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We examine the response of a soft ferromagnetic film to an in-plane applied magnetic
field by means of both theory and experiment. In the thin-film limit, we uncover a
separation of scales in the rough energy landscape of micromagnetics: leading-order
terms generate constraints which eliminate degrees of freedom, terms of second order
in the film thickness lead to a (new) reduced variational model, higher-order terms
are related to wall, vortex and anisotropy energies. We propose a new strategy to
compute low-energy domain patterns, which proceeds in two steps: we determine
first the magnetic charge density by solving a convex variational problem, then we
construct an associated magnetization field using a robust numerical method. Exper-
imental results show good agreement with the theory. Our analysis is consistent with
prior work by van den Berg and by Bryant and Suhl, but it goes much further; in
particular it applies even for large fields which penetrate the sample.
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1. Introduction

Soft ferromagnetic films are of great interest both for applications and as a model
physical system. Their sensitive response to applied magnetic fields makes them
useful for the design of many devices, including inductive or giant-magnetoresistive
(GMR) sensors, and magnetoelectronic memory elements (Prinz & Hathaway 1995).
Therefore, soft thin films have been the object of much experimental and computa-
tional study (Hubert & Schéfer 1998). The large variety of relatively simple domain
patterns they display makes such films a convenient paradigm for analysing the
microstructural origin of magnetic hysteresis. More generally, they provide a crucial
example for studying the response of systems evolving through the multiplicity of
metastable states resulting from a rough energy landscape (Bertotti 1998).
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Most current modelling of soft thin films is based on direct micromagnetic sim-
ulation (Fidler et al. 1997; Zhu et al. 1997). This is demanding due to the long-
range nature of dipolar interactions, and to the necessity of resolving several small
length-scales simultaneously. Numerical simulation is surely the right tool for the
quantitative study of hysteresis and dynamic switching (Koch et al. 1998; Lu et
al. 1999). However, it is natural to seek a more analytical understanding of the
equilibrium configurations. The origin of domain patterns is intuitively clear: they
arise through a competition between the magnetostatic effects (which favour pole-
free in-plane magnetization) and the applied field (which tends to align the mag-
netization). A two-dimensional model based on this intuition was developed by
van den Berg (1986) in the absence of an applied field, and extended in Bryant
& Suhl (1989) and Suhl & Bryant (1989) to the case of a sufficiently weak in-plane
applied field. In van den Berg’s model magnetic domain patterns are represented
using two-dimensional, unit-length, divergence-free vector fields, determined using
the method of characteristics; the caustics where characteristics meet are domain
walls. In Bryant & Suhl’s model, the presence of a weak applied field is accounted
for through an electrostatic analogy: the ‘charges’ associated with the magnetic
domain pattern should be such as to expel the applied field from the interior of
the sample, as occurs in an electrical conductor. The domain patterns predicted by
Bryant & Suhl have, in fact, been observed experimentally (Riihrig et al. 1990).
The electrostatic analogy is restricted, however, to sufficiently small applied fields:
since the magnetization vector has a constrained magnitude, the field generated by
its divergence cannot be arbitrarily large. Therefore, Bryant & Suhl’s model breaks
down at a critical field strength beyond which the external field penetrates the sam-
ple.

This paper extends and clarifies the models described above. Our extension is two-
fold: we permit large applied fields which penetrate the sample, and we replace the
method of characteristics with a robust numerical scheme. Our clarification is also
two-fold: we identify the regime in which these two-dimensional models are valid
and, while providing them with a variational formulation, we explain their rela-
tion to classical micromagnetics. Indeed, the energy functional of the dimensionally
reduced model is the thin-film limit (in the sense of gamma-convergence (De Giorgi
& Franzoni 1975)) of the three-dimensional energy functional of micromagnetics.
In this respect, our work extends previous results of Gioia & James (1997) in this
direction. Finally, to assess our proposed model, we compare its predictions with
experiments on Permalloy thin-film elements with square cross-section. The agree-
ment between theory and experiment is remarkable, even in the field-penetration
regime.

