REAL TWO-ZONE SOLUTIONS OF THE SINE-GORDON EQUATION

B. A, Dubrovin and 8. M, Natanzon UDC 517.9

Introduction

The goal of the present paper is to enumerate all smooth real solutions of the sine~-Gordon equation uxy =
sinu, expressed in terms of theta-functions of two variables. The appearance of this paper is due to 8. P. Novi~
kov, who turned the attention of the authors to the serious incompleteness of the investigations [1, 2] on the
"finite-zone integration" of this nonlinear equation, important in geometric and physical applications (cf. [3]).
(As Novikov informed the authors, results similar to those of [1] were also obtained by McKean in [14],) The
main problem remained finding effective conditions for the reality of the "finite-zone" solutions constructed.
This problem is completely solved in the present paper.*

The smooth real solutions constructed of the sine-Gordon equation are expressed in terms of theta-func-
tions of real hyperelliptic curves (cf. below Secs. 1-3). Specially important is the case of curves of genus 2
(and the corresponding theta-functions of two variables), since here any theta-function (of general type) corre-
sponds to some Riemann surface, Applying the method developed by one of the authors (cf. [4, 5]), one can
eliminate Riemann surfaces from the calculations and express all the quantities appearing in the formulas for
two-zone solutions only in terms of theta-functions. Thanks to this the formulas indicated acquire a specially
simple and analytic effectiveness (cf. below Sec. 4).

1, Description of General Complex Algebro-Geometric

("Finite-Zone!") Solutions of the Sine-Gordon EquationT

Let T be a hyperelliptic Riemann surface of genus g, the affine part of which is given in C? by the equa-
tion
28+1
W= Pyyy (2) = H (z—z); .1

i==1

the variables zj, . . ., Zyg+ are pairwise distinct. The holomorphic differentials on this surface have the form

s (1.2)
MW= —e————, k=1,...,8
V Pagur @)
We choose a basis of cycles a4, ..., ag, by, ..., bgon I’ with matrix of intersection indices ( 0 1). To it
. . S ; —1 0
corresponds a normalized basis of holomorphic differentials wy, ..., Wes where
g
. 1.
oj= D el =1 ..., & 1.3)
k=1
the normalization condition has the form
$ ;= 5. (1.4)

%
*The first discussion on this question with the participation of S. P. Novikov, Yu. Trubovits, and I, V. Cherednik
arose at the Soviet— American Symposium on the Theory of Solitons (Kiev, 1979). Analysis of the results of [1,2]
carried out later revealed the formulation of the problems solved in our paper. :
{The goal of this section is to derive in the shortest way the formulas for (complex) solutions in terms of theta-
functions. Hence we leave to the side a series of profound ideas (L.—A-pairs, Baker— Akhiezer functions, ete.,
cf. [3, 5, 8]), constituting the basis of the method of algebro-geometric integration (or "finite-zone integration™)
of nonlinear equations.

Moscow State University. Translated from Funktsional'nyi Analiz i Ego Prilozheniya, Vol. 16, No, 1,
27~-43, January-March, 1982, Original article submitted June 10, 1981,

0016-2663/82/1601-0021 $07,50 © 1982 Plenum Publishing Corporation 21



The matrix (c]-k) is calculated thus:

(ejn) == (éﬁ ﬂk)_l- (1,5)

3

We define the matrix of periods (Bjk) of the Riemann surface I':
By=G o jk=1....¢ (1.6)
O

It is well known (cf. [9]) that (Bjk) is a symmetric matrix with positive-definite imaginary part, i.e,, (Bjk)
is 2 Riemann matrix, We define in the space C® = R?Z the integral lattice of periods, consisting of vectors
of the form

M-+ BN, M, NeZ: 1.7

The quotient of the space C8 by this lattice is a 2g-dimensional torus and is called the Jacobi manifold (or
Jacobian) of the surface I'; we denote if hy J(I),

With respect to the matrix of periods B = (Bjk) we construct the theta-function with characteristics la] =
fa’; a’l = R

8lofs of1(6) =01e; ] (2| B) = 2 exp (i B (k- o), ko) + 2 K - of, 2+ D) (1.8)
(=¥A
Here z = (31, . . ., 3g) & C¢; the summation is carried out over the integral lattice Z8; the angular brackets de-

note the Euclidean scalar product. Specially important is the function 8(z) = 8[0; 0](z), Characteristics for
which all coordinates of the vector [a] are equal to 0 or 1/2 are called semiperiods, The semiperiod [a'; a"]
is even if 4{ a', a") = 0 (mod2), and odd otherwise. To even periods correspond even theta-functions, to odd,
odd. Upon translation by vectors of the lattice of periods (1.7}, the theta-functions transform according fo the
law

0la’; a'l (z M+ BN) =exp{—mni(BN, N>—2xni(N, z>+2mni (<o, M§_<a”, M)y ele’sa’lz). ‘ (1.9)

