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REAL THETA-FUNCTION SOLUTIONS
OF THE KADOMTSEV-PETVIASHVILI EQUATION

UDC 517.912

B. A. DUBROVIN AND S. Μ. ΝΑΤΑΝΖΟΝ

ABSTRACT. A complete description of smooth, real, finite-zone solutions of the
Kadomtsev-Petviashvili equation is obtained.

Bibliography: 19 titles.

Introduction

The problem of realness of the method of "finite-zone integration" posed by S.
P. Novikov (see the introduction to [3]) has presently been solved mainly for 1 + 1-
systems (one space variable) of the theory of solitons (for a bibliography see [4]). The
Kadomtsev-Petviashvili equation is the first example of a system with two space vari-
ables for which it has been possible to completely solve this problem. This solution
is presented below.

As we know, the Kadomtsev-Petviashvili (KP) equation is a generalization of the
Korteweg-de Vries (KdV) equation to the two-dimensional case and has the same
degree of universality in the theory of nonlinear waves as the KdV equation. Two
versions of this equation (more precisely, of a system of equations) have the following
form:

a) the stable version (also called the KP2 equation)

wy =U,-
(0.1)

b) the unstable version (the KP1 equation)

^ = Wx- (0.2)
wy = Ut- j(6uux - uxxx)

(this version is formally obtained from (0.1) by the change χ >-> ix, y *-> iy, 11-> it).
The KP equation was the first physically important example of a (2 + l)-system

admitting the application of the method of the inverse problem [8], [1]. For KP2 the
commutation representation for equations (0.1), (0.2) has the form

L = d? + u, (0.4)
¥dxu) + w; (0.5)
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for KP1 the commutation representation is obtained from (0.3)-(0.5) by the change
(x.y.t)* {ix, iy.it).

A broad class of exact, rapidly decreasing solutions of the KP equation was con-
structed by Zakharov and Shabat [8]. It is only recently that methods have been
developed which make it possible to obtain a complete description of all rapidly
decreasing solutions of this equation (see [12], [13] and [19]).

A method of constructing exact periodic and quasiperiodic solutions of the KP
equations was created by Krichever in [9]. These solutions are constructed according
to the following scheme.

Let Γ be a compact Riemann surface of genus g, let P^ be a point on Γ, and let k~'
be a local parameter on Γ defined in a neighborhood of P*, with k~l(Poo) = 0· The
triple (Γ, Poo. k) defines a family of exact solutions of the KP equation parametrized
by the divisors D of degree g on the surface Γ\Ροο. Namely, let ψ = ψ{χ, y, V, Ρ) be
the Baker-Akhiezer function on the surface Γ which is meromorphic on Γ\Ροο with
poles at the points of the divisor D and which at P ^ has exponential asymptotics of
the form

+ j^ + y b=fr(X,y,t), I = 1,2 (0.6)

Then ψ is an eigenfunction for certain linear differential operators, i.e.,

%-L*. (0.7)

%=ΑΨ· (0-8)

where the operators L and A have the form (0.4) and (0.5) respectively, and their
coefficients u and w can be expressed in terms of the coefficients ξ, of (0.6) as follows:

Since the consistency condition for equations (0.7) and (0.8) has the form (0.3),
the coefficients u and w satisfy the KP equation (0.1).

We note that the change of the local parameter

\ (0.10)

(λ, a, and b are arbitrary complex numbers, λ φ 0) leads to another family of solutions
of this same KP equation. These other solutions are obtained by means of the
transformations

χ ι- λχ + 2Xay + (3Aa2 + 3X2b)t,

From this it follows that the dependence of the solution (0.9) of the KP equation on
the local parameter reduces to a dependence only on its germ of third order.

The solutions constructed can be expressed in terms of the theta function of
the Riemann surface Γ after fixing an arbitrary canonical basis of cycles a\ ag,
b\ bg:

u{x, y, t) = 2dl In θ{χϋ + yV + tW + z0) + c, (0.12)

w{x,y,t) = ldxdyln6(xU + yV + tW + z0) + cx. (0.13)
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Here θ is the theta function of the Riemann surface Γ, i.e.,

θ(χ) = Τ exp (0.14)

and Β = (By) is the matrix of periods of holomorphic differentials ω\,..., ojg on the
surface Γ:

f f
oik = 2nidkj, f a)k = Bkj,

aj Jbj

.g (0.15)

We further define the vectors U = (Ult...,Ug), V = (Vlt...,Vg), and W =
.., Wg). Let Ωι, Ω2, and Ω3 be differentials of second kind on Γ with zero

a-periods which are holomorphic away from the point P^ and have principal parts
at this point of the form

Ωι =*/* + : · · , Ω2 = d(k2) + • • · , Ω3 = d(k*) + • • • (0.16)

(the dots denote the correction terms). Then

uJ=fal, Vj=<fn2, fVj=fait j=\,...,g. (o.n)
Jbj Jbj Jbj

Finally, the vector z 0 is defined on the basis of the divisor D; it assumes arbitrary
values as D runs through all possible divisors of degree g. The form of the constants
c and C\ is inconsequential for our purposes, and we shall not present them.

Generally speaking, the solutions (0.12) and (0.13) are quasiperiodic, complex,
meromorphic functions. This paper is devoted to the problem of distinguishing
among them smooth real solutions. We formulate our basic result.

THEOREM. For smoothness and realness of the solutions (0.12), (0.13) of the KPl
equation (for which in (0.12) and (0.13) it is necessary to make the change (x, y, t) *-*
(ix, iy, it)) and of the KP2 equation it is necessary and sufficient that for the triple
(Γ, Poo.k) and the vector z0 the following conditions be satisfied:

1°. The Riemann surface Γ admits an antiholomorphic involution σ: Γ —• Γ, σ2 =
1, where σ(Ροο) = Ρ^ and a*(k) = k.

2°. The set of all fixed ovals of the involution σ decomposes the surface Γ into two
pieces Γ+ and T~ (a so-called involution of decomposing type).

