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Abstract

We study the general structure of formal perturbative solutions to the Hamil-

tonian perturbations of spatially one-dimensional systems of hyperbolic PDEs

vt + [φ(v)]x = 0. Under certain genericity assumptions it is proved that any

bi-Hamiltonian perturbation can be eliminated in all orders of the perturbative

expansion by a change of coordinates on the infinite jet space depending ratio-

nally on the derivatives. The main tool is in constructing the so-called quasi-

Miura transformation of jet coordinates, eliminating an arbitrary deformation of

a semisimple bi-Hamiltonian structure of hydrodynamic type (the quasi-triviality

theorem). We also describe, following [35], the invariants of such bi-Hamiltonian

structures with respect to the group of Miura-type transformations depending

polynomially on the derivatives. c© 2005 Wiley Periodicals, Inc.
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1 Introduction

Systems of evolutionary PDEs arising in many physical applications can be

written in the form

(1.1) wi
t + V i

j (w)w j
x + perturbation = 0, i = 1, . . . , n,

where the perturbation may depend on higher derivatives. The dependent variables

of the system

w = (w1(x, t), . . . , wn(x, t))

are functions of one spatial variable x and the time t ; summation over repeated

upper and lower indices will be assumed unless otherwise specified. V i
j (w) is a

matrix of functions having real distinct eigenvalues. Therefore system (1.1) can

be considered as a perturbation of the hyperbolic system of first-order quasi-linear

PDEs

(1.2) vi
t + V i

j (v)v j
x = 0, i = 1, . . . , n

(it will be convenient to denote differently the dependent variables of the unper-

turbed system (1.2) and the perturbed one (1.1)). Recall (see, e.g., [9]) that system

(1.2) is called hyperbolic if the eigenvalues of the matrix V i
j (v) are all real and all

n eigenvectors are linearly independent. In particular, strictly hyperbolic systems

are those for which the eigenvalues are all real and pairwise distinct. An important

particular class is the so-called systems of conservation laws

(1.3) vi
t + ∂xφ

i (v) = 0, i = 1, . . . , n,

where the dependent variables are chosen to be densities of conserved quantities,

and the functions φi (v) are the corresponding densities of fluxes (see, e.g., [9]

regarding the physical applications of such systems). The relationships between

solutions of the perturbed and unperturbed systems have been extensively studied

for the case of dissipative perturbations of spatially one-dimensional systems of

conservation laws (see, e.g., [6] and the references therein). Our strategic goal

is the study of Hamiltonian perturbations of hyperbolic PDEs. Although many

concrete examples of such perturbations have been studied (see, e.g., [45, 26, 19,

11, 34, 15, 32]), the general concepts and results are still missing.

Let us first explain how to recognize Hamiltonian systems among all systems

of conservation laws. Recall [9] that the system of conservation laws (1.3) is sym-

metrizable in the sense of Friedrichs and Lax, Godunov, if there exists a constant,

symmetric, positive definite matrix η = (ηi j ) such that the matrix

ηis

∂φs

∂v j

is symmetric,

(1.4) ηis

∂φs

∂v j
= ηjs

∂φs

∂vi
.
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In case the symmetry (1.4) holds true while the symmetric matrix η is only non-

degenerate but not necessarily positive definite, one obtains weakly symmetrizable

systems of conservation laws.

LEMMA 1.1 The system of conservation laws (1.3) is Hamiltonian if it is weakly

symmetrizable.

PROOF: Choosing the Poisson brackets in the constant form

{vi (x), v j (y)} = ηi jδ′(x − y), (ηi j ) = (ηi j )
−1,

and a local Hamiltonian

H =

∫
h(v(x))dx,

one obtains the Hamiltonian system in the form (1.3) with

φi (v) = ηis ∂h(v)

∂vs
.

Both sides of (1.4) coincide then with the Hessian of the Hamiltonian density h(v).

The lemma is proved. �

Recall that weakly symmetrizable systems of conservation laws enjoy the fol-

lowing important property: they possess two additional conservation laws, namely,

∂t p(v) + ∂xq(v) = 0, p =
1

2
ηi jv

iv j , q = vi ∂h

∂vi
− h(v),(1.5)

∂t h(v) + ∂x f (v) = 0, f (v) =
1

2
ηi j ∂h

∂vi

∂h

∂v j
,(1.6)

where h(v) is the Hamiltonian density in the formulae above. For symmetrizable

systems the function p(v) is nonnegative.

The class of Hamiltonian perturbations to be investigated will be written in the

form

wi
t + {wi (x), H} = wi

t + V i
j (w)w j

x +
∑
k≥1

εkU i
k(w; wx , . . . , w

(k+1))

= 0, i = 1, . . . , n,

(1.7)

where ε is the small parameter, and the U i
k(w; wx , . . . , w

(k+1)) are graded homo-

geneous polynomials1 in the jet variables

wx = (w1
x , . . . , w

n
x ), wxx = (w1

xx , . . . , w
n
xx), . . . ,

w(k+1) = (w1,k+1, . . . , wn,k+1),

1 A different class of perturbations for the particular case of the KdV equation was considered

by Y. Kodama [30]. In his theory the terms of the perturbative expansion are polynomials also in w

(here n = 1). The degree on the algebra of differential polynomials is defined by deg u(m) = m + 2,

m ≥ 0. Also, some nonlocal terms appear in Kodama’s perturbation theory. Further developments

of this method can be found in [31].
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with

(1.8) deg wi,m = m, i = 1, . . . , n, m > 0.

They arise, e.g., in the study of solutions slowly varying in the space-time direc-

tions [45].

In what follows, we will call a function that depends polynomially on the jet

variables wx , wxx , . . . , a differential polynomial, and call a differential polynomial

that is homogeneous with respect to the above gradation a homogeneous differential

polynomial.

The Hamiltonians are local functionals

H =

∫
[h[0](w) + ε h[1](w; wx) + ε2h[2](w; wx , wxx) + · · · ]dx,

deg h[k](w; wx , . . . , w
(k)) = k,

(1.9)

for some differential polynomials h[k](w; wx , . . . , w
(k)). The Poisson brackets are

assumed to be local in every order in ε; i.e., they are represented as follows:

(1.10) {wi (x), w j (y)} =
∑
m≥0

m+1∑
l=0

εm A
i j

m,l(w; wx , . . . , w
(m−l+1))δ(l)(x − y)

with coefficients being differential polynomials,

(1.11) deg A
i j

m,l(w; wx , . . . , w
(m−l+1)) = m − l + 1.

We also assume that the coefficients of these differential polynomials are smooth

functions on an n-dimensional ball w ∈ B ⊂ R
n . It is understood that the anti-

symmetry and the Jacobi identity for (1.10) hold true as identities for formal power

series in ε. It can be readily seen that, for an arbitrary local Hamiltonian of the

form (1.9), the evolutionary systems (1.7) have the needed form.

The leading term

(1.12) {wi (x), w j (y)}[0] := A
i j

0,1(w(x))δ′(x − y) + A
i j

0,0(w(x); wx(x))δ(x − y)

is itself a Poisson bracket (the so-called Poisson bracket of hydrodynamic type; see

[14]). We will always assume that

(1.13) det A
i j

0,1(w) �= 0

for all w ∈ B ⊂ R
n . Redenote the coefficients of {wi (x), w j (y)}[0] as follows:

(1.14) gi j (w) := A
i j

0,1(w), Q
i j

k (w)wk
x := A

i j

0,0(w; wx)

(see (1.11)). The coefficient (gi j (w)) can be considered as a symmetric nondegen-

erate bilinear form on the cotangent spaces. The inverse matrix defines a metric

(1.15) ds2 = gi j (w)dwi dw j , (gi j (w)) := (gi j (w))−1

(not necessarily positive definite). Recall [14] that (1.12)–(1.14) defines a Poisson

structure if and only if the metric is flat and Q
i j

k (w) = −gil(w)�
j

kl(w) where �
j

kl

are the Christoffel symbols of the Levi-Civita connection of the metric (1.15).
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Miura-type transformations are defined by

wi �→ w̃i = �i
0(w) +

∑
k≥1

εk�i
k(w; wx , . . . , w

(k)), i = 1, . . . , n,

deg �i
k(w; wx , . . . , w

(k)) = k, satisfying det

(
∂�i

0

∂w j

)
�= 0.

(1.16)

As usual, the coefficients �i
k(w; wx , . . . , w

(k)) are assumed to be differential poly-

nomials. It is easy to see that such transformations form a group. The group of

Miura-type transformations is a natural extension of the group of local diffeomor-

phisms that plays an important role in the geometrical study of hyperbolic systems

(see, e.g. [43]).

The class of the Hamiltonians (1.9), Poisson brackets (1.10), and the evolu-

tionary systems (1.7) is invariant with respect to Miura-type transformations. Two

Poisson brackets of the form (1.10) are called equivalent if they are related by a

Miura-type transformation.

An important result of [25] (see also [10, 16]) says that any Poisson bracket

of the form (1.10) can be locally reduced by Miura-type transformations to the

constant form

(1.17) {w̃i (x), w̃ j (y)} = ηi jδ′(x − y), ηi j = const.

We will denote the inverse matrix by the same symbol with lower indices

(1.18) (ηi j ) := (ηi j )−1.

Connection of the theory of Hamiltonian systems (1.7) to the theory of systems

of conservation laws is clear from the following statement:

LEMMA 1.2 By a change of dependent variables of the form (1.16) the Hamiltonian

system (1.7) can be recast into the form of a system of conservation laws

w̃i
t + ∂xψ

i (w̃; w̃x , . . . ; ε) = 0, i = 1, . . . , n,

ψ i (w̃; w̃x , . . . ; ε) =
∑
k≥0

εkψ i
k(w̃; w̃x , . . . , w̃

(k)),

deg ψ i
k(w̃; w̃x , . . . , w̃

(k)) = k.

(1.19)

The system of conservation laws (1.19) is Hamiltonian with respect to the Poisson

bracket (1.17) if and only if

(1.20) ψi := ηi jψ
j (w̃; w̃x , . . . ; ε)

satisfy

(1.21)
∂ψi

∂w̃ j,s
=

∑
t≥s

(−1)t

(
t

s

)
∂ t−s

x

∂ψj

∂w̃i,t

for any i, j = 1, . . . , n, s = 0, 1, . . . .
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In this paper we will investigate the structure of formal perturbative expansions

of the solutions to (1.7)

(1.22) wi (x, t; ε) = vi (x, t) + ε δ1v
i (x, t) + ε2δ2v

i (x, t) + · · · .

The leading term solves (1.2); the coefficients of the expansion δkv
i (x, t) are to be

determined from linear PDEs with coefficients depending on vi , δ1v
i , . . . , δk−1v

i

and their derivatives. Instead of developing this classical technique, we propose a

different approach that conceptually goes back to Poincaré’s treatment of pertur-

bative expansions in celestial mechanics. We will look for a transformation of the

form

(1.23) wi = vi +
∑
k≥1

εk�i
k(v; vx , . . . , v

(mk )), i = 1, . . . , n,

that maps any generic2 solution vi (x, t) of the unperturbed system (1.2) to a solu-

tion wi (x, t; ε) of the perturbed system. An important feature of such an approach

to the perturbation theory is locality: changing the functions v(x, t) for a given t

only within a small neighborhood of the given point x = x0 will keep unchanged

the values of w(x, t; ε) outside this neighborhood. We call (1.23) the reducing

transformation for the perturbed system (1.7).

Clearly, applying to (1.2) any transformation (1.23) polynomial in the deriva-

tives (in every order in ε; in that case mk = k) one obtains a perturbed system of

the form (1.7). This is the case of trivial perturbations.

It is clear that solutions of trivial Hamiltonian perturbations share many prop-

erties of solutions to the unperturbed hyperbolic PDEs (1.2). In particular, the

trivial perturbation cannot balance the nonlinear effects in the hyperbolic system

that typically cause gradient catastrophe of the solution.

DEFINITION 1.3 The system of PDEs (1.7) is called quasi-trivial if it is not triv-

ial but a reducing transformation (1.23) exists with functions �i
k(v; vx , . . . , v

(mk ))

depending rationally on the jet coordinates

wi,l, i = 1, . . . , n, 1 ≤ l ≤ mk,

deg �i
k(v; vx , . . . , v

(mk )) = k, k ≥ 1,

so that (1.7) is reduced to (1.2).

The first example of such a reducing transformation can be found in [4] (see

also [16]) for the KdV equation

(1.24) wt + w wx +
ε2

12
wxxx = 0

2 We will later be more specific in describing the range of applicability of the transformations

(1.23). Namely, it turns out that all our formal transformations (1.23) will be well-defined on the

class of monotone solutions (see the definition of monotone solutions after Corollary 1.10).
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(here n = 1):

(1.25) w = v +
ε2

24
∂2

x log vx + ε4∂2
x

(
v(4)

1152 v2
x

−
7 vxxvxxx

1920 v3
x

+
v3

xx

360 v4
x

)
+ O(ε6).

It is not an easy task to check cancellation of all the denominators even in this

example! Because of the denominators, the reducing deformation is defined only

on the monotone solutions.

One of the main results of our paper is in proving quasi-triviality of a large

class of Hamiltonian perturbations of hyperbolic systems of conservation laws.

The systems in question are bi-Hamiltonian systems of PDEs. That means that

they can be represented in the Hamiltonian form in two different ways:

(1.26) wi
t = {H1, w

i (x)}1 = {H2, w
i (x)}2, i = 1, . . . , n,

with two local Hamiltonians (see (1.9) above) and local compatible Poisson brack-

ets { · , · }1, { · , · }2 of the form (1.10). Compatibility means that any linear combi-

nation

a1{ · , · }1 + a2{ · , · }2

with arbitrary constant coefficients a1 and a2 must be again a Poisson bracket.

The study of bi-Hamiltonian structures was initiated by F. Magri [38] in his

analysis of the so-called Lenard scheme of constructing the KdV integrals. Dorf-

man and Gelfand [24] and also Fokas and Fuchssteiner [22] discovered the connec-

tions between the bi-Hamiltonian scheme and the theory of hereditary symmetries

of integrable equations. However, it is not easy to apply these beautiful and sim-

ple ideas to the study of general bi-Hamiltonian PDEs (see the discussion of the

problems encountered in [16]).

In this paper we will use a different approach, proposed in [16], to the study

of bi-Hamiltonian PDEs. It is based on the careful study of the transformation

properties of the bi-Hamiltonian structures under the transformations of the form

(1.23). Let us now proceed to the precise definitions and formulations of the results.

We will study bi-Hamiltonian structures defined by compatible pairs of local

Poisson brackets of the form (1.10)

{wi (x), w j (y)}a

= {wi (x), w j (y)}[0]
a

+
∑
m≥1

m+1∑
l=0

εm A
i j

m,l;a(w; wx , . . . , w
(m−l+1))δ(l)(x − y), a = 1, 2.

