Three-Phase Solutions of the
Kadomtsev—Petviashvili Equation

By B. A. Dubrovin, Ron Flickinger, and Harvey Segur

The Kadomtsev—Petviashvili (KP) equation is known to admit explicit peri-
odic and quasiperiodic solutions with N independent phases, for any integer
N, based on a Riemann theta-function of N variables. For N=1 and 2,
these solutions have been used successfully in physical applications. This
article addresses mathematical problems that arise in the computation of
theta-functions of three variables and with the corresponding solutions of
the KP equation. We identify a set of parameters and their corresponding
ranges, such that every real-valued, smooth KP solution associated with a
Riemann theta-function of three variables corresponds to exactly one choice
of these parameters in the proper range. Our results are embodied in a
program that computes these solutions efficiently and that is available to the
reader. We also discuss some properties of three-phase solutions.

1. Introduction and main results

In their original paper, Korteweg and deVries [1] derived an equation
equivalent to

u, + (3u2)x +u,, =0 (KdV)
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to describe approximately the slow evolution of long water of moderate
amplitude as they propagate under the influence of gravity in one direction
in shallow water of uniform depth. We now know that the KdV equation
describes approximately the evolution of long, one-dimensional waves in
many physical settings, including long internal waves in a density-stratified
ocean, ion-acoustic waves in a plasma, acoustic waves on a crystal lattice,
and more [2].

If one relaxes the restriction that the waves be strictly one-dimensional,
then one often derives instead a natural generalization of KdV that was first
discovered by Kadomtsev and Petviashvili [3],

u, +Bu?) e +u,,, +3u, =0. (KP)

XXXX yy

Depending on the physical problem, one can derive one of two KP equa-
tions, which differ in the sign of their u, . -terms. The equation given above
is sometimes called KP2. In particular, this KP equation describes approxi-
mately the slow evolution of gravity-induced waves of moderate amplitude
on shallow water of uniform depth when the waves are nearly one-dimen-
sional. (For example, see [4] for a derivation of the KP equation in this
setting.)

The KP equation admits a large family of exact quasiperiodic solutions.
Each such solution has N independent phases. Recent comparisons with
experiments [5-7] show that the family of two-phase solutions of the KP
equation describes waves in shallow water with surprising accuracy. This
success suggests that more complicated KP solutions might provide accurate
physical models of more complex wave phenomena.

The purpose of this article is to develop a larger family of KP solutions, in
order to make these solutions available as physical models. Specifically, we
address mathematical problems arising in the computation of Riemann
theta-functions of three variables and in their application to three-phase
solutions of the KP equation. To make these three-phase solutions as
accessible as possible, our results are encoded in a computer program that
we provide to the reader.

The organization of this article is as follows. In this section, we review
briefly what is known about one- and two-phase solutions of KP, and then
we state our main results on three-phase solutions. These results form the
basis of a computer program that permits one to specify the parameters of a
three-phase KP solution and then to view that solution as it evolves in time.
In Section 2, we discuss some three-phase solutions obtained in this way,
and we explore some wave phenomena described by three-phase solutions.
We show that three-phase solutions differ from one- and two-phase solu-
tions in the following important way: almost every one- or two-phase
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solution is time independent in some uniformly translating coordinate sys-
tem; almost every three-phase solution is time dependent, in every coordi-
nate system. Thus, nontrivial time dependence is an essential feature of a
three-phase solution, and viewing its time evolution is necessary to under-
stand its behavior. We provide two methods for this viewing: either watching
a video of specific solutions or accessing the program and creating one’s own
animations.

To simplify the presentation of results, technical details and mathematical
proofs are deferred to a series of appendices to the article. Appendix A gives
detailed instructions to run the program, which allows the reader to supple-
ment the solutions discussed in Section 2. Subsequent appendices provide
proofs of the theorems presented below.

All of the solutions considered in this article have zero mean:

fmwu(x,y,t)dx — 0. (1.1)

Among the simplest KP solutions are periodic traveling waves. These are
plane-wave solutions of the form

u(x,y,t) =U(¢), ¢ =k +1ly+ ot + ¢, (1.2)

where U(¢) is a 27-periodic function and ¢, is an arbitrary phase constant.
These solutions can be expressed in terms of a Jacobian elliptic function

kK \* K
U($) = 2(7) (chnZ[;d;;K]—;a), (1.3a)
where cn[z; k] is an elliptic function with modulus « (0 < k <1), and

B=r—1+x% (1.3b)

the wavenumbers and frequency are related by a nonlinear dispersion
relation,

2 2
wk + 3l K [ E }; (1.3(:)

s =4? 3E_2+ K2

K(k) and E(k) are the complete elliptic integrals of the first and second
kinds, respectively [8]. Solutions of this form (with / = 0) were named cnoidal
waves by Korteweg and deVries [1]. A cnoidal wave is completely specified
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by three parameters (e.g., k,/, k), plus one arbitrary phase constant (¢,).
Figure 1 shows a cnoidal wave solution of KP, for one choice of the
parameters.

If /=0, then these results reduce to those for the KdV equation. A
cnoidal wave solution with /# 0 can be transformed into one with /=0 by
using the invariance of KP with respect to a two-parameter group of
transformations of the form

x — bx + ab*y —3a*b’t, y — b’y —6ab’t,
(1.4)

t - bt, u— b ’u,

for arbitrary real numbers {a, b} with b # 0. Clearly, every KdV solution is a
y-independent solution of KP. Conversely, for a y-independent solution, the
KP equation can be integrated once in x. If the solution also satisfies (1.1),
then the constant of integration must vanish, so the solution must satisfy
KdVv.

Alternatively, we can represent these solutions in terms of Riemann
theta-functions:

u(x,y,t) = 20og0(kx +1ly + ot + ¢y + m; k), (1.5a)

where

0(p;k) =1+2 Y g™ cosmip, (1.5b)
m=1

q(k) = exp(—wlli((:))) and  K'(x) = K(V1-«*). (1.5¢)

Figure 1. A cnoidal wave solution of the KP equation, with parameters: k2=099, k=1,
1=0.3, o =—1.2954. Every cnoidal wave solution is one dimensional, and it is time indepen-
dent in a uniformly translating coordinate system.
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When wk 431> — k* =0, then necessarily k =0, K'/K =+, and q =0,
corresponding to the trivial solution u = 0. (Observe that wk +3/* —k*=0
is just the dispersion relation for a plane-wave solution of the linearization
of KP.) For a small negative & = wk +3/? — k*, one obtains approximately a
plane-wave solution,

u~ Acos(kx +ly + wt + ¢,), (1.6)

with the small amplitude 4 = /2|¢l/3.
More general N-phase solutions of KP have the form

u(x,y,t) =U(kx+1Ly+ ot+ dg,....kyx+Iyy+ oyt +doy), (1.7)

for arbitrary constants {¢,,,..., ¢y}, where the smooth function U(¢,...,
¢y) is 2m-periodic in each variable separately (i.e., it is quasiperiodic).
Construction of such multiphase solutions for any number of phases was
first proposed by I. M. Krichever [9, 10] using algebro-geometric methods. A
KP solution of the form (1.7) requires

U(pys.sdpy) = 23210g 0( bys-.., Iy Z), (1.8a)

where 9, ==XV k,(d/3¢,), and a theta-function of N variables is defined in
terms of an N-fold Fourier series,

0(by,--sdn|Z) = ) Com, mNeXp(i(mlqbl+---+mN¢N)), (1.8b)

,,,,,

the summation is over all choices of integers {m,...,my}, i=vV—1, the
Fourier coefficients have the form

| N
Conpym, = eXp(_j'Z Zijmimj)? (1.8¢)

and Z is an N X N, symmetric, real, positive-definite matrix that we call the
period matrix of the theta-function. The entries z;; of the period matrix can
be considered as free parameters of the theta-function. (To compare nota-
tion, we note that [4, 11] refer to a Riemann matrix, B= — Z.) Because Z is
positive definite, the series in (1.8b) converges for arbitrary values of the
phase variables {¢,,..., ¢y}. However, we cannot in general distinguish the
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phases uniquely. Indeed, any linear transformation of the phases,
¢ = Zaijd)j (1.9)

with integer coefficients a;; and with det(a;;) =1, gives another representa-
tion of the same solution with different wavenumbers and frequencies.

The period matrix Z, wave vectors k =(ky,...,ky), [=(l,,...,1), and
frequencies w =(wy,..., wy) are not all independent. An N-phase solution
is specified by 3N independent parameters, plus N phase constants. The
other parameters are related to these by a complicated system of “dispersion
relations” that generalize (1.3c). We discuss these relations for three-phase
solutions in Appendices G and H.

For the one-phase case, N =1, we obtain just the traveling wave solution
discussed above. For N > 1, if Z is exactly diagonal, then these formulae are
degenerate and they do not give KP solutions. If Z is close to being diagonal
with numerically large diagonal entries {z,;, z5,,..., zyy), then the N-phase
solution can be approximately represented as a sum of N small-amplitude
waves:

N
u~ =43 /ekicos g, (1.10)
j=1
g =exp{—z.}, b =kx+1ly+owt+d,,
J JJ J J J J 0j (1.11)

whk; +307 ~k!,  j=1,2,...,N.

The off-diagonal entries of the period matrix describe interactions between
the phases. This result follows from the expansion of the theta-function:

N
0(¢1:d2snby) ~ 142 Y y/ejc0s ¢

j=1
N N—
n Z \/813,' [efz[jcos{(ﬁi + 4)].} + ezi/cos{q&i - <;bj}].
i+

(1.12)
When all & — 0, one obtains in the leading-order approximation:

2 2
K2R3 (K, + k) + (Kol — kL)

2 201
K23k, — k) + (kil = kL)

z; ~ log i #j. (1.13)

This interpretation fails when the period matrix, Z, is not almost diagonal.
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Two-phase solutions of KP (i.e., N = 2) fall into two categories. If /,k, —
l,k, =0, then the solution is actually one dimensional, and a transformation
of the form (1.4) with {a=1{, /k, =1, /k,,b =1} transforms it into a two-
phase solution of KdV. Alternatively, if /,k, — [,k # 0, then the solution is
genuinely two dimensional, and it is spatially periodic in two independent
directions in the x—y plane. Two-phase solutions with [k, —I,k, # 0 are
time independent in a uniformly translating (or “Galilean”) coordinate
system,

u(x,y,t) = v(x+ &ty +nt), (1.14a)
where

@yl — wl, wiky — w,k,
=557, =57 1.14b

f lel_llkZ K lel_llkZ ( )
In other words, every two-phase solution of KP that is genuinely two
dimensional has permanent form in an appropriately moving coordinate
system. The spatial structure of this wave of permanent form can be found
by solving one of three versions of the Boussinesq equation (o = +1, 0, or
-1,

3ov,, =30, + Uy, +(307) 1, (1.15)

xXx XxXxx

because v(x + &t,y + mt) satisfies one of these equations after a transforma-
tion of the form (1.4). We call a KP solution stationary if it is time
independent in some Galilean coordinate system.

Figure 2 shows a two-phase solution of KP, for one choice of the
parameters. The wave pattern in Figure 2 is spatially periodic, and the basic
cell of the pattern is a hexagon: six steep wave crests form the edges of each
hexagon and a broad wave trough fills each interior. The hexagon need not
be regular, and that shown in Figure 2 is not a regular hexagon. However,
the six crests surrounding a trough can be identified in pairs: opposite crests
are parallel; they have equal amplitudes and equal lengths along the crests.
The direction of propagation of the hexagon is not obvious from the figure
itself, but it can be found from (1.14).

Every two-phase solution that is two-dimensional, like that in Figure 2, is
spatially periodic in two directions, but it need not be periodic in either the
x- or y-directions. A subset of the solutions that are periodic both in x and y
were called symmetric solutions in [5]. A two-phase solution is specified by
six (=3N) parameters, but a symmetric two-phase solution has only three
independent parameters, because it requires {z,, = z,,, kK, =k,, and [, =
— [,}. Symmetric solutions propagate purely in the x-direction. An example
is shown in Figure 3.
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Figure 2. A two-phase KP solution, with parameters: z,; =2, z;, = 0.8, z,, = 2.82 (s0 a =2,
B=25 A=04 in (1.16)), k;=0.6, k, =08, [,=0.2, I, =—-0.8059, w,=—-1.9065, w,=
—4.0238. This solution is stationary, as are all two-phase solutions that are genuinely
two-dimensional. (a) Perspective view of the solution. (b) Overhead view, with contour lines
shown.

Two-phase solutions of KP were first computed in [4]. The results of these
computations turned out to be in very good agreement with measurements
from physical experiments on spatially periodic waves of permanent form in
shallow water [5—7]. This good agreement suggests that every spatially
periodic, two-phase solution of KP might well be of theta-function form, as

‘\'\‘\‘ ' ’,/,/’) “\__‘\‘ I //'_,"
Il A
Figure 3. A symmetric two-phase solution, with parameters: « =2, 8=1.68, A=0.4 (so

211=2y=2,2,,=08) k;=k,=08, [, = —1,=0.6155175, w, = w, = —5.924798. Every sym-
metric two-phase solution is periodic in x and in y, and it translates purely in the x-direction.
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conjectured in [4]. The main goal of this article is computation of three-phase
solutions of KP, along the lines of [4, 12-15]. As we explain below, three-
phase solutions differ from two-phase solutions in two important respects.