3°. Suppose Γ) , . . . , Yk+X are fixed ovals of the involution σ, k > 0, and /Όο € Vk+l.
Set ρ = (g - k)/2 (a natural number). On Γ construct the basis of cycles (see [3])

ai,b\,...,ap,bp; ap+l,bp+i,... ,ap+k,bp+k; a\,b[, ...,ap,b'p (0.18)

so that ap+j = Γ/, j = 1,..., k, and

ai,bieT+, σ(β,-) = <ΐ{, a(bi) = -b\, i=\ p, (0.19)

a(ap+j) = ap+j, a(bp+j) = -bp+J, j = 1,..., k.

Then the vector zofor the KPl equation is an arbitrary vector of the form

ζο = (ξ;η;ξ), £eC>, i/eR*. (0.20)

4°. For the KP2 equation there is an additional topological condition on the surface
Γ: on Τ the involution σ must have a maximum number of ovals (equal to g + 1). If a
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basis of cycles of the form (0.19) is chosen (k = g and ρ = 0), then z0 is an arbitrary
vector with purely imaginary coordinates.

Sufficiency of the conditions of the theorem was proved by one of the authors in
[3] and [15]. In this paper we prove the necessity of these conditions(') under an
additional assumption on solutions u(x, y,t) and w{x,y,t) of the form (0.12) and
(0.13). We assume not only smoothness of these solutions but also of all solutions
of the same form constructed on the basis of the same triple (Γ, P^, k) and obtained
from u and w by variation of the vector ZQ in (0.12) and (0.13) which preserves
realness of u and w. If all the periods of the quasiperiodic functions u and w are
independent, then this assumption is not restrictive; on the contrary, in the case of
periodicity in χ it is possible to give up this assumption for the KP1 equation (for
more details, see the end of §3).

In our proof the greatest difficulty is caused by the proof of "realness" for the
Riemann surface (i.e., the existence on it of an antiholomorphic involution). In
other words, we prove that realness of the Abelian functions d% In 9(Ux + Vy + zn)
and dxdy In 0(Ux + Vy + z0) (for real χ and y, and some z0) implies realness of the
Riemann surface.

We note that our proof also goes through for those solutions of the KP equation
which are constructed according to Krichever's scheme on the basis of singular alge-
braic curves (these are solitons, rational solutions, and their superpositions with one
another and with quasiperiodic solutions).

§1. Proof of realness of the Riemann surface

We begin the proof of the necessity of the conditions of the theorem by proving 1°,
i.e., by proving "realness" of the Riemann surface Γ relative to some antiholomorphic
involution σ. For this we use the fact that the theta functions of arbitrary Riemann
surfaces, aside from the KP equation, satisfy, according to [9], a further infinite
series of differential relations—the so-called KP hierarchy. All these equations admit
a commutation representation of zero curvature of the form

[ d X i - L i . d X j - L j ] = 0. i,j = 1,2,..., (1.1)

where the operators L\ have the form

1-2

* x = Xl. (1.2)

For i = 1 we have L\ = dx; for i = 2 and j = 3 we obtain the first nontrivial
equation of the hierarchy—the KP equation itself, where x2 = y, xi = t, L2 = L,
and L-i = A. The coefficients uik = «,*(*), x = (x\,Χι ), of all the operators L,
can be algorithmically expressed in terms of the theta function and its derivatives.
Equations (1.1) are the consistency conditions for linear equations of the form

wrLl¥- / = 1'2 (L3)

(')As I. M. Krichever has communicated to the authors, he has very recently found an approach to
the proof of necessity of the conditions of our theorem for the KP1 equation based on the use of the
spectral theory of the time-dependent Schrodinger operator iuy + 0% + u with periodic coefficients (sec
[10]). The approach of [10] is also applicable to the description of conditions of realness for finite-zone
two-dimensional Schrodinger operators with periodic coefficients.
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where ψ = ψ (χ; Ρ), Ρ e Γ, is the Baker-Akhiezer function on the Riemann surface
Γ which has g poles there and an essential singularity at the point Ρχ of the form

.\ k = k(P). (1.4)

Following [14], we show how to reduce the system of equations for the function
Unc(x) to a system of equations for only one function. It turns out that there exists a
formal pseudodifferential operator L of the form

L = 9*

such that
L, =[£ ' ]+, i = l ,2, . . . , (1.6)

where [ ] + denotes the positive (differential) part of the pseudodifferential operator.
(We recall the rules for computing the superposition of a pseudodifferential operator
with an operator of multiplication by a function. First of all,

dx'
lf = fd*1 - f ' d f + f " d - 3 -•••; (1.7)

and the remaining rules are deduced from this.) The dependence of the operator L
on the variables χ = χ ι, χ-ι,... is determined from equations of Lax type

^• = [LhL), / = 1 , 2 , . . . . (1.8)

The operator L has an eigenfunction ψ — ψ{χ;Κ),

L<y = ky/, (1.9)

which has the form (1.4), where the series are understood as formal series. This
function also satisfies (1.3). If we introduce the pseudodifferential operator Ρ (in
χ = Χι) by setting

Ρ=1+ξι(χ)θ-ι+ξ2(χ)δ-2 + ·--, (1.10)

then we have

kJ = y/{x;k), (1.11)

L = PdxP~l. (1.12)

Further, the function y/(x;k) can be represented in the form

w(x;k)=e^ ; Η » (1-13)
τ(χι,χ2,Χ3,...)

where the τ-function τ(χ) is denned, generally speaking, on finite sequences χ =
(x\,X2,...) which are the same as those on which the coefficients of the operators Z,,
and L are defined; (1.13) is understood in the sense of equality of formal series. In
particular, this makes it possible to express solutions of the KP hierarchy in terms of
the τ-function and its derivatives. For the solutions u, w of the KP equation itself
we obtain

u = 2d*lm, w = ^dxdylnr. (1.14)