(1.27)

As in (1.10), the differential polynomials A
i j

m,l;1 and A
i j

m,l;2 are homogeneous of

degree m − l + 1, and their coefficients are smooth functions on an n-dimensional

ball w ∈ B ⊂ R
n . Equivalence of bi-Hamiltonian structures is defined with respect

to simultaneous Miura-type transformations.
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The leading terms of the bi-Hamiltonian structure also yield a bi-Hamiltonian

structure of the form

{wi (x), w j (y)}[0]
a = gi j

a (w(x))δ′(x − y) + Q
i j

a;k(w(x))wk
xδ(x − y),

det(gkl
a ) �= 0 for generic points w ∈ B, i, j = 1, . . . , n, a = 1, 2

(1.28)

(a bi-Hamiltonian structure of the hydrodynamic type). We additionally assume

that det(a1gkl
1 (w) + a2gkl

2 (w)) does not vanish identically for w ∈ B unless a1 =

a2 = 0.

DEFINITION 1.4 The bi-Hamiltonian structure (1.27) is called semisimple if the

characteristic polynomial det(g
i j

2 (w) − λg
i j

1 (w)) in λ has n pairwise distinct real3

roots λ1(w), . . . , λn(w) for any w ∈ B.

Equivalently, the linear operator U = (U i
j (w)) given by the ratio

(1.29) U i
j (w) = gik

2 (w)g1k j (w), (g1k j (w)) = (g
kj

1 (w))−1,

has pairwise distinct real eigenvalues for any w ∈ B.

The role of the semisimplicity assumption can be illustrated by the following:

LEMMA 1.5 Given a semisimple bi-Hamiltonian structure { · , · }
[0]
1,2 satisfying the

above conditions, denote by

λ = u1(w), . . . , un(w)

the roots of the characteristic equation

(1.30) det (g
i j

2 (w) − λ g
i j

1 (w)) = 0.

The functions u1(w), . . . , un(w) satisfy

det

(
∂ui (w)

∂w j

)
�= 0.

Using these functions as new local coordinates

(1.31) wi = qi (u1, . . . , un), i = 1, . . . , n, det

(
∂qi (u)

∂u j

)
�= 0,

reduces simultaneously the two flat metrics to the diagonal form

n∑
k,l=1

∂ui

∂wk

∂u j

∂wl
gkl

1 (w) = f i (u) δi j ,

n∑
k,l=1

∂ui

∂wk

∂u j

∂wl
gkl

2 (w) = gi (u) δi j = ui f i (u) δi j .

(1.32)

3 One can relax the requirement of reality of the roots working with complex manifolds. In that

case the coefficients must be analytic in w.
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The coefficients Q
i j

a;k in the coordinates (u1, . . . , un) read

n∑
k=1

Q
i j

1;kuk
x =

1

2
δi j∂x f i + Ai j ,

n∑
k=1

Q
i j

2;kuk
x =

1

2
δi j∂x gi + Bi j ,(1.33)

Ai j =
1

2

(
f i

f j
f

j

i u j
x −

f j

f i
f i

j ui
x

)
, Bi j =

1

2

(
ui f i

f j
f

j

i u j
x −

u j f j

f i
f i

j ui
x

)
(1.34)

where f i
k = ∂ f i/∂uk. The leading term of any bi-Hamiltonian system becomes

diagonal in the coordinates u1, . . . , un,

(1.35) ui
t + V i (u)ui

x + O(ε) = 0, i = 1, . . . , n.

Such coordinates are called the canonical coordinates of the semisimple bi-Hamil-

tonian structure. In what follows we will never use the convention of summation

over repeated indices when working with the canonical coordinates.

The canonical coordinates are defined up to a permutation. The functions

f1(u), . . . , fn(u) satisfy a complicated system of nonlinear differential equations.

The general solution to this system depends on n2 arbitrary functions of one vari-

able. Integrability of this system has recently been proved in [17, 40]. For conve-

nience, we give a brief account of these results, following [17], in the appendix.

The following statement gives a simple criterion to determine whether a Hamil-

tonian system of conservation laws is bi-Hamiltonian.

LEMMA 1.6 Let us consider a strictly hyperbolic system (1.2) Hamiltonian with

respect to the Poisson bracket { · , · }
[0]
1 . This system is bi-Hamiltonian with respect

to the semisimple Poisson pencil { · , · }
[0]
1,2 if and only if the coefficient matrix V =

(V i
j (w)) commutes with the matrix U = (U i

j (w)) of the form (1.29)

(1.36) [U, V ] = 0.

Due to the commutativity (1.36) the matrix V becomes diagonal in the canoni-

cal coordinates for the Poisson pencil:

(1.37)

n∑
k,l=1

∂ui

∂vk

∂vl

∂u j
V k

l (v) = V i (u)δi
j .

Observe that the canonical coordinates are Riemann invariants (see, e.g., [45])

for the leading term of the system of PDEs (1.35). The coefficients V i (u) in the

gas dynamics are called characteristic velocities [45]. In particular, the semisim-

plicity assumption implies hyperbolicity of the leading term of the bi-Hamiltonian

systems.

DEFINITION 1.7 ([16]) The bi-Hamiltonian structure (1.27) is said to be trivial if

it can be obtained from the leading term

(1.38) {vi (x), v j (y)}[0]
a = gi j

a (v(x))δ′(x−y)+Q
i j

a;k(v(x))vk
xδ(x−y), a = 1, 2,
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by a Miura-type transformation

wi = vi +
∑
k≥1

εk Fi
k (v; vx , . . . , v

(k)),

deg Fi
k (v; vx , . . . , v

(k)) = k, i = 1, . . . , n,

(1.39)

where the coefficients Fi
k (v; vx , . . . , v

(k)) are homogeneous differential polynomi-

als. It is called quasi-trivial if it is not trivial and there exists a transformation

(1.40) wi = vi +
∑
k≥1

εk Fi
k (v; vx , . . . , v

(mk ))

reducing (1.27) to (1.38) but the functions Fk depend rationally on the jet coordi-

nates vi,m , m ≥ 1, with

(1.41) deg Fk = k, k ≥ 1,

and mk are some positive integers. If such a transformation (1.39) or (1.40) exists,

it is called a reducing transformation of the bi-Hamiltonian structure (1.27).

A transformation of the form (1.40) is called a quasi-Miura transformation.

We are now in a position to formulate the main result of the present paper.

THEOREM 1.8 (Quasi-Triviality Theorem) For any semisimple bi-Hamiltonian

structure (1.27) there exists a reducing transformation of the form (1.40). The

coefficients Fi
k have the form

Fi
k (v; vx , . . . , v

(mk )) ∈ C∞(B)[vx , . . . , v
(mk )] [(u1

x u2
x . . . un

x)
−1],

mk ≤

[
3 k

2

]
.

(1.42)

Here ui = ui (v) are the canonical coordinates (see Lemma 1.5).

Using this theorem we achieve the goal of constructing the reducing transfor-

mation for a bi-Hamiltonian system (1.26), (1.9):

COROLLARY 1.9 The reducing transformation for the bi-Hamiltonian structure

(1.27) is also a reducing transformation for any bi-Hamiltonian system (1.26).

Another corollary says that the solution of any system of bi-Hamiltonian PDEs

of the above form can be reduced to solving linear PDEs. Let us first rewrite the

reducing transformation in the canonical coordinates

(1.43) ũi = ui +
∑
k≥1

εk Gi
k(u; ux , . . . , u(mk )), i = 1, . . . , n.

Let W i (u; ε), i = 1, . . . , n, be an arbitrary solution to the linear system

(1.44)
∂W i

∂u j
=

∂V i/∂u j

V i − V j
(W i − W j ), i �= j,
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in the class of formal power series in ε. In this system the functions V i (u) are

eigenvalues of the matrix V i
j (w); cf. (1.35). Let us assume that the system of

equations

(1.45) x = V i (u)t + W i (u; ε = 0), i = 1, . . . , n,

has a solution (x, t, u) = (x0, t0, u0) such that

(1.46) det

(
t
∂V i (u)

∂u j
+

∂W i (u; ε)

∂u j

)
t=t0, u=u0, ε=0

�= 0.

For (x, t) sufficiently close to (x0, t0), denote u(x, t) = (u1(x, t), . . . , un(x, t)) the

unique solution to the equations (1.45) such that

u(x0, t0) = u0.

Applying the transformation (1.43) to the vector function u(x, t), we obtain a vec-

tor function ũ(x, t; ε). Finally, the substitution

(1.47) qi (ũ(x, t; ε)) =: wi (x, t; ε), i = 1, 2, . . . ,

yields n functions w1(x, t; ε), . . . , wn(x, t; ε). Here the functions qi (u) are defined

as in (1.31).

COROLLARY 1.10 The functions (1.47) satisfy (1.26). Conversely, any solution to

(1.26) monotone at at x = x0, t = t0, can be obtained by this procedure.

By definition, the solution w(x, t; ε) is called monotone at x = x0 and t = t0 if

all the x-derivatives

∂x u1(w(x, t; ε)), . . . , ∂x un(w(x, t; ε))

do not vanish for x = x0, t = t0, ε = 0.

Finally, we can combine the quasi-triviality theorem with the main result of the

recent paper [35] in order to describe the complete set of invariants with respect to

the group of Miura-type transformations of bi-Hamiltonian structures of the above

form with the given leading term {wi (x), w j (y)}[0]
a .

Introduce the following combinations of the coefficients of εδ′′(x − y) and

ε2δ′′′(x − y) of the bi-Hamiltonian structure

Pi j
a (u) =

∂ui

∂wk

∂u j

∂wl
Akl

1,2;a(w), Qi j
a (u) =

∂ui

∂wk

∂u j

∂wl
Akl

2,3;a(w),

i, j = 1, . . . , n, a = 1, 2.

(1.48)

Define the functions

(1.49) ci (u) =
1

3( f i (u))2

(
Qii

2 −ui Qii
1 +

∑
k �=i

(Pki
2 − ui Pki

1 )2

f k(u)(uk − ui )

)
, i = 1, . . . , n.

The functions ci (u) are called central invariants of the bi-Hamiltonian structure

(1.27). The main result of [35] on the classification of infinitesimal deformations

of bi-Hamiltonian structures of hydrodynamic type can be reformulated as follows:
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COROLLARY 1.11 Each function ci (u) defined in (1.49) depends only on ui . In

addition, two semisimple bi-Hamiltonian structures (1.27) with the same leading

terms { · , · }[0]
a , a = 1, 2, are equivalent if and only if they have the same set of cen-

tral invariants ci (u
i ), i = 1, . . . , n. In particular, a polynomial in the derivatives-

reducing transformation exists if and only if all the central invariants vanish:

c1 = c2 = · · · = cn = 0.

The paper is organized as follows. In Section 2 we recall some basic notions

of the theory of Poisson structures for PDEs and prove Lemmas 1.2, 1.5, and 1.6.

In Section 3 and Section 4, we give the proofs of the quasi-triviality theorem and

Corollary 1.9. In Section 5 we reformulate the main result of [35] on the classi-

fication of infinitesimal deformations of a semisimple bi-Hamiltonian structure of

hydrodynamic type and prove Corollary 1.11. In the final section we give some

examples of bi-Hamiltonian structures of the class studied in this paper and formu-

late some open problems. Last, in the appendix we briefly present, following [17],

the theory of semisimple bi-Hamiltonian structures of hydrodynamic type.

2 Some Basic Notions about Poisson Structures for PDEs

An infinite-dimensional Poisson structure of the form (1.27) or (1.28) can be

represented, as in finite-dimensional Poisson geometry, by a local bivector on the

formal loop space of the manifold M . Recall that in our considerations the mani-

fold M will always be a n-dimensional ball B. In general, let w1, . . . , wn be a local

coordinate system of a chart of the manifold M . A local translation-invariant k-

vector [16] is a formal infinite sum of the form

(2.1) α =
∑ 1

k!
∂s1

x1
· · · ∂sk

xk
Ai1...ik

∂

∂wi1,s1(x1)
∧ · · · ∧

∂

∂wik ,sk (xk)
.

Here the coefficients A’s have the form

(2.2) Ai1···ik

=
∑

p2,...,pk≥0

Bi1···ik
p2···pk

(w(x1); wx(x1), . . . )δ
(p2)(x1 − x2) · · · δ(pk )(x1 − xk)

with only a finite number of nonzero terms in the summation; for a certain integer

N that depends on the indices i1, . . . , ik and p2, . . . , pk , the Bi1...ik
p2...pk

(w; wx , . . . )

are smooth functions on a domain in the jet space J N (M). The delta function and

its derivatives are defined formally by

(2.3)

∫
f (w(y); wy(y), wyy(y), . . . )δ(k)(x − y) dy

= ∂k
x f (w(x); wx(x), wxx(x), . . . ).

In this formula the operator of the total derivative ∂x is defined by

(2.4) ∂x f (w; wx , wxx , . . . ) =
∑

wi,s+1 ∂ f

∂wi,s
.
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Note the useful identity

(2.5) f (w(y); wy(y), wyy(y), . . . )δ(k)(x − y)

=

k∑
m=0

(
k

m

)
∂m

x f (w(x); wx(x), wxx(x), . . . ) δ(k−m)(x − y).

The distributions

(2.6) Ai1...ik = Ai1...ik (x1, . . . , xk; w(x1), . . . , w(xk), . . . )

are antisymmetric with respect to the simultaneous permutations ip, xp ↔ iq, xq .

They are called the components of the local k-vector α. Note that in the definition

of local k-vectors given in [16] it is required that the functions Bi1···ik
p2···pk

be differ-

ential polynomials. Here we drop this requirement for the convenience of our use

of these notations during our proof of the theorem. The space of all such local

k-vectors is still denoted by �k
loc as done in [16]. For k = 0 by definition �0

loc is

the space of local functionals of the form

(2.7) I =

∫
f (w,wx , . . . , w

(m)) dx .

The Schouten-Nijenhuis bracket is defined on the space of local multivectors

(2.8) [ · , · ] : �k
loc × �l

loc → �k+l−1
loc , k, l ≥ 0.

It generalizes the usual commutator of two local vector fields and possesses the

following properties:

[α, β] = (−1)kl[β, α],(2.9)

(−1)km[[α, β], γ ] + (−1)kl[[β, γ ], α] + (−1)lm[[γ, α], β] = 0,(2.10)

for any α ∈ �k
loc, β ∈ �l

loc, and γ ∈ �m
loc. For the definition of the Schouten-

Nijenhuis bracket, see [16] and references therein. Here we write down the formu-

lae, used below, for the bracket of a local bivector with a local functional and with

a local vector field.

Let a local vector field ξ and a local bivector � have the representation

ξ =
∑
s≥0

∂s
xξ

i (w(x); wx(x), . . . , w(mi ))
∂

∂wi,s(x)
,(2.11)

� =
1

2

∑
s,t≥0

∂s
x∂

t
y�

i j ∂

∂wi,s(x)
∧

∂

∂w j,t(y)
.(2.12)

Here we assume that

(2.13) � i j =
∑
k≥0

A
i j

k (w(x), wx(x), . . . , w(mk )(x)) δ(k)(x − y).
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Then the components of [�, I ] and of [�, ξ ] are given, respectively, by

[�, I ]i =
∑
k≥0

A
i j

k ∂k
x

δ I

δw j (x)
,(2.14)

[�, ξ ]i j =
∑
t≥0

(
∂ t

xξ
k(w(x); . . . )

∂� i j

∂wk,t(x)
−

∂ξ i (w(x); . . . )

∂wk,t(x)
∂ t

x�
k j(2.15)

−
∂ξ j (w(y); . . . )

∂wk,t(y)
∂ t

y�
ik

)
.