(i) Every two-phase solution that is genuinely two dimensional is periodic
in two spatial directions. A typical three-phase solution is not periodic in any
direction; it is quasiperiodic in space. As a result, two-phase solutions can be
obtained by solving the KP equation with appropriate periodic boundary
conditions, but three-phase solutions generally cannot be obtained in this
way.

(ii) Every two-phase solution that is genuinely two-dimensional is station-
ary (i.e., time independent in some Galilean coordinate system); almost
every three-phase solution is time dependent, in every Galilean coordinate
system. (See Theorem 4 for a precise statement of this assertion.) Thus, the
three-phase solutions are among the simplest KP solutions that exhibit
intrinsic time dependence.

We now summarize our main results about real-valued, three-phase
solutions of the KP equation. A three-phase solution is determined by nine
(=3N) real parameters with dynamical significance, plus three (= N)
arbitrary phase constants {¢,, ¢, Pos} [11]. Of the nine parameters, three
are wavenumbers {k, k,, [}, and six specify the period matrix:

Zn Zin 23 @ al apn
Z=\z, z,, zp|=|ar aX+p alp+ Br |, (1.16)
213 23 233 ap  aip+ Br  ap’+ Brit+y

We use both parameterizations of the period matrix in what follows.

As discussed in Appendices B and C, a given period matrix can be
transformed into another (equivalent) period matrix, so each theta-function
has several equivalent representations, as does the corresponding KP solu-
tion. A fundamental region & is defined to be a closed set in the space of
period matrices with two properties:

(i) Every period matrix is equivalent to some matrix in 2.
(ii) If two matrices in D are equivalent, then each belongs to the
boundary of 2.

THEOREM 1. A fundamental region of parameters of a real-valued theta-
function of three variables is given by the following inequalities:

0<zy <zy < z3,
0 <2z, <z, 0 <2z <z, (1.17)

2lzp5| < 255, 20z, + 23— 203) <z + 2.
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In what follows, we refer to the set defined by (1.17) as the fundamental
region. Its significance is that it contains a period matrix of every three-phase
KP solution of interest. Theorem 1 is proved in Appendix D.

A second problem with theta-function representations of KP solutions is
that some theta-functions give only trivial KP solutions. Specifically, a period
matrix is said to be decomposable if it can be transformed into block-diago-
nal form,

_(Z2 0
Z = ( 0 Z//)a (118)

and indecomposable otherwise. (See Appendix B for the set of allowable
transformations.) A decomposable period matrix corresponds to a theta-
function that factors into a product of two theta-functions with fewer
variables and to a trivial KP solution.

THEOREM 2. In the fundamental region, the only decomposable period
matrices are in block-diagonal form. Therefore, if a period matrix lies in the
fundamental region and if

(Aw)’ + (Av) + (pr)’ > 0, (1.19)

then the period matrix is indecomposable and the corresponding KP solution is
nontrivial.

Theorem 2 is proved in Appendix E. (To compare terminology, we note that
in [4] a period matrix for a two-phase solution of KP is said to be “in basic
form” if it lies in the fundamental region and is indecomposable.)

Given an indecomposable period matrix, Z, and three wavenumbers,
{k,k,,l,}, the next step is to compute the remaining wavenumbers and
frequencies. Following [11], we show in Appendix H that if the period matrix
is indecomposable, then k, satisfies an algebraic equation of degree 4; the
coefficients in this equation depend on k; and k, and on the period matrix.
After k; has been found, the wavenumbers (/,1,,/;) are determined up to
the ambiguity

(1,0,0) » i[(lla12a13) + a(k1’k2,k3)]a (1.20)

where {a} is an arbitrary parameter corresponding to that in (1.4). The
ambiguity can be resolved by choosing a definite value of (say) /,. After such
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a choice, the wavenumbers (/,,/,,/;) are determined uniquely, up to a
transformation

/
(1;,0,0) » —(11,12,13)+2k—11(k1,k2,k3). (1.21)

The last step is the computation of the frequencies (w,, w,, w;). These are
determined uniquely once the wavenumbers are fixed. The validity of these
steps is assured by

THEOREM 3. Let Z be a 3 X3 indecomposable period matrix in the funda-
mental region. Then the quartic equation (H.2) has four one-parameter families
of nonzero, real-valued solutions k =(k,k,, k), considered as curves on the
real projective plane. For each such solution, the real-valued vectors | = (1,,1,,1)
and o =(w,, w,, w;) are determined uniquely, up to the ambiguity in (1.20).
For each set of parameters obtained in this way, (1.7) and (1.8) provide a
smooth, real-valued KP solution with three phases. This procedure generates all
smooth, real-valued, three-phase KP solutions that can be expressed by (1.7)
and (1.8a) in terms of Riemann theta-functions of three variables.

Theorem 3 is part of a longer theorem (Proposition 2) that is stated in
Appendix H and finally proved in Appendix L.

Once the free parameters of the solution have been chosen and the
remaining parameters determined in this way, the KP solution is defined in
terms of a multiple Fourier series according to (1.7)—(1.8). These series
necessarily converge (because the period matrix is positive definite), but the
convergence could be very slow. However, the equivalent representations of
a theta-function allow us to write these series in more than one way. In
Appendix F, we show that every period matrix in the fundamental region has
a representation in which the multiple series converge quickly. It follows
that theta-function representations of three-phase solutions of KP are
always computationally efficient. These efficient representations are used in
the computer program discussed in Appendix A.

Finally, we note that an alternative approach to the computation of
multiphase KP solutions was proposed and implemented by Bobenko and
Bordag [14]. In their approach, multiphase solutions are parameterized by
configurations of circles in a plane, and the solutions themselves are com-
puted in terms of certain Poincaré series. To our knowledge, the two
approaches produce the same solutions. In fact, we used the numerical
results in [14, 15] to validate our own computer program. A more refined
comparison of the methods would be based on the computational efficiency
of the two approaches, but such a comparison has not yet been undertaken.
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2. Properties of three-phase solutions of the KP equation

2.1. Time dependence

THEOREM 4. Let k =(ky,k,,k;), 1=(,1,,1;), o =(0,,»,,w;) be the
parameters of a real-valued KP solution with three phases.

W If
ki, — Lk, =k, — Lk, =k, — ks =0, (2.1)

then the solution is one dimensional. It can be transformed into a three-phase
solution of KdV, using (1.4). Every bounded three-phase solution of KdV is
necessarily time dependent, in every Galilean coordinate system.

(i) If any part of (2.1) is false, then the KP solution is genuinely two
dimensional. The necessary and sufficient condition that such a solution be
stationary (i.e., time independent in some Galilean coordinate system) is that

kl k2 k3
det| 1, 1, I, |=0. (2.2)

W, W, W3

(iii) If (2.2) is false, then the three-phase solution is time dependent in every
Galilean coordinate system. Moreover, then the KP solution is genuinely two
dimensional and there is a Galilean coordinate system in which the solution is
periodic in time.

(iv) Under transformations of the form (1.4), KP solutions that are stationary
(or not) transform into other solutions that are stationary (or not); i.e.,
Stationarity is not affected by such transformations.

It follows that a generic three-phase solution of KP is genuinely two
dimensional, periodic in time in a uniformly translating coordinate system,
and not stationary.

Proof of Theorem 4: (i) Given (2.1), using (1.4) with {a=—1, /k, =
-1, /ky=—1; /k,, b=1} transforms the solution into one that is y-inde-
pendent. If it also satisfies (1.1), then it must satisfy KdV. But a KdV
solution that is stationary satisfies a third-order ordinary differential equa-
tion. A bounded solution of this equation is an elliptic function, so it has one
phase, not three. Therefore a three-phase solution of KdV cannot be
stationary.

(i), (iii) For definiteness, assume that k,/, —k,l,# 0. A three-phase
solution of KP has the form

u(x,y,t) =U(kx+1Ly+ ot k,x+1Ly+ wyt,ksx+1y+ wst). (2.3)
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Under a Galilean change of coordinates,
x = x4+ &, y =y +nt, t=1t, (2.4a)
with { £, n} given by (1.14b), the solution becomes
u(x,y,t) =U(kx'+ 1y, k,x" + 1,y ksx' + 15y + Q5t'), (2.4b)

where
1k
Oy =det|l, [, I det e (2.4c)
2

If (2.2) holds, then Q=0 and the solution is #-independent. If (2.2) fails,
then the solution is periodic in ¢/, because it is constructed to be quasiperi-
odic in its three phases. (This observation is due to Martin Kruskal.) Any
other Galilean change of coordinates would make one of the other two
phases time dependent, so there is no Galilean coordinate system in which
the solution is time independent.

(iv) Under a transformation of the form (1.4), wave vectors change
according to

kj - b_lkj, lj - b_zlj — ab_lkj,
(2.5)
w; = b_3wj —6ab_21j —3azb_lkj.

Substituting these into (2.2) shows that the determinant is changed by a
factor of b~° and is independent of a. Thus, a nonzero determinant remains
nonzero under (1.4), and a nonstationary KP solution remains nonstationary.
One can show that for a generic three-phase solution of KP, this determi-
nant does not vanish (see Appendix I below). This completes the proof.
Figure 4 shows a three-phase solution of KP, for one choice of the
parameters. The solution is time dependent, and the figure shows the
solution at four different times. We now note some features of the solution.

(i) One can think of a three-phase solution of the KP equation as a
nonlinear superposition of three independent single-phase waves, with the
superposition specified by (1.7) and (1.8). In Figure 4a we have drawn three
sets of parallel lines, corresponding roughly to the crests of three underlying
plane waves. For this particular solution, it is evident that one of the three
underlying plane waves is stronger than the other two.



Figure 4. A three-phase KP solution, with parameters: « =2, B =4, y=4, A=05, u=0.5,
v=01, k=05, k,=1.0, k;=120060, [,=-02, I, =—13974, [;=0.6148, w,=—1.1427,
wy = —6.2228, w3 = —0.3940, ++/ . This solution is periodic in a moving frame, with a period

T =3.1908. It is shown at four times: (a) t=0.0, (b) t=0.5, (c) t=1.5, (d) £ =3.1908, (e)
t =3.1908, but translated according to (1.14).
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(ii) The waves interact nonlinearly (according to KP), so each wave crest
in Figure 4a undergoes a phase shift wherever it interacts with another wave
crest. For this solution, the most obvious phase shifts are those experienced
by the two weaker waves where they interact with the single strong wave.

(iii) At each time shown in Figure 4, one can find wave crests correspond-
ing to those identified in Figure 4a. Thus, it is meaningful to discuss wave
“crests” and “troughs” in this time-dependent solution. However, the ampli-
tude of a wave is not uniform along a crest. Instead there are localized
“peaks” where two (or three) underlying crests intersect. One such peak is
identified in Figure 4a.

(iv) These peaks evolve in time as they propagate. For example, the peak
identified in Figure 4a is also identified in Figure 4b, and one can see that it
has grown larger in Figure 4b.

(v) The wave troughs also evolve in time as they propagate in space.
Typical troughs are not hexagonal. A single wave trough (i.e., a shallow
valley surrounded by mountains) can grow in size, or shrink, or disappear, or
coalesce with a neighboring trough.

(vi) The entire solution is periodic (in time) in a moving coordinate
system. The solution shown in Figure 4e is the same as that shown in Figure
4a, but Figure 4e is drawn one period later with x shifted by (2.25387) and y
shifted by (—12.59596), in accord with (1.14b) and (2.4).

The solution shown in Figure 4 is time dependent, and one gains a better
sense of its time evolution by watching it evolve in time, rather than by
viewing a set of snapshots, as in Figure 4. Two methods to observe this
evolution are available. First, a set of short videos, showing the time
evolution of several three-phase solutions of KP, have been placed on the
worldwide web at http: //amath.colorado.edu /appm /other /kp /kp.html.

Second, Appendix A provides instructions to run the computer program
(called kp) that we used to produce both the snapshots in Figure 4 and the
videos mentioned above. The program is configured to run on any one of
several UNIX platforms. To observe the time-dependent behavior of the
particular solution in Figure 4, one needs to follow the instructions in
Appendix A, using the parameters listed in the caption of Figure 4.

2.2. Nearly stationary solutions

As discussed above, a typical three-phase solution of KP is two dimensional,
and it is not stationary. To our surprise, however, we found large families of
nearly stationary solutions. These solutions are not strictly stationary (the
determinant in (2.2) is not zero), but they appear to the eye to be stationary,
and the determinant in (2.2) might differ from zero only in the second or
third decimal place.
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Figure 5 shows one such solution, at a particular time. As time changes,
this solution appears simply to translate directly to the right (i.e., purely in
the x-direction) with a constant speed. (The reader can observe this motion
by viewing one of the videos mentioned above, or by running the kp
program, using the parameter values listed in the caption to Figure 5.) In
fact, the solution also evolves as it translates, but the nontranslational
motion is very slow and very weak. Using (2.4¢) for this solution, one obtains
Q, = 0.00487, corresponding to a period of 7= 1290 (instead of 7 = 3.2 for
the solution in Figure 4).

Figure 6 shows another nearly stationary solution. As with that in Figure
5, this solution appears to translate purely in the x-direction. In this respect,
these nearly stationary three-phase solutions are similar to symmetric two-
phase waves, like that shown in Figure 3, but there is an important
difference. Two-phase waves that are two-dimensional are spatially periodic,
and the basic template of the periodic pattern is the hexagonal cell. If either
of the wave patterns in Figures 5 and 6 is spatially periodic, then the basic
template of the pattern must be much larger than the simple hexagonal cell.
Both figures exhibit spatial patterns of hexagonal cells that vary in the
x-direction.