At a more fundamental level, this paper is a contribution to the study of systems
governed by rough energy landscapes. At the heart of our approach is an asymp-
totic analysis of the micromagnetic energy in the thin-film limit. This limit process
reveals a hierarchical structure in the energy, which separates into low-order terms,
‘essential part’, and higher-order terms. The low-order terms lead to constraints
(e.g. the component of the magnetization along the thickness direction must van-
ish) and hence to the elimination of degrees of freedom. The essential part is the
term of second order in the film thickness: it leads to a (new) reduced variational
principle which sets the charge density. Wall energies and anisotropy contribute
only at higher order. The higher-order terms are not irrelevant: they provide the
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energy barriers which are the source of magnetic hysteresis. Moreover, they break
the degeneracy in the reduced theory. Our analysis indicates, however, that in spite
of the non-uniqueness of domain patterns, certain quantities (namely, the charge
density, the region of field penetration, and the magnetization in the penetrated
region) are uniquely predicted by the reduced model and should have little or no
hysteresis.

2. Micromagnetics: from three to two dimensions

The free-energy functional of micromagnetics in units of J2L3/2uq is

Eqs(m) = (md)2/ |Vm|*dz+Q w(m) dz—i—/ |hd|2dx—2/ hl-mdx. (2.1)
24 24 R3 24

Here m is the magnetization (in units of the saturation magnetization Js), a unit
vector field defined on the film §2; with cross-section w and thickness d, where all
lengths are measured in units of a typical lateral dimension L (the diameter for w
a circle, the edge-length for w a square). Moreover, & is the ratio between exchange
length Dpy, and film thickness, where Dpy, = (2u0A/J2)*/? is the Bloch line width,
and A is the exchange constant; @) is the quality factor measuring the strength of the
magnetic anisotropy ¢ relative to that of dipolar interactions; hy is the stray field in
units of Js/po, and the corresponding integral is the magnetostatic energy; h. is the
applied field in units of Jg/ug, which we assume to be uniform and parallel to the
film’s cross-section. In what follows, a prime will always denote a two-dimensional
field or operator.

For d < 1 a hierarchical structure emerges in the energy landscape of (2.1), see
table 1, as it can be checked with direct calculations. Variations of m of order one
along the thickness direction x5 give rise to an exchange energy per unit area (of the
cross-section) of order k2d. An out-of-plane component m3 of order one determines a
magnetostatic contribution per unit area of order d. The component of the in-plane
magnetization m’ orthogonal to the lateral boundary dw of the film’s cross-section w
leads to a magnetostatic contribution of order d?In(1/d) per unit length. The same
mechanism penalizes jumps [m’ - v/] of the normal component of the magnetization
across a line of discontinuity of m’ with normal v/. These lines of discontinuity
arise by approximating domain walls as sharp interfaces. At order d? we find the
magnetostatic energy per unit area due to surface ‘charges’ proportional to the in-
plane divergence div’ m’. Finally, the energy per unit length of a Néel or asymmetric
Bloch wall and the energy of a single vortex are indicated in the table. In the regime

l héz Q 2 1
H, = dwl, d<<1’ d< K <<d1n(1/d)’ (2.2)
the low-order terms penalizing ms, dm/0x3 and [m’ - '] become hard constraints,
while the energetic cost of anisotropy, of the wall type of minimal energy,} and of
vortices become higher-order terms. The energy is thus determined, at principal
order, by the competition between the aligning effect of H and the demagnetizing
effects due to div’' m/.

t Note that (2.2) probes a range of film thicknesses over which different wall types are to be expected

(see Hubert & Schifer 1998). Typical values of the material parameters for Permalloy are Q@ = 2.5 x 10~%

and Dy = 5 nm. Thus, for a circular element with diameter 1 pym and thickness 10 nm we have d = 0.01
and xk = 0.5.
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Table 1. Scaling of various energy sources

om/0x3 k2d
ms d
[m’ - V'] In(1/d)d?
div' m’ d?
external field energy h.d
anisotropy energy Qd
asymmetric Bloch wall K2d>
Néel wall (In(1/x%d))~'d?
vortex In(1/kd)s>d?