In the last formula it is understood that

∂ t
y�

i j =
∑
k≥0

(−1)t A
i j

k (w(x), wx(x), . . . , w(mk )(x)) δ(k+t)(x − y),

and identity (2.5) has been used in order to represent the resulting bivector in the

normalized form (2.13).

Let us denote by �1 and �2 the two bivectors that correspond to the bi-Hamil-

tonian structure (1.28); the components �
i j
a , a = 1, 2, are given by the right-hand

side of (1.28). The bi-Hamiltonian property is equivalent to the following identity,

which is valid for an arbitrary parameter λ:

(2.16) [�2 − λ �1,�2 − λ �1] = 0.

Denote by ∂1 and ∂2 the differentials associated with �1 and �2. By definition

(2.17) ∂a : �k
loc → �k+1

loc , ∂aα = [�a, α], ∀α ∈ �k
loc, a = 1, 2.

The bi-Hamiltonian property (2.16) can be recast in the form

(2.18) ∂2
1 = ∂2

2 = ∂1∂2 + ∂2∂1 = 0.

The important fact that we need to use below is the vanishing of the first and second

Poisson cohomologies

(2.19) H k(L(M),�a) = Ker ∂a

∣∣
�k

loc
/ Im ∂a

∣∣
�k−1

loc
, a = 1, 2, k = 1, 2.

This fact is proved in [25, 10, 16]. It readily implies, along with the results of [14],

the reducibility of any Poisson bracket of the form (1.10)–(1.13) to the constant

form (1.17).

Let us now give the following:

PROOF OF LEMMA 1.2: For the Poisson bracket written in the form (1.17), the

Hamiltonian system reads

w̃i
t = {H, w̃i (x)} = −ηi j∂x

δH

δw̃ j (x)
.

This represents the equations as a system of conservation laws w̃i
t + ψ i

x = 0 with

ψ i = ηi j δH

δw̃ j (x)
.
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The system of equations (1.21) is nothing but the spelling of the classical Helmholtz

criterion [27] for functions ψi to be representable in the form of variational deriva-

tives. �

We now pass to the theory of canonical coordinates.

PROOF OF LEMMA 1.5: From the results of [17, 40], it follows that there ex-

ists a system of local coordinates û1, . . . , ûn such that both of the metrics be-

come diagonal and g
i j

1 = δi j h
i (û), g

i j

2 = δi jλi (û
i )hi (û). Since by our assump-

tion det(a1gkl
1 (w) + a2gkl

2 (w)) does not vanish identically for w ∈ M unless

a1 = a2 = 0, we can choose u1 = λ1(û
1), . . . , un = λn(û

n) as a system of

local coordinates that are just the canonical coordinates. �

We now proceed to the next proof:

PROOF OF LEMMA 1.6: In the canonical coordinates, a bi-Hamiltonian system

ui
t = {H1, ui (x)}

[0]
1 = {H2, ui (x)}

[0]
2 , Ha =

∫
h[0]

a (u)dx, a = 1, 2,

has the expression

(2.20) ui
t = −

n∑
j=1

V i
j (u)u j

x , i = 1, . . . , n,

where

(2.21) V i
j (u) = f i (u)Ai j h

[0]
1 (u) = ui f i (u)Ai j h

[0]
2 (u) for i �= j.

(Recall that no summation over repeated indices is assumed when working in the

canonical coordinates; all summation signs will be written explicitly.) Here the

linear differential operators Ai j are defined by

(2.22) Ai j =
∂2

∂ui∂u j
+

1

2

∂(log f i (u))

∂u j

∂

∂ui
+

1

2

∂(log f j (u))

∂ui

∂

∂u j
.

Symmetry with respect to the indices i and j implies

(2.23) (ui − u j )Ai j h
[0]
2 (u) = 0, i �= j.

Thus V i
j (u) = 0 when i �= j . This proves the first part of the lemma.

To prove the converse statement, we use the following result of [44]: the diag-

onal system

ui
t + V i (u)ui

x = 0, i = 1, . . . , n,

is Hamiltonian with respect to the Poisson bracket associated with the diagonal

metric of zero curvature

ds2 =

n∑
i=1

gii (u)(dui )2

if and only if the following equations hold true:

(2.24) ∂k V i (u) = (V k(u) − V i (u))∂k log
√

gii (u), i �= k.
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By assumption these equations hold true for the first metric

gii (u) =
1

fi (u)
.

For the pencil { · , · }
[0]
2 − λ { · , · }

[0]
1 , one has to replace

gii (u) =
1

(ui − λ) f i (u)
.

Such a replacement does not change equations (2.24). The lemma is proved. �

3 Proof of the Quasi-Triviality Theorem

In this and the following sections, we assume that the bi-Hamiltonian structure

(�1,�2) defined by (1.28) is semisimple, and we work in the canonical coordi-

nates u1, . . . , un .

Due to the triviality of the Poisson cohomology H 2(L(M),�1), the bi-Hamil-

tonian structure (1.27) can always be assumed, if necessary by performing a usual

Miura-type transformation, to have the following form:

{ui (x), u j (y)}1 = {ui (x), u j (y)}
[0]
1 ,(3.1)

{ui (x), u j (y)}2 = {ui (x), u j (y)}
[0]
2 +

∑
k≥1

εk Q
i j

k .(3.2)

Here Q
i j

k are the components of the bivectors Qk and have the expressions

Q
i j

k =

k+1∑
l=0

Q
i j

k,l(u; ux , . . . , u(k+1−l)) δ(l)(x − y).

We also denote by Q0 the bivector corresponding to the undeformed second Pois-

son structure { · , · }
[0]
2 . The coefficients Q

i j

k,l are homogeneous differential polyno-

mials of degree k + 1 − l. The compatibility of the above two Poisson brackets

implies the existence of vector fields Xk , k ≥ 1, such that

(3.3) Qk = ∂1 Xk, k ≥ 0,

and the components of Xk are homogeneous differential polynomials of degree k.

The strategy of our proof of the quasi-triviality theorem is to construct a se-

ries of quasi-Miura transformations that keep the first Poisson structure (3.1) un-

changed while removing the perturbation terms of (3.2) in a successive way.

The key property of the bi-Hamiltonian structure (3.1)–(3.2) that we use to

construct the first of such a series of quasi-Miura transformations is given by

(3.4) ∂1∂2 X1 = 0.

It results from the vanishing of the Schouten-Nijenhuis bracket[∑
k≥0

εk Qk,
∑
k≥0

εk Qk

]
.
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Indeed, by using the result of Theorem 3.2 that will be proved below, we know that

identity (3.4) implies the existence of two local functionals

(3.5) I1 =

∫
h1,1(u(x))dx, J1 =

∫
h2,1(u(x))dx,

such that X1 = ∂1 I1 − ∂2 J1.

The first quasi-Miura transformation that we are looking for is given by

(3.6) ui �→ exp(ε∂1 J1) ui .

After its action, the first Poisson structure (3.1) remains unchanged while the sec-

ond Poisson structure (3.2) is transformed to

(3.7) exp(−εad∂1 J1
)

(
Q0 +

∑
k≥1

εk∂1 Xk

)
= Q0 +

∑
k≥2

εk∂1 X̃k .

Here the vector fields X̃k have the expressions

(3.8) X̃k =

k∑
l=0

(−1)l (ad∂1 J1
)l

l!
Xk−l, k ≥ 2.

Let us note that (3.6) is in fact a usual Miura-type transformation, so the com-

ponents of the new vector fields X̃k are homogeneous differential polynomials of

degree k.

Now we proceed to construct the second quasi-Miura transformation in order to

remove the first perturbation term ε2∂1 X̃2 of the Poisson structure (3.7). We need

to use the property of the vector field X̃2 that is the analogue of (3.4),

(3.9) ∂1∂2 X̃2 = 0.

Due to the result of Theorem 3.9 that will be given below, we can find two local

functionals I2 and J2 such that X̃2 = ∂1 I2 − ∂2 J2. Then our second quasi-Miura

transformation is given by

(3.10) ui �→ exp(ε2∂1 J2) ui ,

which leaves unchanged the form of the first Poisson structure while transforming

the second one (3.7) to the form

(3.11) exp(−ε2ad∂1 J2
)

(
Q0 +

∑
k≥2

εk∂1 X̃k

)
= Q0 +

∑
k≥3

εk∂1 X̄k .

Here the vector fields X̄k have the expressions

(3.12) X̄k =

[k/2]∑
l=0

(−1)l (ad∂1 J2
)l

l!
X̃k−2l, X̃1 = 0, k ≥ 3.

From (3.108)–(3.110) we see that (3.10) is no longer a usual Miura-type transfor-

mation, since in general the components of the vector field ∂1 J2 are not differential
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polynomials; instead, they belong to the ring A of functions that can be represented

as a finite sum of rational functions of the form

(3.13)
Pi

j1,..., jm
(u; ux , . . . )

u
j1
x · · · u

jm
x

, m ≥ 0

(no denominator for m = 0). Here Pi
j1,..., jm

are homogeneous differential polyno-

mials.

Define a gradation on the ring A by

(3.14) deg ui,m = m, i = 1, . . . , n, m > 0.

DEFINITION 3.1 We call elements of A almost differential polynomials.

Below we will also encounter functions that belong to the ring

Ã = A[log u1
x , . . . , log un

x ].

It is also a graded ring with the definition of degree (3.14) and

(3.15) deg(log ui
x) = 0, i = 1, . . . , n.

The density of the above functionals I2, J2 can be chosen as homogeneous almost

differential polynomials of degree 1; thus the resulting vector fields X̄k have com-

ponents that are homogeneous almost differential polynomials of degree k.

By continuing the above procedure, with the help of the result of Theorem

3.3 to be given below, we can construct in a successive way the series of quasi-

Miura transformations that reduce the bi-Hamiltonian structure (3.1)–(3.2) to the

one given by its leading terms, and the final reducing transformation is the com-

position of this series of quasi-Miura transformations. We thus prove the quasi-

triviality theorem with the help of Theorems 3.2, 3.3, and 3.9. We now start to

formulate and prove these theorems.

THEOREM 3.2 Assume that a vector field X has components of the form

(3.16) Xi =
∑

j

X i
j (u) u j

x , i = 1, . . . , n,

and satisfies

(3.17) ∂1∂2 X = 0.

Then there exist two local functionals I and J of the form

(3.18) I =

∫
G(u(x))dx, J =

∫
G̃(u(x))dx,

such that X has the representation X = ∂1 I − ∂2 J .
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PROOF: In this proof summations over repeated Greek indices are assumed.

Let us redenote the components of the two bivectors that correspond to the bi-

Hamiltonian structure (1.28) in the form

�
i j

1 = gi jδ′(x − y) + �i j
α uα

x δ(x − y),

�
i j

2 = g̃i jδ′(x − y) + �̃i j
α uα

x δ(x − y).

The Levi-Civita connections of the two metrics gi j and g̃i j are denoted by ∇ and ∇̃,

respectively. Denote ∇i and ∇̃i the covariant derivatives of these two connections

along ∂/∂ui . We also introduce the notation ∇ i = giα∇α and ∇̃ i = g̃iα∇̃α.

Condition (3.17) implies existence of a vector field Y with components of the

form

(3.19) Y i =
∑

j

Y i
j (u)u j

x , i = 1, . . . , n,

such that ∂1 X = ∂2Y . Denote by

(3.20) Zi j =
∑
p≥0

Zi j
p (u(x), ux(x), . . . ) δ(p)(x − y) := (∂1 X − ∂2Y )i j

the components of the bivector ∂1 X − ∂2Y , and denote by Z
i j

p,(k,m) the derivatives

∂ Z
i j
p /∂uk,m . Then we have

Z
i j

2 = (Xi j − X ji ) − (Y i j − Y ji ) = 0,(3.21)

Z
i j

0,(k,2) = (∇k Xi j − ∇ i X
j

k + �
j

kα(Xαi − Xiα))(3.22)

− (∇̃kY i j − ∇̃ i Y
j

k + �̃
j

kα(Y
αi − Y iα)) = 0

where Xi j = giα X j
α and Y i j = g̃iαY j

α . From the above two equations we obtain

(3.23) ∇̃kY i j − ∇̃ i Y k j = g̃kα(∇α Xi j − ∇ i X j
α + T

j

αβ(Xiβ − Xβi )).

Here the components of the (1, 2)–tensor T are defined by T
j

αβ = �̃
j

αβ −�
j

αβ . Since

the left-hand side of the above equation is antisymmetric with respect to k and i ,

we have

(3.24) g̃kα(∇α Xi j − ∇ i X j
α + T

j

αβ(Xiβ − Xβi ))

+ g̃iα(∇α Xkj − ∇k X j
α + T

j

αβ(Xkβ − Xβk)) = 0.

The trivial identity

(∇̃kY i j − ∇̃ i Y k j ) + (∇̃ i Y jk − ∇̃ j Y ik) + (∇̃ j Y ki − ∇̃kY ji )

= ∇̃k(Y i j − Y ji ) + ∇̃ i (Y jk − Y kj ) + ∇̃ j (Y ki − Y ik)
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implies that

∇̃k(Xi j − X ji ) + ∇̃ i (X jk − Xkj ) + ∇̃ j (Xki − Xik)

= g̃kα(∇α Xi j − ∇ i X j
α + T

j

αβ(Xiβ − Xβi ))

+ g̃iα(∇α X jk − ∇ j Xk
α + T k

αβ(X jβ − Xβ j ))

+ g̃ jα(∇α Xki − ∇k Xi
α + T i

αβ(Xkβ − Xβk)).

(3.25)

By using the formula

∇̃k Ai j = ∇k Ai j + T i
kα Aα j + T

j

kα Aiα

we can simplify equations (3.25) to the form

g̃kα(∇α X ji − ∇ i X j
α + T i

αβ(X jβ − Xβ j ))

+ g̃iα(∇α Xkj − ∇ j Xk
α + T

j

αβ(Xkβ − Xβk))

+ g̃ jα(∇α Xik − ∇k Xi
α + T k

αβ(Xiβ − Xβi )) = 0.

(3.26)

Let us employ equations (3.24) and (3.26) to prove the existence of two local func-

tionals I and J of the form (3.18) such that X = ∂1 I − ∂2 J . Equivalently, we need

to find functions G and G̃ that satisfy the conditions

(3.27) Xi
j = gjα∇

i∇αG − g̃jα∇̃
i ∇̃αG̃.

To this end, we first define two symmetric (2, 0)–tensors A and Ã such that

(3.28) Xi
j = gjα Aαi − g̃jα Ãαi .

In the canonical coordinates, the off-diagonal components of A and Ã are uniquely

determined by the above relations and have the explicit forms

(3.29) Ai j =
gi X

j

i − g j Xi
j

ui − u j
, Ãi j =

u j gi X
j

i − ui g j Xi
j

ui − u j
, for i �= j.