Figure 5. A three-phase KP solution that is nearly stationary, with parameters: a =3,
B=063/25 y=81/35, A=u=04, v=2/7, ki=k,=10, k;=0574979, |, =—-1,=
0.6412115, 1, =0.0, w; = w, = —3.260237, w;= —1.882164, + V. The period matrix of this
solution is completely symmetric: zy; = zy, = z33 =3, z;; = 6/5 for i # j. Consequently, there is
another, identical solution with the same period matrix and with the phases renumbered:
k,=0574979, ky =k;=1.0,1,=0, [, = — [; = 0.6412115.
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All of the nearly stationary solutions that we found appear to translate
purely in the x-direction. Their parameters fit into one of two categories:

(i) le = 222 < 233, 213 = 223, kl - k2 == 1.0, ll - - 12, 13 == O, (l)l == w2;
() 2z <2y =233, 21 =213, ks =k;=1.0,1,=0, 1, = =I5, 0, = w;.

We had no trouble finding nearly stationary solutions within these cate-
gories. For each such solution, the wave pattern is periodic in y (with a
spatial periodic of 27 /1,), but it is not periodic in x unless {k,,k,, k;} are
rationally related. Even for those solutions that are periodic in x, the basic
template of the pattern is not a simple hexagonal cell unless k, =k, = k;.
Every nearly stationary solution in one of these categories generates a
two-parameter family of other nearly stationary solutions via (1.4). Whether
nearly stationary solutions exist elsewhere in parameter space is unknown.

As stated above, two-dimensional two-phase solutions of KP have the
identifying property that they are almost the only KP solutions that are
stationary. However, the existence of large families of three-phase solutions
that are nearly stationary means that the property of stationarity does not
provide a practical means to identify two-phase solutions. A simple and
effective method to identify the number of phases in a KP solution is
unknown.

Figure 6. Another three-phase KP solution that is nearly stationary, with parameters:
a=3/2, B=63/25 y=81/35 A=pu=04, v=2/7, k, =0.3248453, k, = k;=1.0, I, = 0.0,
I, =—1,=0818674, w, = —1.631909, w, = w; = —5.004516, — .
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Appendix A. Running the kp program

1. Starting

When you enter the kp program, two windows open on the screen: a long
“control panel” and a viewing window in which a picture of the solution
appears. Separate these windows, and enlarge the viewing window if desired.
(To do this, move the arrow to the lower right corner of the viewing window,
then hold down the left button on the mouse while moving the corner to the
desired location.)

2. Choosing parameters

Choose the parameters of the KP solution by moving the arrow into the
appropriate input box of the control panel, and then changing the value in
this box. Press “enter” after your changes.

(a) Choose values for {a, 8,7, A, u, v}. These determine the period ma-
trix, Z, according to (1.16). Your choices must satisfy the inequalities in
(1.17). For example: a =3, B=252, y=10, A=u=04, v=4/7=
0.285714286, “enter”.

Comment 1: The solution drawn in the viewing window changes each
time you change a parameter of the solution, perhaps after a pause. To
speed up the process, click on “Hold,” then enter all changes, then click on
“Hold” again.

(b) Choose nonzero values for k, and k,. For example: k, = 0.8, k, = 0.8,
“enter”.

(c) The program now solves a quartic equation for k5, so there are up to
four real-valued choices for k5. Go to the input box for k5, hold down the
left button, and up to four choices for k; will appear. Slide down to the
desired choice and release the left button. For example: k;=0.459....

Comment 2: Every real value of k; corresponds to a solution of the KP
equation. However, very large values of |k;| correspond to solutions with
short wavelengths and large amplitudes. In physical problems, the KP
equation typically arises in the limit of small amplitudes and long wave-
lengths, so KP solutions with large values of |k,| are nonphysical and should
be rejected. Moreover, the kp program itself does not draw solutions with
very large values of |k,| accurately.

Comment 3: The kp program is designed to generate three-phase solu-
tions of the KP equation, but it also generates two-phase solutions or
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single-phase cnoidal waves. This feature is discussed in more detail at the
end of this appendix.

(d) Choose /,. This corresponds to choosing the parameter “a” in (1.4).
For example: /, = 0.41045, “enter”.

(e) Choose “Sqrt (P,;;)” by clicking on this button. This corresponds to the
choice of a sign in equation (H.9). For example: +.

At this point you have selected the KP solution. All other choices affect
how the solution is displayed in the viewing window, but not the solution
itself.

3. Representing the solution

A theta-function of three variables has four representations, all of which
involve nested infinite series, discussed in detail in Appendix F. The repre-
sentations are:

1. A triple Fourier series;

2. A double Fourier series + a sum of “solitary” waves;

3. A single Fourier series + a double sum of solitary waves;

4. A triple sum of solitary waves.

Depending on the period matrix, the series in the different representations
can have very different convergence rates, so it can be computationally
efficient to use one representation instead of another. “Recommended
Form = 3” means that for the period matrix chosen, representation 3 is the
most efficient way to represent the solution in a neighborhood of x =0,y =
0,¢=0, and the minimal number of terms in each series (m,,m,,m;) is
shown. The total number of terms in the nested series is: {2m, + 1} *{2m, +
1} #{2m5 +1}. These numbers are chosen so that 6 and its derivatives are
computed at {x = y = ¢ = 0} accurately to the level of € in the control panel.
(Independently, the theta-constants are computed to an accuracy of 1072°).
The kp program uses as many terms as it needs to achieve this accuracy.
The tolerance (and hence the number of terms) for theta-constants cannot
be seen or altered by the user.) For 6 itself, you may choose any of the four
representations (by clicking in “Displayed Form”) and you may choose the
number of terms in each series. This choice of representation affects only
the display. It does not affect the (double precision) accuracy of the
parameters in the control panel.

Comment 4: The recommended form always provides an accurate repre-
sentation of the KP solution with relatively few terms in each series. For the
same solution, the three representations that are not recommended might
require many more terms to achieve the same accuracy.
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Comment 5: Only representation 1 is uniformly valid in space time. Each
of the other representations has a limited region of validity. You can see this
in the example being developed in this appendix by using form 3 (which is
recommended), then by clicking “Recommended,” and then comparing the
representation of the solution shown with that obtained after clicking on
“222,” which has more terms in its series. The “Recommended” picture is
accurate near x =0,y = 0,7 =0, but not far away from it. In this case, one
should use “222” or higher. In fact, it is rarely wise to go below “222.” For
example: use form 3, 222.

4. Viewing the solution at a fixed time

(a) Everything is drawn on a mesh (that you often do not see). To
increase the accuracy of the figure, increase the number shown in the
“Mesh” input box. However, higher mesh resolution implies slower compu-
tation, so keep this number low while you are deciding what you want to see.
For example: mesh = 35, “enter”.

(b) The height of the solution surface can be displayed in different ways:
by using contour lines, or a mesh, or shading, or any combination of the
three. If you want to see contour lines drawn in, click on the “Contour (¢)”
button. (For the buttons at the bottom of the control panel, up =
off,down = on.) The contours may look ragged. If you increase the “Mesh”
(e.g., 35— 50, “enter”), the contour lines smooth out.

(¢) The input box marked “Contours” gives the spacing between contour
lines. When the contouring option is on, zero is always the value of one
contour line. If you want more contour lines, increase the resolution in this
input box, then press “enter.” As with the mesh, more resolution means less
speed.

(d) Click on the “Mesh” button to see the mesh superimposed on the
figure. The mesh becomes useful when the figure is viewed as a graphic
projection. To do this, move the arrow from the control panel to the viewing
window. Now the perspective can be changed in several ways.

(i) Hold down the left button on the mouse and move it north, south,
east, or west. The picture rotates as you move the mouse (and “Mesh”
becomes useful).

(ii) Hold the center button down and move the mouse again. The
picture translates.

(iii) Hold the right bottom down, move the mouse, and rotate the
picture about an axis through the origin, straight out of the screen.

Comment 6: As seen originally, the x-direction is to the right. Once you
use (iii), then the x-axis is wherever you put it.
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Comment 7: To see the coordinate axes in the figure, click on the “Axes”
button.

5. Time dependence

All of the pictures shown so far have been at whatever time is shown in the
input box marked “¢” (probably 7=0). To view the same solution at a
different time, enter the desired time in the “¢”-input box, and press
“enter.”

[P
t

Comment 8: For every representation except 1, one can choose large
enough that the figure drawn in the viewing window is quite inaccurate
unless the number of terms in its series is increased. One can check for this
possibility by increasing (by one) the number of terms in each series, and
seeing whether the figure changes noticeably.

Alternatively, go to the “A¢”-input box, enter a value for Az, and press
“enter.” The “proper” size of At depends on the values of {w,, w,, w5} in
the solution in question. Now the solution can be updated in increments of
At, in two different ways.

(1) To increase ¢ by At, click on “step,” then wait for the picture to
change.

(i) To watch a solution evolve in time (i.e., to observe a sequence of
snapshots, At apart), click on “pause.” To stop the animation, click again on
“pause.”

Comment 9: If the animation goes too slowly, increase the computational
speed by decreasing mesh size, or by turning off “Shade,” or by turning off
“Contour,” etc. (“Shade” is slowest, then “Contour”; “Mesh” is relatively
fast.)

Comment 10: In the animation mode, commands are sometimes carried
out slowly. Do not enter a command a second time.

6. Other options available in the kp program:

(a) If the input box marked “XY Range” shows “10,” then the solution is
computed in a square: —10 < x <10, —10 <y <10. To view the solution in
a larger or smaller square, change the number in “XY Range,” and press
“enter.”

(b) By changing the number in the “Scale” input box, one can magnify or
shrink the figure drawn. (To change “Scale” interactively, hold down both
the shift key and the middle button on the mouse, and move the mouse
forward or backward.)



158 B. A. Dubrovin et al.

(c) By changing the number in the “Z Scale” input box, you can magnify
or shrink the vertical scale (only) of the figure. (To change “Z Scale”
interactively, hold down both the alt key and the middle button on the
mouse, and move the mouse forward or backward.)

Comment 11: A transformation of the form (1.4) with {a=0,b # 1} also
rescales the KP solution, without distorting the figure. In a sense, this is an
alternative to “Z Scale.”

(d) Clicking on the “Rendering” button opens up another control panel,
from which you can control colors in the figure, features of shading, and
some other options shown in the control panel.

(e) The input boxes marked {¢g, Pp,, Py} allow for changes in the
three-phase constants in (1.7).

(f) “Reset View” returns the viewing screen to its original configuration,
with the picture centered. The viewer is above the surface, looking directly
down on it.

(g) Once you have found a suitable set of parameters, “Save Parameters”
allows you to store the list of parameters in a file that you name. Use “Load
Parameters” to retrieve the list from the file.

(h) To save the figure itself (instead of the parameters that generated the
figure), use “Save Picture As.” The figure can be saved in any one of several
formats.

(i) “Print Picture” pipes a Postscript version of the figure to the UNIX
command specified in the input box. You may choose whether to invert the
colors in the saved figure.

(j) “Make Movie” allows you to save a sequence of figures, with a
temporal spacing of At¢, to create a movie. Two formats are available: GIF
and FLI. A program to view the movie, called “xanim,” is available at
http: //www.portal.com /podlipec /home.html.

(k) “Dump Solution” writes the values of the solution on a grid to a file
that you name.

() “Options” opens another control panel with several options that can
be displayed in a window as the program runs, for debugging purposes. “M”
is the coefficient matrix implicit in (H.1); “d4x(theta-hat)” is the matrix of
fourth derivatives of the theta-constants, also in (H.1). “Quartic” gives the
coefficients of the quartic equation defined by (H.2). “Pij” are defined by
(H.8).

7. Constructing one- and two-phase solutions

The kp program can be used to generate approximate two-phase solutions
of the KP equation or single-phase cnoidal waves. To obtain a two-phase
solution, let y — o with k; bounded. To obtain a cnoidal wave, let g —o
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and y - while satisfying the constraints in (1.17) with (a,k,,k;) all
bounded.

In practice, for 0 < @ < aA® + B <5, it is usually sufficient to take y > 30
(with a similar condition on B when generating single-phase waves). To
decide whether y (or B) is large enough, check whether the relevant
parameters of the solution (such as w,) change when y (or B) is increased
further.

If vy is large enough then the approximate two-phase solution does not
depend (to within numerical precision) on { u, », and the choice of v }, all
of which should affect primarily the third phase. However, the kp program
cannot construct some two-phase solutions unless these “irrelevant” param-
eters lie in a particular range. Specifically, the program requires that k, be
real valued, and even though the numerical value of k; does not affect the
two-phase solution, the program stops if k5 is not real. Consequently, if the
program refuses to construct a one-phase or two-phase solution, it may be
necessary to adjust the “irrelevant” parameters.

The KP solutions shown in Figures 1, 2, and 3 were obtained from kp in
this way. The input values used for these solutions are the following:

(a) Figure 1: a =2.677326, B=25, y=30, A=pn=0.5, v=02, k,=
k,=1.0, ky;=1.09,1,=03, —V .

(b) Figure 2: a =2, B=25, y=30, A=pu=04, v=02, k,=0.6, k, =
0.8, k;=0.3535,1,=02, +V .

(c) Figure 3: =2, B=1.68, y=30, A= =04, v=02, k, =k, =0.8,
ky=3.59, I, =0.6155175, +V .