For the construction of solutions of the sine-Gordon equation we use the following identity (cf. [10, (39)];
this identity can also be derived in the realms of the theory of nonlinear equations, cf. [5]), valid for any Rie-
mann surface I' and any pair of its points P, Q

8(z-A)8{z—A) - Bnb(z) (1.10)
TEP, QUG “‘H‘ZU% 52,08,
i, 3
Here z = ¢¢ is an arbitrary vector,
P P
A=(fon ... § o), (1.11)
Q Q
the vectors U = (U, . + ., Ug)y V = (Vy, . .., Vg) have the form
o, (P) o, {Q) " :
Ui:—Ld;—, V'i = dq 1 (1-12)

where p, g are local parameters in neighborhoods of the points P, Q, respectively;

: 62 [v] (A}
e* (P, Q)“-“ZU RO\ |, BDI0 (1.13)
i c’izé i 525

where [v] is any odd nondegenerate (i.e., grad 6[v1(0) = 0) semiperiod; the explicit form of the quantity a =
a (P, Q) is inessential for us. The identity (1.10) is a generalization of the "addition theorem" for Weierstrass

o-functions
Slutnse—v) e ey (1.14)

6% (u) % (v)

{ef. [11]).
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LEMMA 1. Let P and Q be branch points of the Riemann surface (1.1). Then the vector A of the form
(1,11) is a semiperiod,

1, 1
A==—M 4 BN, M, NeZ8. (1.15)

Proof. Let ! be a path joining the points Q and P. We consider a second copy I of this path, going from P
to Q on another sheet of the Riemann surface. We have

AJ':lS‘*’i:S@:" j=1...,¢ {1.16)
l

But the integrals of wy, . . ., wg along the closed cycle y =1|JI give some vector of the lattice of periods of
the form M + BN, By virtue of (1.16) this proves the assertion of the lemma.,

In what follows it will be assumed that the local parameters p = ¢;Vz — 24, q = ¢y3Vz = zj ey, 02 are con-
stants) in neighborhoods of these branch points P = {z = zl} Q=1{z= z]} are compatible so that e2(P,Q) = 1.

THEOREM 1. The function

1 0 (zU VI+ALL U 4 yV E—A .
u(z g)=—r|In (=U+y g,(xzj[y‘;jj;‘f £E= ) i, A | (1.17)

is, under the hypotheses listed above, a solution of the eguation
Uy, = —4x sin u, (1.18)
where
n = exp (—mni <N, A). (1,189
The proof consists of direct substitution, using (1.10) and the transformation law (1.9).
Definition. Solutions of the form (1.17) of Eq. (1.18), constructed from a hyperelliptic Riemann surface

' of genus g and its pair of branch points P, Q, will be called g-zone solutions of the sine-Gordon equation.

2, Real Algebraic Curves of Genus 2 and Their Theta-Functions

Let Eq. (1.1) of the Riemann surface I’ have real coefficients, Then on I' there acts the anti-involution
{anti~holomorphic automorphism)

T(z,w)=(Z,w), =1L (2.1)
The topological properties of such "pairs,” a Riemann surface (1.,1) fogether with an anti-involution 2.1) given

on it, are determined in the hyperelliptic case by the collection ofreal roots ofthe polynomial Pzgﬂ(z) [ef. (1.1)].
First we analyze the example of a surface of genus 2 which is basic for us

5 .
—Py(2)= ). G—=). 2.2)
==l
Type 1. All roots z; <. .. < z; of the polynomial P;(z) are real, In this case the anti-involution 7 has on

the surface (2.2) three fixed ovals [three real components of the curve (2.2)]:

A {an <z 2w = & VP, @),
Ay (o <2<z, w=xVP,0) @.3)
Ay o <z { o, w = 4 VP, (@)

We note that the union of the real ovals divides the Riemann surface I" into two disjoint components, A basis of
cycles on such a Riemann surface is represented in Fig. 1. The anti-involution acts on these cycles thus:
Tay = Ay, TAy = Qy, Tbl = -v—bl, sz = ——b2 (2.4)

[equality in the homology group H;(I'; Z)]. The normalized holomorphic differentials

Cn+01“ dz e ST Onf >1—'rC 22 dz
Ve o T VEe 2.5)

My =

on I have hence real coefficients. In other words, under the action of the anti-involution 7 these differentials
are transformed according to the law (here 7*[f(z)dz] = f(r(2)dT(z))
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T*mk ':—"ak, k = 1, 2. (2-6)
The matrix of periods is purely imaginary:

By = o= cfr*mj § 0;=— By;. @.7)

bk 'rbk.
Consequently, the lattice of periods (1.7) in C? = R! is invariant with respect to complex conjugation
(21, 25) = (21, 2y). (2.8)
Thus there is defined an anti-involution on the Jacobian J(I'), We shall find its real

z 2.9)

i

z
and imaginary

z

fi

% (2.10)

components on the Jacobian J(I'). (The sign = here and later will be used to denote the equality of vectors from
C& modulo the period lattice.) To find these components we expand any vector z = (24, Z;} in terms of 2 basis
for the period lattice:

z2 = (2, 2,) = Ba + B, 2.11)

where for the real vectors o = (o, a3), 8 = (81, By) all coordinates lie between zero and one, Then the reality
condition has the form

Ba +p = —Ba + p 4-m + Bn, (2.12)
where m, n= Z%. We get four real components (of the real two-dimensional torus)
z=p + (1/2) Bn, {2.13)
where § = R2, n = (0, 0), (1, 0), (0, 1), (1, 1). Analogously the imaginary components have the form
z~—la+ (1/2)n, (2.14)
where again « = R?, the vector n assumes the same four values. This is again four two-dimensional real tori.

Type II. The roots z, < z < z3 are real, and z, = z5 are complex, The anti-involution 7 has only two
fixed ovals

A : {5 <3<y w= VP (D)}, 4o {2:<2< 0, w=2VP;(n)} (2.15)

while their union no longer divides the surface T into two components. A basis of cycles is represented in Fig.
2. The action of the anti-involution 7 on these cycles is as follows:

T = Ay, Ty = Gy, Tby = ay + a3 — by, Ty = a; -+ @y — by (2.16)

The law of transformation of holomorphic differentials again has the form (2.6). But for the period matrix B
one has the following relation, which follows from (2.6) and (2.16):

E:(i D——B. @2.17)

As before the period lattice in C? is invariant with respect to complex conjugation (z, z;) — @1, 22), which de-
fines an anti-involution on the Jacobian J(I'). But this anti-involution has only two real and two imaginary com-
ponents on J(I'), each of which is a two-dimensional torus. The real components have the form

z=§ +—;—Bn; B=R2 n=(0,0), (4, 1). (2.18)
The imaginary components have the form

ina-l——;—n, e=R2, n=(0,0), (1,0). (2.19)

Type III. The root z; is real and the rest are complex: z; = Zy, Z3 = z,. There is only one real oval:

A1 {2z, <z << 0, w= VP, )} 2.20)
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Fig. 1 Fig. 2 Fig. 3

Fig. 1. Basis of cycles on a Riemann surface of type I. Dashed lines represent parts of cycles lying on the
"lower" sheet of the Riemann surface.

Fig. 2, Cycles on a Riemann surface of type IL.

Fig. 3. Cycles on a Riemann surface of type III.

it does not separate the Riemann surface I'. A basis of cycles is represented in Fig, 3. The real anti-involu-
tion on these cycles is as follows:

Ty = yy Ty = dy,
thy = ay - ag — by, @.21)
Thy = a; + 2a5 — by

The holomorphic differentials satisfy (2.6); for the period matrix B one has the relation

EmG Q_B. 2.22)
The anti-involution on the Jacobian J(I') has one real ,
z==f, f<RY 2.23)
and one imaginéry
z=ia, ocR, A @2.24)

component (each of them is a two-dimensional torus).

Real algebraic curves of genus 2, which are not of types I-III, have the form w? = Py(z), where Py{z) is a
polynomial with nonreal zeros. Such curves either have no real points (type IV), or have exactly one separating
oval (type V). These curves are not suitable for integration of the sine-Gordon equation, and we shall not con-
sider them. We note only that a suitable basis of cycles a4y, 4, by, by on such Riemann surfaces transforms
under the action of the anti-involution according to the law

Ty = @3, TAy=4d;, Tbhy = — bs, sz =—by. (2.25)
The Jacobian J(I') with the anti-involution (z, z3) — (52, z,) has one real and one imaginary component.
Now we clarify the question about the symmetry of the theta-functions of Riemann surfaces of types I-IIL

LEMMA 2, Theta-functions of Riemann surfaces of types I-III with the basis of cycles indicated above
have the following symmetries:

6(z) = 0 (3 + 1), {2.26)
where A is a real semiperiod of the form A= 0 for type I, A = {(1/2, 1/2) for type II, A = {1/2, 0) for type II,

The proof follows quickly from the definition of the function #{z) and the symmetries £.7), 2.17), and
2.22) for the period matrices of the enumerated Riemann surfaces.