Here we use the fact that in the canonical coordinates the two metrics have compo-

nents of the form gi j = δi j f i and g̃i j = δi j g
i = δi j u

i f i . For an arbitrary choice of

the diagonal components Aii , the above relation uniquely determines the diagonal

components Ãii by

(3.30) Ãii = ui
(

Aii − f i X i
i

)
.

We will specify the choice of Aii , i = 1, . . . , n, in a moment.

Let us now express equations (3.24) and (3.26) in terms of the components of

the tensors A and Ã. By substituting the expression (3.28) of Xi
j into (3.24) and

(3.26) and by using the fact that gαβ , g̃αβ , and T i
αβ are all diagonal with respect to

α and β in the canonical coordinates, we arrive at

(uk − ui )(∇k Ai j − ∇ i Ak j ) +

(
1

uk
−

1

ui

)
(∇̃k Ãi j − ∇̃ i Ãk j ) = 0,(3.31)
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uk(∇k Ai j − ∇ i Ak j ) −

(
1

u j
∇̃k Ãi j −

1

ui
∇̃ i Ãk j

)

+ ui (∇ i A jk − ∇ j Aik) −

(
1

uk
∇̃ i Ã jk −

1

u j
∇̃ j Ãik

)
(3.32)

+ u j (∇ j Aki − ∇k A ji ) −

(
1

ui
∇̃ j Ãki −

1

uk
∇̃k Ã ji

)
= 0.

Rewrite (3.32) in the form

(3.33) uk(∇k Ai j − ∇ i Ak j ) +
1

uk
(∇̃k Ãi j − ∇̃ i Ãk j )

+ terms obtained by cyclic permutations of (i, j, k) = 0.

By using (3.31), we can replace uk by ui in the first two terms of (3.33). Then after

the cancellation of some terms we arrive at the simplification of (3.32),

(3.34) (ui − u j )(∇ j Aki − ∇k Ai j ) +

(
1

ui
−

1

u j

)
(∇̃ j Ãki − ∇̃k Ãi j ) = 0.

Changing the indices (i, j, k) �→ ( j, k, i), we obtain

(3.35) (u j − uk)(∇k Ai j − ∇ i Ak j ) +

(
1

u j
−

1

uk

)
(∇̃k Ãi j − ∇̃ i Ãk j ) = 0.

From equations (3.31) and (3.35) it readily follows that

(3.36) ∇k Ai j = ∇ i Ak j , ∇̃k Ãi j = ∇̃ i Ãk j , for i �= j, k �= j.

Now let us proceed to choose the diagonal components Aii in such a way to

ensure that the components of the tensor ∇k Ai j are totally symmetric in i , j , and

k. This amounts to requiring that Aii satisfy

(3.37) ∇k Aii = ∇ i Aki , i, k = 1, . . . , n, k �= i.

The existence of solutions Aii is guaranteed by the compatibility of the above sys-

tems due to the equalities

(3.38) ∇ j (∇ i Aki ) = ∇k(∇ i A ji ) for distinct i, j, k.

Fix a solution Aii , i = 1, . . . , n, of system (3.37). From the validity of equa-

tions (3.31) and (3.36), we know that tensor Ã with components Ãi j determined by

(3.29) and (3.30) also has the property of symmetry of ∇̃k Ãi j in i , j , and k. Thus

we can find functions G(u) and G̃(u) such that

Ai j = ∇ i∇ j G, Ãi j = ∇̃ i ∇̃ j G̃.

The theorem is proved. �

The above theorem implies that the linear-in-ε terms of the bi-Hamiltonian

structure (1.27) can be eliminated by a Miura-type transformation.
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THEOREM 3.3 Let X ∈ �1
loc be a local vector field with components

(3.39) Xi (u, ux , . . . , u(N )), i = 1, . . . , n, N ≥ 1,

where Xi are homogeneous almost differential polynomials of degree d ≥ 3. If X

satisfies condition (3.17), then there exist local functionals

(3.40) I =

∫
f (u, ux , . . . , u([N/2]))dx, J =

∫
g(u, ux , . . . , u([N/2]))dx,

with densities that are homogeneous almost differential polynomials of degree d−1

such that X = ∂1 I − ∂2 J .

Let us first sketch an outline of the proof. We will prove the theorem by induc-

tion on the highest order of the x-derivatives of uk on which the components Xi

of the vector field X depend. Due to the triviality of Poisson cohomology of the

Poisson structure given by the leading terms of (3.2) and the result of Lemma 3.7

that will be given below, we are led to the following problem:

Let X, Y be two local vector fields with components

Xi (u, . . . , u(N )), Y i (u, . . . , u(N )), i = 1, . . . , n, N ≥ 1,

where Xi and Y i are homogeneous almost differential polynomials of degree d ≥

3. Assuming that X and Y satisfy the relation ∂1 X = ∂2Y , prove existence of

two local functionals I and J such that the components of the local vector field

X − (∂1 I − ∂2 J ) depend only on u, . . . , u(N−1).

We are to solve this problem in several steps following Lemmas 3.4, 3.5, 3.6,

and 3.8 below. Lemma 3.4 separates the terms containing u(N ) (which will be

called the leading terms) from Xi and Y i . Lemma 3.5 proves some combinatorial

identities. By using these identities, Lemma 3.6 reduces the leading terms of Xi

and Y i to the simplest form. The last lemma, Lemma 3.8, gives the explicit condi-

tions for the leading terms of Xi and Y i to ensure the existence of the needed local

functionals I and J . Finally, in the proof of Theorem 3.3, we fill the gap between

Lemma 3.6 and Lemma 3.8 to finish the proof of the theorem.

In what follows, for a function A = A(u, ux , . . . ), we will use the subscript

(k, m) to indicate the derivative of A with respect to uk,m , i.e., A(k,m) = ∂ A/∂uk,m .

LEMMA 3.4 For any two vector fields X and Y with components of the form

(3.41) Xi = Xi (u, ux , . . . , u(N )), Y i = Y i (u, ux , . . . , u(N )), N ≥ 1,

the conditions that

Z
i j

0,(k,2N+1) = 0, Z
i j

0,(k,2N ) = 0, when N ≥ 2,

Z
i j

0,(k,3) = 0, Z
i j

0,(k,2) = 0, Z
i j

2 = 0, when N = 1,
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where the coefficients Z
i j
p of Z i j = (∂1 X − ∂2Y )i j are defined as in (3.20), imply

that the components of the vector fields X and Y must take the form

(3.42)

Xi =

n∑
j=1

(
u j Gi

j (u, . . . , u(N−1)) + Fi
j (u, . . . , u(N−1))

)
u j,N

+ Qi (u, . . . , u(N−1)),

Y i =

n∑
j=1

Gi
j (u, . . . , u(N−1)) u j,N + Ri (u, . . . , u(N−1)).

Moreover, when N ≥ 2 the functions Fi
j and Gi

j satisfy the following equations:

(3.43) F
j

i,(k,N−1) − F
j

k,(i,N−1) + (ui − uk)G
j

k,(i,N−1) = 0.

PROOF: By definition, we have

Z
i j

0,(k,2N+1) = (−1)N+1( f i X
j

(i,N )(k,N ) − gi Y
j

(i,N )(k,N )).

So the vanishing of Z
i j

0,(k,2N+1) implies that the functions Xi and Y i can be repre-

sented as

Xi =

n∑
j=1

(u j G̃i
j (u, . . . , u(N−1); u j,N )

+ F̃ i
j (u, . . . , u(N−1))u j,N ) + Q̃i (u, . . . , u(N−1)),

Y i =

n∑
j=1

G̃i
j (u, . . . , u(N−1); u j,N ).

When N ≥ 2 the equations (3.42) of Xi and Y i follow from the vanishing of

Z
i j

0,(i,2N ) = (−1)N+1

(
N +

1

2

)
f i ui

x G̃
j

i,(i,N )(i,N ).

In the case of N = 1, formulae (3.42) follow from the vanishing of Z
i j

0,(i,2N ) and of

Z
i j

2 . Finally, for N ≥ 2, equation (3.43) is derived from the vanishing of

Z
i j

0,(k,2N ) = (−1)N+1 f i (F
j

i,(k,N−1) − F
j

k,(i,N−1) + (ui − uk)G
j

k,(i,N−1)).

The lemma is proved. �

LEMMA 3.5

(i) Assume that the vector fields X and Y have components of the form (3.42)

and N ≥ 2. Then for any m = 1, 2, . . . , [ N
2
], the following identity holds true:

(3.44)
∑
l≥0

(−1)m−l

(
N − l

m − l

)
Z

i j

l,(k,2N+1−m−l) = (−1)N+1 f i F
j

i,(k,N−m).

Here and below we denote Zi j as in (3.20).
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(ii) Assume that the vector fields X and Y have components of the following

form:

Xi =

n∑
j=1

(
u j Gi

j (u, . . . , u(N−m−1); u j,N−m) + Fi
j (u, . . . , u(N−m−1))

)
u j,N

+ Qi (u, . . . , u(N−1)),

Y i =

n∑
j=1

Gi
j (u, . . . , u(N−m−1); u j,N−m) u j,N + Ri (u, . . . , u(N−1))

(3.45)

with N ≥ 3 and 1 ≤ m ≤ [ N−1
2

]. Then we have

∑
l≥0

(−1)m−l

(
N − l

m − l

)
Z

i j

l,(k,2N−m−l)

= (−1)N+1

[
f i (F

j

i,(k,N−m−1) − F
j

k,(i,N−m−1)) + f i (ui − uk)G
j

k,(i,N−m−1)

+

(
N − m +

1

2

)
f i ui

x G
j

k,(i,N−m)δ
ik

+ (Aik − uk Bik)G
j

k,(k,N−m)

]
.

(3.46)

Here Aik and Bik are defined by (1.34).

PROOF: By using formula (2.15) the components Zi j of the bivector ∂1 X −∂2Y

have the explicit expressions

Zi j =
∑
s≥0

(−1)s+1

(
f i∂s+1

x (X
j

(i,s)δ) +
∂x f i

2
∂s

x(X
j

(i,s)δ) +

n∑
k=1

Aik∂s
x(X

j

(k,s)δ)

− gi∂s+1
x (Y

j

(i,s)δ) −
∂x gi

2
∂s

x(Y
j

(i,s)δ) −

n∑
k=1

Bik∂s
x(Y

j

(k,s)δ)

)
+ · · · .

Here δ = δ(x − y). It is easy to see that when m ≤ [ N
2
], the first two terms in

formula (2.15) don’t affect identity (3.44). So we denote their contributions by

an ellipsis in the above expressions of Zi j and will omit them in the calculations
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below. Then Z
i j
p reads

Zi j
p =

∑
s≥0

(−1)s+1

(
f i

(
s + 1

p

)
∂s+1−p

x X
j

(i,s) +
∂x f i

2

(
s

p

)
∂s−p

x X
j

(i,s)

+

n∑
k=1

Aik

(
s

p

)
∂s−p

x X
j

(k,s) − gi

(
s + 1

p

)
∂s+1−p

x Y
j

(i,s)

−
∂x gi

2

(
s

p

)
∂s−p

x Y
j

(i,s) −

n∑
k=1

Bik

(
s

p

)
∂s−p

x Y
j

(k,s)

)
.

Denote by LHS the left-hand side of the identity (3.44). We obtain

LHS

=
∑
p,s≥0

(−1)m−p+s+1

(
N − p

m − p

)

·

(
f i

(
s + 1

p

) ∑
t≥0

(
s + 1 − p

t

)
∂ t

x X
j

(i,s)(k,2N−m−s+t)

+
∂x f i

2

(
s

p

) ∑
t≥0

(
s − p

t

)
∂ t

x X
j

(i,s)(k,2N+1−m−s+t)

+

n∑
l=1

Ail

(
s

p

) ∑
t≥0

(
s − p

t

)
∂ t

x X
j

(l,s)(k,2N+1−m−s+t)

− gi

(
s + 1

p

) ∑
t≥0

(
s + 1 − p

t

)
∂ t

x Y
j

(i,s)(k,2N−m−s+t)

−
∂x gi

2

(
s

p

) ∑
t≥0

(
s − p

t

)
∂ t

x Y
j

(i,s)(k,2N+1−m−s+t)

−

n∑
l=1

Bil

(
s

p

) ∑
t≥0

(
s − p

t

)
∂ t

x Y
j

(l,s)(k,2N+1−m−s+t)

)
.

Here we used the commutation relations

∂

∂ui,q
∂m

x =
∑
t≥0

(
m

t

)
∂ t

x

∂

∂ui,q−m+t
.

By using the identity

∑
p≥0

(−1)p

(
N − p

m − p

)(
s

p

)(
s − p

t

)
=

(
s

t

)(
N − s + t

m

)
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and by changing the order of summation, we can rewrite LHS as follows:

LHS

=
∑
s,t≥0

(−1)m+s+1

((
s + 1

t

)(
N − s + t − 1

m

)
f i∂ t

x X
j

(i,s)(k,2N−m−s+t)

+

(
s

t

)(
N − s + t

m

)
∂x f i

2
∂ t

x X
j

(i,s)(k,2N+1−m−s+t)

+

(
s

t

)(
N − s + t

m

) n∑
l=1

Ail∂ t
x X

j

(l,s)(k,2N+1−m−s+t)(3.47)

−

(
s + 1

t

)(
N − s + t − 1

m

)
gi∂ t

x Y
j

(i,s)(k,2N−m−s+t)

−

(
s

t

)(
N − s + t

m

)
∂x gi

2
∂ t

x Y
j

(i,s)(k,2N+1−m−s+t)

−

(
s

t

)(
N − s + t

m

) n∑
l=1

Bil∂ t
x Y

j

(l,s)(k,2N+1−m−s+t)

)
.

Now we substitute the expression (3.42) of X and Y into the right-hand side of the

above formula. By using the properties of binomial coefficients, it is easy to see

that all terms in the above summation vanish except for the terms with s = N ,

t = 0, so the above formula can be simplified to

LHS = (−1)m+N+1((−1)m f i X
j

(i,N )(k,N−m) − (−1)m gi Y
j

(i,N )(k,N−m))

= (−1)N+1 f i F
j

i,(k,N−m) .

So part (i) of the lemma is proved.

Similarly to the derivation of (3.47), we can prove the following formula:

∑
l≥0

(−1)m−l

(
N − l

m − l

)
Z

i j

l,(k,2N−m−l)(3.48)

=
∑
s,t≥0

(−1)m+s+1

((
s + 1

t

)(
N − s + t − 1

m

)
f i∂ t

x X
j

(i,s)(k,2N−1−m−s+t)

+

(
s

t

)(
N − s + t

m

)
∂x f i

2
∂ t

x X
j

(i,s)(k,2N−m−s+t)

+

(
s

t

)(
N − s + t

m

) n∑
l=1

Ail∂ t
x X

j

(l,s)(k,2N−m−s+t)

−

(
s + 1

t

)(
N − s + t − 1

m

)
gi∂ t

x Y
j

(i,s)(k,2N−1−m−s+t)
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−

(
s

t

)(
N − s + t

m

)
∂x gi

2
∂ t

x Y
j

(i,s)(k,2N−m−s+t)

−

(
s

t

)(
N − s + t

m

) n∑
l=1

Bil∂ t
x Y

j

(l,s)(k,2N−m−s+t)

)
.