Appendix B. Basic properties of multidimensional theta-functions

This appendix contains basic information about theta-functions of several
variables. More details can be found in [11, 16]. A general theta-function of
N variables is defined in terms of an N-fold Fourier series

(15 Pyl Z) = )y Cm, mNeXP(i(m1¢1+"'+mN‘%/’N))’ (B.1)

,,,,

where the summation is over all choices of integers {m,...,my}, i=vV—1,
the Fourier coefficients have the form

LN
Coryoooom, = exp(—f Y zijmimj), (B.2)
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and Z=(z;),, .y is an N X N symmetric, complex-valued matrix with
positive-definite real part:

Z = Z" Re{v"-Z-v} > 0, for all real-valued N-component vectors v # 0.

(B.3)

Z is the period matrix, and its entries z;; can be considered to be the
parameters of the theta-function. The space of all period matrices is called
the Siegel (right) half-plane. The series in (B.1) defines an entire function of
N complex variables {¢,,..., ¢y}, and it is 27-periodic with respect to any of
the ¢;.

There are natural identifications in the space of parameters of theta-func-
tions. Two period matrices Z and Z' are called equivalent if they are related
by a Siegel modular transformation

7' = —2mi( AZ —27iB)(CZ —2wiD) ", (B.4)

C D)
This means that all the entries of the N X N matrices A4,B,C,D are

integers and these matrices satisfy the condition

(o oE B -0 ) e

(I is the identity matrix) or equivalently

Here the 2N X2 N matrix, (A B ) must belong to the group Sp(N,Z).

AB" = BA",  AD" - BC" =1, CD"=DC'. (B.5b)

For equivalent period matrices the corresponding theta-functions coincide
up to an appropriate change of arguments (¢,,..., ¢y ) = ¢ and multiplica-
tion by an exponential of a quadratic form,

0( ..., Ll Z") = exp %(b(cz—sz)*Cdﬁ—%ﬁZﬁT—imTﬂs

/det(CZ —2miD) 0( b,,..., b, Z), (B.6a)
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where

¢ = (¢),...,d.) = —2wi¢(CZ —2miD) "' +2mwa + iBZ (B.6b)

a=(aj,...,a,), B = (BB, (B.6¢c)

4 =5 Y agby (B.6d)
j=1
1 n

Br = 3 Z ijdkj (B.6e)
j=1

A= (a;), B = (b,-j), C = (c;), D = (dl-]-). (B.6f)

The constant s does not depend on Z or on ¢ (see [16]). We call these
two equivalent theta-functions. Equivalent theta-functions give essentially the
same solution of the KP equation.

We restrict our attention to the theta-functions with real period matrices
Z. They are real valued for real arguments ¢,,..., ¢,. For brevity we call
them real theta-functions. For real theta-functions we consider equivalencies
of theta-functions with respect to the subgroup’ of Sp(N,Z) of transforma-
tions of the form

0

A
Z > 7 = AzZAT, (0 AT“) € Sp(N,Z). (B.7)

This coincides with action of the group GL (N,Z) of invertible N X N
integer matrices (the determinant of these matrices equals +1). Following
Minkowski [17], we call the two matrices Z’, Z related by the transformation

(B.7) arithmetically equivalent. The law (B.6a)—(B.6f) of transformation of the
theta-functions becomes for (B.7) very simple:

0(¢171¢J,V|Z’) = 0(¢1""7¢N|Z)7 (Bga)
(d)rl”gb},\/) = ((bl""’d)N)AT' (ng)

As motivation for considering here only real theta-functions we refer to the
theory of the KP2 equation® where only real theta-functions give real-valued

'The transformations (B.7) are not the only ones that preserve reality of the period matrix. For
example, the inversion Z’'=Z~' (one should put, in (B.4), A=D=0 and B=—-C=1) also
preserves reality. We motivate our restriction of the class of general Siegel modular transformations
(B.4) to the transformation (B.7) by the algebraic-geometrical theory of KP2: according to this
theory (see below), Z should be the matrix of periods of holomorphic differentials on a Riemann
surface of genus N, with a real structure (i.e., with an antiholomorphic involution). The correspond-
ing basic a-cycles on the Riemann surface should coincide with ovals of this involution. Ambiguity in
the choice of a-cycles precisely gives the ambiguity (B.7) in the period matrix.

In the theory of the KP1 equation, other types of real theta-functions also occur [11, 18]. We do
not consider them in this article.
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smooth solutions that we construct in this article for N=23 (see also
Appendix I below).

Appendix C. Need for a fundamental region

Theorem 1 identifies a fundamental region in the space of 3X3 period
matrices. This appendix explains why such a region is needed: Without a
fundamental region, it is virtually impossible to calculate theta-functions
effectively. This difficulty might seem surprising, since the Fourier coeffi-
cients in the theta-series (1.8), (B.1) eventually decrease faster than expo-
nentially. Moreover, in the case N =1 (elliptic theta-functions of Jacobi),
the coefficients decrease monotonically, and it is easy to estimate how many
terms are needed to achieve whatever accuracy is desired.

For N > 2, however, computation is a nontrivial problem, as we now
demonstrate. Take the 2 X2 matrix with entries

z,, = 111207,  z,, = 96.616,  z,, = 83.943. (C.1)

The first few Fourier coefficients are as follows:

_ _ _1n-114 _ _1n-152
Coo=1,¢91=¢¢_1=10 ,0170—0_1,0—10 ,

cla=c_q ;=107 . (C2)
Nevertheless, the theta-function is far from being identically 1:

0(by,¢,) = 1+0.41cos(7¢p, —8¢,) +0.11cos(6¢, —7¢,)

+0.11cos(13¢, —15¢,)

(the truncation error is less than 1072).

It is easy to understand how to find the relevant coefficients c,, ,, —of
the theta-series in (1.8¢): the coefficient exceeds a given positive e if and
only if the integer vector (m,,...,my) is inside of the ellipsoid defined by

the inequality

N
Y. z,mm; < 2log2e". (C3)
ij=1

In the above example, the ellipsoids (in fact, ellipses) are squeezed along
one of the axes. So the points (0,0), (7, —8), +(6, —7), £(13, —15) of the
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integer lattice give the main contributions in the theta-series. In general, a
numerical code for computation of the theta-series with a given period
matrix must contain an algorithm for finding integer solutions m;,...,m, of
the inequality (C.3) for a given period matrix (z;;) and a given accuracy e.
The significance of the fundamental region identified in Theorem 1 is that
for a period matrix in this region, the lowest terms in the series (i.e., the
points closest to the origin) satisfy the inequality (C.3).

A second difficulty in the computation of theta-functions occurs because
two different period matrices that are equivalent under (B.7) lead to the
same solution of the KP equation. To eliminate this ambiguity, we need a
fundamental region for the action (B.7) of the group GL(N,Z) in the space of
period matrices. This is defined to be a closed set & in the space of period
matrices that satisfies the following two requirements.

(i) Every period matrix is equivalent to some matrix belonging to &.
(ii) If two matrices in & are equivalent then each belongs to the
boundary of 2.

In other words, we need to describe a canonical form to which one can
reduce any positive definite symmetric matrix Z by the transformations
(B.7), where all the entries of the invertible matrix A are integers. (In [19],
this canonical form was called “basic form”.) The basis of the theory of
reduction was created by Lagrange, Hermite, and Minkowski (see [20]).
Here we give an explicit description of the fundamental region for the case
N =3.

ExaMPLE: For real theta-functions of two variables, the fundamental
region of the parameters z,,z,,z,, was described in [4, 19]. This is
specified by the inequalities

0<zy <zy (C.4a)

0 <2z, < z. (C.4b)

(A quadratic form z, p*+2z,pq+ z,,q* satisfying (C.4a)-(C.4b) is
sometimes called Lagrange reduced [20].) On the boundary of the domain, at
least one of the inequalities (C.4a)—(C.4b) becomes equality.

A fundamental region is not determined uniquely. The particular region
(C.4a)—(C.4b) is a convenient one for calculation of theta-series. Indeed, for
the example in (C.1), applying a transform (B.7) with

-3
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one obtains the following parameters of the transformed theta-function:

2l = 0503, z, =0250, z), = 0.915.

The main contributions in the corresponding theta-series come from the
points closest to the origin:

(), d5) = 1+0.41cos ¢] +0.11cos ¢ +0.11cos( ¢} — ¢5). (C.5)

Similarly for N =3, the problem is to find a “good” fundamental region
on which the summation of the theta-series can be done easily, i.e., with the
property that the first few terms of the theta-series dominate the rest of the
series.

After this brief discussion of the problem, let us formulate our first main
result.

THEOREM 1. The fundamental region of parameters of real theta-functions of
three variables is given by the following inequalities:

0 <z <zpy <zy (C.6a)
0<2z, <2z (C.6b)
0<2z;y <1z, (C.6c)

2|zl < 2y, (C.6d)
22y + 213~ 23) < 2y + 2. (C.6e)

This theorem is proved in Appendix D.?

3A description of the fundamental region announced in [21, Theorem 2] seems to be wrong. Indeed
the two positive-definite matrices

1 01 1 1 01 0
B =101 1 0.1], B'=101 1 0
1 01 2 0 0 1

both belong to the fundamental region of [21], and moreover B belongs to its inner part. But they
are equivalent: B’ = ABA” for
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Appendix D. A fundamental region of parameters for real
theta-functions of three variables

The theory of fundamental regions for the group SL(N,Z) of unimodular
N X N matrices with integer entries acting as in (B.7) on the space of
positive—definite symmetric matrices was created by Minkowski [17] (see
also [20]). We need to formulate his result to prove our Theorem 1.

For a given symmetric N X N matrix Z=z;, let us denote by
Z(my,...,my) the positive—definite quadratic form

N
Z(my,...,my) = Y, z;mm,. (D.1)
ij=1

We say that the quadratic form is Minkowski reduced (or, briefly, M-reduced)
if the following infinite set of inequalities holds true:

z, = Z2(1,0,...,0) < Z(m,,...,my), M,(my,...,my)
for all relatively prime m,...,my
z, = Z(0,1,...,0) < Z(my,...,my), M,(my,...,my)

for all m, and relatively prime m,,...,my

Zy_1n-1 = Z£(0,0,...,1,0) < Z(my,...,my), My_(my,...,my)
for all m,,...,m,_,, and relatively prime m,_, and my

zwy = Z(0,0,...,0,1)

IA

Z(my,...,my), My(my,...,my)

for all my,...,my_,, and my = +1.

For every choice of {m,...,my}, each of the inequalities M,(m,...,my) is
a linear inequality among the entries of the matrix z;;.

THEOREM OF MINKOWSKI [20]. The set of all M-reduced positive-definite,
symmetric, N X N matrices is a fundamental region of the group SL(N,Z)



166 B. A. Dubrovin et al.

acting as in (B.7) in the space of real, symmetric, positive-definite N X N
matrices. In other words,

(i) every Z-matrix is equivalent under (B.4) to some matrix in this set, and
(i) if two matrices in this set are equivalent under (B.4), then for each
matrix, at least one inequality M,(m,,...,my) must be an equality.

Moreover, the fundamental region is specified by a finite number of the
inequalities M\(m,...,my),..., My(my,...,my).

ExampLE: For N =2 we have the following three basic Minkowski in-
equalities:

Zy = Zy, M,(0,1)
-z £ 2z, M,(1,1)
2z, < zyy, M,(1,-1).

Other inequalities M,(m,,m,), M,(m,,m,), follow from these three. This
gives a fundamental region for the group SL(2,Z) acting in the space of
symmetric positive-definite 2X2 matrices. Note that the condition 0 < z;
together with the above inequalities provides positive definiteness of the
Z-matrix.

Note also that the group of transformations is slightly bigger than S1.(2,Z):
We are allowed, particularly, to change the sign of any of the basic vectors.
Using this we can always make z,, nonnegative. This gives the fundamental
region (C.4a)—(C.4b) of parameters of real theta-functions of two variables.

Using Minkowski’s theorem it is easy to obtain an algorithm to reduce
any 2 X2 symmetric positive-definite matrix to the M-reduced form.

Let us come to the case of three variables. Proof of Theorem 1 is based
on two lemmas.

LeEmMMA 1. Let
Z(p,q,r) = 2y p* +22,,pq + 20,9 +2213pr +2255qr + 23377 (D.2)
be a positive-definite quadratic form with

0<z, 0<5z, (D.3)
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Then the infinite set of Minkowski inequalities,

z,, < Z( p,q,r) for all relatively prime p,q,r, M(p.q,r)
z, < Z(p,q,r) for all p,q,r with relatively prime q,r, M,(p,q,r)

zy < Z(p,q,r) forall p,q,r withr =1, Ms(p,q,r).

is satisfied if and only if the following seven inequalities are satisfied:

Zn = 2y, M,(0,1,0)

Zp = Z3, M,(0,0,1)
2z, < zy4, M,(1,—1,0)
223 < zyy, M;5(1,0,-1)
+2z) < 2,5, M;(0,1,F1)

2zp+zi3—203) < 2y F 25 M;(—1,1,1).

Proof immediately follows from

LEmMmA [Minkowskil. The inequalities M (1, p,q), M,(p,1,q), M;(p,q,1)
for p,q equal +1 or 0 imply all other inequalities M/ p,q,r) for arbitrary
integers p,q,r.

For completeness we reproduce here the proof following [17].