Equations (1.1) of the KP hierarchy can be written in the form of a set equations
for the single function τ(χ). All these equations can be written simply by means
of the "bilinear Hirota operators". We recall the definition of them. If f(x) is a
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function of one variable, then for any polynomial (or power series) Q the action of
the Hirota operator Q(Dx)f(x) • f{x) is defined by

Q(Dx)f{x) • f(x) = Q(dy)[f(x + y)f(x - y)]y=0- (1-15)

For functions of several variables the definition is similar. The generating function
for the equations of the KP hierarchy thus has the form

f>(-2y)p;+ 1(D)exp(f>,A] τ · τ = 0, (1.16)
>=o V;=i /

where y = (y i , }>2> · · ·) are auxiliary independent variables, D = (D\, 2~{E>2, 3~lDi,
. . . ) , Dj is the Hirota operator in the variable Xj, j = 1,2,. . . , and p, are the Schur
polynomials defined from the following expansion:

exp £XjkJ ] = f;kJpj(xi,...,xj). (1.17)

J
All these equations are graded-homogeneous if gradation i is assigned to the operators
Dj. The first several equations of the KP hierarchy have the form

[ADiDi - 2>Di - Ζ>!4]τ · τ = 0 (1.18)

(this is the KP2 equation itself, gradation 4),

[3ΑΑ-2β 2Ζ) 3-Ζ) 1

3Ζ)2]τ-τ = 0 (1.19)

etc. According to [18], the equations of the KP hierarchy can be written in the form

pA+d-D/2) P/1+i0/2) . . . pfl+m+l{D/2)

det pf2{-D/2) Ph(D/2) ... p/2+w_,(Z>/2) τ · τ = 0, (1.20)

Pfm-m+2(-D/2) pfm_m+2(D/2) ... Pfm(D/2)

where f\ > • • • > fm > 1 are natural numbers, m > 2. The gradation of such an
equation is equal to fx + · • · + fm + 1.

REMARK. If Q{D)x • τ = 0 is one of the equations of the KP hierarchy, then it
may be assumed that in the polynomial Q{D) all monomials have even degree in the
variables D\,Dz,..., since the monomials of odd degree give trivial Hirota operators.

The change of the formal parameter k of the form

oo

k = f{k') = k-.lk'+k0 + Y^k}k'->, λ_!^0, (1.21)

leads to a certain transformation preserving the form of the equations of the KP hier-
archy. First of all, there occurs a triangular transformation of the variables χι, x2> · · ·
according to the law

7 = 1

where the triangular matrix (#,·_,·) is defined from the conditions

E 1), >= 1.2 (1.23)
/=0



SOLUTIONS OF THE KADOMTSEV-PETVIASHVILI EQUATION 275

Moreover, the operators Z,, also change. According to (1.9), their transformation is
defined by the transformation of the operator L i-> L', where L = f(L'). The new
^-function is defined from the condition

- exp I -I^MOJXJ | W(x;f(k')), (1.24)

where the variables χ and x1 are connected by (1.22). It can also be expressed in
terms of the new τ-function T'(JC') according to formulas of the form (1.13). We say
that the function τ'(χ') is equivalent to τ(χ). (Below we indicate the explicit form
of the transformation τ(χ) ι-> xl(x>) for some special changes k >->• k'.) The system
(1.20) is invariant with respect to the transformations τ(χ) >-* τ'(χ1). Moreover, this
system is invariant with respect to "gauge transformations" of the form

τίχλ h-• ρΊ2α'χ'+βτ(χ) Π 251

This follows from the fact that for any polynomial Q the corresponding Hirota op-
erator Q(D)T • τ possesses the property

Q(D)T' -τ' = ? 2 (Σ>-*< + / ? )ρφ)τ·τ, τ'= β^α·χ·+βτ. (1.26)

According to [9], the algebraic-geometric solutions of the KP hierarchy are defined
by the triple (Γ, Poo,k) and the divisor D (see the Introduction). Fixing a canonical
basis of cycles makes it possible to express these solutions in terms of the theta
function of the surface Γ in the form

τ(χ) = e®^6(x\U\ + x2U2 + • • • + ZQ), (1-27)

where z0 is an arbitrary g-dimensional vector determined by the divisor D; the g-
dimensional vectors U\,U2,... are defined in terms of the expansions of the basis
holomorphic differentials ω\,... ,a)g for Ρ -> P^'

In particular, U\ — U, U2 = V, and Uj = W. Further, if the Ωη are normalized
holomorphic differentials of second kind with principal part at />«, of the form

Ωη = d(kn) + correction terms, η = 1,2,..., (1-29)

and the coefficients qij are defined from the expansions of these differentials according
to the formulas

(1.30)
iriK'"

then the quadratic form Q(x) has the form
oo

Q{x) = 5 3 qijXixj. (1.31)

This follows immediately from a comparison of the Krichever formula for the Baker-
Akhiezer function ψ with the definition of the τ-function (1.13) (see [14]). All the
series in (1.27) converge with suitable analytic conditions on the infinite vector x.

We proceed to the proof of the theorem. First of all, it will be convenient for us
to go over from the equations of the KP hierarchy written in the form of quadratic
equations for the τ-function to equations for the logarithmic derivative of the x-
function. For this it is necessary to divide all these equations by τ2 and use the
following assertion.
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LEMMA 1. The following assertions hold for the Hirota operators:

where η - 2k, the inner sum goes over all permutations i[,..., i'n of the indices

i\,..., in, the λ^ are certain universal rational coefficients, (In t),,...,n = \η(τ)Χίι...Χίιι =

1η(τ)χ, ...Xin, and the right side does not contain logarithmic derivatives of first order.

PROOF. The left side of (1.32) can be expressed only in terms of the logarithmic
derivatives of the function τ in view of its invariance relative to transformations
τ Η α , c a constant. The leading term on the right side can be computed directly
from the definition of the Hirota operators. There are no logarithmic derivatives of
first order on the right side due to the invariance of the left side relative to the gauge
transformations (1.25) (see (1.26)). The lemma is proved.