The summands of the right-hand side vanish except for the terms with (s, t) =

(N , 0), (N −m −1, 0), (N −m, 1), (N −m, 0). Then LHS of identity (3.46) reads

LHS = (−1)N+1( f i X
j

(i,N )(k,N−m−1) − gi Y
j

(i,N )(k,N−m−1))

+ (−1)N ( f i X
j

(k,N )(i,N−m−1) − gi Y
j

(k,N )(i,N−m−1))

+ (−1)N+1(N − m + 1)( f i∂x X
j

(k,N )(i,N−m) − gi∂x Y
j

(k,N )(i,N−m))(3.49)

+ (−1)N+1

(
∂x f i

2
X

j

(k,N )(i,N−m) −
∂x gi

2
Y

j

(k,N )(i,N−m)

+

n∑
l=1

(
Ail X

j

(k,N )(l,N−m) − BilY
j

(k,N )(l,N−m)

))
.

Note that our X and Y have the properties

X
j

(k,N )(i,N−m) = uk G
j

k,(i,N−m)δ
ki , Y

j

(k,N )(i,N−m) = G
j

k,(i,N−m)δ
ki .

Then identity (3.46) follows from (3.49) immediately. Part (ii) of the lemma is

proved. �

LEMMA 3.6 Let X and Y be two local vector fields that have components of the

form (3.41) and satisfy the relation

(3.50) ∂1 X = ∂2Y.

Then the following statements hold true:

(i) When N = 2M + 1, the components of these vector fields have the expres-

sions

Xi =

n∑
j=1

Xi
j (u, ux , . . . , u(M))u j,2M+1 + Qi (u, ux , . . . , u(2M)),(3.51)

Y i =

n∑
j=1

Y i
j (u, ux , . . . , u(M))u j,2M+1 + Ri (u, ux , . . . , u(2M)).(3.52)

(ii) When N = 2M, there exist local functionals Ia, a = 1, 2, 3, such that the

components of the vector fields X and Y have, after the modification,

(3.53) X �→ X − (∂1 I1 − ∂2 I2), Y �→ Y − (∂1 I2 − ∂2 I3)



586 B. DUBROVIN, S.-Q. LIU, AND Y. ZHANG

(if necessary), the expressions

Xi =
∑
j �=i

X i
j (u, ux , . . . , u(M−1))u j,2M + Qi (u, ux , . . . , u(2M−1)),(3.54)

Y i =
∑
j �=i

Y i
j (u, ux , . . . , u(M−1))u j,2M + Ri (u, ux , . . . , u(2M−1)).(3.55)

In the case when the components Xi of the vector field X are homogeneous almost

differential polynomials of degree d ≥ 3, we can choose the densities of the local

functionals Ia such that they are homogeneous almost differential polynomials of

degree d − 1.

PROOF: For the case when N = 1, the result of the lemma follows from

Lemma 3.4, so we assume that N ≥ 2. It follows from Lemma 3.4 that the com-

ponents of X and Y must take the form (3.42). The result of part (i) of Lemma

3.5 then shows that the Fi
j are independent of u(N−m) for m = 1, . . . , [ N

2
], so the

identities in (3.43) read

(ui − uk)G
j

k,(i,N−1) = 0;

thus the G
j

k are independent of ui,N−1 when i �= k. When N ≥ 3 we use the

identity (3.46) of Lemma 3.5 with m = 1 to obtain, by putting i = k,

G
j

i,(i,N−1) = 0.

So the G
j

k are in fact independent of u(N−1). Now identity (3.46) shows that

G
j

k,(i,N−2) = 0, i �= k.

By repeatedly using identity (3.46), we know that Gi
j is independent of u(N−m) for

m = 1, . . . , [ N−1
2

], and G
j

i,(k,M) = 0 for N = 2M ≥ 2 and i �= k.

For the case of N = 2M + 1, M ≥ 1, the above argument shows that the

components of the vector fields X and Y have the form (3.51)–(3.52) where Xi
j

and Y i
j are given by the expressions

Xi
j = u j Gi

j (u, ux , . . . , u(M)) + Fi
j (u, ux , . . . , u(M)),

Y i
j = Gi

j (u, ux , . . . , u(M),
(3.56)

and for the case of N = 2M , M ≥ 1, we have

Xi =

n∑
j=1

(
u j Gi

j (u, . . . , u(M−1), u j,M) + Fi
j (u, . . . , u(M−1))

)
u j,N(3.57)

+ Qi (u, . . . , u(N−1)),

Y i =

n∑
j=1

Gi
j (u, . . . , u(M−1), u j,M) u j,N + Ri (u, . . . , u(N−1)).(3.58)
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From the vanishing of the coefficients of δ(2M+1)(x − y) in the expression of

(∂1 X − ∂2Y )i j , it follows that

(3.59) f i (u)F
j

i + f j (u)Fi
j = 0.

In particular, we have

(3.60) Fi
i = 0, i = 1, . . . , n.

Define the functionals

(3.61) Ik = (−1)M

∫ n∑
i=1

∂−2

ui,M

(ui )3−k Gi
i

(M + 1
2
) f i ui

x

dx, k = 1, 2, 3.

Then the components of the vector fields X̃ = X − (∂1 I1 − ∂2 I2) and Ỹ = Y −

(∂1 I2 −∂2 I3) have the form of (3.57)–(3.58) with Gi
i = 0. Since the vector fields X̃

and Ỹ still satisfy the relation ∂1 X̃ = ∂2Ỹ , we can assume without loss of generality

that the components of X and Y have the form (3.57)–(3.58) with vanishing Gi
i . By

using equations (3.59), we check that identity (3.46) is still valid for i = k when

m = M and N ≥ 2. This leads to the fact that the functions Gi
j for i �= j do not

depend on u j,M . Thus we have proved that the components of X and Y have the

form (3.54)–(3.55) after the modification (3.53) if necessary.

When the components of the vector field X are homogeneous almost differential

polynomials of degree d ≥ 3, equations (3.60) and the expression (3.57) imply that

the functions Gi
i are also homogeneous almost differential polynomials of degree

d −2M . So, when M ≥ 2 we can choose the densities of the functionals Ia defined

in (3.61) to be homogeneous almost differential polynomials of degree d − 1. In

the case when M = 1, since the functions Gi
i = Gi

i (u; ui
x) are homogeneous of

degree d − 2 ≥ 1 (recall our assumption d ≥ 3), the function Gi
i (u; ui

x)/ui
x is in

fact a polynomial in ui
x . Thus in this case we can still choose the densities of the

functionals Ia defined in (3.61) to be homogeneous almost differential polynomials

of degree d − 1. The lemma is proved. �

LEMMA 3.7 Let the vector fields X and Y have components of the form (3.41) with

N ≥ 2 and satisfy relation (3.50). If the functions Xi , i = 1, . . . , n, do not depend

on u(N ), then we can modify the vector field Y by

(3.62) Y �→ Y − ∂2 J

for a certain local functional J such that the components of this modified vector

field Y depend at most on u, . . . , u(N−1), and relation (3.50) still holds true.

PROOF: We first assume that N = 2M +1. From the assumption of the lemma

and the result of Lemma 3.6 we know that the components of the vector fields

X and Y have the form (3.51)–(3.52) with Xi
j = 0. To prove the lemma, we

need to find a local functional J with density h(u, ux , . . . , u(M)) that satisfies the
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conditions

(3.63)
∂2h

∂ui,M∂u j,M
= (−1)M 1

gi (u)
Y i

j , i, j = 1, . . . , n.

Denote by Ai j the right-hand side of the above formulae. Then from the van-

ishing of the coefficients of δ(2M+2)(x − y) in the expression of the components of

the bivector ∂1 X −∂2Y , it follows that the functions Ai j are symmetric with respect

to the indices i and j . From equation (3.46) with m = M , we also know that

(3.64)
∂Y

j

i

∂uk,M
=

∂Y
j

k

∂ui,M
.

So the functions ∂ Ai j/∂uk,M are symmetric with respect to the indices i , j , and k,

which implies the existence of a function h(u, ux , . . . , u(M)) satisfying the require-

ment (3.63).

Next let us assume that N = 2M . As we did in the proof of Lemma 3.6, we

can show that the components of X and Y have the form (3.57)–(3.58) with

(3.65) Fi
j = −u j Gi

j .

Since the functions Fi
j do not depend on u(M), we deduce that the functions Xi and

Y i must have the expressions (3.54) with Xi
j = 0. From (3.60) and the indepen-

dence of Xi on u(N ), it also follows that Gi
i = 0 for i = 1, . . . , n. Now by using

the vanishing of the coefficients of δ(2M+1) of the components of ∂1 X − ∂2Y and

that of the left-hand side of (3.46) with m = M , we obtain

Ŷi j + Ŷji = 0,(3.66)

Ŷjk,(i,M−1) − Ŷik,( j,M−1) − Ŷji,(k,M−1) = 0.(3.67)

Here Ŷi j = (1/gi )Y i
j . The above two equations ensure the existence of a 1-form

α =
∑n

i=1 hi (u, . . . , u(M−1))dui,M−1 such that

(3.68) dα =
1

2

∑
i, j

Ŷi j dui,M−1 ∧ du j,M−1.

Now the functional J defined by

(3.69) J =

∫ n∑
i=1

hi (u(x), . . . , u(M−1)(x)) ui,M(x)dx

meets the requirement of the lemma, and we have finished the proof. �

LEMMA 3.8 Let X be a local vector field with components

Xi = Xi (u; ux , . . . , u(N )), i = 1, . . . , n, N ≥ 4,

that are homogeneous almost differential polynomials of degree d ≥ 3. Assume X

also has the following properties:
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(i) When N = 2M + 2, the components of X have the form

(3.70) Xi =
∑
j �=i

X i
j (u, . . . , u(M))u j,2M+2 + Qi (u, . . . , u(2M+1))

and satisfy the conditions

(3.71) (uk −u j )(X̂i j,(k,M)− X̂ik,( j,M))+(uk −ui )X̂ jk,(i,M)+(u j −ui )X̂k j,(i,M) = 0

for

(3.72) X̂i j =
1

f i (u)
Xi

j (u, . . . , u(M)).

(ii) When N = 2M + 1, X has components of the form

(3.73) Xi =

n∑
j=1

Xi
j (u, . . . , u(M))u j,2M+1 + Qi (u, . . . , u(2M))

and satisfies the conditions

Xi
j,(k,M) − Xi

k,( j,M) = 0,(3.74)

(uk − u j )X̂i j,(k,M) + (ui − uk)X̂ jk,(i,M) + (u j − ui )X̂ki,( j,M) = 0.(3.75)

Then there exist two local functionals I1 and I2 with densities that are homogeneous

almost differential polynomials of degree d − 1 such that the components of the

vector field X − (∂1 I1 − ∂2 I2) depend at most on u, ux , . . . , u(N−1).

PROOF: We first prove the lemma for the case when d ≥ 3, N ≥ 5. Assume

N = 2M + 2 and the vector field X satisfies conditions (3.70)–(3.71). We want to

find two local functionals I1 and I2 with densities of the form

(3.76) ha =

n∑
j=1

ha; j (u, ux , . . . , u(M))u j,M+1, a = 1, 2,

such that they meet the requirements of the lemma. For this we need to find the

functions ha; j , a = 1, 2, j = 1, . . . , n, satisfying the following equations:

(3.77) (−1)M+1 Xi
j = f i

(
∂h1;i

∂u j,M
−

∂h1; j

∂ui,M

)
− gi

(
∂h2;i

∂u j,M
−

∂h2; j

∂ui,M

)
.

Denote

(3.78) Pi j = (−1)M
g j Xi

j + gi X
j

i

f i g j − f j gi
, Qi j = (−1)M

f j Xi
j + f i X

j

i

f i g j − f j gi
.

Then it follows from (3.71) that the 2-forms

(3.79) �1 =
1

2

∑
i, j

Pi j dui,M ∧ du j,M , �2 =
1

2

∑
i, j

Qi j dui,M ∧ du j,M ,
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are closed. So there exist 1-forms

(3.80) αa =
∑

j

ha; j (u, ux , . . . , u(M)) du j,M , a = 1, 2,

such that dαa = �a and the functions ha; j are homogeneous almost differential

polynomials of degree d − M − 2. Now it’s easy to see that the functions ha; j

satisfy (3.77). So we have proved the lemma for N = 2M + 2 > 4.

Next we assume that N = 2M+1 > 4 and the vector field X satisfies conditions

(3.73)–(3.75). Let the two local functionals I1 and I2 that we are looking for have

densities of the form

(3.81) ha(u, ux , . . . , u(M)), a = 1, 2.

Since the i th component of the vector field ∂1 I1 − ∂2 I2 depends at most on u, . . . ,

u(2M+1), and, moreover, it depends linearly on uk,2M+1, we only need to find func-

tions h1 and h2 such that

(3.82) Xi
j =

∂(∂1 I1 − ∂2 I2)
i

∂u j,2M+1
= (−1)M( f i h1,(i,M)( j,M) − gi h2,(i,M)( j,M)).

To this end, let us define Pii and Qii , i = 1, . . . , n, by solving the following

systems:

(3.83)

∂ Pii

∂u j,M
=

(−1)M+1

ui − u j

(
u j

Xi
j,(i,M)

f i
− ui

X
j

i,(i,M)

f j

)
, j �= i,

∂ Qii

∂u j,M
=

(−1)M+1

ui − u j

(
Xi

j,(i,M)

f i
−

X
j

i,(i,M)

f j

)
, j �= i.

Conditions (3.74) and (3.75) imply the compatibility of the above systems, i.e.,

(3.84)
∂

∂uk,M

(
∂ Pii

∂u j,M

)
=

∂

∂u j,M

(
∂ Pii

∂uk,M

)
, j, k �= i.

So we have a set of functions

Pii = Pii (u, ux , . . . , u(M)), Qii = Qii (u, ux , . . . , u(M)),

satisfying conditions (3.83). The ambiguity in the definition of these functions lies

in the following shifts:

Pii �→ Pii + Wii (u, ux , . . . , u(M−1), ui,M),(3.85)

Qii �→ Qii + Rii (u, ux , . . . , u(M−1), ui,M).

Here Wii and Rii are arbitrary functions to be specified later.

We also define functions Pi j and Qi j , i �= j, by the following formulae:

(3.86) Pi j =
(−1)M+1

ui − u j

(
u j

Xi
j

f i
− ui X

j

i

f j

)
, Qi j =

(−1)M+1

ui − u j

(
Xi

j

f i
−

X
j

i

f j

)
.
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By using conditions (3.74)–(3.75), we easily verify that

∂ Pi j

∂uk,M
,

∂ Qi j

∂uk,M
,

are symmetric with respect to their indices i , j , and k. So there exist functions

ha(u, ux , . . . , u(M)), a = 1, 2, such that

(3.87)
∂2h1

∂ui,M∂u j,M
= Pi j ,

∂2h2

∂ui,M∂u j,M
= Qi j .

Now it’s easy to verify that, when i �= j , functions h1 and h2 satisfy the conditions

given in (3.82). When i = j we have

(3.88) Xi
i − (−1)M( f i h1,(i,M)(i,M) − gi h2,(i,M)(i,M))

= Xi
i − (−1)M( f i Pii − gi Qii ).

