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Integrability of the system of PDE for dependence on coupling parameters of the (tree-level)
primary partition function in massive topological field theories, being imposed by the associativ-
ity of the perturbed primary chiral algebra, is proved. In the conformal case it is shown that all
the topological field theories are classified as solutions of a universal high-order Painlevé-type
equation. Another integrable hierarchy (of systems of hydrodynamic type) is shown to describe
coupling to gravity of the matter sector of any topological field theory. Different multicritical
models with the given structure of primary correlators are identified with particular self-similar
solutions of the hierarchy. The partition function of any of the models is calculated as the
corresponding 7-function of the hierarchy.

1. Introduction

The recent progress in low-dimensional QFT essentially was related with the
application [1] of the machinery of integrable systems of KdV-type to the study of
matrix models. An alternative approach to two-dimensional gravity was suggested
by Witten [2] basing on the ideas of topological field theory.

Topological field theories are solvable models without local, propagating de-
grees of freedom [3]. After the identification [2] of one-matrix models with the
topological theory of two dimensional gravity a lot of remarkable links of two-di-
mensional gravity and topological field theories were found [4-6]. It was shown [5]
that the multi-matrix models can be identified with some matter systems coupled
to topological gravity. These matter systems proved to be [7] twisted versions of the
N =2 minimal superconformal models [8]. Deep relations of these models to
catastrophe theory were studied in ref. [9]. Correlation functions in minimal
topological field theories were calculated by Dijkgraaf et al. [10] using the Lan-
dau—-Ginzburg (LG) potentials machinery [11]. (This calculation was analyzed from
the point of view of catastrophe theory in ref. [12].) The observation of ref. [10]
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concerning the relation of topological A, minimal models to the generalized
KdV-hierarchy (or the Gelfand-Dikii (GD) hierarchy) was elucidated by Krichever
[13]. He showed that the calculation of ref. [10] has a natural interpretation as a
part of the theory of the so-called dispersionless Lax hierarchy (the genus-zero
semi-classical limit of the Gelfand-Dikii hierarchy). He introduced also r-func-
tions of the dispersionless hierarchy and showed that the tree-level partition
function of the minimal model (before coupling to gravity) coincides with the
7-function of a particular solution of a part of the dispersionless Lax hierarchy. So
topological string theories can be considered as a semi-classical approximation of
ordinary string theories. The indications of refs. [2,4,5,10] about equivalence (at
tree-level) of topological string theory and ordinary string theory (in d < 1) can be
interpreted therefore like statements about exactness (in some sense) of the
semi-classical approximation of the KdV hierarchy.

The construction of ref. [13] was generalized in ref. [14] and, independently, in
refs. [15,16] using the genus-g semiclassical approximation of the GD hierarchy
(so-called Whitham-averaged GD hierarchy [17-20]). This gives [14] a multicut
solution of the loop equations [21]. Also the corresponding “partition function”
was proved [14] to satisfy a truncated version of the Virasoro constraints that were
obtained in [22] for the partition function of two-dimensional gravity. The genus-g
variant of the LG model of ref. [10] (here g is the “genus” of the LG superpoten-
tial) was constructed in ref. [16] using the differential geometry of moduli space
[15] and the hamiltonian formulation [20,23] of the Whitham-averaging procedure.
The tree-level primary chiral algebra and the partition function of this model were
also calculated in refs. [15,16]. In sect. 5 (see below) I argue that these models can
be obtained from minimal models as a result of “phase transition”.

The main aim of this paper is to construct an “inverse spectral transform” for
any 2D topological QFT (at tree-level). It is shown that two types of integrable
systems are hidden in a topological field theory. The first one coincides with the
equations of associativity of the primary chiral algebra (before coupling to gravity).
The second integrable system determines the dependence of correlators on the
coupling parameters (including all the descendant couplings).

An outline of the results of the paper is as follows. I will be considering (only at
tree-level) a general 2D topological field theory [2,3,10] with N primary fields

b1, .., ¢y The symbol (&, ¢,,...> will denote the genus-zero correlation func-
tions. These do not depend on positions of operators ¢, , ¢,,,, ... The double-point
correlators

<¢a¢3>=77a/3=773a (1.1)

determine a non-degenerate scalar product on the space of primaries. The triple
correlators

Capy = (DaBpd,” (1.2)
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determines the structure of the operator algebra (or primary chiral algebra) of the
model,

bu Bp=Cag'®ys  Cap? =M Capes (MP) = () (1.3)
i) =cg?’(ondb, ). (1.4)

This is a commutative associative algebra A of dimension N with a unity ¢,
Clag = Nup> €% = 0g. (1.5)

The symmetry of the tensor ¢,z
(1.1) on A:

, 1s equivalent to invariance of the scalar product

{ab, ¢y ={a, bc), for a, b, c €EA. (1.6)

I recall that such algebras A are called Frobenius algebras.
In fact one has to consider an N-parametric family of primary operator algebras
A=AQ), t=(',...,t"), of the form

Capy = Capy(1)> Nap = CONSL. (1.7)

satisfying all the previous conditions. As was shown in ref. [10], the perturbed
correlators (1.2) can be represented in the form

Capy(1) = 8,350 F(1), (1.8)

d,=0/0t%, where the function F(¢) is the primary free-energy. The conditions of
associativity of the perturbed primary chiral algebra give a system of non-linear
PDE for the free energy F(¢). I will call this system the Witten—Dijkgraaf-E.
Verlinde-H. Verlinde (WDVV) equations since the idea to classify topological
theories solving differential equations of associativity of primary operator algebra
seems to belong to Witten [2] (general topological models with two primaries were
studied in ref. [2] using this approach).

Formal integrability of the WDVV equations follows from the “commutation
representations”: the compatibility condition of the linear system for the vector
function ¢

0,&5 =2¢,7p¢,, (1.9a)
with the constraint of symmetry of the tensor

CaBy = nyécaﬁé’ (19b)
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and the normalization

c\’g=0p, (1.9¢)

are equivalent to the WDVYV equations. Here z is a spectral parameter. In this
paper an inverse spectral transform for the WDVV system is constructed with a
genericity assumption for the perturbed Frobenius algebra A(r). I assume that
(locally) A(¢) has no nilpotents * (or, equivalently, it can be decomposed into a
direct sum of 1-dimensional Frobenius algebras). Identically indecomposable de-
formations of Frobenius algebras will be considered in next publications (note that
in topological sigma-models [2,5] where A(t) is the “quantized” cohomology ring
of the target space, the deformation A(¢) is indecomposable — see sect. 5, example
2). Under this decomposability assumption the WDVV equations proved to be
gauge equivalent (in the sense of ref. [24]) to the integrable system

8kyij(u) = yik(u)ykj(u) i, j, k distinct,
N
Z ak?’ij(“) =0,
k=1

y;:(u) =y, (u) defined only for i # . (1.10)

Here u=(u!,...,u”") are new coordinates on the coupling space, u = u(t), 9. =
d/du’. They are defined by the following representation of the perturbed structure
constants

/2\’: at? du’ ou' "
c g ()= _— 1.
as’ (1) ) ou’ 9re ek (1.11)
(proof of the existence of such coordinates is the crucial step in the construction of
gauge equivalence).

The functions v,;(u) are expressed via components of the metric 7,4 in the
coordinates ul, ..., u"

are« gtk
gij(u)=77aga—u,—-5;§gii(u)5ij, (1.12&)

aj\/fgii(u)

yii(u) = W

* These topological theories can be called massive ones. I am thankful to S. Cecotti for explanation of
this point.

=y, (u), i+j. (1.12b)
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The system (1.10) is nothing but the conditions of vanishing of the curvature of the
metric (1.12).

The system (1.12) is familiar in soliton theory [26-29]. It is equivalent to the
(1 + 1)-evolutionary system of N(N — 1)/2 PDEs (and dependence on u!,...,u"
is determined by some particular isospectral symmetries of the system) being
equivalent [26] to the so-called pure imaginary reduction of the N-wave interaction
system (for N =3; for N=2 (1.10) is a linear system). The inverse spectral
transform for (1.10) can be constructed in a standard way [26,28,29]. The corre-
sponding solution of the WDVYV is determined by a solution of (1.10) with an
N-dimensional ambiguity (by solving the linear problem giving the commutation
representation for (1.10)). These results are represented in sect. 2. Interpretation
of the linear operators (1.9) as an affine connection on the coupling space
(depending on z) was very useful in the proofs and calculations of sects. 2 and 3.

In fact self-similar solutions of the WDVV equations are of special importance
since they describe perturbed chiral ring of topological conformal field theories. In
the decomposable case they are classified by solutions of the similarity reduction of
the system (1.10)

yij(cu)=c‘1yij(u). (1.12)

This reduction is a system of ODEs of order N(N — 1)/2 (nonlinear for N > 2).
For N =3 this system was proved to be equivalent [30] to a particular case of the
Painlevé-VI equation. For any N > 3 the isomonodromic deformation method [31]
is developed in sect. 4 for (1.10), (1.12). The scaling dimensions of the model are
shown to coincide with the monodromy indices in z =0 of the corresponding
linear ODE in z (with rational coefficients). All the primary correlators are
expressed in quadratures via these “high-order Painlevé transcendents”.

Let us consider now coupling of the model to gravity [2,3,5,10). Here one has an
infinite number of fields o,(¢,), =0, 1,..., where the fields oy(¢,) can be
identified with the primaries ¢, and O'q(d’a) for g > 1 are called the gravitational
descendants of ¢,. The operator o,(¢,) usually is denoted by & and is called as
the puncture operator of the model. The tree-level correlators of these operators
depend on an infinite family of coupling parameters 79 (“descendant couplings™)
in such a way that

2
T 9T 9T

(O (b0) 00 (Sa,) - ...log Z(T). (1.13)

Here Z(T) is the partition function of the topological model. The N-dimensional
subspace 7% = 0, g > 1 (the couplings 7" are arbitrary) in the phase space of all
couplings is called the small phase space. For the correlators on the small phase
space one should have

(P =t,=n,pt" =m, TP, (1.15)
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(Patbpd,) =Cup,(t). (1.16)
Correlators on the complete phase space are determined by the recursion relations

<0'p(¢a)¢A¢B> = <Up—l(¢a)¢A>n/\M<¢u¢A¢B>’ (1.17)

for any operators ¢ 4 = 0,(¢p), o5 =0,(¢,) of the model, and their dependence on
T is determined by the string equation

Y TPdpar-1dpuoF(T) + T, g=1t, p=1,...,N. (1.18)

pzla

The main observation of sect. 3 is that this procedure of “switching on
topological gravity” has a natural interpretation in the theory of an integrable
hierarchy of PDEs of the form

Ogant” =Cio p) p(1)dxt? (1.19)

(system of hydrodynamic type) being constructed by the primary operator algebra.
The idea of describing (at tree-level) coupling to topological gravity of sigma
models using a hamiltonian hierarchy of the form (1.19), (1.21), was proposed by
Witten [34]. I show in sect. 3 how one can effectively construct such a hierarchy for
any solution of the WDVV equations. This provides an additional argument for
WDVYV equations being the fundamental equations of 2D TFT. Here

Clanys =Ca"p(1)> (1.20)
X is the “cosmological constant”, the eqs. (1.19) for p > 1 are constructed using an

appropriate recursion operator. The systems (1.19) are hamiltonian systems on the
loop space #M (where M is the coupling space) w.r.t. the Poisson bracket

{t(X), tB(Y)} =n*B8' (X -Y). (1.21)
Their hamiltonians H, , have the form

H,,= [(#0,.(,)) dX. (1.22)

The densities of the hamiltonians (as functions of ¢) are determined from the
linear system (1.9) in the form

x,(t,z)= i (PO (b,)220, dgx, =&z obeys (1.9), x,(t,0)=1, (1.23)
p=0
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The double correlators (again as functions of ¢) have the form
(z+w) L zwlo,(d,)o,(bs)) = (Vx,(t, 2), Vxg(t,w)) —m,, (1.24)

(here V= (naﬂaﬁ) is the gradient; the scalar product of gradients via the scalar
product 7,,). The recursion relations (1.17) proved to be a consequence of the
recursion procedure of constructing the hierarchy (1.19).

The last step is in determining the dependence of the special amplitudes
t,={Pp,> on the coupling parameters 7T*”. This dependence is given as a
particular solution of the hierarchy (1.19). This solution can be specified as the
unique solution of (1.19) being defined for any T!!' for sufficiently small T7%? (for
(a, p) = (1, 1)). The r-function of this particular solution proved to coincide with
the partition function of the topological field theory. The “generalized hodograph
transform” [25] for solving integrable systems of hydrodynamic type (being repre-
sented in variational form [26]) immediately gives the string equations (1.18).