To conclude this section we give some general information about Riemann surfaces of genus g = 2 with
an anti-involution 7, Let the anti-involution 7 on I" have n fixed ovals (0 = n =g + 1). Two cases are possible:
a) the union of the real ovals separates I into two components; b) the union of ovals does not separate I", The
properties of "separating” Riemann surfaces [case a)] and their theta-functions are well studied; see, e.g.,
[10, Chap. 6]. Theta-functions of nonseparating surfaces did not arise in applications {as far as is known to
the authors). Hence we give here information about theta-functions of nonseparating surfaces. On such a



surface one can always choose a basis of cycles a4, . . ., ag, by, . . ., bg with intersection matrix (_(1) 1),
transforming under the action of the anti-involution according to the law 0

a‘*“'bé. ’ ’l\<;i<ﬂ,

a+a;—b, n+1<i<g, 2.27

Ta; ==, izi,...,g. Tb,i:{

g
where g = 2,1 a; (cf. [6]). For g =2 such a basis was produced for types II (n = 2) and IIl (n = 1), The period

matrix of holomorphic differentials, calculated in this basis, has the following symmetry:

I B N I B
1 111 1
B={ 1 121 . 1 |—B, (2.28)
: 12 . 1
PR 2

where on the right side the square blocks have sizes n X n and (g - n} X (g~ n). The theta-function 4(z) = 8(z} B)
has the symmetry

8(z) = 08 (z -+ A), 2.29)

where the semiperiod A has the form
A=(1/2)(1, ...,1,0,..,0 2.30)

{ones in the first n places). It is easy to verify that the anti-involution z — z on the Jacobian J(I') has 22! pair-
wise disjoint real components and 27! imaginary components for n > 0, each of which is a real g-dimensional
torus. For n = 0 there is one component if g is even and two if g is odd. The function 8(z} is real on the real
tori of the form '

ZEioc+—-21-—(s1,...,en_l,O,_...,O)+—;—7\,, a=RE >0
s==ig for p=0, g=2p--1, 2.31)
z“:-.:“ia-}-—%—(sx, 0,...,0) for n=0, g=2p,

where &, . . ., €1 assume the values 0, 1. (It is easy to see that the condition of reality of the function #(z)
depends only on the class of the vector z modulo the period lattice.) We note that on all these real tori the
function 6(z) has zeros (see the Supplement below), so nonseparating Riemann surfaces, as a rule, cannot

be used for the construction of smooth "finite-zone" solutions of nonlinear equations, integrable by the method
of the inverse problem,* However the sine-Gordon equation is an exception fo this rule: in the following sec-
tion we shall show that any real hyperelliptic curve with at least one real branch point gives a smooth real so~
lution of the sine-Gordin equation. With the exception of the simplest case, where all branch points are real,
such Riemann surfaces are always nonseparating.

3. Selection of Real Solutions of the Sine~-Gordon Equation

In this section we shall show that for the reality and smoothness of the finite-zone solutions constructed
in Sec. 1 of the sine-Gordon equation it is necessary and sufficient that the following conditions on the Riemann
surface I" of the form (1.1} and its branch points P, Q hold:

1) the hyperelliptic curve (1.1) must be real (i.e., a Riemann surface with anti-involution);
2) the branch points P, Q must lie on one real oval of the curve {1.1).

For the case of genus 2 the surface I' must be of one of the types I-III, listed in the previous section.
Moreover, it is also necessary to impose a restriction on the parameter ¢, determining the solution [cf. (1.17)};
we shall do this a little later. The condition on the branch points P, Q means that A is a real vector in C8,

M=t M, MeZe 3.1

*Using the technique developed here, one of the authors (Dubrovin) proved that the nonlinear Schrdinger equa-
tion iy =dxx — 19 *# (case of repulsion) has no smooth finite-zone solutions.
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Tor definiteness one can assume that the points P, Q lie on the cycle a;. Then M = (1,0, ..., 0). Hence (1.17)
and (1.18) can be simplified and we get: the function

' -
S(zU—i-yifw“-—M—L{} .
1 2 UE {3.2}

ulz, y)’“"i'm{ OG0y +0 } !

is a solution of the equation
Uyy = —4 sin u. 3.3)

Making the substitution x, y = ix /2, iy/2, one can reduce this equation to the standard form Uxy = ginu, We
consider the function

o (i 4
o S o

By virtue of the transformation law (1.9), this is a single-valued meromorphic function on the torus J(I'), Now
we impose the restriction on the vector ¢:

f=— M+ A—8, (3.5)

where A = 0 for type I, A = (1/2, 1/2) for type II, and A = (1/2, 0) for type IIL. 1t is clear that such vectors ¢
are in one-to-one correspondence with imaginary points of the Jacobian:

§:—%AM+";—}\.+Z; where Z ==~ Zs 3.6}

LEMMA 3. The equation |@(@)? = 1 is valid if and only if (3.5) holds.
Proof. Suppose for the vector £, (3.5) holds, Then

i - 1
m_[@@~TMw_9%p«yM+Qm . 3.7
O P Y Y Iy T G
Conversely, if ¢(£)@(2) =1, then by (3.7),
§+A:iig—%dﬂ. (3.8)

The plus sign in this equation is impossible, since the vector t—¢tis purely imaginary, and the vector A +
(1 /2)M is real. The lemma is proved.

