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THE KADOMCEV-PETVIASVILI EQUATION
AND THE RELATIONS BETWEEN THE PERIODS

OF HOLOMORPHIC DIFFERENTIALS ON RIEMANN SURFACES
UDC 513.835

B. A. DUBROVIN

ABSTRACT. S. P. Novikov's conjecture that the relations between theta functions that follow
from the nonlinear Kadomcev-Petviasvili equation, well known in mathematical physics,
characterize the Jacobian varieties of Riemann surfaces among all abelian varieties is
proved in this paper, except for the possibility of superfluous components.

Bibliography: 15 titles.

§0. Introduction

A symmetric matrix Β = (B j k) with negative definite real part Re Β < 0 is called a

Riemann matrix. For a g X g Riemann matrix Β — (BJk) one can construct a theta

function of g complex variables (z,, . . . ,zg) = z, defined by a convergent Fourier series of

the form

θ(ζ) = θ(ζ\Β) = 2 e x p i y (2?*, * > + < * , * > ) . (0.1)

In this formula the summation is taken over all integral vectors k = (kv...,kg); the

angular brackets denote the euclidian inner product: (Bk, k)= Σ 2?,· •&,•£·, (k, z > = Σλ^ζ,.

We define a lattice Λ in the complex space Cg as consisting of the vectors of the form

Λ = {2πϊΝ + ΒΜ}, (0.2)

where Ν — (Nu... ,Ng) and Μ = (Λ/,,... ,Mg) are integral vectors. Under a translation

by a vector of this lattice the theta function is transformed according to the following rule:

θ(ζ + 2πίΝ + ΒΜ) = exp{-^(BM, M>- (Μ,ζ)}θ{ζ). (0.3)

We shall call Λ the period lattice of the theta function. The quotient space of Cg = R2g by

this lattice is a 2g-dimensional complex torus

T2g(B) = CV {2iriN + BM). (0.4)

This torus is an abelian torus (or an abelian variety). A Kahler metric on T2g(B) of the

form

ds2=~^ Σ (ReB)Jk

]dZjdzk (0.5)
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is called a Hodge metric: in real coordinates xk, yk on the space C g = R2g, where

+ 2Bkjyj, k=l,...,g, (0.6)
j

the imaginary part of this metric equals

Ω = j ~ Σ ( R e 5 ) ; , , 1 <fefc Λ <£, =2dxkA dyk. (0.7)

REMARK. The cohomology class of the imaginary part of a Hodge metric on an abelian

variety (i.e. on an algebraic torus) is called a polarization of the variety. A polarization is

called principal if this class has the form (0.7). Thus the torus Tlg{B) constructed from a

Riemann matrix is a principally polarized abelian variety; and all such varieties are gotten

in this way.

The totality H g of all g X g Riemann matrices Β is called the (left) Siegel half-plane. By

the Siegel modular group Gg we mean the group of all integral symplectic 2g X 2g matrices

( ^ ) factored by the subgroup { ± 1}:

Gg = S p ( g , Z ) / { ± l } . (0.8)

A matrix ("^) belongs to Sp(g, Z) if α, β, γ and δ are integral gX g matrices and

(the superscript t denotes the transpose). The modular group Gg acts on the half-plane H g

by the formula

Β Η» Β' = 2πί{αΒ + 2πίβ)(γΒ + 2τπδ)Λ (0.9)

Riemann matrices Β and B' related by a transformation from the modular group are

called equivalent. They define unique abelian tori T2g(B) = T2g(B') with a unique

polarization. It is not hard to see that inequivalent Riemann matrices Β and B' give rise to

different tori. Thus the quotient space

Ug/Gg = \ g (0.10)

is the moduli space of principally polarized abelian varieties (of complex dimension g).

This space is an irreducible algebraic variety of (complex) dimension g(g + l)/2 (after a

suitable compactification; see [14]). Note that under transformations of the form (0.9) the

theta function transforms according to the rule

where Μ = (yB + 2wiS)~' and z' = 2-niMz; the explicit form of the multiplier κ (inde-

pendent of z) and of the quantities lt and λ is not essential for us.