In particular,

τ),7, (1.33)

Α 4 τ · τ = 2τ 2(1ητ) 1 1 π - 4τ 2((1ητ)η) 2. (1.34)

We set ν = In τ and

We also denote derivatives with respect to the variable χ = X\ as follows:

If the τ-function has the form (1.27), then all these logarithmic derivatives are
Abelian functions (meromorphic functions on the Jacobian of the surface Γ) for
η > 2 or k > 2. On restricting them, for example, to the complex axis χ they become
meromorphic quasiperiodic functions.

LEMMA 2. Suppose the function τ satisfies the KP hierarchy. Then the function
ν = In τ satisfies equations of the form

VU = Σ Σ Λί::::£α.Μ?ι)-«ί). d-37)
m-\ tl+--+tm+sl + --+sm=i+j

where i,j — 2,3,..., and the Rs

tl'.'.'.
s

t™ {i, j) are certain universal rational coefficients.

Here and henceforth in this section all summation indices are natural numbers.
PROOF. We shall carry out induction on the sum / + j , beginning with i + j = 4.

For / = j = 2 by the KP equation (1.18) and formulas (1.33) and (1.34) we have

2̂2 = H " - \[v(4) - 2(v (2))2]. (1.38)

This is one of the nontrivial relations (1.37), since υ ( 4 ) = vf\ etc.
We suppose that the lemma has been proved for all i + j < N. We note, first of

all, that from this assumption it follows that

m=l
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for n > 2 and i\ Η \- in < Ν + η - 2, where the Rs

t\';.'st™(ix,..., in) are universal
rational coefficients (as in (1.37), all summation indices are natural numbers). This
can be proved immediately by differentiation of (1.37). We now make the induction
step on i+j. Suppose i + j = N+\ and ι > j > 1. In this case we shall prove (1.37)
by induction on j . For j = 1 this is a tautology. To move into the region of larger
values of j we use the KP hierarchy. We take equation (1.20) with m — 3, f\ = / - 1,
f2 = j - 1, and β = 1. Since po = 1 and pi(x\,..., x,·) = x,• + • • • , where the dots
denote nonlinear terms, it follows that

/ „ / D\ „ (b\ „ (D\\

7TTA+1+

Here the Pr'f-~r, are universal rational coefficients. The conditions on the summation
indices are obtained automatically by virtue of the fact that this equation has grada-
tion /i + f2 + β + 1 = i + j — Ν +1. We multiply both sides of this equation by τ~2.
By Lemma 1 we obtain

1 1

oo

+Σ Σ piL ν
p=l

(1.40)

The derivative ,(_,·,·_i) can be represented in the form (1.37) by the induction hy-
()(_)

pothesis on j . The expressions in square brackets can be represented as a polynomial
in v^m by (1.39). The lemma is proved.

We shall especially study the form of some terms linear in v,(s) in (1.37) and
(1.39). They could have been computed during the proof of Lemma 2, but in order
not to encumber the exposition we present this computation as a separate lemma.

LEMMA 3. For the coefficients Rs

t\{ix,..., /„) in the terms linear in v\s) in (1.37)
and (1.39), the following relations are satisfied:

, • _ ,

>fl-l

= 0 for Si < η - 2,

.· \ _ /-i " • · in

(1.41)

(1.42)

PROOF. AS in Lemma 2 we carry out induction on ix Η μ /„. For ix-\ μ in = 4
(the only nontrivial case here is η = 2, /', = i2 = 2) everything follows from (1.18).
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We suppose that (1.41) has already been proved from i + j < N. We first show that
this implies (1.42) and (1.43) for ίΛ + \- in < Ν + η - 2. Indeed, differentiating
the equality

• · 'I +12-1

f ^ ' + Σ n+,2-sSh,i2

+ Σ
(tn=2) / | + -

with respect to xiy, we obtain

Σ

•Si = 2

It is clear that differentiation of the nonlinear terms and subsequent transformation of
them according to (1.37) does not affect the linear terms. Further, after transforma-
tion of the linear terms according to (1.37) it is possible by the induction hypothesis
to use (1.41) for i\ + i2 - 1 + ii < N, i.e., for ;Ί + i2 + ii < Ν + 1. We obtain

(2)

/3 - 2

s,=3

where the dots denote the nonlinear terms. This implies the validity of (1.42) and
(1.43) for η - 3. We then differentiate the last equality with respect to /4, etc.

Thus, (1.42) and (1.43) have been derived from (1.41) under the conditions indi-
cated on i\ + · · · + !„. We now make the induction step on / + j in (1.41). For this, as
in Lemma 2, we use equation (1.40) of the KP hierarchy. Suppose that i + j - Ν +\
in this equation. We observe that the terms in (1.40) with q > 4 make no contri-
bution to the terms linear in v^'K This follows immediately from (1.42). Therefore,
from (1.40) we obtain

From this we obtain (1.41), since by definition R]+j_l{i + j - 1,1) = 1. The lemma
is proved.

COROLLARY. Fors\ •+ \-sm < m + n-2 andt\-\ \-tm+s\λ \-sm = i\-\ hin

Rs,i::.sC(ii i«) = o. (i.44)

The proof is obvious.

LEMMA 4. For changes of the parameter k of the form

- ' - ' ) (1.45)



SOLUTIONS OF THE KADOMTSEV-PETVIASHVILI EQUATION 279

the logarithmic derivatives of the τ-function transform according to the law

ϋ,(1) ι-u,( l ) forl<q, vq

l) ~ vq

l) + qa. (1.46)

PROOF. We define the function η5(χ) by the equality

j ^ k - s , (1.47)
7=1 i=l

where ψ = w(x;k) is the eigenfunction for operators of the KP hierarchy. By (1.13)
we have η\ = dX[ In τ. Substituting (1.45) into (1.47), we obtain

oo oo

Ιηψ =

jk'J + O(k')q+X + {qaxq + m){k')-1 + 0{k')-2.
7 = 1

From this we find χι >-+ xt for I < q. Differentiating with respect to these X/, we
obtain (1.46). The lemma is proved.