In the conformal case the dependence ¢ =#(T) is given also by a particular
self-similar solution of the hierarchy (1.19). For the solution o (¢,) is the marginal
operator (adding of it to the action does not change the scaling dimensions). Other
self-similar solutions of (1.19) (with other o,(¢$,) as marginals), that can be
constructed using the idea of refs. [5,10] also are of importance in the theory. They
give dependence of the correlators on the coupling parameters in different
multi-critical models [5,10]. Note that the importance of self-similar solutions of
the Whitham hierarchy in dispersive hydrodynamics * was realized many years ago
[32] (see also refs. [20,28]). Generic solution of the hierarchy (1.19) can be
considered, therefore, as an interpolation between different multicritical models.

I hope also that the hydrodynamic nature of the hierarchy (1.19) (together with
some ideas of dispersive hydrodynamics [20,28,32]) might be instructive in studying
of global properties of correlators in topological conformal field theories (see the
end of sect. 5 for the discussion of a sort of “phase transitions” in multicritical
models).

So the hierarchy (1.19) in topological field theory plays a role similar to the role
of KdV-type hierarchies do in QFT basing on matrix models. It is interesting to
find conditions (in terms of the primary operator algebra) providing that the
hierarchy (1.19) can be obtained as a semiclassical limit (or can be obtained by the
averaging procedure) of some integrable system of KdV-type. A variant of such
specifications using so-called “strong Liouvillean property” [20] of the hamiltonian
formalism of the averaged systems is conjectured in sect. 3.

In this paper I did not consider the recursion relations determining the
high-genus correlators. Also it seems very interesting to find an appropriate variant

* It is interesting that the numerical solution of the string equations in the matrix model with the
criticality kK = 3 has an amazing similarity to the dispersionless shock-wave [20,28,32). I am grateful to
S.P. Novikov for paying my attention to this point.
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of the “truncated Virasoro constraints” of ref. [14] in general topological field
theory. 1 hope to do it in forthcoming publications.

2. Geometry of primary operator algebra in topological field theory

Let A be an N-dimensional commutative associative algebra over C with a unity
e. It is called Frobenius algebra if a non-degenerate C-bilinear invariant scalar
product { , ) on A exists:

{ab,c)={a, bc) a,b,cEA. (2.1)
Remark. Let us define a linear functional on A by the formula
w,(a)={e, a). (2.2)
Then the invariant scalar product { , ) can be written in the form
(a, b) =w,(ab). (2.3)
And for any linear functional w € A* the scalar product
(a, b, =w(ab) (2.4)

is invariant. It is non-degenerate for generic w. Any invariant C-bilinear form on A
can be represented in the form (2.4).
Let e,, a=1,..., N be any basis in A such that ¢; =e. Let

@’

(€us €57 = Nup (2.52)

e 85 =C,'ge, (2.5b)

(summation over repeated indices is assumed).
The matrix n,, and the structure constants c,”, satisfy the following condi-
tions:

Npa = Napg»  det(m,,) # 0, (2.6a)
Co'pldy =€’y (2.6b)
(associativity),

% =88 (2.6¢)
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(normalization e, = e),
Capy = Ca pMey = Cpay = Cayp (2.6d)

(commutativity and invariance of the scalar product).
The operators T,

B _
(Tn() y_caBy’

of (left) multiplication form an exact N-dimensional representation of A. The
Frobenius algebra is called decomposable (semisimple) if the operator

T=x"T,
has simple eigenvalues for generic x',..., x". A decomposable Frébenius algebra
A is isomorphic to a direct sum of one-dimensional Frobenius algebras
fiszaijfi’ <fi7 fj>:77i5ij- (2.7)

Decomposability of a Frobenius algebra is an open property.
Deformation of a Frébenius algebra is a k-parametric family c,?4(¢), n,,(2),
t=(t',...,t%), satisfying egs. (2.6).

Definition 2.1. An N-parametric deformation of an N-dimensional Frébenius
algebra A is called potential deformation if

0 Mup =0, (2.8a)
39,=a/at,
¢,\"g =05, (2.8b)
and a potential function F(¢) exists such that
Capy (1) =3,850 F(1). (2.8¢c)
Note that
010,05 F (1) =m,p (2.8d)
(this follows from eqs. (2.8¢c), (2.6¢)).

The problems of classification of potential deformations of Frobenius algebras
is equivalent to a complicated system of non-linear PDEs for the potential function
F(?) (the primary free-energy) being obtained by substitution (2.8¢), (2.8d) to (2.6)
(in fact, only equations (2.6b) of associativity are non-trivial). This system was
discussed first for N = 2 by Witten [2], and the conditions (2.8) were obtained by
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Dijkgraaf, E. Verlinde and H. Verlinde, so I'll call it the Witten—Dijkgraaf—
E. Verlinde-H. Verlinde (WDVYV) equations. The aim of this section is to
construct “inverse spectral transform” for this system.

Let us construct a representation of the WDVV equations in a form of
compatibility conditions of a over-determ.aed linear system.

Proposition 2.1.  Let c,”5(¢) be a family of functions of ¢ =(¢',..., ") satisfy-
ing egs. (2.6¢c) and (2.6d) for some constant (n,z). Then (c4(1), n,,) is a potential
deformation of a Frébenius algebra iff the following linear system depending on a
spectral parameter z is compatible.

aa§B=anVB§y a,B=1,...,N. (29)

Proof. The compatibility 8,.9,. = d_.d,. of the system (1.9) is equivalent to the
equations

Cor gCarty = Cor gCo,s (2.10a)
OynC o’ = 0prC . (2.10b)

The first one together with the symmetry (2.6d) implies the associativity. The same
symmetry and the second equation provide existence of a potential F(r). The
proposition is thus proved.

Unfortunately I do not know how one can use the commutative representation
(2.9) for integration of the WDVYV equations. What I'm going to do is to construct
a gauge equivalence of the linear problem (2.9) to a more familiar in the theory of
integrable systems “commutative representation” (i.e. to construct a gauge equiva-
lence [24] of the WDVYV equations to a more familiar integrable system).

It turns out that a geometric interpretation of the linear system (2.9) will be very
useful in constructing such a gauge equivalence (it also will be very useful in sect. 3
in calculation of all the correlators in the topological field theory with given
primary chiral algebra).

Let M be the space of (complex) parameters t=(¢',...,t") (the coupling
space) of a deformation (c,”,(2), M4p)- Let us introduce a multiplication on the
fibers of the tangent bundle TM by the formula

3y 95l =c5(1)d,. (2.11)

d,=0/dt*. This provides in the space of all vector fields on M a structure of a
commutative associative algebra over the ring (M) of functions on M. The unity
vector field d =9, is specified on M. Also a metric

ds?=m,, dre de? (2.12)
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is determined on M. In other words, a structure of a Frobenius .F(M)-algebra is
specified on the space of vector fields Vect (M).

This point of view is instructive to give a coordinate free reformulation of the
main problem.

Let M be an N-dimensional Riemann * manifold M with a metric ds? and with
a structure algebra with unity d over F(M) in the space of vector fields

(X-Y1) =l (X (Y1), (2.13)

such that the scalar product ds? is invariant (see (2.1)) with respect to this
multiplication. Let V, Y be the Levi-Civita covariant derivative for the metric ds.
Let V be a new covariant derivative depending on a parameter z of the form

VY=V, Y+2X Y (2.14a)
or, equivalently, on 1-forms w
Vio(Y)=Vyo(Y) —zo(X-Y). (2.14b)

Definition 2.2. M is a Frobenius manifold if: (1) the connection V is symmetric
and has zero curvature for any z; (2) the unity vector field d is constant with
respect to V (i.e. V0 = 0 for any X).

Proposition 2.2.  Any solution of the WDVYV equations determines a Frobenius
manifold via the formulae (2.10), (2.11). Conversely, the metric ds? on a Frobenius
manifold is flat. In the corresponding flat coordinates ¢¢ the metric and the
multiplication have the form (2.12), (2.11) where (c,”5(¢), naB) is a potential
deformation of a Frobenius algebra (i.e. it determines a solution of the WDVV
equations).

Proof. Symmetry of V is equivalent to commutativity of the multiplication of
vector fields. The metric ds? is flat since vanishing of the curvature of V= Vi 2—0-
In the flat coordinates ¢ for ds? vanishing of the curvature of V needs as (2.10).
The proposition is proved.

Let us explain the differential-geometric sense of the “free energy” F(¢). The
family (2.14) of the flat symmetric connections V depending on the parameter z
generates a deformation of the N-dimensional space with the metric ds2. It turns
out that the displacement vector of the deformation coincides with the gradient of
the function F(r). So the strain tensor of the deformation coincides with the
hessian of F(r).

* 1 mean that ds? is a non-degenerate quadratic form on TM (not necessary positive definite). For
complex manifold M ds? is a complex quadratic form.
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More precisely, let
x*=x%(t, z) =t*+z0°(t) + O(z?) (2.15)

be flat coordinates for the connection V. They are specified by the condition of
vanishing of the covariant hessian V.Vzx =0, or, equivalently, by the system

0,05xY =zc, 50, x7. (2.16)

The (infinitesimal) displacement vector v“(¢) is determined uniquely up to a
transformation of the form

ve(t) Do (t) + ToptP

for any constant matrix (7).

Proposition 2.3. The gradient of the “free energy” F(¢) coincides with the
displacement vector

¥, F(t) =v(t). (2.17)
Proof. The equation (2.16) for the vector v reads
dudg” =c¢,%p.
This proves (2.17). O

The flat coordinates x*(r, z) will be useful also in sect. 3. Note that gradients
§p = dgx® of these flat coordinates obey the system 2.9).

Let us return to investigation of the WDVV equation. The main idea of it is in
choosing a special coordinate system on Froébenius manifold M in which the
multiplication (2.13) of vector fields is determined by constant structure constants
(but the metric tensor is not constant). This I can do under additional assumptions
on the deformed Frébenius algebra. From here on in this section I will consider
only deformations of decomposable Frobenius algebras (it is sufficient to assume
decomposability of ¢,,(¢) for some fixed ¢).

We now arrive at our first main lemma

Lemma 2.1. For any potential deformation of a decomposable Fribenius
algebra canonical local coordinates u/ = u(¢), i=1,..., N exist such that

39,=8,0, (2.18a)

8, =9/du’. (2.18b)
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Proof. Due to openness of the decomposability property locally N linearly
independent smooth vector fields 9,,...,3d, exist satisfying eq. (2.18a) (the idempo-
tents of the algebra). Let the commutators of the fields have the form

[9:, 8] =fho,
for some functions ,-’J‘- on M. The Christoffel symbols for the connection V are
determined by the formula

_ Ik
Vs, = T30
Vanishing of the Riemann curvature tensor for the connection V gives

T8I+ TLe — T8l — I8 = fl8k. (2.19)

13

For I/ =k this gives f%=0. Lemma 2.1 is proved. O

Now let us pay attention at the invariant scalar product ds2. What are the
features of it in the canonical coordinates u!,...,u™N?

To explain these propertics of ds* I have to give some not well-known
constructions of classical theory of curvilinear orthogonal coordinates. I recall that
a diagonal metric

N
ds?= Y g, (u)(dui)’ (2.20)

i=1

determines curvilinear orthogonal co-ordinates in some euclidean space iff the
curvature of it vanishes. The metric (2.20) is called Egoroff metric [30] (see also
refs. [25], [26]) if the rotation coefficients

g (u
i) = ol ) i#], (2.21)
V/gjjm

satisfy the symmetry condition
in(”) :%'j(”)- (2.22)
Equivalently, a potential V' = (1) exists such that

gi(u)=aV(u) i=1,...,N. (2.23)
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Vanishing of the curvature of the Egoroff metric (2.20) is equivalent to the
following system

0Yi; = YirYx,; fordistinct i, j, k, (2.24a)
dy;;=0 i#], (2.24b)
where
N
I= 30, (2.25)

It is easy to see that (2.24) can be reduced to a (1 + 1)-PDE, i.e. a solution
v/ u) =y, (u) is specified uniquely by fixation of N(N —1)/2 functions of one
variable.

It was shown in ref. [26] that (2.24) is an integrable system (without the
symmetry vy, ='y,; it was studied in [27]). It is equivalent to the compatibility
conditions of the system

leﬁi =v;¥; [+, (2.2621)
=z, (2.26b)

z is a spectral parameter. The relation of (2.24) to the N-waves interaction system
is explained in ref. [26].
The Egoroff zero-curvature metric (2.20) is called d-tnvariant if

dg(u)=0 i=1,...,N. (2.27)

It can be specified uniquely by its rotation coefficients and by N arbitrary
constants via solving the linear system (2.26) for z = 0. The same is true for the
corresponding flat coordinates. More precisely, let us consider the linear system

A=y 1 #], (2.28a)
P, =0, (2.28b)

for some solution vy, (u)=1y,(u) of eqs. (2.24). It is easy to see that (2.28) is
equivalent to a linear system of N linear ODEs of first order.