In view of this separation of energy scales in the regime (2.2), the following reduced
theory emerges naturally. We call an in-plane vector field m/(z’) on w ‘regular’ if it
satisfies [m’ - /] = 0 across all possible discontinuity lines and at dw. Our reduced
theory states that the magnetization m’(z’) minimizes

E(m') = /RS |Hy|? dz — 2/ H!-m/d’, (2.3)

where Hg(x) = —VU is determined by

V2U =0 in R? outside of w,
o
(9133

s !
] =div'm’ onw,

among all regular in-plane vector fields m’ of unit length
m'| =1 inw. (2.4)

Our formula for the induced field Hy is naturally consistent with that commonly
used for two-dimensional micromagnetic simulations (Blue & Scheinfein 1991). In
fact, the argument in support of our reduced theory is not only based on heuristics.
We have actually proved gamma-convergence of 1/d? times the energy functional
(2.1) to (2.3), but the technical (and rather lengthy) arguments which are required to
establish this result are beyond the scope of the present paper, and will be published
elsewhere (DeSimone et al. 2001).
We now make two crucial observations.

(i) The functional E depends on m’ only via the surface charge o = — div’ m/, and
it is strictly convex in o. Indeed,
/ |Hd|2 dx
R3

is a quadratic functional of o, and an integration by parts shows that

/Hé-m'dx'

is a linear functional of o.
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(ii) For any regular my, of at most unit length, that is
Iml <1 in w, (2.5)

there exist many regular m’ of unit length with the same surface charge:
div' m/ = div’ m}. Indeed, we may write

0
m' =V +m), where V¢ = —a—w, i
(9332 8$1
and the continuous function 1 (z’) on w solves the boundary-value problem
VX +myl =1 in w, (2.6)
=0 on Jw. (2.7)

One can generate many solutions of this problem by imposing the additional
condition ¥ = 0 on an arbitrary curve contained in w.

These observations have two important consequences. First, the minimizer of the
reduced energy F is not uniquely determined. Indeed, according to (i), E depends
only on the surface charge, and according to (ii) a regular in-plane vector field of
unit length is not uniquely determined by its surface charge. The second consequence
is that the surface charge and thus the stray field are uniquely determined. Indeed,
according to (i), F is a strictly convex function of the surface charge, and according
to (ii) the set of surface charges which can be generated by regular in-plane vector
fields of unit length is convex. (This is true despite the fact that the set of regular
in-plane vector fields with unit length is not convex.)

Any minimizer m’ of (2.3), (2.4) satisfies the Euler-Lagrange equation

H),+H. =X inw, (2.8)

where A(x') is the Lagrange multiplier associated with the pointwise constraint (2.4).
Since H, is uniquely determined, the region {H), + H/ # 0} of w, where the external
field is not expelled from the sample, is uniquely determined. Within this penetrated
region, m’ is also uniquely determined in view of (2.8).

There exists a finite critical field strength H..i, in the following sense: when the
applied field is subcritical, A = 0 and the field is completely expelled from the sample,
whereas when it is supercritical, A is non-zero somewhere and the field penetrates
that part of the sample. The critical field strength depends on the geometry of w:
for a circular disc of diameter one, its value is one.

3. Computation of domain patterns within the reduced theory

To derive quantitative predictions from our reduced model (2.3), (2.4) we proceed
in two steps. The first step minimizes (2.3) among all regular in-plane vector fields
my, of length less than or equal to 1. Recall that replacing (2.4) by (2.5) does not
change the minimum energy; therefore the my, obtained this way has the correct
reduced energy, though it typically violates (2.4). The second step postprocesses my,
by solving (2.6), (2.7) to obtain another minimizer m’ of unit length. This m’ is the
desired magnetization.
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Figure 1. Predictions of the theory: greyscale plots of the vertical component of magnetization.
(a) H =0.00, (b) H=0.35, (¢c) H=0.57, (d) H=0.92, (¢) H=1.06 and (f) H = 1.20.

The first step is a convex (though degenerate) variational problem. We solve it
using an interior point method (Vanderbei 1996). In more detail, the convex con-
straint is enforced by adding to the physical energy E a small multiple ¢ of a self-
concordant barrier B. The unique stationary point of (the strictly convex) E + tB
is computed by Newton’s method; it serves as an initial guess for the minimizer of
E + /B, where t' < t. The parameter t is then slowly decreased by multiplicative
increments. Within Newton’s method, the Hessian of E'+¢B is inverted by a precon-
ditioned conjugate gradient method, where the magnetostatic part of the Hessian is
evaluated with the help of the fast Fourier transform (FFT).

For the second step, we recall that the solution of (2.6), (2.7) is not unique. How-
ever, there is a special solution 1, known as the ‘viscosity solution’, which has special
mathematical properties (Evans 1998). It is robust and can be computed efficiently
using the ‘level set method’ (Sethian 1996). This is what we compute.