Let Γ be a compact Riemann surface of genus g (a smooth algebraic curve). We choose

a canonical basis of cycles a,,... ,ag, bu...,bg in the integral cohomology group H{(T, Z)

with intersection matrix of the form (_° 0)· To this basis there corresponds a basis of the

holomorphic differentials ω,,. . . , <og normalized by the conditions

(f>o)k = 2iTiSjk. (0.11)
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Then the 6-periods of these differentials define a Riemann matrix

*• (0-12)

The corresponding theta function θ(ζ) = θ(ζ\Β) is called the theta function of the

Riemann surface Γ, and the corresponding abelian torus T2g(B) is called the Jacobian

variety or the Jacobian of this Riemann surface. The passage to another canonical basis of

the cycles is given by an integral symplectic transformation; the Riemann matrix Β of the

Riemann surface Γ is transformed to an equivalent one, and the Jacobian generally does

not change.

Let R g be the moduli space of Riemann surfaces of genus g 3= 2. This space is an

irreducible variety of dimension 3g — 3. There is defined a period mapping

R g - A g ; Γ ^ Β ( Γ ) , (0.13)

which assigns to a curve Γ the equivalence class of its Riemann matrix (see [15]). The

classical Torelli theorem asserts that this mapping is an embedding. The proof of this

theorem is not effective, since it requires a knowledge of the "theta divisor" [θ(ζ) = 0}

(see [1]). The problem of finding the equations characterizing the image of the period

mapping (0.13) is the Riemann-Schottky problem. In other words, this problem is con-

tained in the following: to find the equations imposed on a Riemann matrix (Bjk) that

characterize the period matrices of Riemann surfaces. The Riemann-Schottky problem is

nontrivial for g s= 4. For g — 4 the equation characterizing the period matrices was found

by Schottky [3] (see also [4] and [5], which indicate generalizations of the Schottky

relations to higher genus). Schottky's method was essentially advanced by Farkas and

Rauch [6]. In that paper a method was presented that allows one to get a large number of

explicit identities on theta functions by using the theory of the Prym variety. However, the

question of the completeness of this system of identities, insofar as the author knows, was

not investigated (it is not even clear whether the dimension is right). Finally, another

approach to the Riemann-Schottky problem was found by Andreotti and Mayer [7]; to

solve this problem they used information about the singularities of the 0-divisor (for

Jacobian varieties of Riemann surfaces these singularities have codimension 4). The

Andreotti-Mayer equations (we shall state them at the end of the paper) give the right

dimension, but the process of writing them down is very ineffective. Moreover, it is known

that the solutions of these equations have superfluous components in A g (not correspond-

ing to period matrices)—see [13].

In this paper we obtain explicit formulas for inverting the period mapping (0.13), i.e. for

recovering the Riemann surface from its Jacobian (in other words, from its period matrix

(BJk)). Moreover, the Riemann-Schottky problem of characterizing the image of the

period mapping (0.13) is solved precisely up to components.

To solve these classical algebro-geometric problems the author, following ideas of S. P.

Novikov, uses an important equation of mathematical physics, the Kadomcev-Petviasvili

equation (KP):

3uyy = (4M, - 6MM, - uxxx)x. ( 0 . 1 4 )
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Ι. Μ. Kricever found a wide class of exact solutions of this equation, each of which is

constructed by starting from an arbitrary smooth algebraic curve Γ (see [9]). These

solutions have the form

u(x,y,t) = 2d2ln8(Ux + Vy + Wt + z 0 ) ; (0.15)

here θ(ζ) = θ(ζ | Β) is the theta function of the curve Γ; the vectors U, V and W are given

in a quite complicated way by Γ and a point Ρ on it (see below, (1.6)); and z0 is an

arbitrary vector.

We now take an arbitrary Riemann matrix Β and some vectors U, V and W, and try to

satisfy the KP equation using (0.15), where θ(ζ) — θ(ζ \ Β). After substituting we get a

system of relations on the variables U, V, Wand the matrix B:

KP(U,V,W,B) = 0 (0.16)

(the explicit form of this equation will be given below; see Theorem 1). S. P. Novikov has

announced the conjecture that solving the system (0.16) for the matrix Β will yield the

period matrices of Riemann surfaces and these only; that is, we have a solution of the

Riemann-Schottky problem. It has also turned out that if one knows that Β is the period

matrix of a Riemann surface Γ, then solving (0.16) for U,V and W yields explicit

equations for this Riemann surface.

§1. Formulation of the main results

We introduce 2s "second-order theta functions"

6 [ n ] ( z ) = Σ e x p { ( B ( k + n ) , k + n ) + ( k + n , z ) } , (1.1)

where the "characteristic" η G ^ ( Z 2 ) g ; that is, all the coordinates of the vector η =

(«,,. --,ng) are 0 or \. The quantities 0[«](O) (depending on the Riemann matrix B), as

well as the values of arbitrary products (of even order) at zero—0,7[«](O), 6jJkl[n](0),... —

are called theta constants. We agree to omit the zero argument of a theta constant; that is,

θ[η] = θ[η](0), 6,j[n\ = $>](0) , etc.