As follows from (2.21) and (2.27) ¢, = V"'gT,- is a solution of (2.28). Conversely,
any solution ;, of (2.28) determines a d-invariant Egoroff metric with the same
rotation coefficients by the formula

8:= (¥ )2~ (2.29)
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Let ¢, (), ..., ¢;n(u) be a basis in the space of solutions of (2.28). Note that the
scalar product

N
MNep = Z ‘l’m(”)dﬁﬁ(”) (2.30)

i=1

is non-degenerate and does not depend on u. Then the flat coordinates ¢!,..., "

are determined by quadratures from the system

G = Ul = g b (231a)
where
U= By, (1) = () -t (2.31b)
Note that
L=n 5=V (2.32)

is the potential (2.23) of the metric.

Lemma 2.2. The invariant metric ds* on a Frébenius manifold M in the
canonical coordinates u!,...,u" is a 9-invariant Egoroff metric of zero curvature.
Proof. let w be a 1-form on M of the form

w(X) =, X). (2.33)

Here 9 is the unity vector field. It has the form (2.25) in the canonical coordinates.
From (2.3) and (2.18) one has

N .
ds?= Y w(d,)(du')".

i=1

This metric has zero curvature since it is constant in the coordinates ¢“. The
potential (2.23) for the metric g{u) = w(d,) exists since the 1-form

w=w(d) du' =7, dt*

is closed. From the covariant constancy of the vector field 4 it follows that
N
Y. I;,=0 foranyi, j.

From this and from identity V, g, = 0 the d-invariance (2.27) follows. The lemma is
proved.
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Theorem 2.]. Any solution of the WDVV equations (in the decomposable
case) is determined by a solution v, (u) = y;,(«) of the integrable system (2.24) and
by N arbitrary constants by the formulae (2.29)-(2.31) and

N lﬁmd’i ll’i'y
Caﬁy(t) = Z —_B__

2.34
£ (2:34)

Proof. Almost everything was proved in the two lemmas. One needs to verify
eq. (2.19) (for f% = 0) for any Egoroff metric. This can be done straightforward. To
prove the formula (2.34) one can use that, by definition (2.18),

N odul aul arY

Y.(t) = —_—— 2.35
C(‘x [3( ) i; ata atﬁ aul ( )
The orthogonality conditions
at”Y u! . ;
—=g.—*, i=1,...,N 2.
aul g”ﬁt" n i ( 6)

together with (2.31) and (2.35) give (2.34). The theorem is proved. O

Corollary. Any solution of the WDVV equation depends on N(N —1)/2
arbitrary functions of one variable and also on N arbitrary constants.

The following statement explains in what sense the system (2.24) is gauge
equivalent to the WDVV equations (cf. ref. [24]).

Proposition 2.4. The transformation

N aui
(=2 @at—ada, (2.37a)

i=1

i i aui ’ ( ) )

transforms any solution ¢, of (2.26) to a solution £, of eq. (2.9) and vice versa. The
proof is straightforward.

Remark 2.1. Existence of the canonical diagonal coordinates u!,...,u" can be
proved even without the normalization (2.8b). The metric g;(u) is specified in the
form (2.29) by the rotation coefficients and by a solution ¥ (u) of the system
(2.26a). General solution of (2.26a) depends on N arbitrary functions of one
variable. If a global assumption on the behaviour of the functions g;{(u) is imposed
then one can represent y/g;;(#) as a linear combination of eigenfunctions of the
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spectral problem (2.26). For the deformations of Frobenius algebras having been
constructed in the appendix of ref. [15] (for the case of a decomposable Frobenius
algebra) all the rotation coefficients y,; vanish identically. The normalization
condition (2.8b) in this example is not fulfilled.

I end this section with a discussion of potential deformations of indecomposable
Frobenius algebras. One can consider a particular case of deformations for which a
coordinate system u!,...,u" in the coupling space M exists such that the multipli-
cation (2.11) in these coordinates has constant structure coefficients

3,9, =c; [0, (2.38a)
9, =9/du’, (2.38b)
¢;/ = const. (2.38¢)

(Probably, this is the general case. But this still should be proved.) Here cij" are
the structure constants of a fixed Frobenius algebra A,. The invariant scalar
product (2.12) of the deformation in these coordinates has the form

ds?=c;fw,(u) du’ du’. (2.39)
This follows from (2.3). The 1-form

w=w,(u) duf (2.40a)
is defined as

w(u) =<3, d,), (2.40b)

where 4 is the unity of the deformation (cf. the proof of lemma 2.2). The 1-form o
is closed

do =0. (2.40c)

Vanishing of the curvature of the metric (2.39), (2.40) reads as a system of PDE for
the functions w, (). It depends on the Frobenius algebra A, as on the parameter.
For the decomposable algebra A, this system is equivalent to (2.24).

It would be interesting to construct IST for this zero curvature system for any
Frobenius algebra A . Another interesting problem is to prove that vanishing of
the curvature of (2.39), (2.40) provides existence of a potential F for the deforma-
tion (such that ¢, =c¢,;”c 7w, (u) = V¥V, F(u)). This will give an extension of the
theorem 2.1 to deformations of arbitrary Frébenius algebras (i.e. identically
indecomposable). As was noted in sect. 1, this might be of use for classification of
topological sigma models. I hope to do this in forthcoming publications.
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3. Integrable hamiltonian hierarchies of hydrodynamic type, their solutions,
t-functions and topological amplitudes

Let us fix a solution of the WDVYV equations. In other words, let us assume that
the dependence of all the (tree-level) primary correlators on the special amplitudes

t,={Pd,> a=1,...,N,

is given on the “small phase space” T*? =0, p > 0 (i.e. on the coupling space M)
of a model of topological field theory (I recall that t, =7,,T%° for T*? =0,
p > 0). How can one calculate all the tree-level correlators of the model on the
whole phase space with arbitrary couplings T%?? Here I'll show that the depen-
dence of the special correlators (¢ ,) on the coupling constants T#7 is deter-
mined by a hierarchy of integrable hamiltonian PDE systems with M as the targets
space. Following the idea of ref. [13] I define the r-function of the hierarchy. The
particular solution of the hierarchy is specified for which 7 coincides with the
tree-level partition function of the model of the topological field theory. The
genus-zero recursion relations of ref. [2] for the correlators of the model are
identified with the recursion operator of the hierarchy. And “generalized hodo-
graph transform” of ref. [25] (being represented in the variational form of ref. [26])
for solving the hierarchy proves to coincide with the string equations [2,10] (or
“pre-string” equations in the terminology of ref. [2]).

As will be shown in sect. 5 for the topological A, minimal model [10] my
hierarchy coincides with the dispersionless Lax—Gelfand—Dikii hierarchy (essen-
tially it follows from ref. [13]). And for the model of ref. [16] it coincides with the
Whitham-type hierarchy being obtained by averaging over g-gap solutions of the
Lax—Gelfand-Dikii hierarchy.

I start with recalling some ideas from the hamiltonian theory [20,23] of systems
of hydrodynamic type.

Let M be any manifold and v',...,v" any local coordinates on M. I recall that
the formula

{0(X), 0"(V)} =g (0(X))8' (X = Y) + b ()0 d(X = Y),  (3.1)

determines a Poisson bracket on the loop space * .M of smooth functions v4(X),
X € S' (Poisson brackets of hydrodynamic type) iff the tensor

g*(v) =g"(v) (3.2)

* Components of the loop space .#M are numerated by conjugate classes of the fundamental group
7,(M). Here only formal theory of Poisson brackets is considered. All the statements are proved for
the component of ¥ M consisting of loops of trivial homotopy class.
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determines a flat metric on M (the matrix (g®*(v)) is assumed to be non-degener-
ate), and the coefficients »7°(v) can be represented in the form

be*(v) = —g*() (), (3-3)

where I;(v) are the Christoffel symbols of the Levi-Civita connection V, for the
metric

ds?=g,(v) dv? dv?, (gab(v))=(g“”(u))q (3.4)

(see ref. [20]D. As in ref. [20] I shall consider as hamiltonians only
H= [h(s(X)) dX, (3.5)

/= [¢™, (“functionals of hydrodynamic type”); the density 4 =h(v) does not
depend on derivatives. So any function A(v) on M determines a hamiltonian
system on .¥M

a0 (X) = {U”(X), [r(e(Y)) dY} = wi(v)aye?, (3.6a)
wi(v) =V*V,h(v) (3.6b)

(a hamiltonian system of hydrodynamic type).

The class of hamiltonian systems of hydrodynamic type is invariant under
changes of coordinates on M. The following three types of coordinate systems are
of special use in the theory of hamiltonian systems of hydrodynamic type (see ref.
[20] for details).

(i) Flat coordinates ¢, a=1,...,N

ds?=m,, dt* de?,  (m,,) = const., (3.7a)
{r(X), (V) =088 (X = Y), (n*f)=(n.) .  (3.7b)

The functionals
[i(X)dX a=1,....N, (3.8)

span the annihilator of { , }. The hamiltonian system (3.6) in flat coordinates has
the form

a.t* =P8 h(t)dyt?, (3.9)

dg =8/t~
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(ii) Curvilinear orthogonal coordinates u’
N 2
ds?=Y g, (u)(du’)". (3.10)
i=1
These are of special importance in the theory of integrability of systems of

hydrodynamic type ([25], see also ref. [20]). A system of orthogonal coordinates

u',..., u" specifies a maximal lagrangian subspace # C Funct (.#¥M) of function-

als of hydrodynamic type (3.5). The densities h(u) € # are specified by the
condition of diagonality of the covariant hessian

VVih(u) =0 fori#+j. (3.11)
Equivalently, the vector-function
‘/fih =g l/zaih’ (3.12)
8, =0/0u’, satisfies the system (cf. (2.26a))

h _ h ; ;
O =y, for i+j. (3.13)

Here vy,; are the rotation coefficients of the metric (3.10). The corresponding
commuting hamiltonian systems (3.6) are diagonal,

dui(X) = {uf(X), fh(u) dY} —wi(u)du(X), (3.14)
i=1,...,N, h€#, so the variables u!,...,u”" are the common Riemann invari-
ants for them (and w'(u),...,w™(u) are the corresponding characteristic speeds).

All the systems (3.14) are integrable [25] (the algorithm of integration in the form
of ref. [26] will be given below).

(iii) “Physical” (or Liouville) coordinates v* in which the Poisson bracket (3.6)
have the form

{ve(x), "M} =[a(v(V)) +a™(v(X)]8" (X -Y),  (3.15)

for some matrix g?°(u). So the metric g%® and the connection b%® can be
represented in the form

g (v) =q"(v) +q"(v), (3.16a)

bt (v) =aq*(v) /dve. (3.16b)
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These mean that the functionals
[or(X)dX a=1,..,N, (3.17)

commute pairwise. So they are the standard dependent variables in the equations
of hydrodynamics of an ideal fluid (possibly, with inner degrees of freedom). Also
the hamiltonian averaging procedure of [20,23] always provides a Liouville coordi-
nate system for the averaged system. The particular case of linear functions g“*(v)
is of special interest due to its relation to vector analogues of the Virasoro algebra
[34]. It can be shown (see below) that the string amplitudes

Uy =Py (o)) (3.18)

for any k,...,k, >0 (here % is the puncture operator) are physical coordinates
on the coupling space. (I recall that the flat coordinates on M are the amplitudes
ty =XPd,))

Let us fix a solution of the WDVV equations (i.e. a potential deformation
¢’ g(t), m,p of a Frobenius algebra). The metric

ds?=m,, dt® di” (3.19)

determines a Poisson bracket (3.7). Let us consider a family of systems of
hydrodynamic type

dpatP =cP (t)d,t?, a=1,...,N. 3.20
T a vy X

(Note that d;1t# =3,t#. So T' can be identified with X.)

This system can be rewritten in an elegant coordinate-free way using the
multiplication (2.11) of vector-fields on the coupling space M: a map f: R% 7. > M
enjoys the equation (3.20) if

Orf =0, 0yf (3:21)
(we consider here d,.f( X, T*) and 3, (X, T*) as vector-ficlds on M).

Proposition 3.1. The systems (3.20) commute pairwise, and they are hamilto-
nian with respect to the Poisson bracket (3.7) with the (density of) hamiltonians
being equal to F (¢) respectively. Conversely, if the systems (3.20) commute
pairwise and are hamiltonian system w.r.t. the Poisson bracket (3.7) and their
hamiltonians are derivatives of a function F(t), then F(¢) obeys the WDVV
equations and (cuf‘y(t), N4p) is the correspondent potential deformation.
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Proof. The “direct” part of the proposition can be verified straightforwardly
from (3.9). Conversely, if the system (3.20) is a hamiltonian one with the hamilto-
nian

H,= [F,dX, F,=3,F() (3.22)
then
b =nPF, (3.23)
SO
Capy = MyeCa p (3.24)

is a symmetric tensor. The condition of commutativity of the flows (3.20) is
equivalent to the associativity condition for the structure constants (3.23). The
proposition is proved.

