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Abstract. We show that the bi-hamiltonian structure of  the averaged Gelfand-Dikii 
hierarchy is involved in the Landau-Ginsburg topological models (for An-Series): 
the Casimirs for the first P.B. give the correct coupling parameters for the perturbed 
topological minimal model; the correspondence {coupling parameters} ~ {primary 
fields} is determined by the second P.B. The partition function (at the tree level) and 
the chiral algebra for LG models are calculated for any genus 9. 

Introduction 

We start with explanation of  the term "Whitham-type hierarchy" and with brief sum- 
mary of the Landau-Ginsburg potential formalism in topological minimal models. 

Whitham-type hierarchy. Let 

Otar = Fa(~b, ~bx, . . . ) ,  a = 1,2, . . .  (0.1) 

be a KdV-type hierarchy of  pairwise commuting evolutionary systems. Let us fix a 
N-dimensional family of  invariant m-tori. In other words we fix a family of  exact 
solutions of  (0.1) of  the form 

~b = gt(tln (1) + t2n (2) + . , .  + 9)0; u 1, . . .  , u N) (0,2) 

(let F1 = ~x so tl = :c). Here k~ = ~(~1, . . .  , ~ ; u  l, . . . ,  u N) is a 27r-periodic 
in ~1, . . . ,  ~,~ function depending on the parameters u = (u 1, . . . ,  ulv); 
~(a) = (t~a)(u) . . . .  , t~)(~));  ~o = (~p0, . . .  , ~0m) is an arbitrary phase shift. The 
parameters u = (ul, . . .  , uN) belong to a N-dimensional manifold M.  In the non- 
linear WKB-approximation [1] ("Whitham averaging method") the hierarchy (0,2) 
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in a vicinity of the invariant submanifold (0.2) can be described by an "averaged 
hierarchy" of dynamical systems on the loop space ~ M  of the form 

N 

OT~u ~= Z v}, ~(u)ujx" (0.3) 
j = l  

Here X = ex, T~ = et~ are the "slow variables," e is a small parameter. Though all 
the systems (0.3) commute pairwise the averaged hierarchy (0.3) is not complete (for 
m > 0). The completion of it of the form 

N 

OTA2~i ~" Z V3,A('/s ' OTAOTB = OTBOTA (0.4) 
j = l  

we shall call a Whitham-type hierarchy. An example of the Whitham-type hierarchy 
being obtained via the above procedure of averaging and extension from the Gelfand- 
Dikii hierarchy will be given below (the more general case was considered in [2]). 

For a wide class of local Hamiltonian structures 

{r Cq(y)} = Z B~ q(r r .. .  )5(k) (x - y) (0.5) 
k 

of (0.1), 
Fa = {r Ha},  H~ = f Pa(r r . . . )  dx ,  (0.6) 

the averaging procedure for the Poisson brackets {, } was proposed in [3] (see also 
[4]), 

averaging 
{, } , {, }aver- (0.7) 

{ui(X), uJ(Y)}aver = 9is(u(X)) [6{g(X - Y)  - ~k(u)u~c6(X - Y)], 

V],a(~Z)2tJx : { u / ( X ) ,  Hayer}aver,  (0 .8)  

H aver = f Pa(u(X))dX, Pa(~) = (2~r) - m  :f Pa(~(qo, u) ,  . . . ) d m q o .  

("P.B. of hydrodynamic type"). Here gij (u) are the contravariant components of some 
metric on M and (F)k (u)) is the corresponding Levi-Civith connection. It follows from 

the general theory of P.B. of hydrodynamic type [3, 4] that the metric giJ(u) is fiat. 
In the flat co-ordinates v a = va(u), ct = 1, . . .  , N,  the P.B. (0.8) has a constant 
form 

{va(X), v/3(Y)}aver : ~a~ 6' (X - Y) (0.9)  

for some constant symmetric matrix ~ Z .  In other words the flat co-ordinates for the 
metric gij are the Darboux-type co-ordinates for the P.B. (0.8). The fnnctionals 

f v ~ d X ,  a = 1, . . . ,  N (0.10) 

are the Casimirs of (0.8). The flat co-ordinates v ~ can be described in terms of the 
original P.B. (0.5) as follows [3]: they are the Casimirs for {, }, action variables 
J1, . . .  , J,~ (for (0.5) on the tori (0.2)) and the wave numbers n~l), . . .  , n~). 