We now proceed to the lemma which is basic for the proof of realness of the
Riemann surface—a type of "uniqueness theorem" for the KP hierarchy.

LEMMA 5. Suppose τ and τ are two solutions of the KP hierarchy of the form (1.27)
such that the corresponding {see (1.14)) functions u,w and u,w coincide as functions
ofx and y. Then after a suitable (formal) change of the parameter k of the form

k = k' + Y^Cj(k!)-J (1.48)
7=3

the function τ goes over into the function τ (up to the gauging (1.25)).

PROOF. We choose a change k >-> k' such that for the logarithmic derivatives of
the function τ(χ!) equivalent to T(JC) we have

«j ( I ) | J C =ej 1 ) U. 7 = 2,3,.... (1.49)

It may here be assumed that the change has the form (1.48), since vn\Xiy = V\\\Xyy

and V2^\x,y = v^lx.y, by the hypothesis of the lemma. We construct this change
k H-+ k' inductively step by step. We suppose that a change has already been selected
so that equalities (1.49) are satisfied for j < N. We have (1.39) for the logarithmic
derivatives of the function τ'. In particular,

*>N N

/(I) Z UN) \-~>. HN+q)
υ V l + ^ C q ' N V N + l - "

(1.50)

Σ Rs

tKT{2.2,...,2,\)v't

{s°---v't

{Sm).
m=2t,+---+tm+s,+---+sm=2N+\

St+---+sm>m+N—l

Here the cq,N are rational coefficients. By Lemma 3 and its corollary all terms in
(1.50) except the first are polynomials in v't

{s) for t < N. There is also a analogous
equation for v. By the hypothesis of the lemma and the induction hypothesis we
have

tCU = «̂ iU- (1-51)
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Since v'^+l\x and ν{^+ι\χ are quasiperiodic meromorphic functions, it follows from
(1.51) that

ivI,U = < + , U + C (1.52)
where c is a constant. We now change the parameter k' by setting

After this change by Lemma 4 equalities (1.49) are preserved for j < N, and %

is equal to ujylj*. This completes the induction step.
It is now not hard to complete the proof of the lemma. From (1.39) and (1.49) it

follows that
v ' i r . . i J x = v i l . . . i n \ x , n > 2 , (1.53)

for all i\,...,in. Therefore, all these logarithmic derivatives also coincide on all
vectors Λ with finitely many nonzero components. Hence, the functions τ' and τ are
gauge-equivalent. The lemma is proved.

REMARK 1. If one is interested only in the restriction of the τ-functions to a finite
number of variables X\,... ,xN, where Ν is any fixed number, then in the formulation
of the lemma it is possible to restrict attention only to polynomial changes of the
parameter.

REMARK 2. An obvious modification of Lemma 5 also holds: it is possible
to replace by an equivalent function not only the function τ (by means of the
reparametrization (1.48)) but also the function τ by means of an analogous change
of the corresponding parameter k,

f(k')-j- (1-54)

After the changes (1.48) and (1.54) we obtain coincidence of the τ-functions, τ' = τ'.
We now proceed directly to the proof of the realness of the Riemann surface Γ.

We begin from KP2. We thus know that functions u and w of the form (1.14) are
real as functions of x, y, and t, where the τ-function in (1.14) is constructed on the
basis of Γ. We shall first show that after a suitable choice of the local parameter k~l

the function τ(χ) can be made real. We set τ(χ) = τ(χ). The function τ(χ) can be
expressed in terms of the theta functions and Abelian integrals of the dual Riemann
surface Γ with respect to the local parameter k = k. All the conditions of Lemma
5 are satisfied for τ and τ. This makes it possible to choose local parameters k' (on
Γ) and k' (on Γ) so that τ\χ^...ΧΝ = τ\Χι~.ΧΝ up to the gauge (1.25) for any fixed value
of Ν. In the changes (1.48) and (1.54) the coefficients c, and c, can be chosen to
be complex conjugates, c7 = c7-, 7 = 3,4,..., since at each step of the algorithm of
Lemma 5 the constant c = (In τ) ι jJV+1 - (1ητ)1ιΛτ+1 in (1.52) is imaginary. Thus, the
function τ{χ) constructed on the basis of the triple (Γ, PooJc') and_the function τ{χ),
coinciding with it, constructed on the basis of the triple (Γ, P^.k') are both real on
the Ν variables indicated (we shall deal with the choice of Ν later). We henceforth
omit the prime on the new local parameter.

We now use the construction of the dual Baker-Akhiezer function. Let

P+ = 1 + (-a- ' j i i + {-δ)-2ξ2 + · · · (1.55)

be the operator formally adjoint to (1.10). We define the dual function if/+(x;k) by

W+(x;k) = P+"e-^x'ki. (1.56)
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This function ψ+ is an eigenfunction for the formally adjoint operators

L+y/+ = k<y+, L+ = ~d + (~dylui + (-d)2u2 + • • • = -(P+)~ldP+,
Ο-57)

g £ = £n+, Lt = [L-\, « = 1,2 (1.58)

For algebraic-geometric solutions, where i//(x;k) is the expansion of the Baker-
Akhiezer function constructed on the basis of the triple (Γ, P^, k) and some divisor
of poles D, ψ+{χ; k) is also the expansion of the Baker-Akhiezer function for the same
triple (Γ, Poo.k) with divisor of poles D+, where

D++D-2POO^K, (1.59)

Κ denotes the canonical class of the surface Γ, and the tilde denotes linear equivalence
(see [14] and [11]). The function ψ+(χ; k) can be expressed in terms of τ as follows

t\X\, X2, · · ·)

Their product t//(x;k)i//+(x;k) is the expansion of a meromorphic function on Γ.