THEOREM 1. A function of the form (0.15) is a solution of the KP equation (0.14) // and

only if the following system of relations holds between the vectors U, V, W, the Riemann

matrix B, and an additional constant d:

f[n]=f[n)(U,V,W,d,B)

= Σ
• J.kJ

where η e j(Z2)
g.

For the proof of this theorem see the survey [11] (Chapter 4).

We introduce the variety Xg whose points are sequences (U, V, W, d, B), where 0 Φ

U, V, W e Cs, d G C and Β Ε H g , factored by the action of the following groups:

±(X2V+ 2aW),

W \~* X3W + 3X2aV + 3Xa2U, d H» X4d, B\-*B
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(λ and α are arbitrary constants, λ Φ 0), and

ί/Η> 2-niMU, where Μ = (yB + 2πιδ)~\

WH> ittiMW + viMU{ U,U}, where {Χ, Υ} = X'MyY, (ι .4)

d»d+\{V,V}-\{U,W) -\{U,U}2,

Β Μ- 2iri(aB + 2πίβ)(γΒ + 2iri8)~l.

Here the matrix ("^) Ε Sp(g, Ζ) defines a transformation in the modular group Gg (see

above). The variety X g (after a suitable compactification) is algebraic.

THEOREM 2. The system (1.2) characterizes an algebraic subvariety Yg ofXg.

This immediately follows from the easily checked invariance of Yg under the transfor-

mations (1.3) and (1.4). The invariance of the system under the transformations (1.3) is

evident. Under the action (1.4) of the modular group the system (1.2) is invariant only

under the action of some subgroup of Gg of finite index, not in general. But the set of

zeros Yg of this system is invariant under the action of Gg. Actually, this is connected with

the fact that the construction of Kricever's solutions does not depend on the choice of a

canonical basis of the cycles.

We have introduced the space R g parametrizing the Riemann surfaces of genus

g 3= 2—the variety of moduli of Riemann surfaces. By R g we shall denote the natural

bundle over R g whose fiber over a given point is the corresponding Riemann surface. The

dimension of this variety is 3g — 2. The period mapping (0.13) evidently extends to a

mapping

κ,'π,Λν (1.5)

Let B(R g) be the graph of this mapping. According to Kricever's construction (see the

Introduction), one can define an embedding of this graph into the variety Yg of solutions

of the basic system (1.2). This embedding is given by the following formulas: if Γ is a

Riemann surface with a canonical basis for the cycles a, and bj, ω,, . . . ,wg is a basis of the

differentials on Γ, and Ρ ε Γ is a fixed point, then Β is the period matrix (0.12) of the

surface Γ, and

W,= -{v,"(P)/dz-\c(P)U ( L 6 )

(the prime denotes the derivative with respect to a fixed local parameter ζ in the

neighborhood of P), where c(P) is a projective connection on Γ (see [2]) of the form

here f is an arbitrary nonsingular point of the theta divisor; that is, θ(ζ) — 0 and

grad θ(ξ) φ 0, and d = d(P) is a quadratic differential on Γ of the form

Sd(P) = - (\ηθ(ξ))χχχχ - 6[(1ηθ(ξ))χχ]
2 + 4(1η0(ί)),, - 3(\ηθ(ξ))^ (1.8)
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( | is an arbitrary vector). It is easily checked that this mapping is well defined (it is

independent of the choice of the basis of cycles and of the local parameter z). In fact (see

[11]), the graph B(R g) is contained in an open subset X g C X g characterized by the

following nondegeneracy condition:

^ ± i ) + i. (1.9)

(The matrix occurring in this condition consists of theta constants and has size [{g{g + 1)

+ 1] X 2g.)

We can now give a precise algebro-geometric formulation of the main conjecture.

CONJECTURE (S. P. NOVIKOV). The intersection of the set of zeros Yg of the system (1.2)

with the domain X g coincides with the graph B(R g) of the period mapping (1.5).

(It is necessary to take the intersection with X g to omit the "trivial" solutions of (1.2);

they correspond to the direct products of Jacobians on an arbitrary abelian variety.)