Topological Landau-Ginsburg Models. We shall discuss here neither the definition of 
topological conformal field theory models nor the construction of these models by 
twisting of N = 2 superconformal field theories [5]. But we give a summary of some 
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important properties of these theories. The main features of a topological field theory 
are the following points. 
1) All the correlation functions do not depend on co-ordinates. 
2) All of them can be expressed via correlators of primary fields 4~1, . . .  , ~N- 
3) Factorization rules: let ( ) denote tree-level correlators, 

r /~  = (~a~;~), det(r/~) 7~ 0, (0.11) 

C ~ 7  = (~a~3~7) �9 (0.12) 

Then 

etc. Here 

(0.13) 

C~/3 = Cc~/3/z7] #e , (/7 c~/3) = (7]c~/3) -1  . ( 0 .14 )  

In turns out that C~7 are structure constants of a commutative associative algebra 
A coinciding with the chiral ring of the primary fields. The double-point correlators 
provide an invariant scalar product ( , )  on A, (ab, c) = (a, bc). Also the algebra A 
has a unit ~1 such that 

(~l~c~b~) = nc~p. (0.15) 

We recall [6] that such an algebra A is called (commutative) Frobenius algebra. 
4) One should consider a family of perturbed topological models depending on N 
coupling parameters. The corresponding coupling space M should carry an affine 
structure with marked direction tl. A 1-1 correspondence 

{coupling space} ~ {primary fields} (0.16) 

should be fixed. In affine co-ordinates tl, . . . ,  tN on the coupling space one has 

]51, ' ' '  , t N  ~ ~ 1 ,  ' ' '  , ~ ) N .  (0.17) 

All the correlators are functions on the coupling space. The main feature of the 
identification (0.16) is in formulae of the form 

< ~  f ~> = o ~ c ~ .  (0.18) 

Also one has 
Ot~rl~ = O. (0.19) 

This provides a structure of (complex) Euclidean space in the coupling space M. 
5) For the (logarythm of) partition function F = F(t) of the perturbed topological 
theory (at the tree level) the following identity holds 

Ot~Ot~Ot~F(t) = C ~ 7 ( t ) .  (0.20) 

From (0.15), (0.19) one has also 

Or10t,~Ot~F(t) = 7 /~ .  (0.21) 

We obtain therefore the following problem of "nonlinear equations theory": how 
to describe N-parameter deformations C~(t)  of N-dimensional Frobenius algebra 
being representable in the form (0.20), (0.21), (0.14). Here we construct a "genus g" 
solution of this problem using the Landau-Ginsburg (LG) potentials approach being 
proposed in [7] for genus 0. That means that the partition function F having been 
constructed is defined on an appropriate moduli space of algebraic curves of genus 
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9. In the Appendix we give another class of deformations using the geometry [9] of 
Frobenius algebras. 

The LG potentials machinery was used for calculating the deformations of the 
chiral algebra in [7] for the genus zero case (the equivalence of this approach to the 
N = 2 superconformal field theory approach was considered in [8]). We give here the 
LG formulae for A,~_l-models only. The coupling space is the family of polynomials 

m = {A(p) = pn + qn_zpn-2 + . . .  + q0} (0.22) 

with non-standard affine structure. (The LG potential A(p) usually is denoted as W(p)). 
The co-ordinates tl, . . . ,  tn- i  on M are determined from the system 

0taA(p) = - ~5,~(p), c~ = 1, . . . ,  n -  1 (0.23) 

for el(P), .-. , ~5,~-1(P) being the polynomials of degrees 0, 1, . . .  , n -  2 orthogonal 
w.r.t, the scalar product 

{~, ~)  = res ~5(p)~(p) (0.24) 
p=~ d A / d p '  

(4~, ~/~) = ~=+Z,,~. (0.25) 

Then 

~/~ = (~5,~, qs~), C~.y = res (0.26) 
p=~ dA/dp  

The genus zero chiral algebra coincides with truncated polynomials 

~ / 3  = C~z(t)~-r (moddA/dp ) .  (0.27) 

For generic t the Frobenius algebra (0.27) is isomorphic to the trivial decomposable 
Frobenius algebra 

e~e~ = 5 ~ e ~  , {e~, e~) = 5 ~  . (0.28) 

But for some special points t in the coupling space (e.g., for A(p) = pn, t = 0) the 
Frobenius algebra (0.27) is indecomposable. The partition function F(t )  was calcu- 
lated by Krichever [10]. He showed that it coincides with log~-(t), where v-(t) is the 
~--function for some particular solution of the averaged Gelfand-Dikii hierarchy 

Ot~L = [L, [La/'~]+], a # k n ,  (0.29) 

L = O n -}- qn_20 n-2 -}-... qo" (0.30) 

The averaging procedure is applied to the family M of all constant solutions of (0.29) 
(i.e. m = 0). 