= τ-2[τ(Χι -yi-k~l,x2~y2-

j=0

where all the coefficients <Pj = T~2PJ(D)T • τ (for j > 0) can be expressed in the form
of polynomials in JV·.,, for η > 2. In particular, <p\ =0 and φ2 = u/2. We note that
the coefficients φι are not sensitive to the gauge arbitrariness in the r-function. They
are thus real for real x\,..., XN-

Suppose a and b are two real numbers such that the values U\ — u\X{=a and u2 —
u\X{-b are denned and distinct (x, = 0 for / > 2). We introduce meromorphic
functions ζ and w of degree 2g on Γ by setting

ζ = ψψ+{Χι=α· w = V¥+\X[=b- (1.61)

These functions satisfy an algebraic equation of the form

F{z,w) ^^aijz'wJ = 0, (1.62)

where F{z, w) is a polynomial of degree 2g in each variable which in C2 with coor-
dinates z, w defines the affine part of the Riemann surface Γ. We shall show that all
the coefficients a,7 of the polynomial F can be chosen to be real. Indeed, they can be
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defined from linear homogeneous systems whose coefficients can be expressed in a
polynomial manner in terms of φ^ [x\ = a) and φ ι (x\ = b). (For the proof it suffices
to expand (1.62) in powers of k~l in a neighborhood of P^.) Because (pk and φ ι are
real for k,l< N,it is possible to choose all the a,·,· also to be real (here Ν is chosen
so that the system of equations for α,·_,· has a unique solution up to a factor).

Once the coefficients α ί ; of (1.62) are real, the surface Γ is invariant relative to an
involution σ of the form

a{z,w) = (-z,w). (1.63)

The point Poo, having coordinates ζ (Poo) = w(P<x>) = 1, is fixed relative to σ.
It remains to show that the local parameter k with respect to which the τ-function

is real is invariant with respect to the involution σ. Indeed, the function

k = 2(z-l)=k + 0 { 1 ) ( K 6 4 )

gives a real local parameter in a neighborhood of P^. Therefore, the parameter k is
also real. The proof of part 1° of the main theorem for the KP2 equation has been
completed.

For the KP1 equation in the equations of the KP hierarchy it is necessary to make
the change χ *-> ix after which all arguments can be repeated word for word. We note
that all equations (1.20) of the KP hierarchy after such a change, as before, have real
coefficients (signs are changed in some places). The same applies to (1.37) and (1.39)
(in the latter for odd η it will be necessary to cancel by /)·

REMARK. From all the equations (1.20) of the KP hierarchy we have used in the
proof only a minor part—equations with m = 3 and h~\. This circumstance is not
accidental. The following assertion is one explanation of the importance of precisely
these equations of the hierarchy.

ASSERTION 1. Equations (1.20) with m = 3, fi = 1, and f \ > h > \ arbitrary

differentially generate all the remaining equations of the KP hierarchy.

PROOF. From equations (1.37) and (1.39), which are differential consequences
of equations (1.20) indicated in the formulation of the assertion, it is possible to
uniquely recover (up to the gauge transformations (1.25)) the function T(JC) on the

basis of the "Cauchy data" vf\x, i = 1,2, We shall show that this function is
a solution of all the remaining equations of the KP hierarchy. For this it obviously
suffices to prove that for the "Cauchy data" v\l)\x, i — 1,2,..., it is possible to take
arbitrary functions of x. To prove the last proposition we note that the coefficients
u\(x),U2(x),... of the operator L of (1.5) are independent Cauchy data for the
KP hierarchy written in the form (1.8). The independence of the Cauchy data v^\
i = 1,2,..., follows from this by virtue of the next lemma.

LEMMA 6. The coefficients Ui{x),u2{x),... of the operator L are connected with
the functions v[l\x), v^\x),... by an invertible transformation of the form

Uj(x) = Uj{v[l)(x) vf\x)), υ}1)(χ) = Κ/(Μ,(χ),...,«>(χ))> (1.65)

where j = 1,2,..., and Uj and Vj are polynomials in their arguments and their
derivatives with respect to x.

P R O O F . According to [14], we have relations of the form

v{n] = nu n + · · · , n = 1,2
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where the dots denote a polynomial in the functions U\,...,un-\ and their derivatives
with respect to x. The validity of the lemma, and together with it Assertion 1, follows
from this.

It is clear that the equations (1.20) listed in this assertion are the muumal-set-Gi-
equations which differentially generate the entire KP hierarchy.

§2. Termination of the proof of the main theorem
for the KP2 equation

First of all, we use the realness of the τ-function proved in the preceding section
(up to the gauge transformation (1.25)) for real values of the arguments:

7(ϊ) = «?Σ>*+ 'τ(χ). (2.1)

For the Baker-Akhiezer function (1.13) it follows from this that

ψ(χ; σ {Ρ)) = exp
ooy^ ajk '

/ = 1

ψ{χ;Ρ),

Thus, the coefficients of the expansion of the function ψ(χ;σ(Ρ))/ψ(χ;Ρ), meromor-
phic everywhere on Γ, in a series in powers of £~' (in a neighborhood of Poo) do
not depend on x. Computing them for χ = 0, we find that all a,- = 0, / = 1,2,
Thus, the Baker-Akhiezer function corresponding to real solutions of KP2 possesses
the following property of realness with respect to the involution σ:

ψ(χ;σ(Ρ)) = ψ(χ;Ρ). (2.2)

Hence, the divisor D of poles of ψ(χ;Ρ) is invariant with respect to the involution
σ.

Until now we have not used the smoothness of the solutions u(x, y, t), w(x, y, t).
We shall show that part 4° of the theorem follows from their smoothness (part 2° is
in this case a trivial corollary of 4°, since every real Riemann surface with a maximal
number of ovals is of decomposing type).