Note that the functional [F,dX = 3/ M.pt “tPd X generates the spatial transla-
tions d,1=4dy. The proposition provides another reformulation of the WDVV
equations: a function F(r) on a space with a metric ds® = n,,dz*d¢? satisfies the
WDVYV equations iff the Legendre transform

t s v (1) =d,F(1) (3.25)

provides Liouville coordinates for the metric ds?, and, particularly, F(¢) is the
momentum density.

Remark 3.1. It will be shown below that the form (3.25) for the transform from
the flat coordinates to Liouville coordinates provides existence of an infinite
number of conservation laws of eqgs. (3.20). Therefore, this provides existence of a
rich family of non-linear changes of coordinates conserving the Liouville form
(3.16) of the Poisson bracket (a priori, (3.16) admits only affine transformations of
the coordinates v). Existence of such non-linear transformations is a feature of
hierarchies of hydrodynamic type being obtained from hamiltonian hierarchies of
KdV-type by the averaging procedure [20]. Another feature (‘“strong Liouville
property” [20]) of the hamiltonian formalism of the averaged systems is compatible
with the Liouville form (3.16) of the averaged Poisson bracket with the restriction
onto any affine subspace (the affine structure here is determined by the physical
coordinates!). This does not hold for any solution of the WDVV equations.
Explicit forms of the constraint on F will be given in the forthcoming publication.

The topological counterparts of the matrix-type model seem to have this
feature. This might give a non-trivial procedure of restriction of a solution of the
WDVYV equation to some subspaces in the coupling space (affine subspaces in the
physical coordinates (3.25)).
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Let us construct conservation laws for the system (3.20).

I am going to show that the flat coordinates for the connection (2.14) are the
generating functions for the conservation laws we need. This gives also a recursion
operator for the conservation laws.

Proposition 3.2. For any a =1,..., N formal series
x*¥=x%t,z)= Y, h*?(t)zP,  h*¥=1¢", (3.26)
p=0
exist such that
050, x% = zcp5 0. x“. (3.27)

Proof. For the coefficients 2%”(¢t) the system (3.27) gives the recursion rela-
tions

dgd hPH (1) = ¢ 8, hP(1) p=0,1, ... (3.28)
Solvability of them follows from the conditions
€48 = Cpys OaCp%, = 0pCa%, -
The proposition is proved. O
For calculations it is convenient to rewrite eq. (3.27) in the form
Ig(0,x*) =2z(35-0,)x" (3.27")

(the multiplication (2.11) is used in the r.h.s.).
It is more convenient to use linear combinations of the functions (3.26)

X, (1, 2) =mexP(1, z) = i hg (1)z?, (3.29a)

p=0
hop(t) =magh?r(t). (3.29b)
I recall (see sect. 2) that
haal(t)=Fa(t)E6aF(t). (3.30)
Particularly,

hya(t) = 5m.pt°1P. (3.31)
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The solution x (¢, z) can be normalized in such a way that
(Vx, (t, 2), Vxp(t, —2)) =m,g, (3.32)
A x,(t, z)=2x,(t, z) +my,. (3.33)
Here V means the gradient and { , ) the scalar product w.r.t. (n,,)
Vi, (t, z) =n*d,x,(t, z), (3.34)
(Vx,(t, 2), Vxg(t, w)) =m,,V'x, (¢, 2)VExg(t, w) = n*d,x, (2, 2)3,x5(t, w).
(3.35)
The ambiguity in the above definiton of the functions x (¢, z) has the form
x (t, z) > TN z2)x,(¢t, 2) (3.36)

where T}(z) are any power series in z with constant coefficients satisfying the
conditions

TA(0) = 8} (3.37)
ML ()T (=2) = Ny (3.38)

Expressions of the functions hﬂ’p(t) via eigenfunctions of the gauge-equivalent
linear problem (2.26) will be given in appendix A.

The gradients of the functions £, (¢) obey different bilinear identities that will
be used in the following. These can be summarized in the following “generating
identity’”:

VA Vx (t, 2), Vxg(t, w)) =(z+w)Vx, (¢, z) - Vxg(t,w). (3.39)

Here the product (2.11) is used in the r.h.s.
It is interesting that the commutators of the gradient vector fields also can be
expressed via the same multiplication

[Vxo (1, 2), Vxg(t, w)] = (w=2)Vx,(t, 2) - Vxy(t, w). (3.40)

Proposition 3.3.  For any solution t =¢(T',...,T", X) of the system (3.20) the
following identities hold:

raxg(t, 2) =y |27 (0, %5(1, 2) — 1)) (3.41)

Conversely, eq. (3.41) implies (3.20).
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Proof. For the Lhus. of (3.41) one has
draxp(t; z) =d.xg(t; 2)c, 051", (3.42)
Since the functions x4(¢; z) satisfy the system (3.27), eq. (3.42) can be rewritten as
dpaxp(t; 2) =2718,8,x,(1; 2)x1".
The normalization condition
aaxﬁ(t; 0) = Nep

completes the proof. O

The representation (3.42) of the equations (3.20) is of the Flaschka—Forest—Mc-
Laughlin (FFM) type [18] (but it does not coincide with the FFM representation
even for the original case of the Whitham equations!).

Corollary. The functions

hy (t) = er%z‘”‘lxﬁ(t; z) p=0,1, ... (3.43)
for any B=1,...,N, p=0, 1,..., are densities of conservation laws for the
equations (3.20):

drahg (1) =y fop 1), (3.44a)
fap () = Zri%z'”‘zaaxﬁ(t, z). (3.44b)

Commutativity of these conservation laws w.r.t. the Poisson bracket (3.7) follows
from the following statement.

Proposition 3.4.  The Poisson brackets (3.7) of the functionals x _(+{X), z) have
the following Liouville form

{xa(t(X)’ z1), x(£(Y), 22)} = [qaﬁ(t(y); 2y, 23) T 4 (H(X); 25, Zl)]

X8'(X-Y), (3.45a)
where

y4

Qog(ts 25 22) = Zz (Vx,(t, 2,), Vxg(t, 2,)). (3.45b)
2

z, +
Proof.  For the derivatives of g,4(¢; z), z,) one has from eq. (3.39)

Va.p(t: 21, 25) =2,Vx (8, z,) - Vxg(t, z,).
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The Lh.s. of eq. (3.45a) has the form
(xa(H(X), 21), 25(£(Y), 23)} = (Vx,(1(X), 2,), Vag(t(Y), 2,))8°(X = Y)
= (Vx,(1(X)), 2)), Vag(t(X), 2,))8/(X = Y)
+2(Vx, (1, 2;) - Vxg(t, 25), dxt8( X~ Y).

This completes the proof. O

Corollary. Functionals with the densities 4, (¢) commute pairwise.
The commuting hamiltonians

«,p

H =fha,p+1(t(X))dX a=1,..,N, p=-1,0,1,..., (3.46)

generate a hierarchy of commuting hamiltonian systems of hydrodynamic type
Irart P(X) = {tP(X), H, ,} = clapyxt? P=0,1, ... (3.47a)
(the functionals H, , span the annihilator of the Poisson bracket (3.7)) where

=n 9k, c,P (3.47b)

B _ L ai
Clapyy = N70)0 h ap p vy

vy e, p+1

So the system (3.47) can be rewritten like (3.21) using the multiplication by the
gradient vector field Vha,, ,

dranf="Vhy , xf (3.47c)

(this is an equation for a map f: R%(’Ta,p — M solving the system (3.47)). For p =0
one has

Claon’ =€ (3.48)

So the system (3.47) coincides with (3.20) for p =0, TP =T* The formula

(3.47b) gives a recursion procedure for constructing the system (3.47) on the basis
of the system (3.20)

Dper =", h, D7, (3.49)

For p =1 egs. (3.47) read

drastP =c*B F dyt. (3.50)
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The particular value a = 1 is of special importance
drth =c,P 9y, (3.51)
the density of the corresponding hamiltonian H,; equals
hy,=F,t*=2F. (3.52)

For the generating function x B(t, z) for the densities of the conservation laws
(3.43) one obtains

dpanXp(t, z) =8y resw P71z (Vx (1, w), Vxy(t, 2)). (3.53)
w=0

This provides a FFM-type representation of the complete hierarchy (3.47).
Commutativity of the systems (3.47) provides the commutativity of the operators

B
C(a,p)v ’
A "o A n
Clapm Caw = Cp.am Slapw - (3.54)

All these operators are symmetric with respect to the scalar product (naﬂ).

In the decomposable case the commutativity (3.54) implies diagonality of the
systems (3.47) in the canonical diagonal coordinates u',..., u™.

It can be proved (see appendix A) that in this case linear combinations of the
functionals H, , form a complete set of conservation laws of the system (3.20) (or,
of the hierarchy (3.47)). In other words, they span the canonical lagrangian
subspace # (see above). It would be interesting to investigate completeness of the
conservation laws H, , for identically indecomposable deformation.

Let us proceed to construction of solutions of the hierarchy (3.47). It turns out
that, in some sense, it has only one solution. The others formally can be obtained
by shifts along the T*P-axis. At least it can be proved using ref. [25] for the
decomposable case. To construct it, let us use the obvious scaling group of
symmetries of the systems (3.47)

X=X, T* > cT*r, tP B, (3.55)

Let us denote by T =(T*") the infinite vector with the coordinates 7*7.

Proposition 3.5. The hierarchy (3.47) in the domain

T'=¢, X, T*P=o0(e) for (a,p)=#(1,1), €—0, (3.56)
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has a non-constant solution ¢# =¢P(X, T) being invariant with respect to the
scaling transformations (3.55). It can be found in implicit form from the “varia-
tional principle”

6[¢T(t) +Xt1] =0, (3.57)
where

D (1) =) T*Fh, (t). (3.58)

Proof. For scaling invariant solutions of (3.47) one has
(X85 + ¥ cup,(1))axt?=0 B=1,...,N.

Using (3.47b), this system can be represented in the form (3.57). In the domain
(3.36) one has

3,0,[Pr(t) + Xt,] =en,, +o0(e). (3.59)

Hence the solution ¢ = t(X, T) locally is unique. Therefore it satisfies (3.47). The
proposition is proved. O

The variable X can be omitted in the solution (3.57) (since it can be restored by
a shift 71— 710 + X).

Let us construct the “r-function” of the hierarchy (3.47) (cf. refs. [13,14,16]) for
the particular solution (3.57). It is defined by the formula

log 7o(T) =3 re

res (z+w)
z w=0

X Zz"‘1w"_1T"”T“'S[<VxA(t, z), Vx, (1, w)) - m;)] L:r(r)'
(3.60)

Here the functions x_(#, z) are assumed to obey the normalization (3.32).

Proposition 3.6. The r-function (3.60) satisfies the following equations:
gardpsa log 7o(T) = res res (z+w) 'z7P Wi Y Vx (1, 2), Vxg(t,w)).
z=0w=0
(3.61)

Proof. The equations (3.57) can be represented in the form

—r=ITAryy (4, ] - 0.
[ res L W) o
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Using (3.39), one has

—p— —1 —5—
Orar log 7o = res res z Pz w)  YwiTITHs
= w=

X[V, 2), Va, (1, w)) =, ]

+ares res 3,z T 'w T T T TR Vx (1, 2) - Va,(6, W), dgant)
o

S
Ow=0

—p— -1
=res res z 77N (z+w)
z=0w=0

X N TR (P (1, 2), Vr (6o w)) =],

The derivative of this expression w.r.t. 759 can be calculated in similar way. The
proposition is proved. O

Let us introduce a notation for the generating function of the second derivatives
of log 7,

Vep(ts z,w) = (z+w)ll[<an(t, z), Vxg(t, w)) "’h,g]

= L Viwmpal) 27w (3.62)
r.q

The proposition implies
67-(1.[787#3‘4 IOg T() = I/((X,P),(B,CI)' (3.63)

Note that the Poisson brackets (3.7) of the functionals 4 (¢( X)) have the form

a,p

{ha,p(t(X))’ hB,q(t(Y))} = [I/(a,p),(ﬁ,q—l)(t(y)) + l/(B,p),(cr,q-l)(l‘(l\/))]
X8(X-Y). (3.64)

For the coefficients V{,, ,, 4 One has formulae

Vieoyg.oy = Fap> (3.65a)
Ve o =hap (3.65b)
Vier.n =%Mapeis (3.65¢)

Vet = (£ = D iy, (3.65d)
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Vieoram = Fart* = F,, (3.65¢)

Vanan =Fuut't* —2Ft* + 2F. (3.65f)
Also one has an identity

vfisow*‘Val(t; z,w) =x,(t, z). (3.66)

The recurrence relation (3.49) reads
BTa,p = n“"aTa,panA,u log To 6“,0. (367)

Particularly, one obtains recurrence relation for derivatives of the r-functions
T=Ty

8Ta,p6T5,q8Ty,r lOg T = (aTa,p~laT).,(] log T)nA#aru,oaTa,any.r Iog T. (368)
The identities
(XTPh, ) =0 p=1,...,N,
for finding the solution (3.57) read

Z T 8 rap-107u0 lOg T4+ T#,O =0. (3.69)

p>1

Also the 7-function satisfies the Euler identity
Y T*par log 7= 2 log 7. (3.70)

Let us introduce explicitly the shift

TV > Th 4+, (3.71)
into the solution (3.57). Thus the functions ¢?(7T") are specified now by the system
v, (1) =0, (3.72a)
(1) = Dp(1) — 3mptetP. (3.72b)

They are well-defined for sufficiently small T. The solution f=1#(T) can be
considered as the fixed point of the gradient map t — V& (¢),

Vo, (1) =t. (3.73)
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For the vector fields d; -t from (3.73) and (3.28) one obtains

3 .y (3.73")
Trx,pt = . . !
d~ ¥y, T"Vh, ,

g=1

Since d=49,_, is the unity for the multiplication (2.11), the denominator is an
invertible vector-field in some neighbourhood of the “small phase space” 779 = (,
q>0.