In this paper we extend the LG formulae [7, 10] to the nonzero genus case via 
averaging of (0.29) over the family of 9-gap solutions. We show that the averaged 
bi-hamiltonian structure of the averaged Gelfand-Dikii hierarchy is strongly involved 
in the An-1 - LG formalism for arbitrary genus 9. More precisely, the coupling 
space is the variety of parameters of all 9-gap solutions of (0.29). The Darboux co- 
ordinates for the first averaged Gelfand-Dikii P.B. [11] provide the affine structure in 
the coupling space M. The double-point correlator (0.11) coincides with the metric on 
M determining via (0.8) this averaged P.B. The correspondence (0.16) is determined 
by the second averaged Gelfand-Dikii P.B. [11] (the averaged classical W-algebra). 
Also we calculate the genus 9 partition function via T-function of the corresponding 
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Whitham-type hierarchy. Because of  the extension (0.4) new 29 primary fields should 
be added for nonzero genus. 

The paper consists of  two sections. In the first one we describe the completion of  
the averaged GD hierarchy to obtain the corresponding Whitham-type herarchy. We 
describe bi-hamiltonian structure of  the hierarchy and calculate the ~--function for it. 
In the second section the developed formalism is applied to LG topological models 
of any genus 9. All the proofs can be found in [2]. But some of  the statements were 
not formulated in [2] explicitly. 

1. Bi-Hamiltonian Structure 
and Completion of the Averaged Gelfand-Dikii Hierarchy. 
~--Function of Whitham-Type Hierarchy 

The space M = Mg,n of parameters of  9-gap solutions of the GD hierarchy (0.29) 
coincides [12] with the moduli space of  algebraic curves C of  genus 9 with a marked 
point Q~o E C and with a meromorphic function A of degree n (being equal to the 
order of  L) with a pole only in Q~ .  The dimension N of the moduli space M equals 

N = 29 + n -  1. (1.1) 

If  t='1, . . .  , P N  are the branch points of  C, 

dA[p~ = 0,  (1.2) 

then local co-ordinates on M can be constructed as 

u i = A(Pi), i = 1, . . .  , N .  (1.3) 

The one-dimensional affine group A H c~A +/3 ,  c~ ~ 0, acts on M as 

ui~--+c~ui+/3,  i = I , . . . , N .  (1.4) 

Let J~/ be the covering of M being obtained by fixation of  a symplectic basis 
al ,  . . .  , a9, bl, . . .  , bg E H I ( C , Z ) .  Let ~ /  be the loop space of the functions 
u l ( x ) ,  . . .  , u N ( x )  having their values in M,  x E S 1. The averaged GD-hierarchy on 
~ 2 f / c a n  be written in the Flaschka-Forest-McLanghlin (FFM) form [13] 

OT,~dp = Oxdq  (a) , a = 1,2, . . . .  (1.5) 

Here dq (a) and dp = dq (I) are the normalized I Abelian differentials of  the second 
kind on C, 

f dq (~) = O, c~ = 1 , . . . ,  9 (1.6) 

ac~ 

I Strictly speaking for the operators L with real smooth coefficients the averaged hierarchy can be 
written in the FFM form with another normalization condition [14], 

Im i dq(a) = 0 

3' 

for any cycle 7 on C. Here we consider the averaged complexified GD-hierarchy being well-defined 
only after fixation of a basis in HI(C, Z) 



200 B.A. Dubrovin 

with the principal parts in Qc~ of  the form 

dq (a) = d)~ a/n + regular terms (1.7) 

(a branch of  A 1/n for A --+ oc should be marked on 217/). Equivalently, (1.5) reads as 

OT,~ U i dq(a) i 
~-- W Pi "Ux~ 

i---- 1 , . . . , N .  (1.8) 

So the variables u 1, . . . ,  u N are common Riemann invariants for the averaged GD- 
hierarchy. 