It is sufficient to prove the inequalities M,(p,q,r) for nonnegative inte-
gers p,q,r only. Indeed, if some of p,q,r are not positive then we change
the signs

(p>q,r) = (P.qr)=(xp,tq,xr)
p=0,gd=0r=0

ro_
Zij =z = 1z

in such a way that
Z(p.q.r) = Z'(Pqs1").

Note that zj, = z,. So the inequality M,(p,q,r) for the coefficients of the
quadratic form (z;;) coincides with the inequality M(p’,q',r') for the
quadratic form (z})).
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Let us redenote
(p,q,r) = (my,my,ms).
We need to prove the inequalities
zy < Z(my,my,my), (M, (my,my,my))

for any /=1,2,3 where m;,m,, ,... are nonnegative and not all equal to
zero. It is enough to consider only the inequality M;(m,, m,, m;) where all
m,,m,,m, are positive (otherwise the problem reduces to quadratic forms
with two arguments).

Let
m:= min m; >0
k=1,2,3
and
j = max k
m,=m

We introduce the vector (m', m’,, m’y) putting

, m,—m ifk+j
M = m; for k =j.
We have
m), > 0 for any £, m’y > 0.

Using the elementary identity

Z(ml7m27m3) - Z(m,l7m,27m,3)

= mz[Z(l,l,l)—zjj] +2m Y, [(mk—m) sz,}

k+j I+
we obtain

Z(m,17m,27m,3) = Z(mlﬂmZ’m3)
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since
z;; < Z(1,1,1)
due to Mj(l,l,l),

0< Xz

1#]

(follows for N =3 from M,(p,q,r), where one of p,q,r is 0 and two others
are +1).

Thus the inequality M;(m,, m,, m;) follows from the inequality
M(m',, m',, m’y) where m'; are still nonnegative and smaller than m;, i =1,2,3.
This gives the recursion procedure to prove the lemma.

Remark: The same arguments show that the lemma holds true also for
N =4. Starting from N =5 the theory of Minkowski inequalities is more
complicated.

LEMMA 2. Inequalities (C.6a)—(C.6¢e) imply that the quadratic form in (D.2)
is positive definite.

Proof: According to a theorem of Sylvester [22, p. 306], the positive
definiteness of the quadratic form follows from the following three inequali-
ties:

>0, det|z,;, zp z,3| > 0.

z z
z, >0, det| " TP
Zyn 22

The first two are obvious from (C.6a) and (C.6b). For the 3 X3 determinant
we obtain from (C.6a)—(C.6d) the inequalities

2 2 2
Z1nZ;Zy — 21123 T 2213213203 — Zin 233 — Zi3Zp

2 2 2
242 24z zhz
1222 123 _ ZinZy
2 2225~ — g~ 2zpZplinl- =5 — =
> FZuZpZs — 2212530 2yl

"

1
1%z~ 12121222 > 0. (D.4)
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If any one of the inequalities among the z;; in (C.6a)—(C.6d) is strict, then
at least one of the inequalities in (D.4) is strict, and we have shown that the
3 X3 determinant is positive. Otherwise, we have from (C.6a)—(C.6¢) that

Zy = Zp = 2y =221 = 223 = £223=a

for some positive constant a and for just one sign before 2z,,. The 3 X3
determinant equals

a’ — a3i a3—%a3—%a.

ENEE
A=

This is positive if z,; = 3a. For z,; = — ja, the determinant vanishes. But
such a quadratic form does not satisfy the inequality (C.6e). Indeed, for

Zy =2y = 2z = 22y = 2253 = a, Zn T T34

this inequality (C.6e) reads
2a = 3a.

This contradicts the positivity of a > 0. Lemma 2 is proved.

Proof of Theorem 1: Let us prove first that any 3 X3 positive-definite
matrix Z can be reduced by the transformations (B.7) to a Z-matrix from
the fundamental region (1.17). Indeed, due to Minkowski’s theorem we can
find an integer unimodular matrix A such that the matrix Z' = AZA”
satisfies the inequalities of Lemma 1. Changing, if necessary, signs of the
coordinates ¢, and ¢,, we can always meet the requirements z}, > 0, z}; > 0.
Such changes do not violate the inequalities of Lemma 1. As the result we
obtain a matrix in the fundamental region (1.17).

Let us prove now that in the interior of the fundamental region (i.e., in
the region of parameter space where all the inequalities in (1.17) are strict),
no two matrices are equivalent with respect to (B.7). Let us assume that
some two matrices Z) and Z®@ satisfying (1.17) are equivalent, Z® =
AZMVZT, where A is an invertible matrix with integer entries. The case
det A =1 is impossible due to Minkowski’s theorem since (C.6a)—(C.6¢) are
part of the Minkowski fundamental region. If det 4 = —1, then det(— 4) =1,
and Z® =(— A)ZW(— A)T. Again, this contradicts Minkowski’s theorem.

To complete the proof of Theorem 1 we note that, due to Lemma 2, the
condition of positive definiteness of the Z-matrix is contained in the inequal-
ities (1.17). The theorem is proved.
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Appendix E. Indecomposable period matrices

As discussed in Appendix C, one practical difficulty in calculating theta-
functions is solved by restricting one’s attention to period matrices that lie in
the fundamental region, defined in Theorem 1. A second difficulty remains:
If a period matrix Z can be reduced to block-diagonal form,

zZ = (E.1)

by a Siegel modular transformation (B.4), then its theta-function factors into
a product of two theta-functions with fewer variables, and the corresponding
KP solution is trivial.*

The problem of decomposability is to specify explicitly the period matrices
inside the fundamental region that correspond to decomposable theta func-
tions. For theta-functions of two variables (N = 2), this problem was solved
in [19], where it was shown that a period matrix in the fundamental region is
decomposable if and only if it is diagonal.

We show next that for N =3, a corresponding statement holds.

THEOREM 2. In the fundamental region, the only decomposable period
matrices are in block-diagonal form. Therefore, if a period matrix lies in the
fundamental region and if

(Aw)’ + (Av)* + ()’ > 0, (E.2)

then the period matrix is indecomposable and the corresponding KP solution is
nontrivial.

Proof: In this proof (also in the summation formulae of the next ap-
pendix) we use Jacobi’s decomposition of a symmetric positive-definite
matrix [22, p. 41]. We recall that the Jacobi theorem provides a unique

*The main motivation for addressing the problem of decomposability again comes from the
algebraic-geometrical theory of the KP equation: Only theta-functions associated with (connected)
Riemann surfaces provide solutions of KP, and all of these theta-functions are indecomposable. An
important starting point for the application of our results to nonlinear equations like KP is the
theorem [20] (see also [11]) that for N < 3, every indecomposable theta-function is associated with a
Riemann surface; i.e., there are no other constraints. For N > 3, this is not true: The Schottky
problem arises [11, 23, 24]. For N> 3 an approach of [12-15] based on a representation of the
parameters of the multiphase solutions of KP by Burnside-type series could be useful in solving the
Schottky constraints for the period matrix. However, in this way one could face the problem of
improving convergence of Burnside series. Thus, for N >3, our three main problems are still
important in the calculation of theta-functions, but other problems arise as well.
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factorization of a symmetric, positive-definite matrix Z into the product

Z = SPST,

(E.3a)

where P is a diagonal matrix and S is a lower triangular matrix with ones on

the diagonal. For N = 3 this reads

Zn %2 %13 @ Aa pa
Z=\z, z,, zn|=|ra B+Aa B+ Apa
213 23 Z33 wa  vB+Aua y+vB+ pla
a 0 0
Pp=(0 B 0
0 0 vy
1 0 0
S=|A 1 0].
nwo v o1

For the parameters «, 3,7, A, u, v we obtain

2
= Zy, ﬁ - z ’ Y = 20
1 211222 — 212
_Z 213 21123 7 2122713
A= P r= v = -
z z _
1 11 21122 — 212

(E.3b)

(E.3¢)

(E.3d)

(E.4a)

(E.4b)

LEMMA 3. A matrix Z in the Jacobi representation (E.3a)—(E.3d) belongs to
the fundamental region (1.17) if and only if the parameters «a,B,7y, A, w, v

satisfy the following inequalities:

0< «a
0< A <l
- 71“‘—2
(1-)a <p
(N =2+ B(1-1%) < y
1 a
v < §+ /\(/\—Z,M)ﬁ

1 a

1
1 a 1
_z_A(A+2M)ﬁgv for/\+,us§.

Proof can be obtained by direct substitution of (E.3b) into (1.17).

(E.5a)
(E.5b)

(E.5¢)
(E.5d)

(E.Se)

(E.5f)

(E.5g)
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LEMMA 4. The following inequalities hold for a matrix (E.3b) in the funda-
mental region (1.17):

0< % < % (E.6a)
lv| < % (E.6b)
%_% (E.6¢)
L= g (E.6d)
Proof: From (E.5c) we obtain
0<-%:;If%p. (E.7)

This, together with (E.5b) gives (E.6a).
Let us prove now that » < 3. For A>2u we obtain, from (E.5¢) and
(E.7),

1 A=2Au 1-2Au
< 5+ - .
TE2T om0 T 2(1= )

The RHS of the inequality in the domain 0 < A< 3,0 < u < 3, 2u < A, has
its maximum (3) at the point A= 3, w=0. So in this domain, v < 3. For
A< 2pu, from (E.5e), we obtain v < 3. The inequality » < 3 is proved.

Let us prove that — 3 < ». In the domain A+ u < 3, from (E.5g) and

(E.7) we obtain

1+2An 1 MA+2p) -

2(1—A%) 2 2(1-4%)

The LHS of the inequality in the domain 0 < A, u < 3, A+ p < 3 has its
minimum (— %) at the point A= 3, u=0. So in this domain, — 3 < v. If
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A+p> 3, A+2u—1<0, then from (E.5f) we have — } <v. Finally, if
A+ u> % and A+2u —1> 0, then from (E.5f) and (E.7),

1 (A+2p-1)(1—-4)  p-—1
VZ_§+ 2(1_/\2) =N i

The RHS has its minimum (— %) at the point A= 3, w=0 of the above
domain. This completes the proof of (E.6b).
For the ratio y / «, from (E.5c) and (E.5d) we now have

2 20102 — 22 _ 2 a2y .2y Y
1= =v(1=A) =X —u +(1-27)(1 V)Sa.

The LHS has its minimum (3;) at the points A=0, w= 4, v =+ 2. This
proves (E.6¢).
We now prove (E.6d). From (E.5d) we obtain

(/\2—,u2)+1—1/2 <

=
[

For A < u, this and (E.6b) give 3 <y /. Let A> u. We obtain

The LHS has its minimum () at the points A=0, u= 3, v = + 3. Lemma
4 is proved.

Remark: The inequality (E.6b) can be attained, say, for the matrix

N

Il
O M= =
[T STE
(=)

[N

Proof of Theorem 2: [Note: In this proof, we renormalize the period
matrix Z — 27 Z for the sake of technical simplicity. This change does not
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affect the inequalities in (E.5a)—(E.5g) or (E.6a)—(E.6d).] For N = 3, there
are three classes of block-diagonal symmetric matrices:

zy; 0 0 Zi, 0z,

Z' =0 zyp 2|, zZ'=10 =z, 0],
! ! " "
0z z3 Zi; 0 25

n n
2y oz, 0

mo__ m m
zZ" = \z{, z3, 0
n
0 0 2z

(Recall that the real parts of the matrices must be positive—definite.) In fact,
these are equivalent with respect to Siegel modular transformations (B.4),
(B.5a,b). Indeed, taking

0 0 1
0 1 0f, B=C=0,
1 0 0

we obtain a transformation (B.4) of a matrix of the third type into one of the
first type, and vice-versa. Similarly, the modular transformation with

A=D-=

0 1 0
1 0 0], B=C=0,
0 0 1

interchanges the first and the second classes of block-diagonal matrices.

So we need to prove the following statement. If a real symmetric matrix
Z, in the fundamental region (1.17), is equivalent to a block-diagonal matrix
of the first type,

Z, 0 0
iz =il 0 =z 2| =(iAdZ+ B)(iCZ+ D) ', (E.8)
0z 2z

where the 3 X3 matrices A4, B,C, D with integer values satisfy (B.5a)—(B.5b),
then Z itself is a block-diagonal matrix.
Let us substitute the Jacobi representation (E.3a) into (E.8). We obtain

iz' = (iAP + B)(iCP + D) , (E.9)
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where
A B A B)[S O
(é zs)=(c D)(o s“) (E-10)

is again a real symplectic matrix (not integer!) as a product of two symplec-
tic matrices. So the matrices

A=4s, B=BS"T', (C=cCS, D=DS"" (EIll)

still satisfy (B.5a)—(B.5b). Note that the action (E.9) of the full symplectic
group Sp(N,R) is also well defined on the Siegel half-plane (B.3).
Let us put

=U+iV, (E.12)

where U,V are real symmetric matrices, and V' is positive—definite. Rewrit-
ing (E.9) as

(U+iV)(iCP+ D) = iAP + B, (E.13)

and separating the real and imaginary parts, we obtain
A=UC+VvDpP!, (E.14)
B =UD - VCP. (E.15)

Substitute these into the equation ADT — BCT = I. Taking into account the
equation CD” = DC7, we obtain

V(DP~'DT+CPCT) = 1. (E.16)

We now write out explicitly certain entries of the matrix equations
(E.14)—~(E.16). Denote by a;;, b; P Ci j»d;; the entries of the matrices 4, B,C, D
(these are integers), and by d,,b,,,¢; d,. the entries of the matrices

ijpYijr~i>Mij

A B C D (real numbers). The relatlons (E 11) for the first rows of these
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matrices read as follows:

a, = ay + Aa, + pag, (E.17a)
a, = a;, + vag, (E.17b)
d;; = ag, (E.17¢)
by, = by, (E.18a)
b, = — Aby, + by, (E.18b)
by = (—p+Av)b,, — vby, + by, (E.18c)
G = € + Aep, + pcy; (E.192)
Cp = €y + veys (E.19b)
Ci3 = €3 (E.19¢)
dy, = d, (E.20a)
dy = — Ay +d, (E.20b)
dyy = (—p+Av)dy, — vd,, + ds. (E.20c)
Also set
X = uy, y =uvy > 0. (E.21)

(These are the nonzero entries in the first rows of the matrices U and V.)
The (1, D-entry of (E.16) is particularly important:

a”ldf + B_ldAlzz +v 1dA123 + alf + BEL, +yé =y . (E.22)

Note that because (y, a, B,y) are all finite and positive, (E.22) implies that
the entries in the first rows of the matrices C, D cannot all vanish simultane-
ously.
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The first lines of (E.14) and (E.15) read

4, = a 'yd,, + xé,, (E.23a)
4, = B lydy, + xt,, (E.23b)
43 = v 'ydys + xCys (E.23c)
1311 = xzfll — ayl (E.24a)
by, = xd,, — Byé,, (E.24b)
513 = di13 — YYCi3- (E.24¢)

Let us assume that the matrix Z is not block diagonal, so that (E.2) holds.
We show that this assumption is not consistent with the equations (E.15)—
(E.22).