It follows from the definition of Pii and Qii and the conditions given in (3.74)

that the right-hand side of the above formula does not depend on uk,M for any

k �= i , so we can make it 0 by adjusting functions Pii and Qii as in (3.85). By the

above construction, functions h1 and h2 can be chosen to be homogeneous almost

differential polynomials of degree d − 1. So the lemma is proved for the case

mentioned above.

Now let us consider the case d ≥ 3, N = 4. Proceeding in the same way as

for the case of N = 2M + 2, M ≥ 2, we can find the 1-forms (3.80) such that the

2-forms �1 and �2 that are defined as in (3.79) can be represented by �a = dαa ,

a = 1, 2. The pecularity of this case M = 1 lies in the fact that the functions

ha, j that we constructed above are in general no longer rational functions of the jet

coordinates ui,k , k ≥ 1; they can be chosen to have the form

(3.89) ha, j =

n∑
k=1

Wa, j;k(u; ux) log uk
x + Ua, j (u; ux), a = 1, 2, j = 1, . . . , n.

Here Wa, j;k, Ua, j ∈ A and are homogeneous of degree d − 1. Since

(3.90)
∂ha, j

∂ui
x

−
∂ha,i

∂u
j
x

∈ A,

we must have

(3.91)
∂Wa, j;k

∂ui
x

=
∂Wa,i;k

∂u
j
x

, i, j = 1, . . . , n.

This implies the existence of functions Aa,k(u; ux) ∈ Ã of degree d − 2 such that

(3.92) Wa, j;k =
∂ Aa,k(u; ux)

∂u
j
x

, a = 1, 2, j, k = 1, . . . , n.

Since Wa, j;k are almost differential polynomials, the functions Aa,k can also be

chosen as homogeneous almost differential polynomials of degree d − 2 ≥ 1 up to
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the addition of terms of the form

(3.93)

n∑
l=1

Ba,k,l(u) log ul
x .

However, such functions have degree 0, so they are not allowed to appear in the ex-

pressions of Aa,k . Now the needed functionals I and J that satisfy the requirements

of the lemma can be chosen to have densities h̃1 and h̃2 of the form

(3.94) h̃a =

n∑
k=1

(
Ua,k(u, ux) − Aa,k(u, ux)

1

uk
x

)
uk

xx , a = 1, 2.

The lemma is proved. �

PROOF OF THEOREM 3.3: Assume that the components Xi of the vector field

X have the form

(3.95) Xi = Xi (u, . . . , u(N )), N ≥ 4, i = 1, . . . , n.

The relation (3.17) implies the existence of a local vector field Y such that ∂1 X =

∂2Y . By using Lemma 3.7 we can choose the vector field Y such that its com-

ponents depend at most on the coordinates u, . . . , u(N ). Then it follows from the

results of Lemma 3.6 that the components of X and Y have the expressions (3.51)–

(3.52) when N is odd and those of (3.54)–(3.55) when N is even (after a modifica-

tion of (3.53) that does not affect our result).

We now proceed to employ the result of Lemma 3.8 in order to find two local

functionals I and J with densities that are homogeneous almost differential poly-

nomials of degree d−1 such that X−(∂1 I −∂2 J ) depends at most on u, . . . , u(N−1).

To this end we need to verify that the Xi satisfy equations (3.71) when N is even

and (3.74)–(3.75) when N is odd.

Let N be an even integer 2M + 2. Then by using the vanishing of the left-hand

side of (3.46) with m = M , we obtain

(3.96) X̂ jk,(i,M) − X̂ik,( j,M) − X̂ ji,(k,M) = ui u j (Ŷjk,(i,M) − Ŷik,( j,M) − Ŷji,(k,M)).

Here the Ŷi j are defined as in the (3.67) and the X̂i j are defined by (3.72). We also

have the equation

(3.97) X̂
j

i + X̂ i
j = ui u j (Ŷji + Ŷi j )

due to the vanishing of the coefficients of δ(2M+1) in the components of ∂1 X − ∂2Y .

Denote by Li, j,k and Ri, j,k the expressions of the left-hand side and right-hand side

of (3.96), respectively, multiplied by uk . Then we have

Ri, j,k − Rj,k,i − Rk,i, j − Ri,k, j = ui u j uk(Ŷjk,(i,M) + Ŷk j,(i,M))

= ui (X̂ jk,(i,M) + X̂k j,(i,M)).
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Here in the last equality we used the equations in (3.97). By equating the last

expression with Li, j,k − L j,k,i − Lk,i, j − Li,k, j , we arrive at the proof that the vector

field X satisfies the conditions given in (3.71).

Now let us assume that N = 2M + 1. From (3.46) with m = M , we know that

(3.98) f i (X
j

i,(k,M) − X
j

k,(i,M)) = gi (Y
j

i,(k,M) − Y
j

k,(i,M)).

This equation together with the one that is obtained from it by exchanging the

indices i and k implies that

(3.99) X
j

i,(k,M) = X
j

k,(i,M), Y
j

i,(k,M) = Y
j

k,(i,M).

So the components Xi and Y i satisfy the conditions of form (3.74). We are left to

prove that they also satisfy the conditions of form (3.75). For this, let us consider

the coefficients of δ(2M+2)(x − y) in the expressions of the components of the

bivector ∂1 X − ∂2Y . Vanishing of these coefficients leads to the equations

(3.100) X̂ ji − X̂i j = ui u j (Ŷji − Ŷi j ).

By taking the derivative with respect to uk,M and multiplying by uk on both sides

of the above equation, we obtain

(3.101) uk(X̂ ji,(k,M) − X̂i j,(k,M)) = ukui u j (Ŷji,(k,M) − Ŷi j,(k,M)).

Denote the right-hand side of the last equation by Wi, j,k . Then condition (3.75)

follows from Wi, j,k + Wj,k,i + Wk,i, j = 0.

Above we showed that the vector field X satisfies the requirements of Lemma

3.8. So we can find local functionals I and J with densities that are homogeneous

almost differential polynomials of degree d−1 such that X−(∂1 I −∂2 J ) depends at

most on u, . . . , u(N−1). Repeating this procedure by subtracting terms of the form

∂1 I − ∂2 J , we reduce the proof of Theorem 3.3 to the case when the components

Xi of the vector field X have the form (3.95) with N = 1, 2, 3.

Note that in the case when N = 3 or N = 2, the components of the vector

field X and the accompanying one Y also have the forms (3.51)–(3.52) and (3.54)–

(3.55) with M = 1, and the above equations (3.96)–(3.97) and (3.98), (3.100) still

hold true. Thus when N = 3, the vector field X fulfills the requirements of Lemma

3.8, and we can find local functionals I1 and I2 such that X − (∂1 I1 − ∂2 I2) depend

at most on u, ux , and uxx . The difference of this special case from the general one

lies in the fact that now it is not obvious that we can choose the densities ha(u, ux),

a = 1, 2, to be almost differential polynomials. What can easily be seen from our

construction is that they can be chosen to have the form

ha(u, ux) =
∑
i �= j

Va;i, j (u, ux) log ui
x log u j

x

+

n∑
i=1

Va;i (u, ux) log ui
x + Ua(u, ux).

(3.102)
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Here the functions Va;i, j , Va;i , and Ua are homogeneous almost differential poly-

nomials of degree d − 1. The vector field X̃ = X − (∂1 I1 − ∂2 I2) still has the

property ∂1∂2 X̃ = 0, so the same argument as above shows that the components

of X̃ have the form (3.70) with M = 0 and satisfy equations (3.71). By using the

construction of Lemma 3.8 we can find local functionals I3 and I4 such that the

vector field X̃ − (∂1 I3 − ∂2 I4) depends at most on u and ux . A careful analysis

of this construction shows that the densities of these local functionals can also be

chosen to have the form of (3.102).

Let us denote the densities I = I1 + I3 and J = I2 + I4 also by h1 and h2,

respectively, which have the expression (3.102). A simple calculation shows that

∂(∂1 I − ∂2 J )i

∂u
j
xxx

= gi ∂2h2

∂ui
x∂u

j
x

− f i ∂2h1

∂ui
x∂u

j
x

,(3.103)

∂(∂1 I − ∂2 J )i

∂ui
xx

= −
3

2
f i (u)ui

x

∂2h2

∂ui
x∂ui

x

.(3.104)

The right-hand side of the above two identities equal, respectively,

∂ Xi

∂u
j
xxx

and
∂ Xi

∂u
j
xx

.

We deduce that the functions

(3.105)
∂2ha

∂ui
x∂u

j
x

, a = 1, 2, i, j = 1, . . . , n,

are homogeneous almost differential polynomials of degree d − 3. This fact yields

the restriction on the coefficients Va;i, j and Va;i in the expression of the densities

(3.102) that they depend on ux at most linearly. Since h1 and h2 have degree

d − 1 ≥ 2 (recall that we assume d ≥ 3), it follows that the functions Va;i, j and

Va;i must vanish, and as a result the densities h1 and h2 of the local functionals I

and J are homogeneous almost differential polynomials of degree d − 1.

Now let us prove that we have in fact

(3.106) X = ∂1 I − ∂2 J.

This is due to the fact that the vector field X̄ = X − (∂1 I − ∂2 J ) still satisfies

the property ∂1∂2 X̄ = 0. So, by using Lemma 3.7 we can find a vector field Ȳ

that depends at most on u and ux such that ∂1 X̄ = ∂2Ȳ . Then by using Lemma

3.4 we know that the components of X̄ depend at most linearly on ux ; since they

are homogeneous almost differential polynomials of degree d ≥ 3, we must have

X̄ = 0. Thus we have proved the theorem. �

THEOREM 3.9 Let the vector field X satisfying condition (3.17) have components

of the form

(3.107) Xi =

n∑
j=1

Xi
j (u)u j

xx +
∑
k,l

Qi
kl(u)uk

x ul
x .
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Then each function X̂ii = ( f i (u))−1 Xi
i (u) depends only on ui , and there exist local

functionals Ĩ1 and Ĩ2 with densities that are homogeneous differential polynomials

of degree 1 such that

(3.108) X = ∂1(I1 + Ĩ1) − ∂2(I2 + Ĩ2)

where

(3.109) Ia = −
2

3

n∑
i=1

∫
(ui )2−a X̂ii (u

i )ui
x log ui

x dx, a = 1, 2.

Note that the densities h1 and h2 of the functionals I1 and I2 can be chosen as

(3.110) ha =

n∑
i=1

Va,i (u
i )

ui
xx

ui
x

, a = 1, 2,

which are homogeneous almost differential polynomials of degree d −1 = 1. Here

the functions Va,i are defined by Va,i (u
i )′ = 2

3
(ui )2−a X̂ii (u

i ).

PROOF: Since the Xi are differential polynomials, condition (3.17) implies the

existence of a vector field Y with components Y i of the same form (3.107) of Xi

such that ∂1 X = ∂2Y . By using the vanishing of the left-hand side of (3.46) with

k = i �= j , we deduce that

(3.111)
∂ X̂ii

∂u j
− ui u j ∂Ŷii

∂u j
= 0, i �= j = 1, . . . , n.

Since (3.97) also holds true in this case, we obtain

(3.112) Ŷii =
1

(ui )2
X̂ii ,

which yields, together with (3.111), the first result of the theorem

(3.113)
∂ X̂ii

∂u j
= 0, i �= j = 1, . . . , n.

From definition (3.51) it is easy to see that the components of the vector field

X̃ = X − (d1 I1 − d2 I2) are still homogeneous differential polynomials of the form

(3.60) with Xi
i (u) = 0, i = 1, . . . , n. Then by using the same construction as we

give in the proof of Lemma 3.8 for the local functionals with densities (3.76), we

can find functionals Ĩ1 and Ĩ2 with homogeneous differential polynomial densities

of degree 1 such that the vector field X̄ = X̃ − (∂1 Ĩ1 − ∂2 Ĩ2) depends at most on

u and ux . The equation ∂1∂2 X̄ = 0 then implies that X̄ depends at most linearly

on ux . Since the components of X̄ are homogeneous differential polynomials of

degree 2, we arrive at the equalities

(3.114) X = ∂1(I1 + Ĩ1) − ∂2(I2 + Ĩ2).

The theorem is proved. �
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From the proof of Theorems 3.2, 3.3, and 3.9 and the argument given at the

beginning of this section for the proof of the quasi-triviality theorem, we see that

the reducing transformation

(3.115) ui �→ ui +
∑
k≥1

εk Fk(u, . . . , u(mk ))

of the bi-Hamiltonian structure (1.27) has the properties that the Fk are homoge-

neous almost differential polynomials of degree k and that mk ≤ 3
2
k.

4 Reducing Bi-Hamiltonian PDEs

In this section we study properties of bi-Hamiltonian systems (1.26).

LEMMA 4.1 Let I and J be two local functionals

(4.1) I =

∫
p(u, ux , . . . , u(N )) dx, J =

∫
q(u, ux , . . . , u(N )) dx,

that satisfy the relation

(4.2) ∂1 I = ∂2 J.

Then up to additions of total x-derivatives, the densities p and q do not depend on

the jet coordinates ux , . . . , u(N ).

PROOF: Denote by X the vector field ∂1 I − ∂2 J and by Xi its components.

Then from the vanishing of

(4.3)
∂ Xi

∂u j,2N+1
= (−1)N

(
f i ∂2 p

∂ui,N ∂u j,N
− gi ∂2q

∂ui,N ∂u j,N

)
,

we see that the functions p and q satisfy

(4.4) (ui − u j )
∂2q

∂ui,N ∂u j,N
= 0,

∂2 p

∂ui,N ∂u j,N
− ui ∂2q

∂ui,N ∂u j,N
= 0.

So the functions p and q can be represented by some functions pi , ri , and s as

p =

n∑
i=1

pi (u, . . . , u(N−1), ui,N ),

q =

n∑
i=1

[
ui pi (u, . . . , u(N−1), ui,N ) + ri (u, . . . , u(N−1))ui,N

]
+ s(u, . . . , u(N−1)).

By substituting these expressions of p and q into the equations

(4.5)
∂ Xi

∂ui,2N
= 0,

we deduce that

(4.6) f i ui ∂2 pi

∂ui,N ∂ui,N
= 0.
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Thus we can rewrite the functions p and q in the forms

(4.7)

p =

n∑
i=1

ai (u, . . . , u(N−1))ui,N + c(u, . . . , u(N−1)),

q =

n∑
i=1

bi (u, . . . , u(N−1))ui,N + d(u, . . . , u(N−1)).

From the identity

∂ Xi

∂u j,2N
= 0 for i �= j

we have

(4.8)

(
∂2 p

∂ui,N ∂u j,N−1
−

∂2 p

∂u j,N ∂ui,N−1

)
= ui

(
∂2q

∂ui,N ∂u j,N−1
−

∂2q

∂u j,N ∂ui,N−1

)
.

These equations imply that the functions ai and bi satisfy

(4.9)
∂ai

∂u j,N−1
=

∂aj

∂ui,N−1
,

∂bi

∂u j,N−1
=

∂bj

∂ui,N−1
.