The formula (3.60) for the r-function should be modified by the same shift

log 7 ((T)=3res res 3z " 'w T ITATHSY, (¢(T); z, w)

z=0w=0

—res resw 2z T TNV (1(T); 2, w) + 3V an(H(T)).

z=0w=0

(3.74)

The identity (3.63) (but not (3.70)) is still valid for this r-function.
Let us consider the restriction of the solution (3.72) onto the N-dimensional
vectors

T,=(T",....,T"%,0, ...). (3.75)
For these vectors one has
by (1) =1, Tt — I, ut 1P, (3.76)
This gives an obvious solution
T*%=t* a=1,...,N, (3.77)

of the system (3.20). So a solution ¢ = ¢(T) of eqs. (3.72) can be specified in such a
way that

t*(Ty=T*" forsmall T-T,. (3.78)

Further in this section I shall use only this solution of eqgs. (3.72).
Proposition 3.7. The r-function (3.74) restricted onto the subspace (3.75)
coincides with the primary partition function

log 7, (Ty) = F(Ty). (3.79)

Proof. 'This follows from the formulae (3.65).
This proposition can be considered as a hint to consider the 7-function (3.74)
for any T as the (tree-level) partition function of a model of topological field
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theory coupled to topological gravity with given primary operator algebra. The
additional arguments are provided by eqgs. (3.68) and (3.69). Eq. (3.68) still is valid
for the r-function (3.74). It can be considered as Witten’s recursion relation [2] for
the tree-level correlators in topological field theory

(0,(b,) 04050 ={0,_\($,) DN (D, b, dz), (3.80)
where
d)A =Uq(¢ﬁ)’ ¢B=O-r(¢7)’

and the correlators of the descendants ,(¢,) are defined by the derivatives of
log =

<Up(¢a)¢/\> =aT"'VaT/‘-U lOg Tl,l’ (3813)

<Up(¢a)aq(¢ﬁ)o-r(¢y)> =8T""70TB“’3T7" lOg Ti1- (3.81b)

So the variables T*? can be considered as the descendant couplings. Note that for
the puncture operator & = o,(¢,) the correlators (P¢ ) have the form

<<@¢a> = 3T1,1)37~a.:) log 7= L, (382)

(the identity for any T, cf. ref. [10]). So {#¢ ) are the flat coordinates on the
coupling space.
The identity (3.69) after the shift (3.71) reads

Z Ta,paTa_pJaT“_u log Ti + T

wo = 0710070 log 7 =1, (3.83a)

pz1
or, after integration

Z Ta""aTa,p—l log T1,1 + %T]QBT‘X’OTB’O =3T1,0 log Tie (383b)
p=1

(vanishing of the integration constant can be proved by reducing to T, and using
(3.49)).

This is nothing but the string equation [2,10].

Trivial example. Let us consider trivial deformation c,z, = const. of an N-di-
mensional Frobenius algebra A. Let e, =e,..., e, be a basis of the algebra,

= Y
€€ =Co'ge.,.
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The solutions x (¢, z) of eq. (3.27) have the form
x,(t, z)y=z""e,, exp zt —e), (3.84)
where
t=t"e, €A. (3.85)
The function (3.62) has the form
Ve(t; z,w) =(z+ w)—l[<eaeﬁ, exp(z +w)t) —(e,, epd].  (3.86)
The physical coordinates are
v, =3, F=13e,, (1)*). (3.87)
Their Poisson brackets (3.7) are linear (the so-called Lie—Poisson brackets)
{La(X), 0g(Y)} = [c50(Y) + g0 (X)]8(X-Y) (3.88)

(sce (3.64)). Therefore linear functionals of v, (X) form an infinite-dimensional
Lie algebra. For N =1 it coincides with the Lie algebra of one-dimensional vector
fields (i.e. the zero charge Virasoro algebra). For N > 1 the Lie algebras being dual
to (3.88) were studied in ref. [34] (also the quadratic transforms of the type (3.87)
were used for reduction the Poisson bracket (3.88) to a constant form). Also some
non-commutative and non-associative generalization of Frobenius algebras was
proposed in ref. [34]. This also gives rise to linear Poisson brackets of the form
(3.88) (but ¢, # ¢,3). It would be interesting to investigate possible relations of
these non-associative analogues of Frobenius algebras to topological field theory.
The hierarchy (3.47) has the form

1
O et = ——’ea(t)pi?xt. (3.89)
p!

Let us introduce vectors
T?=T"Pe,c A p=0,1, ... (3.90)
The r-function (3.74) has the form
(T7, (1)"**)
log 7= e, (1)) - Y% a0

P (p+2)p!

L (TPT ()7
P (pt+a+1)plg!

(3.91)
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Here the dependence ¢ = t{T) is determined by the “fixed-point equation”

G(t) =t, (3.92a)
where
G(t) = i T"(t)’ . (3.92b)
p=0 p:

The solution has the well-known form
t=G(G(G(...))) (3.93)

(infinite number of iterations).
Note that for the T*P-derivatives can be found from (3.92) in the form

el(1)"/p!
e— Y T(t) " /(s = 1)!

sz

Dot = (3.94)

(the denominator for small T is an invertible element of the Frobenius algebra).
The formulae (3.86) and (3.91)—(3.94) complete the solution of the topological
model with constant primary correlators. So

<eaeB, (t)p+q+l>

(p+g+Dplg!”’

(o (b )o(bs)) = (3.95)

(t)p+q+r

e— L TU(t)" /(s — 1!

s>1

1
<a-p(d)a)a-q(¢[3)o'r(¢y)> = m<ea6367’ >, (396)

etc. For N =1 the formula (3.95), (3.96) coincide with the “pure gravity model” [2]
(up to normalization of the coupling constants). For N> 1, particularly, one
obtains the correlators for the K, model [5]. In this case N =24, the Frobenius
algebra is the cohomology algebra of a generic K, surface. So it has generators P,
Jy,..., 5, R in dimensions 0, 2 and 4 respectively. The multiplication has the
form

Q.Q;, =R, P is the unity, Q,R=R*=0. (3.97)

Here (n,;) is a non-degenerate symmetric matrix. The scalar product (the intersec-
tion number) has the form

Npr = 1, 0.0, = Mij- (3.98)
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This is not a decomposable case, so the formulae (3.91)-(3.94) cannot be decou-
pled into a sum of N one-dimensional entries.

Examples of non-constant ¢, (¢) will be considered in sect. 5.

4. Self-similar solutions of the WDVV equations

Let us look for solutions of the WDVV equations self-similar with respect to
some scaling transformations

t¥ > 1% g=1,...,N, (4.1a)
ds?=1n,5 dr* deP — k74 ds?, (4.1b)
Copy = KIH 0D o (4.1¢c)

for some g, =0, q,,...,qy, d, { (it will be shown that / =d). Then the deformed
Frobenius algebra 7,4, cayﬁ(t) can be considered as the perturbed chiral algebra
of a model of topological conformal field theory. Here g, are the charges of the
primary fields and d is the dimension of the model. In the conformal point ¢ = 0 (if
it belongs to the coupling space) egs. (4.1) imply the tree-level superselection rules
(10] for the primary correlators: (¢, ¢,,...> # 0 only for @, + @, + ... =d. In this
case the WDVYV equations can be reduced to a system of ODEs. This ODE system
will be investigated in this section.

Only decomposable case will be considered here. For a self-similar solution of
the WDVYV equation the rotation coefficients satisfy the similarity condition

Yij(ku) =k_17ij(u)- (4.2)

So the similarity reduction of the gauge equivalent system (2.24) has the following
“standardized” form:

Yij = YixYr; fordistinct i, j, k=1,...,N,

N

ayij:O! ‘9:23[’ Yii = VYij»
i=1

N

Z uk(')k'y,-j= ~Y;- (4.3)
k=1

For N = 2 the system (4.3) is linear and can be solved easily (see example 5.1 in the
sect. 5).
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For the first non-trivial case N =3 the ODE (4.3) can be written in the form
3=, (ZF13),= —I'ply, [(2—1)1"12]’=F13F23. (4.4a)
Here

u' —u?

1
zZ= W ut’ yii(u) = uz_u3rij(z) =vy;(u). (4.4b)
The system (4.4a) can be reduced [30] to a system of the second order equivalent to
a particular case of the Painlevé-VI equation using the first integral

T2+ (z@)° + [(z = 1)T},]° = const. (4.4¢)

For any N > 3 one obtains a non-linear system of ODE of order N(N —1)/2
(multicomponent generalization of the Painlevé-VI). The isomonodromic deforma-
tions method can be used for solving the system. I will show here how one can
calculate the scaling dimensions ¢, d, ! in the framework of the isomonodromic
deformations theory. It will be shown that in the self-similar case one can express
the deformation (caﬁy(t), naB) via vy, (u) by algebraic operations and quadratures.

Let us start with a commutation representation of (4.3).

Proposition 4.1.  The system (4.3) is equivalent to the equations of compatibility
of the linear problem (2.26) with the system

20,9 = (2U~[U, I']). (4.5)
Here
U= ty) (4.6a)
U = diag(u’',...,u"), (4.6b)
r=(v;(u)). (4.6¢)

Proof. The system (2.26) under the condition (4.2) is invariant with respect to
the transformations

u—cu, z—clz, Y. (4.7

Hence it commutes with the operator

N
Y ule, —za,. (4.8)

i=1
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Action of this operator on the solutions of (2.26) can be written in the form
(4.5). The proposition is proved.

The system (4.5) is a linear system of ODEs with rational coefficients in z
depending on the parameters u',..., u”". The standard corollary of the proposition
(see, e.g. ref. [31]) that the dependence of the coefficients on the parameters
u',...,u” is an isomonodromy deformation of the equation (4.5). So the mon-
odromy matrices of (4.5) parametrize the general solution of (4.3). Any solution of
(4.3) locally is an analytic function of the variables u',...,u". Solutions of (4.3)
with different reality conditions of the form vy = +v,, were constructed in ref.
[26]. See appendix B for general solutions of (4.3).

If a solution vy, (u) of (4.3) is defined in a neighbourhood of the diagonal
hyperplanes u' = u’ then for u' —u’ — 0 one has

v(1) = ==+ 0(1) (4.99)

for some constants u, = —pu,,
v (u)y=0(1) for (k,1)=#(i, ). (4.9b)
It would be interesting to investigate dependence of the parameters u,; on the

monodromy matrix of eq. (4.5). I hope to do this in the next paper.
Another corollary of proposition 4.1 is very important here

Proposition 4.2. Eigenvalues of the matrix [U, I'] are integrals of the system
(4.3). If a vector-function ¢ =(f,...,¥y)" obeys the system (2.28) and the
similarity condition

Ycu) =cPP(u), (4.10)

then ¢ is an eigenvector of the matrix [U, I'] with the eigenvalue —p.
Proof. From (2.26), (4.5) for z = 0 one obtains

alU, I'l=[lE. '), [UT] k=1,...,N (4.11a)
where the matrix £, has the form
(Ep)ij =810, (4.110)
Hence the eigenvalues of [U, I'] do not depend on u*. From the Euler identity

Zu"é’kw =pi
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for the homogeneous function  satisfying (2.26), for z = 0 one obtains

U, 'y =—py.
The proposition is proved. O

Note that the eigenvalues of [U, I'] are the local monodromy indices of (4.5)
near the singular point z = 0.

The following statement is a rigidity theorem for real decomposable Friobenius
algebras with positive invariant scalar product.

Corollary. Any self-similar potential deformation of real decomposable Frobe-
nius algebra with positive invariant scalar product is a trivial one: ¢,”4(¢) = const..