To describe the bi-hamiltonian structure of  the hierarchy (1.5) let us define two 
metrics ds 2 and dg 2 on j~7/: 

N N 

ds2 -- Z gi i (u)(dui)  2 , d82 = Z ffii(q't)(dui)2' (1.9) 
i=1 i=I 

(dp) 2 (dp) 2 
9ii = res 0ii = res (1.10) 

P~ dA ' Pi AdA ' 

(cf. [15]). 

T h e o r e m  1. Both the metrics (1.9) are flat. The metric ds 2 is well defined and non- 
degenerate globally on M .  The corresponding flat co-ordinates t 1, . . .  , ~N for  ds 2 
have the form 

,~(n-i) /n 
ti  ---- - - n r e s  - - d p ,  i = l , . . . , n - 1 ,  

Qoo n - i 

= 1 ~" pd)~ t n - l + ~  
27ri 

ao~ 

= ~ d p ,  a - -  1 , . . . , 9 .  ~9+n-1+c~ 

bc~ 

(1.11) 

These are well-defined globally on 2(/1. The metric ds 2 in the co-ordinates (1.11) has 
the form 

- n ( d t  i, dt j )  = 5 i+j 'n , (dr n-l+a,  dt g+n-l+t3) ---- d~ a /3  , (1.12) 

otherwise zero. 

Coro l l a ry .  AT/is an un/amified covering over some domain in C N.  

For genus zero the degree of this covering equals 1. 
The generators 

__ u i  0 
0 = Ou i ' n Ou i 

i : l  "= 

(1.13) 
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of the affine group (1.4) act on the co-ordinates (1.11) as follows: 

Ot ~ = O, i • 1, 

Ot 1 _ 1 
n ~ 

Dt  i = (n - i +  1)t i ,  

D t  ~ = (n + 1)t i ,  

D t  i = t i 

i = l , . . . , n - 1 ,  

i = n , . . . , n + g - - 1 ,  

i = n + g , . . . , N .  

(1.14) 

Remark. The variables t 1, . . .  , t n-1 are the Casimirs for the first GD P.B., t n, . . . ,  
t 9+n-t are the action variables for the GD-hierarchy w.r.t, the first P.B. (see [16]) 
and t 9+n, . . .  , t N are the components of the wave number vector. 

Since if /carr ies two fiat metrics ds 2 and dg 2 the corresponding loop space $217/ 
carries two P.B. structures {, }~ respectively (see Introduction above). It can be 
shown that {, } coincides with the first averaged GD P.B. and {, }~ coincides with 
the second averaged GD P.B. In the flat co-ordinates (1.11) the P.B. {, } has the form 

{tc~(X), t~(Y)} = ~ ? ~ ' ( X  - Y )  (1.15) 

for the N • N-matrix ( ~ )  being defined by (1.12). 
Let ~ /  be any Euclidean space with a scalar product ~7~ in flat co-ordinates 

t l  . . .  , tN. Then the formula (1.15) determines a P.B. on ~37/ .  

Theorem 2. Lagrangian planes . ~  C Funct(Y~r)  of  functionals o f  the form 

.~r = f h ( t (X ) )  d X }  (1.16) 

are in 1-1 correspondence with curvitinear orthogonaI co-ordinate systems in ff/I. 

Remark. S J f l  is not a symplectic manifold due to degeneracy of P.B. (1.15). Never- 
theless Lag rangian planes can be defined as maximal isotropic subspaces of functionals 
F u n c t ( S M )  on ~ M .  

Theorem 2 is a reformulation of Tsarev's results [17]. For given curvilinear or- 
thogonal co-ordinates u 1, . . .  , u N in ~ / t h e  densities h of the functionals H E 
are determined from the diagonality of the covariant Hessian 

V~,~V~3 h(u) = O, i r j .  (1.17) 

For the moduli space ~ / =  37/g,,~ we have a canonical curvilinear orthogonal local 

co-ordinate system ?dl~ . . .  ~ 7Z N (the branch points of the Riemann surface C ;~, C). 

Corollary. The loop space Y ~ / I  o f  the moduli space ~/I = IVfg,n carries a canonical 
Lagrangian plane ~ C Funct(~/lT/) of  the form (1.16). 

Definition. The commuting family o f  Hamittonian systems 

O T i t  i = { l t i ( x ) ,  H } ,  H C . ~  (1.18) 

is called the Whitham-type hierarchy on S Y / I .  