For g = 2 and 3, where no conditions on the Riemann matrix arise, this conjecture was

proved by the author in [10], and this has allowed us to solve the problem of making

effective the formulas for solving the KP equation and the equations connected with it (for

a proof, see [11]). For g > 3 one has the following weaker assertion:

THEOREM 3. The irreducible component of the variety Yg containing the graph B(R g)

coincides with it. In other words, Novikov's conjecture holds except for the possibility that the

variety of solutions of the system (1.2) may have superfluous components.

The proof of this theorem will be given in the next section (the idea of the proof was

published in [11]).

§2. Proof of the main theorem

Because all the constructions are algebraic, it suffices to compute the dimension of the

component Yg° of the variety Yg of zeros of the system (1.2) that contains the graph B(R g)

and show that this is 3g — 2. We shall show that the local coordinates at a general point of

Yg° can be taken to be the variables £/,,..., Ug, Vx,..., Vg (defined up to transformations

U^XU and VH> ±(X2V + IXaU)) and e, = exp BH (i — 1,... ,g). For this we must show

that the rank of the Jacobian matrix

MM VW MM
dd '

is \g(g + 1) + 1. Here/[«] denotes the left-hand members of the system (1.2), and in the

matrix (2.1) the arguments U, V, W, d and Β lie on the graph B(R g), i.e. have the form

(1.6)—(1.8) for some Riemann surface Γ and point Ρ on it. We shall deform this surface Γ,

moving its α-cycles. Then the quantities ε, = exp Bu will converge to zero (see [2]). The

limiting subvariety (ε, = • · · = eg = 0} is a so-called "Enriques curve"; that is, a rational

curve with g double points. The basic idea of the proof of Theorem 3 is to solve (1.2) in

the neighborhood of the subvariety (ε = 0} "by the theory of perturbations"^1) From all

(') For genus g = 2 and the Korteweg-deVries equation, similar computations, according to the theory of perturba-
tions, were first made by S. Ju. Dobrohotov—see [12].
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the basic systems f[n] — 0 we take only \g(g + 1) + 1 equations corresponding to the

following characteristics:

2) η = n(p) — \ep, where ep = (0, . . . , 1,... ,0) is the/Hh basis vector (with a unit in the

pi\\ place); and

3)n = n, = {{e + e ),p Φ q.

The functions θ[η](ζ\Β) are analytic (in ε) in the neighborhood of the subvariety

{ε = 0} after a simple renormalization. For the characteristics listed above the explicit

form of these renormalized functions as e -» 0 is

g

θ [ 0 ] ( z ) = 1 + 2 ^ ε , . c o s h z, + · • • ;

= cosh -f + Σ E , k , c o s h ( z . + ^ + l- cosh( z, - -f) j + • • • ; (2.2)

where we have introduced the notation f,. • = exp BiJ for / ^y;

^ Z ^ + cosh ^ ^

Σ e,k^^cosh(z, + ̂ ) + -%- coshiz,

- c o s h zi + " p + -y- c o s h ζ,. + -1—!—- [ + · · · . ( 2 . 3 )

In these formulas the dots always denote the terms of higher degree than ε. For these

characteristics we shall correspondingly renormalize the functions/[«] (without changing

the notation for them). We seek the unknowns d, Wi and ζ^ = exp B^ as power series in

d = rf<°> + rf<» + · · · , Wt= W^ + W,™ +••-, ζυ = #o> + ?O) + • · · , (2.4)

where the upper index (k) — (0),(1),... denotes in the decomposition of the respective

quantity the component of degree A: in ε (the "kth approximation"). Substituting the

decompositions (2.2) and (2.3) into the corresponding equations/[«] = 0 of the system

(1.2) and putting ε, — • • • = eg = 0, we get the equations for the zeroth approximation.

The equation/[0] = 0 yields

dm = 0. (2.5)

Further, we require that all coordinates of U be nonzero. Then the equation f[n(p)] = 0

together with (2.5) yields

\υϊ + \%- (2"6)
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We now replace U and V by new variable vectors X and Y, putting

U, = X,-Y:, Vt = X}-Y? ( i = l , . . . , g ) . (2.7)

Then (2.6) can be rewritten as

< » = xl - y/. (2.8)

Finally, from the e q u a t i o n / [ η { p < q ) \ — 0 we find that

HO, = ( X P - X , ) ( Y , ~ YP) , ,

' " {Xq-Yp){Xp-Yq)
 K ' }

(assuming the quantities X, and Yj are pairwise distinct). Thus (1.2) is solved in zeroth

approximation. The variables Χλ,... ,Xg, Yu... ,Yg, defined up to transformations of the

form

X^XX,, Y^XY,,
(2 10)

Xi H> X, + a, 7, κ» 7, + a, y '
are coordinates on the intersection Yg Π {ε = 0}. This shows the validity of Theorem 3 in

first approximation (for Enriques curves).