Proof. For positive metric ds? the canonical coordinates u!,...,u" are real
(for real ¢). The diagonal entries g,(u) of the metric in these coordinates also are
real and positive. Hence the rotation coefficients y,;(u) = y;(u) are real, and [U,
I'] is a real skew-symmetric matrix. All non-zero eigenvalues of the matrix are
imaginary. So the matrix [U, I'] should equal zero identically. This means that the

deformation is a trivial one. 0O

Theorem 4.1. For any self-similar potential deformation of a decomposable
Frobenius algebra with the indices g; =0, gq,,...,4qy, d, I (see (4.1)) the corre-
sponding matrix [/, I'] is a diagonalizable one with the eigenvalues

p,=—3d+q, a=1,...,.N—1, Uy =1d. (4.12a)
The corresponding eigenvectors ¥ have the form

Yr=g;"%t% a=1,..,N-1, yN=g\? (4.12b)

and obey the normalization conditions
Al -1
7P = Lyl ()= (n.) - (4.12¢)
i=1

Conversely, let I" = (v;;) be any solution of the system (4.3) such that the matrix [U,
I'l is a diagonalizable one. Let the eigenvalues guy,...,u, of the matrix are
ordered in such a way that

“N»a-#l: ——l"‘a' (413)
Then a self-similar potential deformation (c,”4(¢), 1,5) of a decomposable Frébe-
nius algebra with the canonical diagonal coordinates u',...,u" exists with the
indices d, [, q,...,q, of the form

d=2uy, I=d, gq,=3id+n,. (4.14)
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If (Z“ is any basis of eigenvectors of the matrix [U, I'],

(U, I = po (4.15)

then the metric g;; and the flat coordinates ¢ can be determined by the formulae
(4.12b) where the vectors * have the form

g = TgP (4.16)

for some matrix 75" = TB"‘(u). If the eigenvalues g, of the matrix [U, I'] are simple
then the matrix TB“(u) is a diagonal one, and its diagonal entries can be found by
quadratures. The invariant scalar product n,, has the form (4.12c), and the
structure constants c,”,(7) have the form

N @By
CuBy — naAnﬁlch‘/ = Z _._._._..(//l lj/l ll[l .
n

(4.17)
oW

Proof. For a self-similar deformation with the indices d, [, qq,...,q, the
corresponding solutions ¢* of the system (2.28) have the form (4.12b). They are
homogeneous vector-functions of the weights p, = —¢q, + 1d. So the first part of
the theorem follows from proposition 4.2.

To prove the second part we use the equation (4.11a). The equation means that
the operators

8, —[E, 'l k=1,...,N, (4.18)
commute with the matrix [U, I']. Also they commute pairwise because of (2.26). So
they can be diagonalized simultaneously due to diagonalizability of the matrix [U,
I']. The diagonalization procedure has the form (4.16). For the case of non-degen-
eracy of the spectrum [U, I'] one has for any «

(9 = LEe, TN =f39* k=1,...,N, (4.19)

for some functions fg(u). The diagonal matrix 75 =77 -85 can be found by
quadratures from the equations

g log T*=f& k=1,...,N. (4.20)

The theorem is proved. [

Remark 4.1. If p is a degenerate eigenvalue of the diagonalizable matrix [U,
I'] of the multiplicity /, and ¢,..., ¥ are corresponding linearly-independent
eigenvectors then instead of (4.19) one will have

!
(ak - [Ek! F])l;(a) = 2 flgg){/;(b)’ (421)
b=1
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for some matrices f{. These matrices commute pairwise for different k. If they
can be diagonalized simultaneously then the corresponding basis ¢V, ...,y of
solutions of (2.15b, ¢) also can be found by quadratures.

Remark 4.2. The functions f{ can be found explicitly. E.g. if an eigenvector
¢* of [U, I'] is normalized in such a way that

M=

¢ =1 (4.22a)
i=1

then
N — —
fe= Yyl ~d) k=1,...,N. (4.22b)
i=1

The solutions ¢, = (i, (u, z)) of the linear system (4.5), can be chosen in such a
way that

l//ia(cu’ cklz) :Cﬁadjia(u’ Z)’

By =d,— 3d. (4.23)
They satisfy the equation
20,4, = (2U = [U, ' Ny = Bof- (4.24)
For the coefficients
B )= T 0020 (0= W) (429
one has
U, I'Wao= —Eobao (4.26)
o
Vo) = N (u), (4.27a)
({U, Il +p+ B o (@) = Uy, p>1. (4.27b)

In the non-resonant case where

Ho—Hg+p+#0 p=1,2 ..., (4.28a)
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or, equivalently
4.~ g +tp+*0 p=1,2,..., B=1,...,N, (4.28b)

this gives a recurrence procedure for finding the functions ¢, ,(u, z). The formula
(A.13) then provides an expression for the functions x_(z) (and, particularly, for
the flat coordinates t,), and the formula (A.12) gives the expression for the
function V,4(z, w).
The densities k, (1) and the coefficients V|, ,, s ,(t) with respect to the scaling
transformations % ¢! 9% transform in the following way:
h,,—c'retr=dp (4.29a)

a,p

— cPtataataptl-—dy

(a,p)(B.q)° (4-29b)

So the hierarchy (3.47) is invariant with respect to the transformations

V(a,p),(Byq)

te »__-) leq“ta
TP s ¢! "9 PP, (4.30)

The 7-function (3.74) with respect to these transformations has the weight 3 — d.
This gives the identity

Y (p+a,— D)T*Ppus log Ty =(d—3)log 7. (4.31)

Note that the term with the number (@, p) = (1, 1) cancels in the 1.h.s. of (4.31).
That means that the 74-function (3.60) satisfies the same equation (4.31). I recall
that the 7 -funtion is a homogeneous function of the degree 2 (see (3.63)). This can
be used (as in ref. [19]) for construction of self-similar solutions of the hierarchy
(3.47) with other similarity indices. Let us fix (a, p). The r-function 7, (T) is
defined (formally *) by the shift

7, (TY=7(T"0,...,T*"+ 1, .. )=7, (T",..., TV —1,...,T*P+1, ...).
o,p 1] 1.1

(4.32a)

The corresponding solution ¢ =¢(T) of (3.47) is determined by the variational
problem

V(@ (1) —h,,)=0, (4.32b)

* The shift (4.32a) might not be well defined due to the gradient catastrophe for the system of
hydrodynamic type (3.47) (see ref. [20] for discussion of the role of self-similar solutions of the
Whitham hierarchy in investigation of dispersionless shock-waves).
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cf. (3.57), (3.73)). This is the self-similar solution of (3.47) w.r.t. the transformations
(cf. ref. [10])

Pl masP (4.33a)
TBT s cla™ptP=r BT, (4.33b)
The shifted r-function satisfies the equation

Z(qﬁ —q,—p+r)TP0s. log Top = [d -1+2(p +qa)] log 7, ,. (4.33¢)
B,r

Therefore the self-similar solutions of the hierarchy of hydrodynamic type (3.47)
are in one-to-one correspondence with the multi-critical topological models (see
ref. [5]). In the multi-critical point (4.33) one has in the notation of ref. [10]

Ysuwing = (4 = 1) /(P +44)- (4.33d)

We end this section with the discussion of bi-hamiltonian structure of the
hierarchy (3.47) for self-similar potential deformations of decomposable Frobenius
algebras. In this case another flat diagonal Egoroff metric is determined on the
coupling space M. Let

ds? = év: gi(u)

i=1

(du’)’. (4.34)

ul

Lemma 4.1. For a flat Egoroff metric ds*= XN, g,{(u)Xdu’)* with scaling-in-
variant rotation coefficients vy, (cu) = ¢ 'y, () the metric

N
8:i(u) i\ 2
ds2, = ¥ (du') (4.35)
? i T om

also is a flat one.
Proof. The rotation coefficients of the metric (4.35) with respect to the
coordinates

a'=log(a + bu') (4.36)
equal
o1 i+’ e —q e —q
Yij T 'b‘eXp 5 Yij PR . (4.37)

Since y;,(u) = y,(u) obey the same system (2.24) the coefficients ¥:(&i) obey the
same system with respect to the #-variables. O
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Proposition 4.3.  The Poisson brackets { , },,2 and { , },. are compatible (i.c.
any linear combination of them again is a Poisson bracket). Functionals from the
canonical lagrangian subspace # (3.46) commute with respect to { , },;2. For any
homogeneous function h(u) € #, h(cu) = c7h(u), the following identity holds:

{- [ dx}ds_2= i(_;_l +q){' o h dx}dsz. (4.38)

Proof. Let g;; any g,; be any two flat metrics with the corresponding Levi-Civita
connections I and Ij. They determine two Poisson brackets { , };;2 by formula
(3.1).

Lemma 4.2. The Poisson brackets { , },2 and { , },;z are compatible iff the
metric ag’’ + bg" is a flat one for any a, b and the tensor

T, =I),~T}, (4.39)
satisfies the condition
g”ék’TSjt — gkrgisTS/'(' (4_4())

Proof.  As it was proved in ref, [23], formula (3.1) determines a Poisson bracket
(for non-degenerate matrix g¥) iff the coefficients g'/ are the contravariant
components of a flat metric and I}ik are the Christoffel symbols of the correspond-
ing Levi-Civita connections. For the linear combination a{ , },,2+b{, };;z the
coefficient before 8'(x —y) equals ag’/ + bg'/. So this metric should be a flat one.
Eq. (4.40) is equivalent to the symmetry of the corresponding connection. [

In our case one has
ag” +bg" =g"(a+ bu')sY. (4.41)

Flatness of this metric was proved in lemma 4.1.
The tensor (4.39) has the form

1=~ 2% 4.42
=T (4.42)
Eq. (4.40) for this tensor can be verified straightforward.

To prove the commutativity of functionals from .# it is sufficient to verify (4.38)
since the homogencous functions 4 span #. We recall that for a flat Egoroff
metric

(a,p)

d5?= X g (a)(da')’
i=1
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the functional H = jh dx belongs to the canonical lagrangian family iff the
vector-function

(ﬁih - g~17 1/2(9:-/’1,
d,=a/0ii, satisfies the system
Iapl =y bl i) (4.43)
Then
{a"(x), L) dy} = ;%) (4.44a)
ds?

9=

i

M=

J,. (4.44b)

It

1

In our case in the coordinates i’ = log u’ the components of the Egoroff metric
(4.34) are

g, =u'g,, (4.45a)
and the rotation coefficients are
5= Vululy,. (4.45b)
So
Gl = Vulyh, (4.45¢)

where ! = g;7'/%3,h. So the function 4/ satisfies the system (4.43) iff the function
Y/ satisfies the system

h _ h
8,‘1/’1'1 = 'Yi,’d/j -

That means that the canonical lagrangian subspaces # and # coincide.
The formula (4.38) follows from (4.44a) since

1=
I

J= u's,.
i=1
The proposition is proved. 0O
Corollary. In the non-resonant case
d+1
—— —~q,+p#0 foranyp=0,1,..., (4.46)

2
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all the equations of the hamiltonian hierarchy (3.47) are also hamiltonian systems
with respect to the second Poisson structure { , };;.

As follows from (4.38) the recursion operator for the compatible pair of Poisson
structures coincides (up to multiplication by a constant matrix) with the operator
",

For the example 5.3 of sect. 5 (below) the non-resonance conditions (4.46) are
valid. But for the example 5.4 there are g “‘resonant” systems in the hierarchy
(3.47). The functionals [r*d X, a=mn,...,n +g — 1, belong to the annihilator of
both the Poisson brackets { , }4,z and { , }4;2.

Remark 4.3. The difference tensor T/, (4.39), (4.42) determines a new multipli-
cation of vector fields (see sect. 2) by the formula

39, %8, =8,

ijuis

(4.47)

), =03/00', ii' = log u' (we omit the coefficient —1/2). The metrics ds2, (4.35) are
invariant for this multiplication for any a, b. So

% 1 du’ du’ atY
Ev, =Y ——— —
B ut o 0tf au!
is a potential deformation. But the normalization condition (2.8b) does not hold,
since the unity d = ¥,4; is not covariant constant.

5. Main examples

Any solutions v, (u) of the system (2.24) determines a N-parametric family of
solutions of the WDVV equations. The system (2.24) can be solved using the
standard machinery of the “inverse spectral transform” (see, e.g. [28,29] for
localized solutions, [29] for algebraic geometry solutions, [26] for self-similar
solutions). There are also solutions in elementary functions.