The divisor D - gPoo of degree zero is invariant with respect to σ, i.e., it lies on
the real component of the Jacobian /(Γ). In other words, if we take Poo as the initial
point of the Abel mapping, i.e.,

A(T)= j f ω,,...,( wA&J{T), (2.3)

then a vector ZQ having the form

K (2.4)

(K is the vector of Riemann constants) satisfies the condition of realness on J(T):

σ(ζ0) Ξ ζ0. (2.5)

Here the antiholomorphic involution induced on /(Γ) is denoted by the same letter
σ; the symbol = is used to denote equality of points on the Jacobian (equivalence of
vectors modulo the lattice of periods; see [16]). We assume that the basis of cycles on
Γ has been chosen so that the plane spanned by a\,... ,ag is invariant with respect to
a. In this case the vectors U, V, and W are tangent to the real components of (2.5).
The vector ζ = xU + yV + tW + ZQ, which is the argument of the theta function in
the formulas for u{x,y,t) and w(x, y, t) as x,y, and t vary then runs through the
real component on which ZQ lies. To values x, y, and t for which θ{ζ) = 0 there
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correspond poles of the solutions u(x, y, t),w(x, y, t). We suppose that on the entire
real component of the Jacobian passing through a point zo of the form (2.4) the
theta function does not vanish. (We recall that the zeros of the theta function have
codimcnsioft one.} We shall show that from this it already follows that on a surface
Γ of genus g there must be g + 1 ovals.

We suppose that the number of ovals on the surface Γ is equal to η; η > 1, since
σ {Poo) = Poo- We consider the values of the theta function on vectors of the form
(2.4), where the vector ZQ runs over one of the real components of the Jacobian,
Since the point /Όο has been selected as the initial point of the Abel mapping, it
follows that θ(ζο) = 0 if and only if the divisor D contains the point A» (see [16]
with regard to the zeros of the theta function). We shall show that for η < g the
divisor D can be deformed with preservation of the conditions a{D) = D in such a
way that it contains the point Poo· We denote the ovals by Γι, . . . , Γη. Suppose that
Poo lies on Tn. The divisor D, which is invariant relative to σ, can be represented in
the form

g—2m m

°=Σ <2i+D<2; + <7«2;)]. (2.6)
f=l j=\

where the points £?, are fixed relative to σ, i.e., they lie on real ovals, while the points
Q'j are "nonreal". If at least one of the points <2, lies on Tn, then without changing
the remaining points, it can be shifted over Γπ to the point P^. We therefore assume
that none of the points Q, lies on Γη. There are then two possible variants:

a) m Φ 0. We then choose a path γ going from the point Q[ to P^ and draw the
point Q[ to Poo along the path γ, while we draw the point a{Q[) to /·«, in symmetrical
fashion along the path a{y). After this deformation, which preserves the symmetry
a(D) = D, we obtain a divisor containing P^.

b) m = 0. In this case all g points of the divisor D are real, and, since none of them
lies on Tn> on at least one of the ovals there is a pair of points Q,·, Qj. In this case it
is possible to coalesce them and then symmetrically draw them into the "imaginary"
domain, i.e., deform them into the pair Q[,x(Q[). The rest of the deformation is
constructed as above. Thus, the case η < g contradicts smoothness.

We shall now prove that if we choose a basis of cycles on the surface Γ with real
ovals Γι,. . . ,Γ ί + ι, .Ρ 0 ο € Γ ί + ι , so that α, = Γ,, i = l,...,g, then a vector z0 of
the form (2.4) will have purely imaginary components. Indeed, from the arguments
presented above it is evident that in the case η — g +1 there is precisely one connected
component of the Jacobian on which 0(z) has no zeros. It is formed by divisors D
of degree g where on each oval T\,... ,Tg there is exactly one point of the divisor
(cf. [16]). The image (2.4) of such divisors on the Jacobian consists precisely of all
purely imaginary vectors.

The theorem has been proved for the KP2 equation.

§3. Termination of the proof of the main theorem
for the KP1 equation

In the case of KP1, (2.1) for the τ-function is also satisfied. However, the Baker-
Akhiezer function ψ{χ;Ρ) is now expressed in terms of the τ-function by

ψ{χ;Ρ) = β ^>-> ' - r — — ^r (3.1)
τ{Χχ,χ2,...)

(in (1.13) we have made the change χ ι-+ ix). In a similar way it is possible to rewrite
(1.60) for the dual Baker-Akhiezer function ψ+(χ;Ρ) whose divisor of poles D+ is
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connected with the divisor of poles of ψ(χ;Ρ) by (1.59). From (2.1) we have

Ψ+(χ;Ρ)-
j=\ J

As in the preceding section, it can be proved that all a, = 0. In other words,

ψ(χ;σ(Ρ))=ψ+(χ;Ρ). (3.2)

Hence, D+ = a{D), i.e., the divisor D satisfies

< Κ + 2PX. (3.3)

Divisors D of degree g satisfying (3.3) cover the imaginary (relative to σ) compo-
nents of the Jacobian under the Abel mapping (2.4) (see [16]). As in §2, the entire
matter reduces to an investigation of the zeros of the theta function. Namely, if the
Riemann surface Γ is nondecomposing, then on the imaginary components of the
Jacobian J(T) covered by divisors D with condition (3.3) the function θ(ζ) has zeros
(see the Appendix to [6]). Hence, the surface Γ is decomposing. On such surfaces
the theta function has no zeros only on an imaginary component of the form (0.20)
(see [16]). The theorem is proved.

REMARK. In the case where the functions u(x) and w(x) are quasiperiodic and
all g of their frequencies are "maximally incommensurate" (the group of frequencies
has rank g over Z), the assumption of the theorem regarding the absence of zeros of
the theta function on the entire real (or imaginary) component of the Jacobian /(Γ)
corresponding to a given solution is obviously not restrictive, since the x-winding is
everywhere dense on this component. In the other extreme case where the functions
u(x) and w(x) are periodic in χ with period Τ for the KP1 equation it is possible to
give up this additional assumption using only the smoothness of the functions u(x)
and w(x). We present the argument, following basically [5].