One now easily computes the Jacobian matrix (2.1) for ε = 0 with the change 9/35,7 -»

j. This matrix has the form

] df[n]

'
η = η

η = η

(Ρ)

1 Ο Ο
-β.-. ο

•ρ

8J.JJ.UXX- Yp){Xp-Yq)
(2.11)

where the asterisks denote terms inessential for us. Evidently, this matrix has maximal

rank. From this and the complex-analytic implicit function theorem we get a solution of

(1.2) in the form

ϋ^Χ,-Υ,, V, = X?-Y,2, (2.12)

d=d(X,Y,e), ^ = ^ ( A " , r , e ) , ?,., = £ , ( * , F, ε), (2.13)

where (2.13) are single-valued analytic functions of ε (for small ε). The coefficients of the

expansions of these functions as power series in ε can be found by recursively substituting

(2.4) into (1.2) (with the same characteristics as above). It is clear that these expansions are

invariant under the transformations (2.10). We get precisely a (3g — 2)-dimensional family

of solutions. This means that the family of solutions coincides with B(Rg), since they have

the same dimension and are irreducible. Theorem 3 is proved.

§3. Concluding remarks

1. The component Y° of the totality Yg of solutions of (1.2) that is found in the main

theorem (and coincides with B(Rg)) can be given by a part of the equations of (1.2). It

suffices to take the equations /[«] = 0 for those characteristics n\...,nr (r = g(g + l)/2

+ 1) which number the lines of a nonzero minor of the matrix (1.9). For example, for the

matrix (BJk) with small ε, = exp Bu such characteristics are η — 0,n = n(p)(p = 1,..., g)

and η = n(p ? ) (p, q— l,...,g; ρ < q) in the notation of the preceding section. It is
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interesting to note that, eliminating the variables U, V, W and d, among which there are

3g — 1 independent ones, from the system

r — + 1 (3.1)

we get just

relations on the Riemann matrix (BJk), one less than the number of such relations needed,

namely j(g — 2)(g — 3). The structure of the variety B(R g) = \° explains the form of the

missing relation: if (BJk) is the period matrix of some Riemann surface Γ, then its

preimage B~\BJk) is this Riemann surface itself rather than isolated points (as would

follow from the simple combination of system (1.2)). We shall explain how to obtain the

required number of relations on theta constants in the first nontrivial example, g = 4. Let

nl, . . . , « " be the number of lines of a nonzero minor of (1.9):

det(eu[n]J[n])*0, (l < / < / < 4; n = n\...,«"). (3.2)

We denote the inverse matrix by

{au[n],a[n}) (l <

From (1.2) with η = n1,...,«" we then get

4; η = η\...,ηη).

, />=!,...A

^Vft- UpWq- UJVP= -QjU),UqWpQpq

where the polynomials Qpq{U) have the form

^ ρ < q ^

Qpq{U)= O«'R*/[»'] ·
s=\

The W variables are eliminated at once. After simple transformations we get

4),

where the polynomials Ppq(U) have the form

Ppq{U) = Up

2Qqq(U) - UpUqQpq(U)
pq{U) UpQqq(U) UpUqQpq(U) + Uq

2Qpp(U).

The compatibility conditions of system (3.7) have the form

- UjP23(U) = 0,

- u4]jpi2(u) - ujp24(u) = o,

= o.

(3.3)

(3.4)

(3.5)

(3.6)

(3.7)

(3.8)

(3.9)

The vector U = (t/,, U2, U3, U4) can be normalized so that Ux — \. Finding U2 and U3

from the first two equations of (3.9) and substituting them into the third equation gives us

a relation P(U4) = 0, where P(U4) is a polynomial. Equating any of its coefficients to zero
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gives us the desired relation on theta constants. Evidently, the required number of

relations are gotten in just the same way in the general case g > 4.

2. The procedure indicated in the proof of the main theorem for constructing solutions

of (1.2) for the component Ŷ ° as a function of the coordinates [Χ, Υ, ε} also works on

subvarieties in B(R g) corresponding to hyperelliptic or trigonal (three-sheeted coverings of

CP 1 ) Riemann surfaces. For hyperelliptic surfaces the coordinates X and 7 must be

connected by relations

X.+ Y. = 0 ( i = l , . . . , g ) , (3.10)

ε,,... ,eg being arbitrary. Indeed, by (1.6) the vector (Vt) = {X? — Y,2) vanishes at 2g + 2

Weierstrass points of a hyperelliptic surface of genus g. Therefore, condition (3.10) cuts

out on the variety \° a (2g + 2)-sheeted covering of the totality of all hyperelliptic curves.