We choose local parameters p, q in neighborhoods of the branch points P, Q so that 7{p) = p, 7{@) = q.
Then the vectors U, V are real: U= U, V = V. This is obvious from their definition (1.12) and the form of the
holomorphic differentials (2.6). Hence if (3.5) holds for the vector £, then the relation
T=— M 4A—t
holds for the vector

t=pirU b iyl — - M 1 (3.9

for real x, y.

THEQOREM 2. The function

o(Zpey Ly Lty AT
1 3 2 % ) )
u(z, y) =-=In - : (3.10}
¢ (:f_[,r+_’y_y E“LM‘L;,g
_ 2 2 T4 Ty AT

is a smooth real solution of the sine-Gordon equation Uxy = sinu under the conditions listed above on the Rie-
mann surface I', its branch points P, Q, and the local parameters p, ¢, while the vector z must lie on some

imaginary component of the Jacobian J(I'). If the Riemann surface I' has only one pair of real branch points,

then there is another component of smooth real solutions of the equation Ugy = sinu
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u(x,y)=_j-1n[9(%U,—%V+(%—’3>+z>]z, 811

oFrv—Fvs

where the vector z is purely real. The formulas listed exhaust all smooth real finite-zone solutions of the
equation ugy = sinu.

Proof for Genus g = 2. The smoothness and reality of the solutions (3.10) follows directly from Lemma 3,
The smoothness and reality of solutions of the form (3.11) is verified just as in Lemma 3, We give the proof
of necessity of the reality conditions listed in the theorem. The necessity of the reality of the curve I'" and its
branch points P, Q follows from the theory of L—A-pairs and is actually proved in {1]. The necessity of the
condition ¢ + £ = A + A follows from Lemma 3. This equation has on J(I') nontrivial solutions if and only if
the vector A is real. This means that the points P and Q lie on one oval of the anti-involution 7. This uniquely
fixes the anti-involution on the Riemann surface for types I and II; for type III another involution 7' also serves,
where 7'(z, w) = (z, —w). This leads precisely to the formulas listed above and only to them. The theorem is
proved,

. The proof of this theorem for the case of higher genus is carried out practically unchanged.

This theorem allows one easily to calculate the collection of components of smooth real solutions of the
sine-Gordon equation constructed from a real hyperelliptic surface I’ of genus g with a fixed pair of real branch
points, lying on one oval, where I" has n real ovals (1 =n =< g +1). It is only necessary to exclude "trivial"
components, for which the solutions differ only in sign, We get 2772 components of real solutions for n = 2 and
two components for n =1, A complete list of smooth real solutions for genus g = 2 is given in the following sec-
tion. The reason for the appearance of two components for curves with one oval is clear from the proof of
Theorem 2: actually these two components correspond to two different real curves wt = P;(z) and w? = —P5(z),
isomorphic as complex Riemann surfaces.

Before moving to the effectivization of the formulas in genus 2, we mention the problem of the density of
the finite-zone solutions of the sine-Gordon equation constructed in the space of all periodic (modulo 27) solu-
tions of this equation. As Novikov indicated to the authors, up to now there are no approaches to this problem.
This is connected, in particular, with the non-self-adjointness of the corresponding L— A-pair (cf. [3].

4, Effectivization of the Formulas Obtained for Two-Zone

Solutions of the Sine-Gordon Equation

In this section we shall show that from the construction of the two-zone solutions one can completely
discard the Riemann surface, and we get formulas in closed form for real smooth solutions in terms of theta-
functions of two variables. The basic possibility of realizing such a program is clear in advance, since any
By By
By By
position is the period matrix of some Riemann surface (see, e.g., [5, Chap. 41).

Riemann 2 X 2-matrix B = ( ) (i.e., symmetric matrix with positive-definite imaginary part) in general

We introduce the notation needed. We consider the four linearly independent functions
Binl (@) =8| 0] (z|2B), ' @.1)

where n = (Z,)%, i.e., the coordinates of the vector n = (n, ny) are equal to 0 or 1, One has the following iden-
tity ("addition theorem" for theta-functions, cf. [5]):

B(z+u)0(z—u)= ﬂ(zz)zé[n](Zz)ﬁ[n] (2a). ' (4.2)

The values of the functions 5[n] (z) and their derivatives at zero are called the theta-constants. The theta-con-
stants are functions of the Riemann matrix B. Let us agree to omit the argument zero from the theta-constants:
9[n] G[n] ), 61][ n] = 61][11] (0). We impose on the Riemann 2 X 2-matrix B the following nondegeneracy condi-
tion:

8110, 0] 81210, 0] B:[0, 0] O[O, 0]
Bult, 0] Oelt, 0] Bnl1, 01 814,01 .
0.0, 1] 81210, 1] 822[0, 1] B[O, 1]
B[4, 11 B[4, 4] o1, 11 B[4, 1]

D= det, (4.3)
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(this condition eliminates Riemann matrices, reducing an integral-valued symplectic transformation to diago-
nal form).