The first step is to derive the following equations:

apdy = bycys, (E.25)
apdy = bycypy. (E.26)

To prove (E.25), multiply (E.23c) by d,; and (E.24a) by c,;, and subtract the
results. Using (E.19¢), (E.20a), and (E.22), one obtains

_ -17 3 A A
aidy — bycy = J’(7 dyd;;+ aclchS)

17 2 A A
Yy dydis+ aly Gy

a_ldAlzl + '}’_1dA123 + “6121 + 75123 + B_ldAlzz + ,85122

Set
r = \/ofld%l +vy” ld% , p = \/aéfl + yéi,, (E.27)
and
d d
1 — ycos @, L — rging,
Vy Va

\/;613 = pcos ¢, Vae, = psin ¢.
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We obtain

1/2y/(a/y) (r’sin26 + p* sm2d))
r*+p?+ Bl + Bed,

apd; — byey =

The RHS cannot be more than 3/« /y. From (E.6¢c) we conclude that

1 [a 3
lad,y = byyesl < 54/ 5 < == <L

Y T V11

Since a,yd,; — by;c,5 is an integer, we obtain (E.25).
Equation (E.26) can be derived in a similar way. Multiply (E.23b) by

d,, = d,,, multiply (E.24a) by ¢,, and subtract the results. Using (E.25) and
(E.22) we obtain

17 % A A
d —b _ B~ dyd, + ady iy,
appdy 11612 =

-1.72 -1.72 A2 A2 -172 A2
a di+ BT d + all + Bén +ydi e

1/2y(e/B) (r*sin26 + p sm2¢>)

rP+pity 1677123 +yéh

where we have used

r= ‘/a 1dA2 1d"122 > p=Y aélzl + 36122’

A~

&=rsm0, &=rcos0,
Va VB

Vaé, = pcos ¢, \/Eélz = psin ¢.

Hence,

This proves (E.26).
Let us now prove that if

d + & # 0, (E.28)
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then
aydy, = bycy +1, (E.29)
and
by =¢Cy=dy=dy;=0. (E.30)
To do this we obtain from Equations (E.23a), (E.24a) the equation

-1.72 A2
N A a dij + acyy

apdy — b6y =

. (E31)
a”'df + alfy + Bild?z + Beh +y” 1dA123 +yeh

From (E.25), (E.26), (E.17a), and (E.19a), it follows that
dydy — by 6y = aydy; — byjeyy.
So (E.31) and (E.28) imply
0 <aydy —bycyy <1,
Because a,,d,; — by ¢, is an integer, it must equal 1. This gives (E.29). Also,
this implies that the RHS in (E.31) equals 1. This gives (E.30).
Let us assume now that d,; # 0. We show that this is impossible for a

non-block-diagonal matrix Z. From d,, =0 (see (E.20b) and (E.30)) we
obtain

=2, (E.32)

So A must be a rational number, A= p /q. Since 0 < A< 3, we have for
A# 0,

From (E.32) it follows that
dy = mp, dy = mq
for some integer m. From b,, = 0 (see E.18b), (E.24b), and (E.30)) we obtain

blz = Abll'
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So the integers b,; and b,, have the form
by, = nq, by, = np
for some integer n. Equation (E.29) now reads
q(may, —ncy) = 1.

This is impossible for g > 2. Therefore A= 0. We also conclude that d,, =
b, = 0. From d;; = 0 and from (E.20c) we obtain that d,; = ud,;, so

_d13_P
M_dn q

is a rational number. If w =0 then we obtain a block-diagonal matrix. So
w#0, and g>2 (since 0 <pu< 1). From (E.30) and (E.23c) we see that
b,; = 0. Due to (E.18c¢) this, together with b,, =0, A= 0, gives
bz = pby,.
As above, we have
diz = mp, dy = mgq, by; = np, by, = ng
for some integers m,n. Then (E.29) becomes
g(may —ncyy) =1,
which is impossible for g > 2. We have now proved that the assumption
d,, # 0 contradicts Equations (E.22)—(E.24c) for a non-block-diagonal matrix
Z.
So d,, = 0. It follows from (E.25) and (E.26) that

byci; =0, byc, = 0. (E.33)

Also, (E.20b)—(E.20c) read

A A

dy, = dy, di; = dj; — vdy,.
We now prove that

aj3dy; = byycys. (E.34)
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As above, taking a linear combination of (E.23c¢) and (E.24b) we obtain,
using (E.33),

-1 7 2 A A
do, —b =d.d. —b — Y dpdist+ Byl
a;3dy, 12€13 = dy3dq; 12013 =

-172 -1,72 A2 A2 A2
B ]d12 +vy ]d13 + Bci, v+ acy

_1/2y/(B/7) (r*sin26 + p*sin2¢)

r’+ p?+ aflzl

b

where

r=VBldL+y L, p = BeL +yeh,

dy s

= rcosé,
VB Vy
\/Eélz = pcos ¢, \/;613 = psin ¢.

From this and from (E.6d) we obtain

= rsin 0,

1 /B 3
d,—Db <x1 = <— <1
la3d,, 12613 2V 'y 11
This proves (E.34).
Next we prove that if
di + ¢4 # 0,
then
apdy, = byyepp +1, (E.35)
and
&y =65 =dys = 0. (E.36)

The procedure is similar to the proof of (E.29) and (E.30). From (E.23b) and
(E.24b), using (E.22), (E.33), and (E.34), we obtain

71dAz + B2
0 < apdy, — byep, = F_dix+ B <1.
) A2 —-1.72 A2 A2
B di, + BEiy + v diz + vyl + ady

This gives (E.35) and (E.36).
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Let us show that d,, = 0. If not, then from d,, =0, d,; = 0, and (E.20c) we
obtain

So v is a rational number, v = p /q. If v # 0 then g > 2 (since |v|< %) and
d\y =mp, d,, = mq, for some integer m. From (E.36) and from (E.24c), using
(E.18¢) and b,, = 0 (because of (E.24a) and d,, = ¢,; = 0) we obtain

b, = vby,.
This gives
b, = np, b, = nq.

After substitution into (E.35), we obtain a contradiction. Hence v =0, and
d; = b,; =0. From (E.36) and from (E.23a), (E.23c), we obtain d,; =a,; =0,
a,, = a;; + Aa,, = 0. Together with ¢,, = ¢,; = 0, this gives

a;, + Aa, =0,

¢y + Acy, = 0.
From this and from (E.35) we obtain, by the now familiar argument, that

A= 0, so Z is a block-diagonal matrix. This contradiction shows that d,, = 0.
From d,, =d,, = 0 and (E.34), we obtain also that

byyci3 = 0. (E.37)
Let us prove that for
d +c; #0
the equations
apxd;; = byses +1 (E.38)
and

¢y =6, =0 (E.39)
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hold. From Equations (E.23c), (E.24¢), using b, =0 and (E.37), we obtain

~172 2
Aoa Y diz tycis
0 <apdy; —bzey; = ajd;; — byl = 1.2 2 ~ - = L.
Y diz +yeis + B + ady

This gives (E.38), (E.39). From (E.39) and from d,, =0, d,, = 0, we obtain,
using (E.23a)—(E.23b) and (E.24a)-(E.24b),

Let us show that d,; = 0. If not, then from (E.38) we see that both a,; and
c;; cannot vanish simultaneously. From a, =a,, +va;;=0, ¢, =c;, +
vcy; = 0 we obtain, as above, that v is a rational number, v =p /q. If v #0,
then ¢>2, a,=—mp, a;;=mgq, ¢, =—np, c;;=nq. Equation (E.38)
reads

q(md;; —nb,3) =1

with ¢ =2, so necessarily v =0. Then we have a,, =0, ¢;, =0, and from
a, =a, + pa;;=0, ¢, =cy+ wnc;;=0it follows that w is a rational num-
ber, u=p/q+0 (otherwise the Z-matrix is block diagonal), g > 2, so
a,, = —mp, a;; =mq, ¢;; = —np, ¢;; =np, and (E.38) gives a contradiction.
We have proved that for a non-block-diagonal matrix Z the equations
(E.22)—(E.24¢c) imply d,;, =d,, =d; = 0.

Let us show that ¢;; = 0. Otherwme from (E.3) it follows that b,, = 0, and
from (E.37) we obtain b, =0. Hence b12 = 0. Since also d12 =0, from
(E.24a)—(E.24b) we conclude that ¢, = ¢,, = 0. From (E.38) we have also

bic; = —1.
SO
b= =+1, c; = +1.

Then ¢,, = ¢}, + vcy; = 0 implies

Wl

|C12| =[] <
Hence ¢, = v =0. Then from ¢,; = ¢,; + pc,; = 0 we obtain
|C11| = |M| < %

Hence c¢;; = w=0. This is impossible for a non-block-diagonal matrix Z.
Therefore, ¢;; =0.
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Let us prove that ¢,, = ¢;, = 0. Otherwise from (E.35) we obtain
bpeyp = —1,
or
b, = +1, ¢, = F1.

From (E.33) we have b,, = 0. Then from (E.24a) it follows that ¢, + Ac,, =
11 = 0. This gives

le,l = A < 3.

Hence ¢;;=A=0. Now from di;=¢,;,=0 and from (E.24c) we obtain
by —vby,=b,=0.S0

byl = Ivl < 3.

Hence b,; = v = 0. Again we obtain a contradiction. This proves that c¢,, = 0.
The final step: to prove that ¢,; = 0. If ¢;; # 0, then from (E.29) we obtain

bycyy = —1,

b, = =+1, ¢y = +1.

From cf = ¢, =0 and (E.24b) we infer b, — Ab,; = by,=0,|byl=Ar< 1,
s0 by, = A=0. From (E 24c) and c13 =d,, = 0 we obtain in similar way that
—uby + b13 =b , Ibsl=pn<3. So b;=p=0. This contradiction

13
shows that ¢, O

We have proved that for a non-block-diagonal matrix Z in the fundamen-
tal region (C.6a)—(C.6e) Equations (E.22)—(E.24c) imply ¢,, = ¢, = ¢35 =d;
=d,, = d,; = 0. But this contradicts (E.22). Theorem 2 is proved.

Appendix F. Summation formulae for theta-functions of three variables

Let Z be a 3 X3 real symmetric matrix in the fundamental region (1.17), and
let

= 0(¢17¢2a¢3lz)

be the corresponding theta-function. In this section we obtain efficient
formulae for summation of the theta-series in different parts of the funda-
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mental region. Note that even though the sum of the theta-series is a
real-valued function (for real arguments ¢,, ¢,, @), our formulae often are
written in complex form.

We use the Jacobi representation (E.3a)—(E.3d) for the period matrix Z.
Let us rewrite the theta-series in the form

1
0 = Yexp| — ymZm’ +im¢" |,

where the summation is taken over all three-component vectors of integers,
m=(m,,m,,m,); here ¢ =(¢,, d,, ¢;). Using (E.3a), we obtain

— %mZmT + im¢pT

= — %mSPSTmT + im¢pT

1
— — SPiT + i

where we have put

In the coordinate form these read
(n%l,n%z,n%) = (m+myA+myu,m, +vmy,my) (F.2a)

(‘131"132#1';3) = (¢1=_/\¢1+¢2:(_M+/\V)¢1_ V¢2+¢3)- (F.2b)



The Kadomtsev-Petviashvili Equation 187

Using (F.1a)—(F.1c) and (F.2a)—(F.2b) we can rewrite the theta-series in the
nested form

1 LA
0 = Zexp[— 5 ym3 +im;d;

my

1 A
'ZGXP[_ jB(mz + vm3)2+ i(m, + Vm3)¢z]

-Zexp[—%a(ml+m2)\+m3/u,)2+i(m1+mz)\—l-m“u)d;l}. (F.3)

my

This formula gives an efficient way to compute 0 if «, 8,y are all large.