We first prove that the operator

-k (3.4)
k=\

and all the operators Ln = [L"]+ of the KP hierarchy are selfadjoint, i.e.,

L*=Z+=L, L*n=Ln, η = 1,2,... (3.5)

It suffices_to prove the selfadjointness of L. From (1.57) for k i-> ~k we have
L+i//+(x;k) = ky/+(x;k). Acting on this equality with complex conjugation and
using (3.2), we obtain L*^(*;&) = ky/{x;k). Hence L* - L, since L is uniquely
determined from the ^/-function. We note also that the coefficients of L and Ln

can be expressed in terms of the logarithmic derivatives of the function 0(z) for
ζ = ixU + iyV + itW + z0 (of not lower than second order by Lemma 6). They are
therefore all smooth functions of x. From the periodicity of the functions u(x) and
w(x) by Lemma 5 we obtain

τ ( χ , + T,x2tx3,...) = β'Σ°Λ τ(χι ,χ2,χ3,...). (3.6)

Hence, all the coefficients of L and Ln are periodic in χ (by Lemma 6). The Baker-
Akhiezer function is a Bloch function, i.e.,

i T ; P ) , (3.7)
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where for the quantity ρ = ρ (Ρ) (the quasimomentum) as Ρ -> Ρ^ we have an
expansion of the form

°° lr~i

'^-—, k = k(P)^ 00. (3.8)

The function exp(ip(P)T) defined by (3.7) is holomorphic on T\Poo. Therefore,
p(P) is an Abelian integral on Γ, and its differential dp is an Abelian differential
with a double pole at P^ all of whose periods are integral multiplies of 2π/Τ,

Jy
= 2nnrT-\ γ e Hi(Γ; Z), ny e Z. (3.9)

Further, we recall [9] that each meromorphic function Α = λ(Ρ) on the surface Γ
with a single pole of order η at P^ defines an ordinary differential operator Μ (in
the variable x) of order η such that

;Ρ) = λ(Ρ)ψ(χ;Ρ). (3.10)

If the Laurent expansion of λ(Ρ) for Ρ —• P^ has the form

λ(Ρ) = cok
n + cik"-1 + • • • + cn + O{krl), (3.11)

then the operator Μ can be expressed in terms of the operators L, of the KP hierarchy
by

Μ = c0Ln + • • • + cn = [λ(Σ)]+. (3.12)

If λ(Ρ) is real relative to σ, λ(σ(Ρ)) = λ(Ρ), then all the coefficients CQ, ... ,cn are
real, and hence the operator Μ is selfadjoint, M* = M.

We shall show that the surface Γ with involution σ is decomposing. From (3.2)
and (3.7) it follows that a*[e\p(ipT)] = exp(-i'pT). By (3.9) we find that the
function Im p{P) is single-valued on Γ. It vanishes on the fixed ovals of Γ. Since Μ
is selfadjoint, lmp(P) = 0 implies that Ιτηλ(Ρ) = 0, i.e., the zeros of the function
lmp(P) coincide precisely with the real ovals. Hence, the real ovals decompose Γ
into two halves: Γ+ = {Imp(P) < 0} and Γ~ = {Imp(P) > 0}. From this it also
follows that the differential dp is positive on real ovals oriented as the boundary of
Γ+.

We now derive the conditions on the divisor D. Condition (3.3) implies that
D + a{D) is the divisor of zeros of a differential Ω of second kind with a double pole
at Poo- Condition (0.20) of the theorem implies that this differential is positive on real
ovals oriented as the boundary of Γ+ (see [16]). To prove positivity of Ω we construct
it explicitly, using methods developed in [4] for matrix differential operators.

We realize the surface Γ as an «-sheeted covering over the Α-plane by means of
the mapping λ of (3.11). Let (A, 1),..., (λ, η) be points on Γ ordered in an arbitrary
manner corresponding to the same value of A. They may be assumed to be distinct.
We construct the Wronskian matrix

ψ)(χ\λ) = ψν-ι\χ;{λ,})), i,j=l,...,n. (3.13)

The matrix ψ'Λχ;λ) is nondegenerate. We denote the inverse matrix by φ^(χ;λ). We
define the differentials Q.'j{x;P) by setting

P = {X.m). (3.14)
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It is easy to verify that this definition is independent of the initial enumeration of
the points. These differentials are regular for \λ\ < oo and can have poles only at /Όο·
We shall determine the form of these poles. We have

ψ){χ;λ) = (β,*)1'"Vv«(l + Ofr- 1)), κ = φ^~\ Β} = exp(2nij/n). (3.15)

Hence,

<ρ){χ\λ) = -{fijK)-i+le-tiKX{\ + 0{K-1)). (3.16)

We obtain

Ω){χ;{λ,ηι)) = -(emKy-J άλ(1 + O(K~1)). (3.17)
J η

For the differential Ωι

η(χ;Ρ) from (3.17) we obtain a principal part of the form

&n(x;P) = dk(l + O(k-2)). (3.18)

We set
a(P) = al

n(0;P). (3.19)

We note that the function

φ(χ;Ρ) = φ^(χ;λ), P = (A,m), (3.20)

is an eigenfunction for the adjoint operator M+ with eigenvalue λ. The function
ψ+(χ;Ρ) can therefore differ from it only by normalization:

From this and (3.2) we obtain

ψ{χ·Ρ)ψ{χ;σ{Ρ))Ω{Ρ) = ψ{χ;Ρ)φ{χ;Ρ)άλ = Ω(χ;Ρ). (3.22)

We have thus found that D + a{D) is the divisor of zeros of the differential Ω(Ρ).
We show that the differential Ω(Ρ) (or Ω(χ; Ρ)) is positive on the ovals. First of

all, Ω(χ; Ρ) preserves sign on each oval, since its real zeros and poles are of even
multiplicity. For its mean over a period we have (see [2], formula (40))

i-T

tl(x;P)dx = dp. (3.23)If
1 Jo

Since dp is positive, Ω(χ;Ρ) is also positive on each oval for all x, as required.
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