THEOREM 3, Let B = (g“ B > be an arbitrary Riemann matrix with the nondegeneracy condition (4.3},
satisfying one of the three reahli:Zy czcinditions:
Typel: B = — B, (4.4}
Typel: B =} :) B, (4.5)
Typell: B = (1 ;) —B (4.6)
Then the function
010, 0; py, g (N g o S ) wn

u(z, y):%ln

i(x—z i{y — R
e[O,OHquZ]( ( 5 o) U+ (yz yu)[/>

is a smooth real solution of the equation ugy = sinu, where the characteristics py, Py, 9y, gy for the types I-III
have the form

Type I Type 1r |Type 111
J 21 L 34 0 0
P2 0 e Y 0 ’ {4.8)
q1 N Yy Ys s
gz 0 e Y, 0

the vectors U = (U, Uy), V = (Vy, Vy) have the form

Uy=1, U,— @+ V 6f, — 49090 g1 — Vq%z — 44nda (4.9)

1 V = ' TUND et ettt ettt
S 1=qu. Ve »

2

and the quantities dij = 4ij (B) are calculated according to the following formulas {the determinant D is defined
by (4.3)]:

810, 0] 81[0,0] Bx[0,0] 0
gu=D"det| O 81211, 0] 801,01 811, 0] {4.10)
. 810, 1] B0, 1] Bure 1] o |’

0 Bial1, 1] B01,1) B[4, 1)

8, 10,01 80,07 8,10, 0] 0
g1 Dridet |On1:0) 0 801, 0] 814, 0] @.11)

8,510, 1] 8710, 1] éy[o 1] 0o |’

Bult,1] 0 B[t 1] 801, 1]

8210,0] 80,01 8[0,01 0

Gag == Dot |0n 10 Belti0] 0 Bt 01 @4.12)
81110, 11 8510, 1 60,11 0
Bt 11 B[, 0 81, 1}

For Riemann matrices of type III there is another family of real solutions of the form

T — Xy Y — Ya 2 )
u(x,y):iiln[ LO T z , 1< i- V)] 4.13)

e<—17x° v YZh V)

4

Proof. First we choose an arbitrary Riemann matrix (without reality conditions), we construct from it
the corresponding function 6(z) = 6{z] B) and we shall seek a solution of (1,18) in the form (1.17), where ¢ is an
arbitrary vector, A has the form

A=+ BN, A NEZ (4.14)

R
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and the vectors U, V are as yet unknown. To find these vectors, we use (1.10). Under the condition €* = 1 we
have

L0 (z + AB(z — A) = a? (z) -+ dydvd (2)-0 (2) — 8uB (2)8+9 (2). 4.15)

We transform this equation, using the addition theorem (4.2) (cf, [5]). We get a system of 28 relations
2 UV Bis1n) + abin] =81[n] (24),  n=(Zo). (4.16)
)

For g > 2 the compatibility conditions for this system give nontrivial relations on the Riemann matrix B, neces-
sary (and apparently sufficient; cf. [5]) for the matrix B to be the period matrix of a hyperelliptic Riemann
surface, But for g = 2 these equations are easy to solve. We choose as A the vector A = (1/2, 0). Then the
system (4.16) can be rewritten in the form

2U1V1§u [n] 4+ 2 (U,V, + U2V1)§12 {nl + 2U2V2§22 (nl + o [n] = (__1)11'6 [nl, (4.17)

where n = (ny, ny) assumes the values (0, 0), 1, 0), (0, 1), (1, 1), Solving it by Cramer's rule, we get
UlVi=qu, UV, + UyVi = qu, UsVsy = g, (4.18)

where the quantities q;; have the form (4.10)-(4.12). Whence, obviously (4.9) follows. Thus, we have verified
that the formulas hsteé in the theorem give solutions of the sine-Gordon egquation. We verify that these solu-
tions are smooth and real under the conditions (4.4)-(4.6) on the matrix B, For this it suffices to prove the
reality of the vectors U and V, defined by (4.9). We divide the proof of reality into a series of lemmas,

LEMMA 4. For Riemann matrices B, satisfying one of the reality conditions (4.4)-(4.6), the quantities
qij = dij (B), defined by (4.10)-(4.12), are real.

Proof. For the theta-constants from (4.4)-(4.6) we get these relations:

8 [n] = exp (—2mi <n, AX?P [nl, By; [n] = exp (—2mi (n, ADH;; [nl, (4.19)

where > =0, (1/2, 1/2) or (1/2, 0) for types I, II, III, respectively. For type I we get thus that all theta-
constants are real. For types I, III the theta constants H[O 0], 9[1 0], 6[0 1], [l 1] under complex conjuga-
gon are multiplied, respectively, by 1, —i, —i, 1, or by 1, —i, 1, —i (the same thing holds for the constants
Bjk[n]). In all three cases the reality of the quantities aij follows from this. The lemma is proved.