If some of {«, B,y} are small, then one or more of the sums in (F.3)
converge slowly. We can improve convergence by applying an appropriate
Siegel modular transform (B.4), (B.6a)—(B.6f). We need to do this only for
three particular modular transforms; for these we derive the corresponding
transformation laws of 6 directly, using the Poisson sum formula:

1/2
Z e—m2(0/2)+imx — (27‘7-7) Z e—(ZTrZ/O')(n_x/qu)z (F4)
—o<m<o® —o<n<®

This holds for Re o > 0 [25].
First we apply (F.4) to the m,-sum in (F.3). After regrouping, this gives

~ 2
2m\/? 272 o
0= (%) ZCXP[_T(”I_E)

ny

Y ex [— %m% +im3(<f>3 +2mn( p— /\V))]

. Zexp[— g(m2 + vm3)2+ i(m,+ Vm3)(d;2 +27Tn1/\)]. (F.5)

This is an efficient way to compute 6 if « is small but 8 and vy is large.
Next, applying (F.4) to the m,-sum in (F.5) gives

A 2 22
2o 22 272
- el el o 4

2
~Zexp[—y%+im3($3+2ﬂ-nl(,u,— /\v)+27-rvn2)}. (F.6)

mgy

This works well if «, 8 are small and vy is large.
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Finally, applying (F.4) to the m;-sum in (F.6) yields the fourth representa-
tion of the theta-series:

(277_)3/2 ) R
g = LY ot/ aXm=di /20 Y g @t/ BXns = Any = by /2m)

vaBy n,

% Ze_(zwz/7)(n3+n1(M_AV)+n2V+(1;3/277)2. (F7)

n3

This choice is computationally efficient if «, 8,y are all small.

The four representations of 6, given in (F.3), (F.5), (F.6), (F.7), each
converge quickly in a particular region of parameter space, as stated above.
In fact, these four choices cover the entire range of parameters allowed.
Combinations not covered above (e.g., 8 small with «,y large) are excluded
by (E.6).

When substituted appropriately into the KP equation, an indecomposable
theta-function of three variables generates a three-phase, quasiperiodic
solution of the KP equation, with each variable corresponding to one phase.
Each of these solutions can be viewed as an exact nonlinear superposition of
three cnoidal waves. These solutions are inherently unsteady, in every
coordinate system obtained by a Galilean-type shift (1.14a).

The four limiting situations discussed above also can be interpreted in
terms of the underlying cnoidal waves.

(1) If a,B,y are all large, then each of the three cnoidal waves has
small amplitude; i.e., they are nearly sinusoidal, and their interaction is
weak.

(ii) If « is small with B,y large, then one of the three cnoidal waves can
be represented as a periodic train of widely separated, nearly solitary waves,
while the other two cnoidal waves are of small amplitude and are nearly
sinusoidal.

(iii) Parameters « and B small, with y large, corresponds to two trains of
nearly solitary waves, interacting with one nearly sinusoidal wave train.

(iv) If a, B,y are all small, then the KP solution represents the nonlinear
interaction of three trains of nearly solitary waves.

Appendix G. Dispersion relations for the multiphase solutions of KP

We study the dispersion relations for the theta-functional solutions of KP.
By definition, these are the constraints imposed by the KP equation on the
parameters ky,...,ky,l,..., v, @,..., 0y, Z=(z;;) of a theta-functional
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solution to KP of the form
u(x,y,t) = 202log 0(k,x +1,y + ot + by,
kyx+1lyy+ oyT + oyl Z). (G.1)
To formulate these dispersion relations explicitly we introduce theta-func-

tions with characteristics corresponding to the doubled period matrix Z and
doubled argument ¢:

é[ml,...,mN](d>|Z)
=y exp[— Zzij(ki+%)(kj+%)+2i2(kj+%)¢j}
(G.2)

for any integers m,,...,m, taking values 0 or 1. The whole vector [m]=
[m,,...,my] is called the characteristic of the modified theta-function. The
function é(¢|Z) is again an even entire function of ¢ with certain condi-
tions of periodicity and quasiperiodicity [16]. The values at ¢ =0 of the
function (G.2) are called theta-constants. They depend only on Z and on the
characteristic [m]. We suppress the arguments ¢ =0 and Z in the notations
for theta-constants, keeping only their dependence on the characteristic.
Values at ¢ =0 of the derivatives (necessarily of even order) of these
functions we also call theta-constants and denote them as

bylmy,....my] =[] my,...my|(612) /ooty _ o (G3)
Bl mys...omy] = [00]my,..,my1($1Z) /9, od; 9, a¢l]¢:0_ (G.4)

For computation of the theta-constants for a matrix Z in the fundamental
region, we use the techniques of Appendix F. We introduce also certain
polynomials of k=(k,,...,ky), I=,....1\), o=(w,...,wy) with the
theta-constants as the coefficients

m] = Y kk;ki k0 m] (G.5)
9,0,0[m] == L k;w.0,[m] (G.6)

(9120 le i u (G.7)
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PROPOSITION 1. The function (1.7), (1.8) satisfies the KP equation for any
phase shift ¢, iff the parameters k,l, » and the period matrix Z satisfy the
following system of 2N equations

A

at0[m] + (3,0, +302)8[m] + d6[m] = 0. (G.8)

The characteristics [m]=[m,,...,my], m,=0 or 1 number the equations. An
auxiliary unknown d is to be eliminated from Equations (G.8).

Proof of this proposition can be obtained by direct substitution of the
ansatz (1.7) to KP using the addition theorem for the theta-functions [11,
26]; cf. [27].

When solving the system (G.8), it is important to keep in mind its
invariance with respect to transformation of the form

k — bk
[ — b%l + ak

112
© = bl —6abl — 375k (G.9)
d — b*d
Z — 7.

This is a manifestation of invariance of KP with respect to the transforma-
tions (1.4).

Example 1: For N =1 eliminating d we obtain the dispersion relation in
the form

wk +31% = k'g(z) (G.10)

(the period matrix Z here is just a positive number z), where

(G.11)

This is the dispersion relation of the traveling waves (1.3). Of course, when
z — + o this equation goes to wk + 3% = k*.

Example 2: For N =2 eliminating d from the system (G.8) one obtains
three independent equations for the period matrix

Z = (z“ Z”). (G.12)
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These can be used to determine the entries {z,,z,,2,,} of the period
matrix for a given set of wavenumbers and frequencies. However, it is
simpler computationally to start from a given period matrix Z and to solve
the dispersion relations (G.8) for {k, /, »}, although not uniquely. In this way,
a generic 2 X2 period matrix Z generates a family of two-phase solutions of
the KP equation. If the period matrix is real, then the KP solutions so
obtained are real valued and smooth. For 2 X2 period matrices the generic-
ity condition, which assures the consistency of the dispersion relations, is
that the period matrix Z cannot be transformed into a diagonal matrix with
any transformation of the form (B.4) [11]. In other words, Z must be
indecomposable; if Z lies in the fundamental domain, then it must be
nondiagonal [19]. The first computations of two-phase solutions of the KP
equation were effected in this way in [4].

As discussed in Section 2, two-phase solutions that are genuinely two
dimensional are distinguished among all multiphase solutions because they
are necessarily stationary; i.e., time-independent in some Galilean coordi-
nate system. KP solutions that are genuinely two dimensional and have
nontrivial time dependence must have at least three phases.

Analysis of the dispersion relations for three-phase solutions is more
complicated. We sometimes need to use the algebraic-geometrical construc-
tions of Appendix I to prove, say, that the dispersion relations are compati-
ble with each other. Our proofs in Appendix H are more sketchy, but more
details can be found in [11, 18, 23].

Appendix H. On computation of three-phase solutions: Solving the
dispersion relations

We consider now the dispersion relations (G.8) for the case N =3. They
have the explicit form

(wk, +312)0,,[m] + (0k, + 0,k +61,1,)0,,[m] + -
+( w3k +313)033[m] + d6[m] + 840[m] = 0, (H.1)

where the characteristic [m] takes one of the eight values [0,0,0],[1,0,0],...,
[0,1,1],[1,1,1]. (Recall that the theta-constants are functions of the period
matrix.) We describe first all complex solutions of the system. For a given
matrix Z and a given vector k we can consider (H.1) as a linear system of
eight equations with seven unknowns

ok, + 31}, 0k, + 0,k +6l,L,,..., 03k, +313,d.



192 B. A. Dubrovin et al.

This suggests that the vector k cannot be arbitrary: It must satisfy the
compatibility condition

det(0,,[m],0,,[m],....05[m],6[m],9td[m]) = 0.  (H2)

(The characteristic [m] numbers the eight rows of this square matrix.) This
gives a quartic homogeneous equation for the vector k = (k, k,, k).

LEMMA 5. For an arbitrary indecomposable period matrix Z the quartic
equation (H.2) has a family of solutions k =(k,,k,,k;) depending on one
complex parameter. The 8 X7 matrix of theta-constants

A

(8ulm].0[m],.... 65 m],8[m]) (H.3)

for an indecomposable matrix Z has rank 7.

The second statement of this lemma was proved in [11]. The main idea in
the proof of the first statement comes from the construction of Appendix L.
According to this algebraic-geometrical construction, the formulae (I.1) and
(I1.6)—(1.9) determine a solution of the system (H.1) for arbitrary Riemann
surface R, arbitrary point P, € R and arbitrary complex local coordinate z
on R near the point P,. Another important point in the proof is the
following algebraic-geometrical statement [28]: Any indecomposable 3 <3
period matrix Z is a matrix of periods of holomorphic differentials on a
Riemann surface of genus 3. The complex parameter determining the
solutions k of the quartic equation (H.2) is the marked point P, of the
corresponding Riemann surface. It is worth noting that for a generic period
matrix the quartic equation (H.2) determines a realization of the corre-
sponding Riemann surface on the complex projective plane consisting of all
nonzero vectors k = (k,, k,,k;) considered up to multiplication by a nonzero
complex number A. For particular 3 X 3 matrices the quartic (H.2) becomes a
perfect square

A A A A A 2
det(0y,[m],012[m]..... 05 [m],0[m], 5f6[m]) = [R(ki. ks, k5)]" (H4)
of a homogeneous quadratic polynomial R(k,k,,k;). Such period matrices
form a 10-dimensional surface in the 12-dimensional space of all (complex)
period matrices. Any such indecomposable matrix Z consists of periods of
holomorphic differentials on a hyperelliptic Riemann surface of genus 3

wr=z"+az°+ +a,.

Because of this we call Z satisfying (H.4) a hyperelliptic period matrix.
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For a given indecomposable Z, let [m'],...,[m’] be characteristics such
that the 7 X7 matrix

911[’”1] é33[’"1] é[’”l]
e (H.5)
olm’] o by[m’] O[]

is not degenerate. We denote by (a'/,a, ), m €{m',...,m’} the entries of the

m>~m

inverse matrix (they are functions of Z)

11 11
a, a,,
12 12
a,n a,
.. (H.6)
33 33
a, a7
a, a,

Polynomials Q,(k) and P,(k) of k of degrees 4 and 6, respectively, are
defined by

Qij(k) = Z aﬁj; (?,fé[m], (H.7)

Pij(k) = %[kiszj(k) - kikaij(k) + kaQii(k)] . (H8)

The system (H.1) can be rewritten in the form

kil =kl = JP(k), i<] (H.9)
(k) =312
w; = Lull) =3 k) : (H.10)

L

for some choice of the signs of the square roots.
LEMMA 6. (i) For any nonzero solution k of the quartic equation (H.2), the
identity
ke Pos(k) = kyy/Ps(k) + kyy/Ppy(k) =0 (H.11)

is valid for some choice of signs of the radicals. For this choice of signs the
vectors  and o can be found from Equations (H.9), (H.10) uniquely within the
ambiguity (1.20).
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(ii) If Z is a hyperelliptic period matrix then the quartic equation (H.2) is
compatible with the equations

Pl2(k) = P13(k) = st(k) =0. (H.12)

For any common solution of (H.2) and (H.12), [ =(0,0,0), w,=Q,(k)/k;
satisfy (H.1). Then (G.1) gives a solution of the KdV equation.

Proof of Lemma 6 can be found in [11].

This statement completes the construction of (complex-valued) three-
phase solutions of KP for any indecomposable period matrix Z.

We now explain the statements necessary to obtain all smooth, real-val-
ued KP solutions that can be expressed in terms of Riemann theta-functions
of three variables.

PROPOSITION 2. (i) Let Z be a real symmetric positive-definite indecompos-
able 3X3 matrix. Then the quartic equation (H.2) has four one-parameter
families of nonzero real-valued solutions k = (k,,k,,k;) considered as curves
on the real projective plane. For any such real solution k the polynomials P; (k)
take real positive values. So the real vectors | and o can be found uniquely
(within the ambiguity (1.20)) from Equations (H.9), (H.10).

(i) If Z is a real hyperelliptic period matrix then the system (H.2), (H.12)
has eight (up to rescaling) real nonzero solutions k. For any of them (G.1)
reduces to a solution of KdV'.

(iii) Two three-phase real-valued smooth solutions of KP constructed from
real period matrices Z and Z' and two real vectors k and k' respectively
satisfying (H.2) coincide for arbitrary real phase shift iff the matrices Z and Z'
are arithmetically equivalent

7' = AzZA" (H.13)
and the vectors are related by the equation

k' = kA”. (H.14)
Proof of Proposition 2 is given at the end of Appendix I.