We shall show that this is an extension (and, therefore, a completion) of the 
averaged GD hierarchy (1.5). 
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Theorem 3. 1) The functionals with densities h(u), u C 1~/I, of the form 

h(u) = res Ak/ndp, k r In, (1.19a) 
Q~ 1/ / 

h(u) = ~ i  ~kdp, h(u) = ,~k-ldp, a = 1, . . .  , 9 ,  k = 1,2, . . .(1.19b) 

aa ba 

span the canonical Lagrangian plane ~,~ C Funct(~/17/). 
2) The P.B. {,  } and {, }~ are compatible (i.e. any their linear combination again 
gives a P.B.). 
3) The equations of Whitham-type hierarchy (1.18) are bi-hamiltonian with respect to 
{ , }  and { ,}~ .  

To describe FFM-representations for the Whitham-type hierarchy (1.18) let us 
consider the standard fiber bundle +c 

~ /  (1.20) 

(the fiber over u C 57/ is the curve C = C(u) with marked homology basis and a 
point Q ~  and a function )0. This has a canonical connection: the curves )~ = const 
are horizontal by definition. Let us define multivalued Abelian differentials on C as 
Abelian differentials g2 = / 2 ( P )  on the universal covering of  C such that 

A,y~(P) =_ $2(P + ,y) - (2(P) = E Ck('Y))~kd)~ (1.21) 
k 

for any cycle /~ E Hi(C, Z). A family ~ = ~ (P ,  u) of  mnltivalued Abelian differ- 
entials on the curve C = C(u) smoothly depending on u C kT/is called horizontal 
if: 
1) It is holomorphic for any u on C \ Q ~ .  
2) Its covariant derivatives 0**5 ~ are Abelian differentials of  the second kind on C 
(i.e. with zero residues) with double poles only in the branch points PI,  . . . ,  PN and 
with zero a2Periods. 

Let D(M)  be the quotient of  the space of  all horizontal differentials over the 
subspace of  differentials of  the form 

E Ck/~kd/~" (1.22) 
k 

Proposition. The space D(I~)  is spanned by the following horizontal differentials: 

(2(k) = _ _1 dq(k ) k = 1,2, . . .  h r ln; (1.23) 
]g ' 

2) holomorphic differentials wa -- w~ ) 

f wk = 27ci6m; (1.24) 

al 

3) multivalued normalized (i.e. with zero a-periods) holomorphic on C differentials 
a ~  ), k = 1 , 2 , . . . ,  a - - -  1 , . . . ,  g with the increments of the form 

Ab~r ~) = -- d(Ak), (1.25) 

other increments vanish; 
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4) multivalued normalized holomorphic on C differentials w~ ), o~ = 1 , . . . ,  9, 
k = 1,2, . . .  with increments of the form 

A ~ w ~  ) = d(Ak). (1.26) 

Let us define a pairing 
$2, f)' ~ Vs~s~, (1.27) 

for any two horizontal differentials g2, f2 ~ via the formula 

Vs~s~, = res [ ( f  s 
Q~ 

+ E D Y21 - 

a=l ba 

1 / ( d _ l A b  f2)~ t 
27vi 

a ~  

is 1 + ~ (d-lAa~2)$2 ' . (1.28) 

bc~ 

Here ( f  ~2)+ means the principal part near Q~ of the meromorphic function f ~2. 
For horizontal differentials the function V~n, = V ~ , ( u )  on M is well-defined and 
symmetric up to an additive constant. The main property of it is in the identity 

O~jVs~s~,(u) = res j = 1, N .  (1.29) 
Pj  d)~ ' " ' ' '  

Theorem 4. The map D(3~) ~ ~ / c o n s t  of the form 

~ vdp,~ (1.3o) 

is a linear isomorphism of the space of horizontal differentials onto the quotient of the 
canonical Lagrangian plane over constants. The inverse map ~ ~ D(M), 

~ H = f h(u)dX ~ ~h C D(M) (1.31) 

is determined by the property 

{dp, H } ~ =  (qh- -1 )OxT2h ,  h(cu)=cqhh(u). (1.32) 

Equivalently, the skew-gradient of H = f h(u)dX w.r.t. {, }~ can be represented in 
the FFM form 

OTdp = (qh --1)OX~2h , h(u) E ~ .  (1.33) 

Remark. The Hamiltonian of the flow (1.33) w.r.t. {, } equals const. 0 lh. 

For densities h(u) of the form (1.19a), Eqs. (1-33) coincide with the averaged 
GD-hierarchy (1.5). The densities h(u) of the form (1.19b) provide the extension of 
(1.5) to obtain a complete hierarchy. 