Our numerical scheme selects, automatically and robustly, one of the many min-
imizers m’. The selection principle implicit in this scheme is the same as the one
proposed in Bryant & Suhl (1989) and Suhl & Bryant (1989). It appears to pick a
minimizer with as few walls as possible. Thus it is not unlike the more physical selec-
tion mechanism of minimizing wall energy, represented as a higher-order correction
to (2.3) (Aviles & Giga 1996; Jin & Kohn 2000). More complex configurations of
(presumably) higher energy (in particular, remanent states showing more intricate
wall structures) can also be generated, easily but not automatically, by setting ¢ = 0
on curves contained in w.

Figure 1 shows the predictions of our numerical scheme for a square film of edge-
length one, subject to a monotonically increasing field applied along the diagonal.
This rather special geometry was chosen to guarantee that non-trivial domain pat-
terns could persist beyond field penetration, as illustrated by the 90° domain wall
emerging from the bottom right-hand corner of the sample. To check our predic-
tions, we have observed the response of two AC demagnetized Permalloy (Nig;Fejg,
Js = 1.0 T) square samples of edge lengths L = 30 and 60 pm and thicknesses D = 40
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(b)

Figure 2. Permalloy films: L = 60 um, D = 230 nm. (a) H = 0.00, (b) H = 0.28, (¢) H = 0.63,
(d) H=0.68, (¢) H=0.75, (f) H=0.77, (¢) H = 0.88, (h) H = 0.98 and (i) H = 1.11.

(@) (b) (©)

(d) (f)

Figure 3. Permalloy films: L = 30 um, D = 40 nm. (a) H = 0.00, (b) H = 0.30,
(¢) H=0.61, (d) H=0.91, () H=1.09 and (f) H =1.21.

and 230 nm, respectively, in a digitally enhanced Kerr microscope. The observed
domain patterns are given in figures 2 and 3, where the field intensity h., measured
in tesla, is scaled according to

L he

H=50 (3.1)
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(b)

(d) (e) (f)

Figure 4. The transition between expulsion and penetration regimes. Lines show the level
curves of the potential of the penetrated field, arrows indicate the magnetization direction.
(a) H=10.71, (b) H=0.78, (¢) H=0.85, (d) H=0.92, (¢) H=0.99 and (f) H = 1.06.

In comparing figures 1, 2 and 3, one may speculate that the small lag in the
strength of the applied field exhibited by the thinner samples may be due the fact
that, for these films, the walls are of Néel type and they are repelled by the lateral
boundary (a In(1/d)d? effect, according to table 1). This effect could be captured by
an enhanced two-dimensional model in which higher-order terms in the film thickness
are taken into account.

Figure 4 examines more closely the predictions of our theory for |H/| near He;s.
We have superimposed on each greyscale plot the level curves of the potential v
of the penetrated field, defined by —Vv = H), + H|. Regions where the field lines
concentrate are regions where Vv # 0, i.e. where the external field has penetrated
the sample. Within them, (2.8) implies that m/' is parallel to Vv. Our theory predicts
that m’ can have no walls in the penetrated region. The pictures confirm this, and
show quite clearly that two apparently independent phenomena—the expulsion of
the domain walls from the interior of the sample and the penetration of the external
field—are in fact two manifestations of the same event.

4. Discussion

In summary, our model describes the response of a soft ferromagnetic thin film to
an applied magnetic field. It determines the micromagnetic energy to principal order
and certain associated physical quantities that should have little or no hysteresis:
the charge density, the region of field penetration, and the magnetization in the
penetrated region. In addition, our scheme provides a specific magnetization pattern
which is consistent with experimental observation and may well be the ground state.
Of course, the magnetization of a soft thin film is not uniquely determined by the
applied field: the multiplicity of metastable states is a primary source of hysteresis.
Our reduced model simplifies the energy landscape: among the many micromagnetic
equilibria, only those with low energy survive, and they can be computed effectively.
Our approach does not yet provide a model for hysteresis or a classification of stable
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structures, but it does suggest a strategy of attack, namely, through the analysis of
higher-order terms in the micromagnetic energy.

We thank Sergio Conti for valuable discussions and suggestions.
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