DIFFERENTTAL-GEOMETRIC POISSON BRACKETS ON A LATTICE

B. A. Dubrovin UDC 513

The concept of differential-geometric Poisson brackets (DGPB) was introduced in [1] in
connection with an investigation of the properties of Poisson brackets of hydrodynamic type
{2] and their generalizations. Recall that homogeneous DGPBs of m-th order on a phase space
of fields ui(z),i=1,...,N,z=R (in this note we confine attention to the spatially one-
dimensional case), taking values in a manifold #", are defined by
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k=0
where the coefficients cii are graded-homogeneous polynomials ofu, u', ..., u(k) of degree
k

k, where by definition deg u L) = %, £ =0, 1, ... .(The standard properties of brackets —
bilinearity, skew symmetry, Leibniz and Jacobi identities = are implied.) Under local trans-
formations of the field variables

ui(z) —»vt(u(), i=1,...,N, (2)

determined by changes of local coordinates ul -+ vi(u) on#%, the class of brackets of type
(1) remains invariant, with the coefficients GlJ.gnderstood as "differential-gepmetric ob-
jects of order.k," so that, for example, G}{J = G§{J(u) is a metric on ", 6 =T ] defines
a connection on the same manifold, and so on. The conditions for the coefficients GﬁJ that
imply skew symmetry and the Jacobi identity may also be phrased in differential-geometric
language. A general DGPB is a sum of homogeneous brackets of different orders. For a sur-
vey of results in the theory of DGPSs and its applications see [3].

In this note we describe a discrete variant of DGPBs, where the continuous variables
X, y are replaced by discrete variables m,neZ . The phase space is the set of sequences
un={ut}e MY, neZ . A DGPB on a (homogeneous) integer lattice is defined by

{uh wl) =g (u,, ), (3)
where gijEO for {k| > M. The brackets (3) are invariant under local transformatioms

uﬁtev;=v'(uﬁ), neZ, (4)
analogous to (2), under which the coefficients transform as

o' (w) ' (u
o’

g’kj (u’, u') — auq ) ggq (u’, u'). (S)

In the “continuous limit" exemplified by ul = ul(ne), where € » 0 is the lattice spacing,
the bracket (3) defines a DGPB on the space of (nonlocal) fields, which depends on ¢:

s 0 . M L.
@ d o= w @ o= Y we, s —y—k), (6)
=0 k=—M

The lowest-order term {ui(x), uj(y)}m in the series (6), where {ui(x), uj(y)}kEO for k < m,
defines a homogeneous DGPB of order m.

We confine attention to the case M = 1 (the case M = 0 is trivial; the general case
M > 0 is reduced to M = 1 by consolidation of the lattice). In this case the DGPB is defined
by a pair of matrices

e oy =g v, gl w) = () )
We shall assume that the following nondegeneracy condition holds:
det g¥¥ (u, u) = 0. ’ (8)
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It turns out that the manifold #" is then (locally) endowed with a Hamilton—-Lie group struc-
ture (see [4]), #Y =6 . Recall [4] that a Hamilton—Lie group with Lie algebra L = L(G)

is locally defined by a Lie algebra structure on the dual space L*, provided that the struc-
ture is compatible with L, i.e., the structure constant tensor jg‘ﬂe Hom (L, L ® Ly is a 1-co-
cycle on L. We shall say that a Hamilton—Lie group C is admissible if:

1) there are two Lie algebra structures on L¥*, say L¥ and L§, both compatible with L;

2) there are mtually dual Lie algebra homomorphisms ry: L¥ > L, i =1, 2, r, = rt,
i.e., if ry = («f 8), i =1, 2, then r3® = r%5;

3) the structure constants fGB and f§$ of the Lie algebras L¥ and L§ define cohomologous

jlv JZ'\' ey l ey’ ( 9)

" where h®® = ~hBe js a matrix and ch the structure constants of L;
4) the matrix h®® satisfies the equation

Y B Y 4 hOREYeY, = (SR P - R (10)
A Hamilton—Lie group will be called strongly admissible if rzt, = rf is an isomorphism.

Such an object is locally defined by a Lie algebra L and a nonsingular matrix r = (r®f) satis-
fying the above conditions.