Example 5.1. N =2. The system (2.24) is linear. The general self-similar
solution has the form

i

u1~u

Yio(u) = yyulu) = 3 (5.1)

for some real u. The basis ¢, (1) of solutions of the system (2.28) for z = 0 has the
form

N e :a__ rH — 2
(bl_ \/f(ir“)’ lllZ ﬁ(_ir‘u)’ r u u-, (52)
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for any a # 0. Let w # ~ . Then the flat coordinates have the form

ul +u? PEPETEN

th= . P -
2(2u +1) (5:3)

The metric ds? has the form
ds? = Lo (u' ~ )™ (du')’ = (u' —u?)™(@u?))| =2de' a2, (5.4)
Here
q,=0, g, =d=~-2p. (5.5)
For u # +1/2, —3/2 the primary free-energy has the form

(1+2u)°
2(1-2p)(21 + 3)

2 _ Qu+3)/(1+2u)
F=5(t") +a* A,

[2a 220 + 1)] /#7042y

(5.6)
For n = —1/2 (d = 1) the flat coordinates are
th= u‘+u2’ t2=a—210g(u'-u2). (5.7)
2 2
The potential F(¢) is not a homogeneous function
F(t)=2(0") 12+ 2 %% exp 4a 2 (5.8)

(the free energy of the CP'-model [S]). For u = 1/2, —3 /2 the formula (5.3) still is
valid. And logarithms should be involved into formula (5.6). The deformed chiral
algebra of two elements e, = ¢, e, has the form

— _ _ -4 —2 21 —2d /(1 ~d)
ee,=e,, €,¢,=¢€,, e,e,=a [2a (1—d)t]

e, d+1, (59)
and

e,e,=a " *(exp 4a ’1*)e,, d=1. (5.10)

In fact, all the formulae were obvious a priori. Only their dependence on the
“inverse data” is not obvious. And this dependence is important for calculation of
the r-function.
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The solutions ¢, (u, z) of the linear system (2.26) have the form

('[’11) a (2)#‘/;;( I;L-l/z(rz)+1u+l/2(rz)

R z(u‘+uz)
. e . (511
¥y V2 \z 1[1#4/2("2)_1;4“/2("2)] )

[,“kl/z(rz) +I,#+,/2(rz)
i[L#H/z(’Z) _I—#fl/z(rz)]

v Sz
MBI o
22

Here r =u' — u?; the modified Bessel function I(x) (see ref. [35)) is determined
as the solution of the equation

XL+ xl = (k24 0?) =0, (5.13a)
of the form

. (2/2)u+2m
Lx)y= % mT(v+m+1)

m=0

(5.13b)

The function Vaﬁ(z, w) can be calculated using the standard expansions for
products of Bessel functions.

Example 5.2. Let us consider 4-dimensional Frobenius algebra with a basis
P=e, O, R, § and with the multiplication given in the table

X ' P 0 R S
PP Q R S
Q|0 f"(tx)R S 0 (5.14)
R| R S 0 0
sls 0 0 0

Here f is an arbitrary function. This deformation is indecomposable. The symmet-
ric scalar product has the form 7,g = 7z, = 1, otherwise zero. Let 1, 1, 1z, 15 be
the corresponding flat coordinates on the coupling space. The flat coordinates
x,(t, z) of the perturbed connection (2.14) can be found explicitly:

xp=[ts+atore+23(tof (1) = 2£(t0))] e
Xg= [tR +zf’(tQ)] es'r,
Xp=tgy e",

xo=z"e?r - 1]. 5.15
s
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The generating function for the double correlators V, (¢; z, w) = V3, (¢; w, z) have
the form

Vpp(t; z,w) = [ts H(z+w)tptp+ (22 —zw +w?)(tof'(1p) - Zf(tQ))
+aw(tof"(1g) = f'(10))] e,

Vpo(t; z,w) = [IR +ztof"(tp) +(w —z)f’(tQ)] elZrmite,

Ver(ts z, w) =t, G0,

Vos(t: 2, w) = (z+w) ™ [e ™ 1],

Voolt; z,w) =f"(1y) e,

Vor(t; zow)=(z+w) et 1], (5.16)

other components of the matrix V,, vanish. This completes the solution of the
model. Particularly, for the case

fr(r) =bt+e” (5.17)

(b, ¢ are some constants) one obtains the correlators of the topological sigma
model with a Calabi—Yau target space being considered in ref. [5] (in the case the
Calabi-Yau manifold has the smallest possible Hodge numbers b,,=b,, =b,, =
bys=1.

Example 5.3. (see ref. [10]). The coupling space for the A, _,-topological
minimal model is a set of all polynomials of given degree n of the form

M= {/\(p) =p"+a, ,p" " +...+aylay,...,a, ,€C}. (5.18)

Here N=rn —1. For any polynomial A €M (it is called a Landau-Ginzburg
potential) the Frobenius algebra A = A, is the algebra of truncated polynomials

Clp]
= 5.19
-0 (549
with the scalar product
1
<f(P),g(p)>=—;l—prSi%i(—)pl. (5.20)
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It is easy to see that (4.19), (4.20) is a Frobenius algebra for any A(p). This is a
potential deformation as it was proved in ref. [10].

The affine structure on M is introduced in the following way. Let ¢, = ¢ ( p;
A), a« =1,...,n— 1, be the orthogonal basis of A,

<(ba«‘ (bﬁ>=na[3§8a+ﬁ,n’ deg (t)ﬂ:a—l‘ (521)

For the polynomials ¢, in ref. [10] was obtained the formula

n d
(P M) = o [ (P)] (5.22)

Here [ 1, means the polynomial (in p) part of the series A*/"( p). The dependence
of A(p) (ie. of its coefficients) on the flat coordinates r* are determined by the
equations

dA(p)
ate

= —¢{p;A) a=1,...,n—1. (5.23)

It was observed in ref. [13] that eqgs. (4.23) and their solution in ref. [10] have a
natural interpretation in the theory of the dispersionless Gelfand—Dikii (GD)
hierarchy. Also a notion of r-function of this dispersionless hierarchy was pro-
posed in ref. [13] to obtain a formula for the primary partition function of the
model. I recall that the GD (or generalized KdV) hicrarchy has the form

a.L=[L, (L") ], (5.24a)
where
L=0"+a, ,(x)d" ?+ ... +ay(x), (5.24b)

is an ordinary differential operator, d =4 /dx, and ( ), means the differential part
of the pseudo-differential operator L/”. The dispersionless approximation can be
obtained from (5.24) by the substitution

a,=a (X, T', ...), X=ex, Ti=e7? €-0, (5.25)

and taking the leading term in e. The FFM representation of the dispersionless
GD hierarchy has the form

67“’ dp ‘ A=const. — 8,\/ d(p,[ ‘ A =const.s (5264)

&, =[r"(p)],. (5.26b)
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It can be rewritten via wronskians [13]

7aA(P) = 3, M3 D), conse— %Pal3xA) p—consis (5.27)
The standard calculation of ref. [18] gives that the diagonal coordinates (Riemann
invariants) for the hierarchy (5.26) are the critical vatues u',...,u" ! of A(p)
u=Axp) i=1,....,N=n—1, (5.28a)
where
X(p;) =0. (5.28b)

The characteristic speeds are

()= (5.29)
U l u = s . a
q, dp pp,

dpatt' =0, (u)dyu' i=1,...,N. (5.29b)

It can be shown that the hierarchy (5.29) coincides with (3.47) for the model (up to
normalization of the variables T9). The algebra A, is decomposable if the
polynomial A’( p) has simple roots. So u!,...,u" are the canonical diagonal
coordinates. The metric ds? in these coordinates equals

Ly
ds _i§l m (5.30)
Let us prove now that the functions
1
a,q=—(a/n)qpri:§o)t(“/"’+"dp a=1,...,n—1, ¢g=0,1,..., (531)
(a)g=ala+1)...(at+qg—1) (5.32)

on the space (5.18) are the basic conservation laws (3.43) of the hierarchy (5.29).
Indeed, from (5.26) it is obvious that (5.31) are densities of conservation laws. One
needs to verify only the recursion relations

oh,  =h

o.g a,g— 1>

q>1, (5.33a)
oh, 4 = const., (5.33b)

a=xN 9, d,=d/0u". (5.33¢c)
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To do it let us observe that the translation along A of the form
A—=A+e, p—p, a,—a, i#0, a,—a,+te, (5.34)

is equivalent to the translation along u' + ... +u”™. So

d
oh, = Eha’q(ul +e,..u¥+e) g

1

e S e (e dnth )

e=0

1
= ———— res A@/MT9 1 dp. (5.35)
(a/n)g—1 p==

This gives (5.33a) for ¢ > 1 and

dhy o= res X/ M ldp = —§
p:w

(5.36)

a,n—1"

The formulae (5.33) are proved. Particularly one obtains the flat coordinates on M

)\(n—a)/n

t*=-nres ——dp a=1,...,.N=n-1. (5.37)
p==x NnN—«

The generating functions x (¢, z) = Xh, (¢)z? can be written in the form
n a
x,(t, z)=—— res 1Fl(l; 1+ — z)\) dp «o=1,...,N. (5.38)
O p=cc n

Here F(a; ¢; z) is the Kummer (or confluent hypergeometric) function [35]

= (@)m 2

F/a; c; = —. 5.39
1 I(a c Z) ,nZ:O (C),n m! ( )
The scaling dimensions of the variables ¢',...,t" equal 1, (n—1)/n,...,2/n

respectively, and d = (n — 2)/n. So the eigenvalues of the matrix [U, I'] (see sect.
4) are

1 [e4

/.La="§+; a=1,...,n~1. (5.40)

I recall that these are the local monodromy indices of the system (4.5) near the

point z = 0. It would be interesting to calculate all the monodromy data of the

solutions (5.38) in z-plane. Note that the non-resonance conditions (4.28) are valid
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in this case. So all the functions A, , can be expressed in algebraic way via the
coordinates ¢ and ' and the rotation coefficients.

The generating function of two-point correlators have the form

o
U P C S Y

p=%

X

B
res A(B/n)ullFl(l; ) W'/\)d)u(p) dp

p=> n

- naﬂ}. (5.41)

Example 5.4. A non-zero genus generalization of the LG machinery of the
previous example was constructed in refs. [15,16]. An appropriate moduli space of
algebraic curves is taken as the coupling space. More precisely, let M ¢n D€ the
moduli space of dimension N =2g + n — 1 of smooth algebraic curves C of genus
g with a marked point @, € C and with a marked meromorphic function A on C of
degree n with a pole only in Q,. If P,,..., Py are the branch points of C,

dAlp, =0 (5.42)
then local coordinates on M, , can be constructed as
u'=MP) i=1,....N=2g+n~1. (5.43)
The one-dimensional affine group A — aA + B acts on M, as
u—sau'+p i=1,...,N. (5.44)

For g =0 the space M, coincides with the space (5.18) of polynomials of degree
n.

For g >0 the coupling space M of the model is the covering of M, , being
obtained by fixation of a symplectic basis a,,...,a,, b,,...,b,€H(C, Z) and of a
local parameter k™! in a neighbourhood of Q. such that

k" =X, A - (5.45)

Sometimes I will denote & as A!/” for simplicity of notations.
Let us fix an abelian differential d p on C such that

dp=d(k+0(1)), Ao, (5.46a)

¢ dp=0 s=1,...g. (5.46b)
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The flat Egoroff d-invariant metric on M in the local coordinates (5.43) has the
form [15]

N
ds?= ¥ g(u)(du')’, (5.47a)
i-1
1 (dp)
. = — —res = 5.47b
) = —res 1 (5.470)
(for n = 2 this formula was obtained in ref. [26]). The flat coordinates ¢!,..., " for
ds? have the form [15,16]
An—ae/n
t“= —npres —dp a=1,...,n—1, (5.48a)
0. N—u
t"-1+a=ig$pd)\ a=1,...,8 (5.48b)
2wi 7y, e
et~ dhdp a=1,....¢. (5.48¢)
b

(]

The metric ds? in the coordinates (5.48) has the form
{dre, deBy=586°*F for 1<a,B<sn-—1, (5.49a)
(dentre destr 1By < 5P for 1<a, B<g, (5.49b)

otherwise zero.

The amazing point is in global definition on M of the flat coordinates ¢!, ..., ¢V,
So M is an unramified covering over some domain in C".

The coordinates ¢!,...,t" have a simple interpretation in the hamiltonian
theory of GD hierarchy [20]. Let us cousider the first hamiltonian structure of the
hierarchy [36). The annihilator of it is generated by (n — 1) local functionals of L.
The values of these functionals on the family M of g-gap solutions equal
t',..., "' Furthermore, t",...,¢t¢""~! are the action variables on M and
t¢+7 . tN are the components of the wave number vector. The same interpreta-
tion of ¢',...,¢" "' is true for the example 5.3 above (the case M =M, ). The
action variables and wave numbers for the “0-gap” solutions (constants) are not
defined.