Lemma. For any two functions f(u), g(u) E ~ the following identity holds: 

f2 y f29 = (df , d9) . (1.34) E J22o dA 
Here (, } means the scalar product w.r.t, the metric ds 2. 

Note that the both P.B. {, } and {, }~ are involved in the identity (1.34). 
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Let us choose some numeration hA(u), a = l, 2, . . .  of  the basis (1.19a, b) such 
that 

~ h l  : dp (1.35) 

(so hi = tl). The Whitham-type hierarchy has the form 

OTAdP = OXJ~A , A = 1,2, . . .  , J'2A = J ~ h A  . (1.36) 

Any horizontal differential F2 determines a solution u i = u i ( X  = T t , T 2 , . . . ) .  
i = 1, . . .  , N of the hierarchy (1.36) via the Tsarev-Krichever procedure [17, 14] 

(~-~, TAJ-2A q- J'2)ld)~= 0 = 0 (1.37) 

(this is a system of N equations for N unknown functions ui(T)).  

Theorem 5. The formula (1.37) locally gives general solution o f  the hierarchy (1.36) 
being analytic in all the times TA. 

The corresponding ~--function ~- = 7-o(T) of  the Whithman-type (1.36) has the 
form 2 

1 Vo, ,o ,  (1.38) log To(T)  = - 

for 
O' = 12 + ~ tAF2A. (1.39) 

It is well defined up to multiplication by exponent of  a quadratic form in TA-variables 
with constant coefficients. The main property of  the ~--function of the Whitham-type 
hierarchy reads as 

O t A O t B  log 7- 0 = - -  V O A O B  . (1.40) 

Remark. The original averaged GD hierarchy (1.5) has an additional feature: it has a 
class of  exact solutions that can be Cl-extended onto 

2f/n : U ]17/g,n �9 (1.41) 

These solutions have the form Y 

(~-~ Tadq (a) + n)ld =0 = 0 (1.42) 

for any normalized differential O of the second kind with pole only in Q ~ .  This 
point can be used for analytic solution of Novikov ' s  problem (see [4]) of  multivalued 
functions evolution in the dispersive hydrodynamics. 

2. Topological Landau-Ginsburg Models of Genus g 

Here we give explicit formulae for the partition function (at the tree level) and for 
the chiral ring of  A n - I - L G  topological model for any genus 9. 
1) Coupling space is the moduli space M =/~/9,n.  
2) Flat co-ordinates t 1, . . .  , t N on .~r have the form (1.11) (they are the fiat co- 
ordinates for the metric ds 2 and, therefore, the densities of  Casimirs for {,  }). 
3) The corresponding primary fields ~1 = d p ,  ~52, . . .  , 4iN have the form 

4i,~ = r / ~ ? t ~  (2.1) 

(we recall that the map f ~-+ Of  was described above via the second P.B. {, }~). 

2 For genus zero the r-function of Whitham hierarchy (i.e. of dispersiontess Lax equations) was 
constructed by Krichever [10] 
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More explicitly: 

~ i = - n ~  (i), i = l , . . . , n - 1 ,  
(2.2) 

~ n - l + o ~  = COs, ~i~g+n_l+ ~ = 0 - ~ ,  OL = l ,  ... , g ,  

where w~, cr~ = a~) are defined by (1.24), (1.25). 
4) LG potential is A = A(p), where p = f dp. In other words 

Ot,~ (Adp)p=co.st = - g~a. (2.3) 

5) The correlation functions of  the primary fields have the form 

= dA ' 

<~i~o~1 " ' "  ~Ozk§ = E res (2.5) 
d),=0 dA(dp) k 

The matrix r/,~Z is of  the form (1.12) [this follows from the identity (1.34)]. 
6) The chiral algebra C~(t)  has the form 

�9 , ~  = C~b.~dp (moddA.  D(2~7/)). (2.6) 

This is a Frobenius algebra for any t with the constant invariant scalar product (2.4) 
and with the unit ~1 = dp. 
7) The partition function F = log r has the form 

F (2.7) = - �89 

Since the differential pdA is not a horizontal one the last formula should be clarified. 
We have the identity 

N 

pdA = nY2 ('~+1) + E t ~  " (2.8) 
c~=I 

So 

N N 

Vpd~,pda = n2Vga(,~+l),a(n+l) + 2n E t~Va(~+l),r + E t ~ t / ~ V ~ ' ~  " (2.9) 
oe=l a , /3=l  

The dependence of the coefficients in the formula (2.9) on t is determined from (1.1 l) 
[or, equivalently, from the vanishing of the right-hand side of  (2.8) in the branch points 
dA = 0-cf. (1.37) above]. 