So there exist functions A(u, . . . , u(N−1)) and B(u, . . . , u(N−1)) such that

(4.10) ai =
∂ A

∂ui,N−1
, bi =

∂ B

∂ui,N−1
, i = 1, . . . , n.

Now we can replace the densities p and q of the Hamiltonians I and J , respec-

tively, with

(4.11) p̃ = p − ∂x A, q̃ = q − ∂x B.

Then the new densities become independent of the jet variables ui,N , i = 1, . . . , n.

Repeating the above procedure successively, we arrive at the result of the lemma.

�

PROOF OF COROLLARY 1.9: Let us assume that after the quasi-Miura trans-

formation the Hamiltonians of system (1.26) have the expansions

(4.12) Ha =
∑
k≥0

εk H [k]
a =

∑
k≥0

εk

∫
h̃[k]

a (u, ux , . . . , u(mk ))dx, a = 1, 2.

Here mk are some positive integers that may also depend on the index a, and the

functions h[k]
a have degrees k. Due to the bi-Hamiltonian property

(4.13) ∂1 H1 = ∂2 H2,

we know in particular that

(4.14) ∂1 H
[1]
1 = ∂2 H

[1]
2 .

Then the result of the above lemma implies that H
[1]
1 = H

[1]
2 = 0. Similarly,

we prove that all other Hamiltonians H [k]
a , k ≥ 2, are trivial. The theorem is

proved. �



598 B. DUBROVIN, S.-Q. LIU, AND Y. ZHANG

COROLLARY 4.2 Any two bi-Hamiltonian flows of the form (1.26) that correspond

to the same bi-Hamiltonian structure (1.27) mutually commute.

PROOF: Denote by X and Y the vector fields corresponding to the given bi-

Hamiltonian systems; then their commutator [X, Y ] is also a bi-Hamiltonian vector

field of degree greater than 1. From Lemma 4.1 it follows that under the quasi-

Miura transformation reducing the bi-Hamiltonian structure (1.27) to (1.28) this

vector field must vanish. Thus we have proved the corollary. �

5 Central Invariants of Bi-Hamiltonian Structures

One of the important applications of the property of quasi-triviality is the classi-

fication of deformations of a given bi-Hamiltonian structure of hydrodynamic type.

The problem of classification of quasi-trivial infinitesimal deformations was solved

in [35]. It was also conjectured that all deformations of the form (1.27) have re-

ducing transformation. The quasi-triviality theorem proves this conjecture. In this

section we reformulate the main result of [35] in order to describe the complete list

of invariants, with respect to Miura-type transformation (1.39), of a bihamiltonian

structure with a given leading-order term { · , · }
[0]
1, 2. Recall that these transforma-

tions must depend polynomially on the derivatives in every order in ε.

Let us rewrite the bi-Hamiltonian structure (1.27) in terms of the canonical

coordinates ui = ui (w), i = 1, . . . , n,

{ui (x), u j (y)}a

= {ui (x), u j (y)}[0]
a

+
∑
m≥1

m+1∑
l=0

εm A
i j

m,l;a(u; ux , . . . , u(m−l+1))δ(l)(x − y), a = 1, 2.

(5.1)

Then the functions P
i j
a and Q

i j
a defined in (1.48) have the expressions

(5.2) Pi j
a (u) = A

i j

1,2;a(u), Qi j
a (u) = A

i j

2,3;a(u), i, j = 1, . . . , n, a = 1, 2.

PROOF OF COROLLARY 1.11: First we assume that the bi-Hamiltonian struc-

ture (5.1) has the following special form:

(5.3) (�1,�2 + ε2γ + O(ε3)).

Here (�1,�2) denotes the bi-Hamiltonian structure given by the leading terms of

(5.1), and γ is a bivector that can be represented as γ = ∂1 X through a vector

field with components that are homogenous differential polynomials of degree 2.

Due to Theorem 3.9, the vector field X can be represented up to a Miura-type

transformation in the form

(5.4) X = ∂1 I − ∂2 J
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where the functionals I and J are defined by

(5.5) I =

∫ n∑
i=1

ui ĉi (u
i )ui

x log ui
x dx, J =

∫ n∑
i=1

ĉi (u
i )ui

x log ui
x dx,

with

(5.6) ĉi (u
i ) =

1

3( f i (u))2
(γ )i i

3 , i = 1, . . . , n.

Here (γ )i i
3 denotes the coefficients of δ′′′(x − y) in the components (γ )i i of the

bivector γ . The main result of [35] together with the quasi-triviality theorem shows

that any two bi-Hamiltonian structures of the form (5.3) are equivalent if and only

if they correspond to the same set of functions ĉi , i = 1, . . . , n. In the case that the

two bi-Hamiltonian structures of the present theorem have the form (5.3), it is easy

to see that ĉi (u
i ) = ci (u), and the result of the theorem follows.

Now return to the general form (5.1) of a bi-Hamiltonian structure. We redenote

it as

(5.7) (�1 + εα1 + ε2β1,�2 + εα2 + ε2β2) + O(ε3).

By using the result of Theorem 3.2, we can eliminate the linear-in-ε terms by a

Miura-type transformation

(5.8) ui �→ exp(−εX)ui , i = 1, . . . , n,

given by a local vector field X with components of the form

(5.9) Xi =

n∑
j=1

Xi
j (u)u j

x .

This implies that P1 = ∂1 X and P2 = ∂2 X , and they in turn yield

(5.10)
Pik

1 = − f k(u)Xi
k(u) + f i (u)Xk

i (u),

Pik
2 = −gk(u)Xi

k(u) + gi (u)Xk
i (u),

where the functions P
i j

1 and P
i j

2 are defined by (5.2). Solving the above system,

we obtain

(5.11) Xi
k(u) =

Pki
2 − ui Pki

1

f k(u)(uk − ui )
, k �= i.

After the Miura-type transformation (5.8), the bi-Hamiltonian structure (5.7)

becomes

(5.12)

(
�1 + ε2

(
β1 −

1

2
[X, α1]

)
,�2 + ε2

(
β2 −

1

2
[X, α2]

))
+ O(ε3).

Then there exists a local vector field Y such that

(5.13) ∂1Y = β1 −
1

2
[X, α1].
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So the Miura-type transformation

(5.14) ui �→ exp(−εY )ui , i = 1, . . . , n,

reduces the bi-Hamiltonian structure (5.12) to the form of (5.8)

(5.15)

(
�1,�2 + ε2

(
β2 −

1

2
[X, α2] − ∂2Y

))
+ O(ε3),

and we need to compute the coefficients χ
i j

3 of δ′′′(x − y) in the components of the

bivector χ = β2 − 1
2
[X, α2] − ∂2Y . By using the notation introduced in (5.2), we

have

[X, α1]
i i
3 =

∑
k

Xi
k(Pik

1 − Pki
1 ) = −2

∑
k �=i

X i
k Pki

1 ,

[X, α2]
i i
3 =

∑
k

Xi
k(Pik

2 − Pki
2 ) = −2

∑
k �=i

X i
k Pki

2 ,

(∂2Y )i i
3 = ui (∂1Y )i i

3 = ui

(
β1 −

1

2
[X, α1]

)i i

3

= ui Qii
1 −

1

2
ui [X, α1]

i i
3 .

Here as above, for any bivector η we denote by η
i j

3 the coefficient of δ′′′(x − y) in

the components ηi j . These formulae together with the expressions (5.11) for Xi
k ,

k �= i , show that the functions ĉi (u
i ) that are defined by (5.6) with γ replaced by

χ coincide with the functions ci (u) introduced in (1.49). Thus we have proved the

theorem. �

From this theorem, the following corollary easily follows:

COROLLARY 5.1 Any deformation (1.27) of the bi-Hamiltonian structure (1.28) is

equivalent, under an appropriate Miura-type transformation, to a deformation in

which only even powers of ε appear.

This result can also be seen from the construction of the functionals I and J in

the proof of Theorem 3.3 and the argument given in the proof of the quasi-triviality

theorem.

THEOREM 5.2 If we choose another representative

(5.16)
{ · , · }˜1 = c{ · , · }2 + d{ · , · }1, { ·, }˜2 = a{ · , · }2 + b{ · , · }1,

ad − bc �= 0,

of the bi-Hamiltonian structure (5.1), then the functions ci (u) that we define in

(1.49) are changed to

(5.17) c̃i (ũ
i ) =

cui + d

ad − bc
ci (u

i ), i = 1, . . . , n,

where

(5.18) ũi =
aui + b

cui + d
, i = 1, . . . , n,
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are the canonical coordinates of the bi-Hamiltonian structure (5.1) with respect to

the new representative (5.16).

PROOF: The result of the theorem is obtained by a straightforward calculation

with the help of formula (5.18) and the tensor rule abided by P
i j
a and Q

i j
a under the

change of coordinates ui �→ ũi (u). �

From the above theorem we see that, for the bi-Hamiltonian structure (5.1), the

following 1
2
-forms

(5.19) �i = ci (u
i )(dui )1/2

are invariant, up to permutations, under transformation (5.16) with(
a b

c d

)
∈ SL(2, C).

6 Examples and Concluding Remarks

Let us give some examples of bi-Hamiltonian structures, their central invariants

and reducing transformations.

Example 1. The bi-Hamiltonian structure of the KdV hierarchy [23, 38, 47] has

the form

(6.1) {w(x), w(y)}1 = δ′(x − y),

(6.2)
{w(x), w(y)}2 = w(x)δ′(x − y) +

1

2
w′(x)δ(x − y)

+ 3 c ε2 δ′′′(x − y).

The canonical coordinate is u = w, and the constant c is the central invariant. Up

to terms of order ε6, the reducing transformation [16] is given by4

(6.3) w = v + ε2∂2
x

[
c log vx +

c2ε2

10

(
5
v(4)

v2
x

− 21
vxx vxxx

v3
x

+ 16
v3

xx

v4
x

)
+ O(ε4)

]
.

Observe that the inverse transformation can be written in a similar form,

(6.4) v = w+ε2∂2
x

[
−c log wx +

c2ε2

10

(
5
w(4)

w2
x

−9
wxx wxxx

w3
x

+4
w3

xx

w4
x

)
+ O(ε4)

]
.

The transformations of the form

u �→ u + ε2∂2
x F(u; ux , uxx , . . . ; ε)

form a subgroup of the group of all Miura-type (or quasi-Miura-type) transfor-

mations. The appearance of this subgroup is closely related to the existence of a

tau-function in the theory of the KdV hierarchy (see details in [16]).

4 The (inverse to the) reducing transformation for the KdV equation was constructed in [4]. How-

ever, the action of this transformation on the Poisson pencil was not studied.
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The Poisson pencils (6.1)–(6.2) with different values of c are inequivalent with

respect to Miura-type transformations.

Example 2. The bi-Hamiltonian structure related to the Camassa-Holm hierarchy

[7, 8, 20, 21, 22] has the expression

{w(x), w(y)}1 = δ′(x − y) −
ε2

8
δ′′′(x − y),(6.5)

{w(x), w(y)}2 = w(x)δ′(x − y) +
1

2
w′(x)δ(x − y).(6.6)

The canonical coordinate u also coincides with w, and the central invariant c(u) =
1

24
u. As shown in [37], the reducing transformation is, up to ε4, given by

w = v + ε2∂x

(
v vxx

24 vx

−
vx

48

)

+ ε4∂x

(
7 v2

xx

2880 vx

+
v v3

xx

180 v3
x

−
v2 v4

xx

90 v5
x

−
vxxx

512
−

59 v vxx vxxx

5760 v2
x

+
37 v2 v2

xx vxxx

1920 v4
x

−
7 v2 v2

xxx

1920 v3
x

+
5 v v(4)

1152 vx

−
31 v2 vxx v(4)

5760 v3
x

+
v2 v(5)

1152 v2
x

)
.

(6.7)

Example 3. Let us consider the bi-Hamiltonian structure related to the multicom-

ponent KdV-CH (Camassa-Holm) hierarchy. Define

(6.8) Di = wiδ′(x − y) +
wi

x

2
δ(x − y) + ai

ε2

8
δ′′′(x − y), i = 0, 1, . . . , n.

Here w0 = 1 and a0, . . . , an are given constants with at least one nonzero. Define

also the numbers

(6.9) f i j
m =




−1 i, j ≤ m

+1 i, j ≥ m + 1

0 otherwise.

Then we have the following n + 1 compatible Hamiltonian structures:

(6.10) {wi (x), w j (y)}m = (−1)m f i j
m Di+ j−m−1,

1 ≤ i, j ≤ n, m = 0, 1, . . . , n.

When i < 0 or i > n, we assume that Di = 0. These Hamiltonian structures

were introduced5 in the study of the hierarchies of integrable systems (called the

5 To the best of our knowledge, connections of these bi-Hamiltonian structures with the Camassa-

Holm equation and its multicomponent generalizations were never considered in the literature.
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coupled KdV hierarchies) associated with the compatibility conditions of the linear

systems of the form [1, 2, 3, 39](
1

2
(ε∂x)

2 + A(w; λ)

)
ψ = 0,(6.11)

ψt =
1

2
Bψx −

1

4
Bxψ.(6.12)

Here A(w; λ) has the expression

(6.13) A(w; λ) =

∑n
i=0(−1)iwiλn−i∑n
i=0(−1)i aiλn−i

,

and B is a certain polynomial or Laurent polynomial in λ with coefficients that

are differential polynomials of w1, . . . , wn which can be chosen according to the

equation

(6.14) At = ABx +
Ax

2
B +

ε2

8
Bxxx .

As shown by Ferapontov in [18], if a system of hydrodynamic type with n

dependent variables possesses n + 1 compatible Hamiltonian structures of hydro-

dynamic type, then this (n + 1)–Hamiltonian structure must be equivalent to the

one obtained from the leading terms of (6.10).

From (6.10) we readily have the following bi-Hamiltonian structures:

(6.15) Bk,l = ({ · , · }k, { · , · }l), k �= l.

Denote by λ1(w), . . . , λn(w) the roots of the polynomial P(λ) = λn − w1λn−1 +

· · · + (−1)nwn . Then the canonical coordinates for the bi-Hamiltonian structure

Bk,l are given by ui = (λi )
k−l, i = 1, . . . , n, and the central invariants, c1, . . . , cn

have the expressions

(6.16) ci (u
i ) =

∑n
j=0(−1) j ajλ

n− j

i

24(l − k)λn−1−l
i

, i = 1, . . . , n.

In particular, for the one-component case n = 1, choosing a0 = 0 and a1 = 1,

we get the bi-Hamiltonian structure B1,0, which coincides with (6.1)–(6.2) for the

KdV hierarchy. The choice a0 = −1 and a1 = 0 yields the bi-Hamiltonian struc-

ture (6.5)–(6.6) of the Camassa-Holm hierarchy. In general, we call the hierarchy

generated by the bi-Hamiltonian structure Bk,l the multi-component KdV-CH hier-

archy.