Formulas (2.13) will then give explicit expressions for the period matrices of hyperelliptic

curves. Likewise, the totality of periods of trigonal curves is characterized in Yg° by the

relations

W,(X,Y,e) = Xl-Yl, f = l , . . . , g . (3.11)

3. As already stated in the first remark, if (BJk) is the period matrix of some Riemann

surface Γ, then the solutions of the corresponding system (1.2) lying in Yg° yield the

Riemann surface Γ itself. By the preceding remark, this also holds in the hyperelliptic and

trigonal cases. Combining this with the Noether-Enriques theorem on canonical curves

(see [1], as well as Chapter 4 in [11]) allows us to state the following

ASSERTION. If(Bjk) is the period matrix of a general hyperelliptic Riemann surface Γ, then

the projection of the solutions of the corresponding system (1.2) into the space CP§~1 with

homogeneous coordinates (U^... .:Ug) is the image of the canonical embedding of the

curve Γ.

Thus, if (BJk) is the period matrix of Γ, then eliminating V, W and d from (1.2) yields

canonical equations for the surface Γ. For the hyperelliptic case it suffices to eliminate just

W and d.

4. At the present time one knows many important nonlinear equations that are

integrated by theta functions (see [8], [9], and also the survey [11]). The method developed

by the author in [10] and [11] allows one to infer a series of useful relations among theta

functions from these nonlinear equations.(2) Here we mention one simple example: the

two-dimensional Toda lattice, which I. M. Kricever (see the Appendix to [11]) integrated

by theta functions. Here we have differential-difference equations:

dvn_
n + 1

(3-12)

( 2 ) Unrelated to nonlinear equations, some of these equations appeared earlier (see [2]). Thus, for example,
Corollary 2.12 in [2] is easily compared with the KP equation, and identity (39) with the Toda lattice.
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The solutions of this system are parametrized by an arbitrary Riemann surface Γ and a
pair of points P+ and P~ on it; it has the form (the vector z0 being arbitrary)

_ 6{xU+ +yU" + {n + 1)Δ + zo)6(xU+ +yU~ + (« - 1)Δ + z0)
C

θ(χυ+ +yU- + (n + 1)A + z0)
z0)

Here Δ = (Δ,,...,Δχ), t/- = (ί/f ,..., Uf ) and

where ω,,..., wg are a basis of the holomorphic differentials on Γ with the normalization
(0.11), z± are local parameters in the neighborhoods of P+ and P~ , and ε2 is a constant
depending on P+ and P~ . Substituting these formulas into (3.12) yields, after some
simple transformations,

V-

(α is a new constant). Applying the addition formula (see [11]) gives the following system
of relations, equivalent to (3.15):

\θ [κ](2Δ) - αθ [η] + 2 2 ί/,+ l/r $,[n], (3.16)
ε >.j

where η G {(Z,2)
g. This system is transcendental with respect to the quantity Δ. It can be

redeemed from transcendence as follows. Consider the g-dimensional subvariety Kg(B) of
the space CPN (N — 2g — 1) with homogeneous coordinates λ[η], η ε j{Z2)

g, with
parametric representation

λ[«]=0[η](2Δ), (3.17)

where Δ G C g is an arbitrary vector, η G ̂ (Z 2) g. This is a Kummer variety; the coeffi-
cients of its equations in CPN can be expressed by means of theta constants (see [7]). Let

& ( λ [ « ] ) = 0 , k=l,...,N-g, (3.18)

be these equations. Then from (3.16) we obtain

f ; ) (3.19)

i.e. the totality of vectors of the form

X[n]=ae[n] + 2Ui'UreiJ[n] (3.20)

has nonempty intersection with the surface Kg{B). Eliminating the quantities a and U+ ,
U~ from (3.20), we can obtain the desired relations on theta constants. It is interesting to
note the analogy between the relations we have gotten and the Andreotti-Mayer relations
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[7], which have the following form: the totality of vectors \[n] in CPN that satisfy the
equations

Σλ[η]θ[η)=0,

" (3 21)

] 4 [ ] ο i j \

has nonempty intersection with the Kummer variety.

In conclusion the author considers it his pleasant duty to thank A. N. Tjurin for a series

of useful criticisms.
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