The partition function F posesses a quasihomogeneous property of  the form 

F ( c n t  1, . . .  , c z t  n - l ,  cn+l t  n, . . .  , cn+l tg+n-1 ,  et9 +n, . . .  , c t  N )  

= c2 (n+l )F( t ) .  (2.10) 

Obviously the fields ~51, . . .  , ~n-1 are lifted from the genus zero case. But the 2 9 
fields ~n,  - . .  , ~av have no good zero genus limit. 

Remark. The Hessian 
(Ot~OteF(t) )n<_a,~<_g+n-1 (2.11) 

coincides with the period matrix of  the algebraic curve C: 

rij = ~" wj. (2.12) 

bi 
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It would be very interesting to find the Virasoro-type constraints uniquely character- 
izing the partition function (2.7) (for genus zero some constraints were considered 
in [10]). This could give a new approach in the solution of the Schottky problem of 
specifying period matrices of Riemann surfaces [19]. 

Appendix. Geometry and Deformations of Frobenius Algebras 

Let A be any N-dimensional (commutative) Frobenius algebra and M = A* (the dual 
space). A multiplication is defined on T ' M :  if u 1 , . . . ,  u N is a basis in A (providing 
the co-ordinate system in M) then 

du i" du k = cikJ du k , (A.1) 

cik j being the structure constants of A. The non-degenerate scalar product on T * M  
(and, therefore, a metric on M) is defined by the formula 

<dr, dg) = 2 i D ( d f  . dg) , (A.2) 

D = u i  0 Ou i is the dilation generator. It was shown in [9] that the metric (A.2) is flat 

and the corresponding Levi-Civit~i connection has the form 

V i T  j = O i T  j - eisJT s (A.3) 

(raising of indexes using the metric (A.2)). The flat co-ordinates t 1, . . .  , t N can be 
introduced via an appropriate quadratic substitution 

u i =~1 a i  t~ t  ~ ,  (A.4) 

(dt ~, dt  ~) = r / ~  = const. (A.5) 

Let us consider the coefficients 

and the functions 

ci i  . . . . .  in = 2Gi811{2c8~i3 . . . C88:-2~n~Sn_l (A.6) 

O t a  Ott3 0 U k  i j  
5 ~ Z ( t ) -  Ou i OuJ Ot'Y ck " (A.7) 

Proposition. The funct ions  (A.7) determine a deformation o f  the Frobenius  algebra 
A with constant  invariant scalar product  ( ~ ) .  The deformation can be represented 
in the f o r m  (0.20) f o r  the "partition func t ion"  

~ - ~ 2  n-1 �9 . 
F ( t )  = - -  d I ..... uii . . .  uin �9 (A.8) 

n 
n = 3  

Proof.  It is sufficient to prove that in the curvilinear co-ordinates u 1, . . .  , u N the 
function (A.8) satisfies the equation 

V i V J V k F  = c ijk . (A.9) 

The proof of (A.9) is straightforward using the identities 

Vlc~J i j  st V k U i  1 6~ (A.10) = --C s Ck , = ~ �9 
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Notes added in proof. 1. After this paper was finished the author was shown a paper [20] of 
Krichever. In this paper the averaged GD hierarchy for genus 9 > 0 also was considered from 
the point of view of topological field theory. But no extension of the averaged GD hierarchy was 
considered. Without such an extension for g > 0 it is impossible to construct a closed primary 
operator algebra. 2. As it was argued in [21] the models of the present paper (for g > 0) can 
be obtained from An-1 minimal models as a result of "phase transition". The integrability of the 
nonlinear system for the partition function being imposed by associativity of the Frobenius algebra 
(0.19)-(0.21), (0.14), also is proved in [21]. The hierarchy of systems of hydrodynamic type of the 
form (1.18) proves to describe coupling to topological gravity. 

20. Krichever, I.: Topological minimal models and soliton equations. Talk on the 1st A. Sakharov 
Congress, Moscow, May 1991 

21. Dubrovin, B.: Integrable systems in topological field theory. Preprint INFN-NA-IV-91/26, De- 
cember 1991. Submitted to Nucl. Phys. B 
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