By virtue of the lemma proved it suffices to verify the positivity of the discriminant
= gy — 4G1100,- 4.20)

LEMMA 5. The discriminant 6 = §(B) does not vanish for any Riemann matrix B, satisfying the nonde-
generacy condition (4.3).

Proof, We note first of all that the vectors U, V are determined from the system (4.17) uniquely up to
transposition and to transformations U - kU, V— k~1v. Further, any Riemann 2 X 2-matrix with condition
(4.3) determines a Riemann surface T of genus 2. For this Riemann surface I' and a suitable pair of its branch
points, the vectors U and V hence necessarily have the form (1.12). It is well known that these vectors are
different (cf., e.g., [5]). The lemma is proved.

Now we consider the determinants §,;, {5, Gy standing in the numerators of (4.10)-(4.12) (i.e., qjj =
D™ ql) They are now defined for all Riemann matmces B [without the restriction (4.3)]. We shall show that
even if the determinant D vanishes, the quantity 5= 3, — 44,0y can become zero only on certain curves in the
three-dimensional space of Riemann matrices, In fact, if the determinant D is zero, this means that the Rie-
1(-)1 _‘(_) ) The corresponding theta-functions
2 -~ -~ ~

of two variables then split into the product of two one-dimensional theta-functions. Hence qy =qy = 0, ¢4 #0
for almost all 7, 7. It is easy to verify that under a change of bas1s of the period lattice given by an integral
symplectic transformation, the quantity 6 can only be multiplied by a nonzero factor. This means that for al-
most all Riemann matrices lying on the level D = 0, the quantity 5 # 0.

mann matrix B has, in some basis of the lattice, diagonal form B = (

Further, if B is the period matrix of a real Riemann surface of types I-III, then B satisfies the reality
conditions (4.4)-{4.6), respectively. For such a Riemann matrix the discriminant é is positive., From the pre-
ceding arguments it follows that 6 cannot change sign. This completes the proof of the theorem,
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5. Concluding Remarks

1. The two-zone solutions of the sine-Gordon equation constructed above from the Riemann matrix B
are such that the function expiu(x, y) is almost periodic in x and y with the pair of periods T’f, ’I‘é( and 'I\Y, ’I‘%’,
respectively. These periods are determined up to a Lorentz transformation

T¥TY, T7kTf, TV iy (5.1}
and up to transformations of the form
2
(TP e Xom (T7 Y7, (5.2)
J==1
where (mjj) is an integral unimodular matrix, generated by a change of basis of the period lattice. The explicit

form of these periods is
757 v
( 1_1) =B, ( 1_1) =B, (5.3)

Vi 7Y

where the matrix f3 has for types I-III the following form:

Typel: B =25 (5.4)
. __(Bu—Bi; —14By+ B\ |
Type II: B = (Bm__thz —-1+Bu-{-—323) : (5.5}
o [—1-2By —142By,
Typetls B=(TiTopt ThT080). (6.6)

The solutions periodic in x (or in y) are singled out by the condition of commensurability
mIT 4 naTs =0 or n 77 + npTH =0, (5.7)
where ny, ny are integers. If all periods in x and in t are equal to infinity, then the two-zone solutions con-

structured become two-soliton solutions of the sine~-Gordon equation (cf. [3]).

2, In conclusion we give a family of two-zone solutions, expressed in terms of elliptic functions. We
take the Riemann matrix:

Bl (t7 "f). Imt>0, Imi>0, (5.8)

FT\t—% t+%

where type I: Re1 = ReT = 0, type II: Re7 = 2, Ret = 0, type OI: ReT = Ret =1 {the period matrices of Rie-
mann surfaces of the form w? = P3(z2)*]. Making the substitution t =x +y, { =x—y, we rewrite the sine-
Gordon equation in the form

Uy — Ugz = sinu. (5.9)
We set
1
Og(z)=9[—2-; 0} |7), 83(s) =0(z] 1) (5.10)

(for the standard notation for theta-functions of Jacobi, cf. [11]); the notation (52 (z) and 53 (z) (where 7 — 7) has
analogous meaning. Then solutions of (5.9), elliptic int and in £ (it is clear that expiu will be an elliptic func-
tion), have the form '

u(t, §)=—i—-ln 93(2)?3(10)-—92@)?2(:0) 2’ (5'11)
l 05 (2) 85 (w) + 9, (2) B, (w)
where
z=i0(—t) + 2%, w=m(§___§0)+fn1;nz' 5.12)

*It would be interesting to study properties of solutions of other nonlinear equations, integrable by the method
of the inverse scattering problem, corresponding to Riemann surfaces with rich symmetry. In connection with
the classification of such surfaces, cf. [7].

