-ferromagnetic media. II. Basic domain structures in thin film objects. J. Appl. Phys. 60, 1104.
- Zhu, J. G., Zheng, Y. & Lin, X. 1997 Micromagnetics of small size patterned exchange biased Permalloy film elements. J. Appl. Phys. 81, 4336.