Let us construct the hierarchy (3.47). Let

p={"dp (5.50)
I
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be an abelian integral (a multivalued function) on C. Here the base point P, is
chosen in such a way that A(P,) = 0 (in some domain on M).
The multivalued differential p dA on C has the form

n~-1
pdi=k d/\—( Yotk P+ O(k™ Y| dk, k=AY">o, (5.51a)

a—1
9Sp dA =2mit" 7! s=1,...,g, (5.51b)
A,(pdA)=0, A, (pdA) =11 dd s=1,...,g. (5.51¢)

Here 4,, 4, are the increments along a- and b-cycles
A, (f(P))=f(P+a,)—f(P),  A,(f(P))=f(P+b)—f(P) (552)

for any function (or differential) on C.
The primary differentials (may be, multivalued) ¢, on C are defined by the
formula

G =30 AN snconst.™ (A dP)paconst. @=1,..., N, (5.53)

d,=4d/3t*. So the function A =A(p), p = [dp, is the LG potential of the model.
More explicitly,

b =dp@=(—k""+O(k ) dk, k=A""-o, (5.54a)
Gdp@=0 s=1,...g (5.54b)

(the normalized abelian differential of the second kind, ¢, = dp’ = —dp);
Guira=0, a=1,...8, (5.55a)

are the normalized holomorphic differentials on C,

¢, =2mid,,, (5.55b)

Gein-14a=0, a=1,....8, (5.56a)
is a holomorphic (modulo dA) everywhere on C multivalued differential with the

increments

4,0,=0, 4, 0,=8,,d). (5.56b)

aﬁu o
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The primary part (3.20) of the hierarchy (3.47) here has the FFM form

8T,,‘u dp=— Xd)a Ol=l,...,N. (557)
Equivalently, in the diagonal variables u',..., u"
) b, ;
(’)7%01/(' = — —CG P(?Xu . (558)

i

The equations (5.57) for e =1,...,n — 1 (together with the corresponding part
of the hierarchy (3.47)) can be obtained from the GD hierarchy (5.24) by the
averaging procedure [17-20,23] over the family M of g-gap solutions of GD. This
part for g » 0 was used in ref. [14] to construct solutions of multicut loop equations
[21]. But for g > 0 without the extension (5.57) for « = n,..., N it is impossible to
construct closed primary operator algebra on the base of the averaged GD
hierarchy.

For the particular solution (3.77) of (5.57) where T%'=T% and dyu'=1,
i=1,..., N, one obtains

. . ba
Jreott' =03 u' = — — i=1,...,N. 5.59
ettt ol dp p ( )

i

This coincides with (5.53).
The formulae (5.58), (2.34) immediately give the residue representation of the
primary correlators

A X
Mg = 2 res d)\ﬁ , (5.60a)
i=1 B
X b,
c(xﬁ'y(t) = - i; I'g[S ﬁ (560b)

The primary operator algebra (5.60) can be represented via relations among some
quadratic differentials

o =C, g0, dp (modulo dA-divisible differentials). (5.61)

Let us call this model as M, ,-model.
The charges g, of the primary fields ¢, equal

a—1

.= a=1,...,n-1, (5.62a)

R
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1
qn‘1+a=_; a:la-~'7g7 (562b)
n—1
qg+"_”“=T’ a=1,...,8 (5.62¢)

d= . (5.63)

There are resonances of the form (4.28) (for p = 1). So the recurrence procedure
(4.27) for the vectors ¢, ;, is not well-defined.

Note that one can choose any of the primary differentials ¢_ to construct
another d-invariant Egoroff metric

ds2= Y g, (dui)’, (5.64a)
(6.)°

- 5.64b

8if, = 1S —— ( )

i

with the same rotation coefficients. This possibility is a reflection of arbitrariness
in the choice of the solution ¢, of the system (2.26). For the metric (5.64) one
obtains another global affine coordinate system on M. The formulae (5.62), (5.63)
for the scaling dimensions also will change.

Let us construct now the generating functions x (t, z) and Vaﬁ(t; z, w). For the
generating function x (¢, z) of the complete family of the conservation laws (3.43)
of (5.57) the following formulae are valid:

n @
x,(t,z)= _EISSAﬂ/anl(l; 1+ = zA) dp a=1,...,n—1, (5.65a)

¥o(t,z) =P e dp a'=n-l+a l<as<y, (5.65b)
b,
1
xau(t,z)=2—7_; pet*dr a"=g+n—-1l+a,l<a<g. (5.65¢)
a

a

The proof is similar to the previous example.
The generating function V,,(¢; z, w) for double correlators in the M, -model
coupled to gravity can be calculated now via the formula (3.62), where

o
d,x,(t, 2) = I_Qes/\(a—n)/anlll; s zl\]qbu(/\) l<a<n—1, (5.66a)

0
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6}an,(t,z)=nwr—z¢;) e?p (1) a'=n—1+a,1<a<g, (5.66b)

1
3, %1, z)=%¢i(e“"¢#()\) a@"=g+n—1+a,1<a<g. (566c)

v

(In ref. [15,16] formulae of another type for the coefficients V(, ., g, Wer€
obtained.) Particularly, one obtains [15,16]

Via oy’ ) = <q’)n,¢ﬁ,> =T, a'=n—l+a, B'=n—-1+p,1<ea, B<g,

(5.67a)

where
T oa= (l) w 5.67b
afl , « ( )

is the period matrix of holomorphic differentials on the algebraic curve C. Thus
the problem of specification of the solution of the WDVYV being described in this
example (say, from the point of view of the isomonodromy deformation theory for
(4.5)) seems to be very important for solving the Schottky problem of specification
of the period matrices of holomorphic differentials on Riemann surfaces [37].

In ref. [15] also more general models of this type were considered where M is a
covering over the moduli space M., ~of algebraic curves of given genus g
with m marked points and with marked meromorphic function A with poles only in
these marked points of given orders n,,...,n,, I will not consider this example
here.

In ref. [15,16] the M, ,-model was called as minimal model of non-zero genus.
To avoid an abusement I stress again that M, , gives a tree-level primary
correlators for a model of topological field theory coinciding with the A | ,-minimal
model for g = 0.

It seems plausible, nevertheless, that M, -models for g >0 can be obtained
from minimal models as a result of phase transitions. I'll outline here this points
for the simplest example of n=2. Let us consider the k& =3 model of “pure
gravity” [2]. Here one has only one primary field ¢, =2. The dilaton operators for
this multicritical point coincides with (¢ ). Let us consider the dependence of
the primary correlator ¢ = {.2%) on the couplings 7'° =X and T!' =T, other
couplings vanish. Let the couplings X, T be real. The dependence is specified by
the string equation

n—1

X +¢T =113, (5.68)

The function ¢ = #( X, T) is smooth for T < 0. For T = 0 it has the form 7 = (3X)/2.
So triple correlators have a singularity in this point. After formal extension of (X,
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T) for positive T one would obtain a three-valued function ¢ = (¢,(X) < £,(X) <
t;(X)) (for fixed T> 0) in some domain X_<X < X,.

Instead of this multi-valued correlators I propose to use the prescription of the
dispersive hydrodynamics [20,28,32] having been elaborated in description of the
dispersive analogue of shock-waves. The idea is to consider the M, ,-model to
describe behaviour of the correlator inside some interval X' (7) <X <X/ (T),
X' (T)=A _T?? for some constants A ,. Matching with solutions of (5.68) in the
edge points of the interval (and also the position of the edge points) is specified by
the assumptions of Cl-smoothness for T+# 0 of the correlator {#%#). This is
provided by an appropriate squeezing of the elliptic curve (being the point of
M1,z)- In the left-edge X' the a-cycle of the curve should be pinched, in the
right-edge X | the b-cycle should be pinched.

For other multicritical points of minimal models coupled to gravity other M, ,
models (with any g) can be obtained as a result of phase transitions.

The models M,,, , could be obtained by “fusion” of a number of M, -
models. I hope to describe this picture of phase transitions of M, -models in the
next publication.

I am grateful to M. Kontsevich for paying my attention to the equations of
associativity of perturbed chiral ring in topological field theories, and to S. Cecotti
for explanation some important points in topological field theory. I am grateful
also to A. Its for useful discussions of some features of the Painlevé-type equations
arising in the paper. Finally I wish to thank Guido Celentano for preparing the
LATEX-file of the paper.

Appendix A. Inverse problem formulae for string correlators

Here I am going to express the 7-function in the decomposable case via
solutions of the linear problem (2.26). 1t is sufficient to obtain an expression for
the generating function (3.62).

Let us fix a basis ¢*(u), a =1,..., N in the space of solutions of the linear
system (2.28). Here u = (u!,...,u™) are the canonical coordinates (2.18). I recall
that the basis ¢ relates to the flat coordinates ¢* and the scalar product 7,, by
the formulae

N
7 = 2 () (u), (A.1)

i=1
R TS (A2)

9;t® =gi1i/2¢ia‘ (A3)
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\\
Let
-1
lpia(u) = naﬁlpiﬁ(u)’ (naB) = (T)aB) ’ (A4)
and
Yi(u, 2) = X Wi, p1) 27 (A5)
p=0
be a solution of the system (2.26) being specified by the normalization
dlia(u’ 0) = dlia(u)‘ (A6)
It can be normalized also by the equations
N
Zd/ia(u’ z)wiﬁ(u’ _Z) ZnaB' (A7)
i=1
It relates to the functions x (¢, z) by the formula
Gio(u, 2) =852 ()9 x, (1, 2) (A8)
(here t = t(u)). For the coefficients 4, ,, this implies
w[,(a,p):ggl/z(u)aiha,p' (A9)
Thus the gradient of x (7, z) in the diagonal coordinates u’,...,u" has the form
N lllio( u’ z
Vx (t,z)= Y. (“)ai. (A.10)
i=1 ‘-//i(l,())(u)
So the hierarchy (3.47) in the coordinates u',...,u" has the form
. lpi(a p)(u) ;
dpaptt! = ———08,u' i=1,...,N. (A.11)
g LZEnes S
For the generating formula (A.8) gives
—1 N
Vip(us z,w) =(z+w) 2o (u, 2)s(u, w) — 1. (A.12)
i=1
Particularly,
xa(u,Z)=Z_1[Zgil/2(l/l)lll[-a(u, z)_nal]' (A13)

Completeness of the conservation laws 4, , follows from the following statement.
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Proposition A.1.  Let hmp(u), a=1,...,N,p=0,1 ... be a family of densities
of conservation laws of a hamiltonian system of hydrodynamic type. Let us assume
that the system have a diagonal form with different characteristic speeds in the
coordinates u',...,u”" and the Poisson brackets for the system have the form
(3.10) where the metric ds? in the coordinates u!,...,u" is a diagonal Egoroff

é-invariant metric. If the densities /, (u) satisfies the recursion relations

oh h

a,p+1 = a,p p

=0, (A.14a)

where

N
a= 39, (A.14b)

and the densities 4, , = ¢, span the annihilator of the Poisson bracket, then linear
combinations of the functionals

[ha,dx (A.15)

form a dense subset in the space of all conservation laws of the system.
This can be proved using ref. [25].

Appendix B. Inverse spectral transform for the similarity reduction of the WDVV

Here 1 outline the solution of the system (4.3) via reduction to a matrix
Riemann problem.
Let R.., 1 <i, <N, be rays in the complex z-plane of the form

ije

Re z(u'—u’) =0, Reze“(u'—u’)<0 for €>0, zeR,.

(B.1)

Let R be a line via the origin in the z-plane not containing any of the rays (B.1). It
divides the z-plane into two half-planes 7, and 7_ (with respect to the standard
orientation of the z-plane). Let R, and R_ be respectively the positive and the
negative part of R with respect to the above orientation.

The datum of the inverse problem for solving (4.3) is a Stokes matrix S. It is a
N X N matrix § = (s;;) with the properties

si=1 i=1,...,N, s,=0 if R,cm_. (B.2)

There are N(N — 1)/2 independent parameters in S.
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The formulation of the Riemann problem is as follows. Let ¥ _(u, z), ¥_(u, z)
be two N X N-matrix-valued functions analytic in z in the half-planes =, and = _
respectively satisfving the following boundary conditions:

Y, lr,=¥_Ir.S, V. g =W_|g 8T (B.3a)
(ST means the transposed matrix) with the asymptotics on z — o of the form
¥ (u,z)e?V=1+0(z7"), z-w= (B.3b)

(1 is the unity). The solution of this Riemann problem can be reduced to solution
of linear integral equations in the standard way (see, e.g. ref. [31]).

Proposition B.1. If ¥ (u, z) is a solution of the Rieman problem (B.3) then
the matrix

I(u) = (vi(w)) = lim z[ ¥ (u, z) e7*Y = 1] (B.4)

satisfies (4.3).
The proof is standard for the isomonodromy deformation theory.

Note that the eigenvalues of the matrix [U, I'] can be calculated as
) 1
eigen [U, I'] = Teigen log SST-1. (B.5)
i

This is the analogue of the cyclic relations [31].
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