THEOREM. Any DGPB on a lattice of type (3) with M = 1, satisfying (8), is locally de-
fined by a strongly admissible Hamilton-Lie group G, r through the formulas:

{9 (un)s ¥ (ny)} = —r*P06,0 (un)3g (nyy), (11)
{9 (un)s © @n)} = {@ (un) ¥ (undbo + %P0, (un)Ogh (un),
{® (un), ¥ (um)} = O for |m —n|>1.
Here ¢, ¢ are any smooth functions on G, 3, and 3', are left- and right-invariant vector
fields on G, respectively, which coincide at the identity, {,}, is a group Poisson bracket
on G, defined by the Lie algebra L¥ as in [4]. For any admissible Hamilton-Lie group, for-

mula (11) also defines a DGPB on the lattice, but the latter does not necessarily satisfy
the nondegeneracy condition.

Note that a DGPB on a lattice with the nondegeneracy condition unlquely determlnes the
group G (locally), but corresponds to an entire family of matrices r®F(u) = g®B(u, u).

Example 0. If G is an abelian group, the bracket (11) is comstant.

Example 1. For a simple 2-dimensional nonabelian group G, r may be any nonsingular
matrix. We obtained the following family of brackets:

. ‘ay 0 1 0
i a b — (. u (12)
g (u, U) =( 0 g y) (c d) ( R ; y,) sy U= (zn y)’ v (z ' ¥ )l

W= @ wy—g' @ w), o=+t

' 0
If (a b) (g 2) , formula (12) yields the second Hamilton structure for a Toda system [5].
(This example is due to V. P. Cherkashin.)

Example 2. Let r®f be a skew-symmetric matrix satisfying the classical Yang-Baxter
equation on the Lie algebra L = L(G) (see, e.g., [4]). It defines a DGPB on a lattice,

W(",,),\P(unﬂ))=-—r 3(P(U)5ﬂ¢( 1) (13)
{9 (u,), ¥ ()} =8 (9,0 (u,) 9g¥ (u,) + 9,9 (u,) g9 (8,))-
This bracket satisfies the nondegeneracy condition (8) if det r®B £0 (such Lie algebras are
known as quasi-Frobenius algebras [6]). The bracket (13) (more precisely, its transformed
version (6)) is in fact the same as that occurring in [7] in the context of solution of a
problem in quantization of a current algebra.
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SUM REGIONS OF WEAKLY CONVERGENT SERIES

V. M. Kadets UDC 517.982

Let X be a Banach space. The set SR (zzk) of all x € X to which for some permutation v
1

oo
ap ~Converges is called the sum region of the series Nz .  Simi-
1

o«
the rearrangement ) z
k=1 o

larly, the set of all those elements to which the series 3} z;,, can converge weakly is

called the weak sum region, wsR (i ) It is well known (Steinitz's theorem {1]) that, for
1

Tk
a series in a finite-dimensional space, the sum region, and hence also the weak sum region,

is a linear set, i.e., with any two distinct points it also contains the segment joining.
them. It has been shown [2] that in every infinite-dimensional Banach space there are series
with nonlinear sum regions. At the same time, no one has succeeded in constructing an example
of a series in a Hilbert space, let us say, for which the weak sum region is nonlinear. The -
difficulty revolves around the fact that the weak topology is much closer in character to

the topology of a finite-dimensional space than the strong topology is. In this note we con-
struct an example of a series with a nonlinear weak sum region, and, using the techniques

of [2] and [3], we establish the existence of similar series in every infinite-dimensional
Banach space.

THEOREM. In a Hilbert space there exist a series )z and two points a and b in SR(Zzy)
k=1

such that

-"-"2;" ¢ COC (2z,).

Proof. We index an orthonormal basis in the Hilbert space %, in the following way:

€01 €1,15 €3, 10 €2,3, €8,2r + < o> €3, 4 €4, 1r ¢« - oy €4 8y €50y . - .

We choose the constant 1/2 < £ < v2/2. We construct the vectors Xj ks k S 2i-1, je N, with
the following properties:

a) Z1,1 == €o»
1

b) Ty41, -1 = 3 Ty n T Ok, o
1

Tkt am = "3 Tk, n " ks
where ay is such that

c)

1
[ #k4s, -1l =12, =35 12, n

. 1. . . 1\t
Then for any indices k, j, n, j # n, we have zk,,-ﬂ=(z-) P Tkn T Ty gned b Ty, amd Fr o a,nb K03

and the vectors {xy, J-}%l;? are linearly independent. Because 1/(2e¢) < 1, we have that
lim “ Zk j = 0. .
k~»cn ’
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