Appendix I. Algebraic-geometrical construction of multiphase
solutions of KP

We proceed here, following [9, 10], to the general theory of the theta-func-
tional solutions to KP. We describe first more general complex meromorphic
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solutions of the form

u(x,y,t) = 2dog 0(kx +1,y + wt + g5

kyx +1lyy+ oyt + ¢yl Z) + c, (I.1)

These will satisfy KP for those x,y,t when 6(kx + Iy + ot + ¢,) # 0. It is
convenient to parametrize these solutions not by the wavenumbers and
frequencies but by a collection of algebraic-geometrical data that we de-
scribe now.

The main part of our collection of parameters is a compact connected
Riemann surface R of genus N > 0. Topologically R looks like a sphere with
N handles. However, we need to consider R as a one-dimensional complex
variety. Then for a given genus N > (0 we obtain many biholomorphically
inequivalent Riemann surfaces. They form a two-dimensional family for
N=1 and a (6N —6)-dimensional family for N >1. This is a part of our
parameters, and this part determines the period matrix of the theta-func-
tional multiphase solution.

We also need to fix a point P, of the Riemann surface R (this adds two
more (real) parameters) and a complex local coordinate z near the point P,
such that z(P,) = 0. Change of the local coordinate

zw= 2z = f(z2) (1.2)

for a holomorphic function f(z) satisfying f(0)=0 does not affect the
solution u(x, y,t) to be constructed if

f(z) = z+ 0(z%). (L.3)

The equivalency class of the local coordinate z with respect to transforma-
tions (I.2), (I.3) adds six more parameters to our list. Krichever’s construc-
tion gives thus a (6 N + 2)-dimensional family of solutions of KP depending
also on N arbitrary phase shifts. Vanishing of the (complex) mean value
reduces the number of parameters to 6 N. We recall that, in general, these
solutions are complex functions with poles; requiring reality and smoothness
finally reduces Krichever’s family of solutions to a 3N-dimensional one (see
below).

To represent Krichever’s solutions by the theta-functional formulae we
need to fix additional data on the Riemann surface R: a symplectic basis
of cycles (i.e., classes of closed oriented loops in the homology group
H(R;2)) ay,...,ay,b,,...,by. By definition, the intersection numbers of
these cycles must have the canonical form

a-a;, =b,-b, =0, a-b, =6, (I.4)
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(the Kronecker delta). Before writing the formula down we want to empha-
size that the KP solution does not depend on the choice of the basis on R
(there are many of them) but the theta-functional representation of the
solution does depend on this choice of basis.

We proceed now to the formulae. A basis of cycles a;,b; uniquely
determines a basis (),,...,{), of holomorphic differentials on R normalized
by the conditions

b0 =3, (L5)

J J°
73

The period matrix Z =(z,;) of the surface R corresponding to the symplec-
tic basis a;,b; has the form

Zk,:__¢g, k,j=1,...,N. (1.6)

This matrix is symmetric and its real part is positive definite [29]. This is just
the period matrix of the theta-functional solution we are constructing.
Another choice of the basis on R gives an equivalent period matrix Z', i.e.,
related to Z by a transformation of the form (B.4). We recall that the
solution of KP does not depend on the choice of basis.

We now give the formulae for the wavenumbers k; and /; and frequencies
w;. This is the place where the marked point P, and the local complex
coordinate z enter into the game.

Let us represent the basic holomorphic differentials in the form

Q, = ¢(2)dz, j=1,..,N, (L.7)

where the functions ¢,(z),..., ¢y(z) are holomorphic near z = 0. The first
coefficients of the expansions of these functions near z =0 are just the
wavenumbers and frequencies (up to some elementary factors)

o(z) = i(k;+lz—Fwz2+0(2%)), j=1,..,N. (L8

Observe that the vectors {k,/, w} are linearly dependent iff there exists a
meromorphic function on R with a single pole at P, of at most order 3 [28].
In particular, for an arbitrary Riemann surface of genus 3 and for a generic
point P, (i.e., for a non-Weierstrass point), such a function does not exist
[28]. Therefore the vectors {k,/, w} for a generic three-phase solution of KP
are linearly independent. (This justifies a claim made in the proof of
Theorem 4.)
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We explain now, following [18], how to specify smooth real solutions of
KP among all the above theta-functional solutions. First, R must be a real
Riemann surface. By definition the Riemann surface R is called real if it
admits an antiholomorphic involution o: R—> R, do /dz =0 o? = identity.
Existence of such an involution specifies a (3N —3)-dimensional subfamily
(one dimensional for N = 1) among all the Riemann surfaces. The involution
o on R will be a part of the data determining a real smooth solution. We
also need to impose some topological constraints onto the pair (R, o). To do
this we consider the set of fixed points of the involution o on R. They form
some number of ovals (closed smooth curves) that cannot be greater than
N +1. Our topological restriction on the pair (R, o) requires the number of
real ovals of o to be exactly equal to N + 1. In this case the pair (R, o) is
called real Riemann surface of maximal type.

For example, for genus 1, any Riemann surface R can be represented by
an algebraic equation of the form

w? =z 4+ az’ + bz + c. (1.9)

The complex numbers a, b, c are parameters of the Riemann surface, subject
to one restriction: The roots z,, z,, z; of the right-hand side of (I.9) must be
distinct. The Riemann surface R will be real if all the numbers a, b, c are
real. The antiholomorphic involution then has the form

o(z,w) = (2,W), (1.10)

where the bar indicates complex conjugation. The Riemann surface corre-
sponding to (1.9) is of maximal type if all the roots z,,z,,z; are real
Ordering them as z, < z, < z; we obtain the fixed ovals of the involution o
as the closed contours laying on R over the segments [z, z,] and [ z;,%]. We
bring to the attention of the reader that there is another real structure o’
on the same Riemann surface

o' (z,w) = (2, — ). (L11)

Generically this is not equivalent to the real structure o.

The last restriction providing reality and smoothness of the theta-func-
tional solution requires the marked point P, to be fixed with respect to the
involution o

o(P,) = P, (1.12)

(i.e., P, belongs to one of the ovals) and the complex local coordinate z
must take real values on this oval. The latter can be reformulated in the
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form

2(a(P)) = z(P) (1.13)

for any P close to P,. The restriction leaves only four real parameters
determining the choice of P, on R and of the class of equivalence of the
local coordinate z. As shown in [18], all these conditions are necessary and
sufficient for reality and smoothness of the solution. We obtain thus a
(3N + 1)-dimensional family of real smooth theta-functional solutions of KP
(depending also on N arbitrary real phase shifts). Vanishing of the mean
value of u reduces this to a 3 N-dimensional subfamily.

We can represent these real smooth solutions by real theta-functions, i.e.,
by theta-functions with all real arguments and with a real period matrix. To
do this we adjust properly the symplectic basis a;,b; on R. Let us denote the
ovalsof o by I'},...,I'y,,

olr,=id,  k=1,.,N+1. (1.14)

One can take any N of the ovals I ,...,I; with an appropriate orientation
to construct basic a-cycles

a,=1,,...,ay =T, . (1.15)

These cycles are invariant with respect to o,

o(a;) =a;, j=1,...,N. (1.16)
The a-cycles can be completed to a symplectic basis by appropriate b-cycles
b,,...,by being anti-invariant with respect to o

o(b;) = —b, j=1,...,N. (1.17)

Then the entries of the period matrix Z, the wavenumbers kj,lj, and the
frequencies w; will be real numbers. The formula (G.1) in this case gives a
real-valued smooth solution for arbitrary real-valued phase shifts ¢,,,...,

bon-

More generally, one can take an integer linear combination of the cycles
Apyeeerly = dp,...,dy, (1.18)
where

(ay,...,ay) = (d),...,d\) A (1.19)
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for an N X N matrix A4 with integer entries and with determinant equal to
£ 1. Particularly, another choice of N ovals I7,...,I7 as the a'-cycles gives

such a transformation since in the homologies of the Riemann surface the
equation

holds true. As above, we complete this basis to a symplectic basis on R by
some o-anti-invariant b’-cycles. We call any such a basis a},...,d%,b},..., by
on a real Riemann surface R of the maximal type compatible with the real
structure o and R. For any such a compatible basis we still obtain a real
symmetric positive-definite period matrix Z'. It is related to the period
matrix Z by the transformation

Z' = AZA", A € GL(N.Z). (1.20)

As explained above, this is a particular class of Siegel modular transforma-
tions (recall that the two matrices Z and Z' are called arithmetically
equivalent).

Summarizing the discussion of this section we formulate the following
theorem, which was proved in [18].

PROPOSITION 3. For any real Riemann surface (R, o) of genus N of the
maximal type with a marked point P, satisfying (1.12) and a complex coordinate
z near P, satisfying (1.13) and for any symplectic basis on R compatible with the
real structure o, (1.1) provides a real-valued smooth solution of KP for arbitrary
real phase shifts. The solution does not depend on the choice of the compatible
basis of cycles. Any real-valued theta-functional solutions, smooth for arbitrary
real phase shifts, can be obtained by this construction.

Proof of Proposition 2 (from Appendix H): Let (R, o) be any nonhyperel-
liptic Riemann surface of genus three of maximal type (i.e., with four real
ovals of o). We choose first an arbitrary symplectic basis (a),b;) on R
compatible with the real structure o. Then the period matrix Z’ computed
by (1.6) is a real-valued, symmetric, positive-definite matrix. It is equivalent
under (1.20, with N =3) to a real-valued, symmetric matrix Z in the
fundamental region, which is defined by (1.17). We introduce a new symplec-

tic basis (a;,b,) on R:

(alaaz’a3) = (all’a,zaa%)A’

(by,by,b3) = A'(by, Dy, b5). (L.21)
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This basis is still compatible with the real structure o, due to the reality of
A. From (1.6), periods of holomorphic differentials on R with respect to the
basis (a;,b;) coincide with the elements of Z.

Next we show that for this matrix, Z, the quartic equation in (H.2) has
four one-parameter families of nonzero real-valued solutions, considering
each as a smooth closed curve on the real projective plane. First, let P, be
any fixed point of the involution o. Then the numbers {k; = k;,(P)), [, =
lj(PO), w; = wj(PO)}, defined by (I.8), are real for j=1,2,3. They satisfy the
system (H.2), in which the theta-functions are computed from the matrix Z,
because u in (I.1) solves KP for arbitrary phase shifts, ¢,;. Now choose a
local coordinate, z, near P, satisfying (I.13). Changes of z transform the
vectors (k, [, ) according to (G.9). We obtain in this way a well-defined map

Py = {ki(Py) ko (Py) i ks(Py)) (1.22)

from any of the real ovals (I',,I',,I';,T,) to the real projective plane.
Because R is not a hyperelliptic curve, this map is a smooth embedding.
(This is also true for complex points P, € R, considering (I.21) as a map to
the complex projective plane.) Thus, the set of real-valued solutions of the
quartic equation (H.2) contain at least four components, corresponding to
the four real ovals on R. It is easy to see that (H.2) has no other real-valued
solutions, using again that (I.22) is a smooth embedding. Then due to the
uniqueness of solutions of (H.9), (H.10), for any real-valued choice of
{k\(Py), k,(Py), ki(Py)}, we obtain real-valued solutions {k;(Py),[,(P,),
wj(PO)} for the system (H.1).

We remark that for a real-valued hyperelliptic surface R of maximal type
(i.e., with eight real branch points), the map (I.22) is a degree 2 covering of
R onto a smooth of rational curve on the real projective plane. Thus in the
hyperelliptic case, the real solutions of the quartic equation (H.2) form four
smooth curvilinear segments on the real projective plane (k,:k,:k;). The
eight endpoints of these segments are the images of the branchpoints of R.
If (k,:k,:k;) is one of these endpoints, then (G.1) provides a solution of
KdV.

Now let us deform the period matrix, keeping it within the fundamental
region. Denote by Z, the deformed matrix, and by Z,, the original matrix. By
definition, Z, is the period matrix of the chosen Riemann matrix (R, o), and
Z, is indecomposable. We may assume that during the deformation, Z,
remains indecomposable because the set of decomposable matrices has
codimension 2 in the full parameter space. As Z, deforms continuously, the
solution of the quartic equation (H.2) also deforms continuously in the
complex projective plane. But the map (1.22) is a smooth embedding, so this
solution corresponds to a continuously deforming, smooth Riemann surface,
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R,. This Riemann surface admits an antiholomorphic involution,

ok -k,

because the coefficients of (H.2) are real numbers. As s changes, the
topological type of the pair (R, o) depends continuously on s, so it remains
constant during the deformation. In other words, for any s the Riemann
surface R, with involution o is of maximal type. So for any s the real
solutions of the quartic equation form four components. Finally, the con-
nectedness of the fundamental region completes the proof of the first two
statements of Proposition 2 and the proof of Theorem 3.

To complete the description of all real-valued, smooth KP solutions
associated with a theta-function of three variables, we use Proposition 3
(above). According to this result, any three-phase, real-valued, smooth
solution of KP can be constructed from the formulae above, starting from a
real Riemann surface (R, o) of maximal type, a real point P,, and a
symplectic basis (a;,b;). Another choice of compatible symplectic basis
(a),b) gives the same solution of KP, while the period matrices Z and Z'
and the wave vectors k and k' are related by (H.13), (H.14). Indeed, a
change to a compatible symplectic basis can be described by (1.21), after
which the corresponding normalized holomorphic differentials are related by

(..., 0) = (Q,,...,0,) A",

the corresponding period matrices, Z,Z' by (H.13), and the wave vectors by
(H.14). This completes the proof of Proposition 2.
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