31



the vector (ny, n;) assumes the values (0, 0), (1, 0) for type I and (1, 1) for types IT and III. The "dispersion
relations" for the wave vector (w, n) have the form

02 [fof o + fofal — %2 fa)
sz;fl—nzf'1f;=— i—is—oc f1f1,

»* [f;,fo + f;;]?ﬂ — %2 [fl% “lq“fo]?;] = 1_8_0‘ (fifo =+ fof1)

{the variable a can be eliminated from the system) Here we have introduced the functions fi(z) = 6[k/4; 0] x
(z121), k=0, 1, 2; the functions fk(z) (where T — 7) have analogous meaning., As usual, the absence of an
argument from these functions (or from their derivatives) means that this argument is equal to zero, One
should note that in the special case where the periods in ¢ are infinite, solutions of type (5.11) were found
Gribkov [13] with the help of the Bicklund transformation.

Supplement. On the Zeros of Theta-Functions of Real

Nonseparating Curves

Let T" be a Riemann surface of genus g with anti-involution 7, having n fixed ovals {0 = n = g), which
altogether do not separate I'. Let, further, 6(z) be the theta-function of this Riemann surface, constructed
with respect to a basis of cycles of the form (2.27). It assumes real values on g-dimensional tori of the form
(2.31).

THEOREM. On all tori of the form (2.31) the function 8(z) has zeros.

Proof, We parametrize the points of the Jacobian J(I') by divisors D of degree g:

o+ KC. | 8.1)

s
ét/zt.

Here w = (Wyy « v+ wg) are normalized holomorphic differentials, Q is a fixed point of I', KQ is the corre-
sponding vector of Riemannian constants (cf. [10]).

LEMMA. A vector z of the form (S.1) satisfies (2.31) if and only if one can find a meromorphic differ-
ential with zeros at D + 7(D) and poles at @ and 7@Q), i.e., D+ 7(D)~ K +Q + 7(Q) (KI" is the canonical class).

Proof, Let (2.31) hold. Then the differential sought, £ (P), has the form

P r

O(ts;m—z)e(‘r({z)mﬁ—z)
QO =< grem, vy P 6.2)

(p is a local parameter at the point P, the quantity €(P, Q) has the form (1.13); cf, [10, Chap. 2]). The zeros
of the numerator are situated at points of the divisors D (first factor) and 7(D) [second factor by virtue of
2.29)]. Further, (S.2) is the general form of differentials with poles at Q and 7@); whence and from (2.29) it
follows that z + z = A, The lemma is proved.

We note that 6(z) = 0, if and only if the differential & (P) of the form (S.2) is holomorphic. The divisor D
in this case contains the point Q.

Now we verify the assertion of the theorem for hyperelliptic curves w + Pzg-}-g(z) = 0, where P2g+2 (z) is a
polynomial of degree 2g + 2 with real coefficients. On such a curve there is a pair of anti-involutions 7, 7',
where 7(z, w) = @, W), T'(z, W) = @z, —Ww), and also the involution y(z, w) = (z, —w). Let the anti-involution T
be nonseparating. We take Q = {z = w}; then 1'Q = Q. The differentials 2(P), figuring in the lemma, have the
form
Rg (2) dz

VP @ '

where the polynomial Rg(z) of degree g has real coefficients, Its zeros are symmetric with respect to yv. Thus,
the points of interest to us of the Jacobian [of the form (2,31)] are parametrized by divisors D such that D +
7(D) is invariant with respect to y. The divisors D, satisfying this condition, have the form

D=P:+ 2 (P;+vP}) + X(P;+vP)s

QP)= (5.3)
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where 7'Pj = Pj, We denote by A'l, ey A}n all ovals of the involution 7', not containing Q. Here m = n— 1 for
n>0,m=0forn=0andg=2p,m=1for n=0and g=2p +1, The "number” (g,,..., £yy) of a component of the form (2,31)
is defined thus: €| is the collection of points modulo 2 of the divisor D, lying on the oval Ai<. In each such com-
ponent there are divisors D, containing the point @ [we recall that in this case the differential (8.3) is holo-
morphic]. Then 8(z) = 0, where z has the form (8.1) (cf. [10]).

Now we proceed to the general case of a Riemann surface I" with nonseparating anti-involution 7. Each

such surface can be obtained by a deformation from a real hyperelliptic one in the class of real curves (cf. [6]).
For the hyperelliptic case we have found in each component of the form (2.31) a divisor D such that D + 7(D) is

g
the divisor of a holomorphic differential Q = 3} o;0;. This differential is symmetric with respect to 7: 7*Q =

1=l

Q, the coefficients aj are real, Under a continuous deformation the basis differentials vary continuously (cf,
[12]). Thus the holomorphic symmetric differential @ is defined on all curves of the deformation, It also de-
termines for us the zero of the theta-function lying on the corresponding component. The theorem is proved,
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