For the case when n = 2, the above defined bi-Hamiltonian structure B2,1

yields, with different choices of the constants a0, a1, and a2 and up to certain

Miura-type transformations and rescaling of the Poisson structures, the following

four bi-Hamiltonian structures that appeared in the literature. They have the same
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leading terms

(6.17)

{ϕ(x), ϕ(y)}
[0]
1 = 0, {ρ(x), ϕ(y)}

[0]
1 = δ′(x − y),

{ρ(x), ρ(y)}
[0]
1 = 0,

{ϕ(x), ϕ(y)}
[0]
2 = 2δ′(x − y), {ρ(x), ϕ(y)}

[0]
2 = ϕ(x)δ′(x − y),

{ρ(x), ρ(y)}
[0]
2 = 2ρ(x)δ′(x − y) + ρ ′(x) δ(x − y).

A bi-Hamiltonian structure related to the nonlinear Schrödinger hierarchy is given

by the above brackets with the only difference [5, 35]

(6.18) {ρ(x), ϕ(y)}2 = {ρ(x), ϕ(y)}
[0]
2 + εδ′′(x − y).

After the Miura-type transformation

(6.19) w1 = 2ϕ, w2 = ϕ2 − 4ρ + 2εϕx ,

it is transformed to the bi-Hamiltonian structure 8B2,1 with the choice of constants

a0 = a1 = 0 and a2 = −8. Here 8B2,1 denotes the bi-Hamiltonian structure

obtained from B2,1 by the multiplication of an overall factor 8.

In [35] a generalization of the Camassa-Holm hierarchy is introduced that is

called the 2-component Camassa-Holm hierarchy. It is reduced to the usual Ca-

massa-Holm hierarchy under a natural constraint on its two dependent variables.

The related bi-Hamiltonian structure is defined by the brackets (6.17) except

(6.20) {ρ(x), ϕ(y)}1 = {ρ(x), ϕ(y)}
[0]
1 + εδ′′(x − y).

After the Miura-type transformation

(6.21) w1 = 2ϕ + 2εϕx , w2 = ϕ2 − 4ρ,

it is converted, up to the approximation to ε2, to the bi-Hamiltonian structure 8B2,1

with the choice of constants a0 = −8, a1 = 0, and a2 = 0.

In [29] the bi-Hamiltonian structure for the so-called classical Boussinesq hier-

archy is given. It is defined by the brackets (6.17) except for

(6.22) {ρ(x), ρ(y)}2 = {ρ(x), ρ(y)}
[0]
2 +

1

2
ε2δ′′′(x − y).

After the Miura-type transformation

(6.23) w1 = 2ϕ, w2 = ϕ2 − 4ρ,

it is transformed to the bi-Hamiltonian structure 8B2,1 with the choice of constants

a0 = 0, a1 = 0, a2 = −8.

Note that, for the bi-Hamiltonian structure related to the nonlinear Schrödinger

hierarchy, by moving the perturbation term from the second Poisson bracket to

the first one we obtain the bi-Hamiltonian structure of the 2-component Camassa-

Holm hierarchy. Doing precisely the same procedure we obtain from the above bi-

Hamiltonian structure of the classical Boussinesq hierarchy the one that is defined
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by (6.17) except for the bracket

(6.24) {ρ(x), ρ(y)}1 = {ρ(x), ρ(y)}
[0]
1 −

1

2
ε2δ′′′(x − y).

After the change of dependent variables

(6.25) w1 = 2ϕ, w2 = ϕ2 − 4ρ,

it is transformed to the bi-Hamiltonian structure 8B2,1 with the choice of constants

a0 = 0, a1 = 8, and a2 = 0. This bi-Hamiltonian structure is related to the Ito-type

equations [28, 33].

The bi-Hamiltonian structures related to the nonlinear Schrödinger hierarchy

and the classical Boussinesq hierarchy are equivalent. Indeed, their central invari-

ants are given by c1 = c2 = 1
24

. The central invariants for the bi-Hamiltonian

structure related to the 2-component Camassa-Holm hierarchy are given by c1 =

(u1)2/24 and c2 = (u2)2/24, and those for the bi-Hamiltonian structure defined by

(6.17) and (6.24) have the form c1 = u1/24 and c2 = u2/24.

We omit here the presentation of the reducing transformations of the above bi-

Hamiltonian structures due to their cumbersome expressions.

Example 4. The equations of motion of one-dimensional isentropic gas with the

equation of state p = κ
κ+1

ρκ+1 read

(6.26) ut +

(
u2

2
+ ρκ

)
x

= 0, ρt + (ρ u)x = 0.

Here κ is an arbitrary parameter, κ �= 0,−1. For a gas with m degrees of freedom

one has

κ =
2

m
(see, e.g., [9]). This is a weakly symmetrizable system with

η =

(
0 1

1 0

)
.

This gives the first Poisson structure of the equations with the Poisson brackets

(6.27)
{
u(x), ρ(y)

}[0]

1
= δ′(x − y);

other brackets vanish.

The second Hamiltonian structure{
u(x), u(y)

}[0]

2
= 2ρκ−1(x)δ′(x − y) + ρκ−1

x δ(x − y),

{
u(x), ρ(y)

}[0]

2
= u(x)δ′(x − y) +

1

κ
u′(x)δ(x − y),

{
ρ(x), ρ(y)

}[0]

2
=

1

κ
(2ρ(x)δ′(x − y) + ρ ′(x)δ(x − y)),

(6.28)

was found in [41, 42].
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As shown in [16] the isentropic gas equations have the following deformation,

which preserves the bi-Hamiltonian property (up to corrections6 of order ε6):

∂u

∂t
+ ∂x

{
u2

2
+ ρκ + ε2

[
κ(κ − 2)

8
ρκ−3ρ2

x +
κ2

12
ρκ−2ρxx

]

+ ε4(κ − 2)(κ − 3)
[
a1ρ

−4u2
xρ

2
x + a2ρ

κ−6ρ4
x + a3ρ

−3uxx uxρx

+ a4ρ
−2u2

xx + a5ρ
−3u2

xρxx + a6ρ
κ−5ρ2

xρxx + a7ρ
κ−4ρ2

xx

+ a8ρ
−2ux uxxx + a9ρ

κ−4ρxρxxx + a10ρ
−κ−2u4

x

]
+ ε4 κ(κ2 − 4)

360
ρκ−3ρxxxx

}

= O(ε6),

∂ρ

∂t
+ ∂x

{
ρu + ε2

(
(2 − κ)(κ − 3)

12κρ
uxρx +

1

6
uxx

)

+ ε4(κ − 2)(κ − 3)
[
b1ρ

−4uxρ
3
x + b2ρ

−3ρ2
x uxx + b3ρ

−3uxρxρxx

+ b4ρ
−2uxxρxx + b5ρ

−2uxxxρx + b6ρ
−2uxρxxx + b7ρ

−1uxxxx

+ b8ρ
−κ−1u2

x uxx + b9ρ
−κ−2u3

xρx

]}
= O(ε6).

The coefficients are given by

a1 =
18 + 75κ − 15κ2 + 20κ3 + 2κ4

2880κ3
,

a2 =
6 + 113κ + 409κ2 − 185κ3 + 17κ4

5760κ2
,

a3 = −
18 + 11κ + 3κ2

720κ2
, a4 =

7

720κ
, a5 =

−6 + 3κ − κ2

480κ2
,

a6 =
−6 − 39κ − 10κ2 + 5κ3

480κ
, a7 =

14 + 5κ + 5κ2

1440
, a8 =

1

120κ
,

a9 =
2 + 5κ

240
, a10 = −

(κ + 2)(κ + 3)(κ2 − 1)

5760κ4
,

b1 =
42 + 83κ − 53κ2 + 8κ3

1440κ3
, b2 = −

6 + 35κ − 24κ2 + 5κ3

720κ3
,

b3 = −
12 + 40κ − 13κ2 + 5κ3

720κ3
, b4 =

6 − 4κ + κ2

180κ2
, b5 =

6 + κ + κ2

720κ2
,

6 In principle one can continue the expansions until an arbitrary order in ε. However, the compu-

tations become very involved.
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b6 =
6 + κ + κ2

720κ2
, b7 = −

1

360κ
, b8 = −

(κ + 2)(κ + 3)

720κ4
,

b9 =
(κ + 1)(κ + 2)(κ + 3)

1440κ4
.

The corresponding bi-Hamiltonian structure (at the approximation up to ε4) is

given in section 4.2.3 of [16]; the central invariants are c1 = c2 = 1
24

. The above

system can be represented as

∂u

∂t
= {H1, u(x)}1 =

κ

κ + 1
{H2, u(x)}2,

∂ρ

∂t
= {H1, ρ(x)}1 =

κ

κ + 1
{H2, ρ(x)}2.

Here the densities h1 and h2 of the Hamiltonians H1 and H2 have the expressions

h1 =
1

2
ρ u2 +

ρκ+1

κ + 1
+ �h1,

h2 = ρ u + �h2,

where

�h1 = u�h2 −
ε2

24κ

(
(κ2 − 3κ + 6)u2

x + κ(2κ2 − 5κ + 6)ρκ−2ρ2
x

)

+ ε4 (κ − 2)(κ − 3)

240κ3

(
−

1

3
κ(κ2 − 4κ + 6)ρ−1ux uxxx

+
1

3
κ(2κ2 − 13κ + 12)ρ−2ux uxxρx

+
1

72

(3κ + 5)(κ + 3)(κ + 2)

κ
ρ−κ−1u4

x

−
1

12
(2κ − 3)(κ + 3)(κ + 2)ρ−3u2

xρ
2
x

+
κ2(κ − 1)(3κ2 − 8κ + 12)

2(κ − 3)
ρκ−3ρ2

xx

−
1

72
κ(κ − 1)(16κ4 − 100κ3 + 229κ2 − 211κ + 6)ρκ−5ρ4

x

)
,

�h2 = −ε2 (κ − 2)(κ − 3)

12κ
ρ−1uxρx

+ ε4 (κ − 2)(κ − 3)

720κ3

[
−2κ(κ2 − 8κ + 6)ρ−2uxρxxx

+ κ(7κ2 − 61κ + 42)ρ−3uxρxρxx
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+

(
−5κ3 +

79

2
κ2 −

55

2
κ + 3

)
ρ−4uxρ

3
x

+
1

6κ
(κ + 3)(κ + 2)(κ + 1)ρ−k−2u3

xρx

]
.

To write down the reducing transformation of the perturbed system of the one-

dimensional isentropic gas and its bi-Hamiltonian structure, we introduce the op-

erators T1 and T2

T1u(m) = u(m+1), T1ρ
(m) = ρ(m+1),

T2u(m) = ∂m
x (κρκ−2ρx), T2ρ

(m) = u(m+1),
m ≥ 0.

We will use Greek subscripts for the result of the operators acting on the functions

ρ and u, i.e.,

ρα1α2··· := Tα1
Tα2

· · · ρ, uα1α2··· := Tα1
Tα2

· · · u.

Define the functions

F1 =
1

24
log(κρκ−2ρ2

x − u2
x) −

1

24

(κ − 2)(κ − 3)

κ
log ρ,

F2 =
1

1152
ρα1α2α3α4

Mα1α2 Mα3α4 −
1

360
ρα1α2α3

ρα4α5α6
Mα1α4 Mα2α5 Mα3α6

−
1

1152
ρα1α2

ρα3α4α5α6
Mα1α3 Mα2α4 Mα5α6

+
1

360
ρα1α2

ρα3α4α5
ρα6α7α8

Mα1α3 Mα2α6 Mα4α7 Mα5α8

+ (κ − 2)(κ − 3)D−2

[
−

1

240
κρ2k−5ρxxxρ

3
x

+
11

2880
κρ2κ−5ρ2

xxρ
2
x

+

(
−

7

5760
κ2 +

19

5760
κ +

7

960

)
ρ2κ−6ρxxρ

4
x +

11

2880
ρκ−3ρ2

x u2
xx

−
1

5760κ
(κ4 − 9κ3 + κ2 + 53κ + 6)ρ2κ−7ρ6

x

+
1

240
ρκ−3ρ2

x uxxx ux +
1

240
ρκ−3ρxρxxx u2

x −
11

720
ρκ−3ρx ux uxxρxx

+
11

2880
ρκ−3u2

xρ
2
xx −

1

1440
(11κ − 21)ρκ−4ρ3

x uxx ux

+
1

2880κ
(22κ2 − 47κ − 42)ρκ−4ρ2

x u2
xρxx

+
1

5760κ2
(12κ4 − 45κ3 + 15κ2 + 101κ + 6)ρκ−5u2

xρ
4
x

−
1

240κ
ρ−1uxxx u3

x +
11

2880κ
ρ−1u2

x u2
xx +

1

1440κ
ρ−2uxx u3

xρx
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+
1

5760κ2
(7κ2 − 13κ + 42)ρ−2ρxx u4

x

−
1

5760κ3
(8κ3 − 31κ2 + 43κ − 6)ρ−3u4

xρ
2
x

−
1

5760κ4
(κ + 3)(κ + 2)ρ−κ−1u6

x

]

Here the matrix M = (Mαβ) and differential polynomial D read

M = D−1

(
−κρκ−2 ρx ux

ux −ρx

)
, D = u2

x − κρκ−2ρ2
x .

Then the reducing transformation is given by the formula

u �→ u + T1T2(ε
2
F1 + ε4

F2), ρ �→ ρ + T1T1

(
ε2
F1 + ε4

F2

)
.

We leave as an exercise for the reader to check that the denominator D �= 0 on the

monotone solutions.

In conclusion, let us formulate some open problems.

Problem 1. Study the convergence (or at least the asymptotic nature) of the reduc-

ing transformations for the case of analytic-in-ε perturbations (1.7) (e.g., for the

case of polynomial dependence on ε).

Problem 2. Near the point of gradient catastrophe of the hyperbolic system (1.2)

one expects to have

ui
x ∼ ε−1, ui

xx ∼ ε−2, etc.

So, all the terms of the reducing transformation become of the same order and

the formal series in ε diverge. How does this expected divergence influence the

qualitative properties of the solutions to bi-Hamiltonian PDEs near the point of

gradient catastrophe? The arguments of [13] suggest that, at least in the case n =

1, the generic solutions must locally behave in a universal way near the point of

gradient catastrophe. This behavior is rather different from the shock formation

present in the solutions to the dissipative perturbations of hyperbolic systems. We

postpone discussion of this behavior for subsequent publications.

Problem 3. Are there more wide classes of perturbations of systems of hyperbolic

PDEs admitting reducing transformations? The natural candidate to be considered



610 B. DUBROVIN, S.-Q. LIU, AND Y. ZHANG

is the perturbation of the so-called semi-Hamiltonian systems in Tsarev’s sense

[44], i.e., hyperbolic systems written in the diagonal form and possessing a com-

plete family of commuting flows. First results in this direction were obtained in the

recent paper [36].

Problem 4. According to our results, classes of equivalence of semisimple bi-

Hamiltonian structures depend at most on n(n + 1) arbitrary functions of one vari-

able. Prove existence of such bi-Hamiltonian structures for an arbitrary choice of

these functional parameters.

Appendix: Bi-Hamiltonian Structures of Hydrodynamic Type

In this appendix we will describe in more detail, following [17], the defin-

ing equations for semisimple bi-Hamiltonian structures of hydrodynamic type as

well as their Lax pair representation. We will work in the canonical coordinates

u1, . . . , un (see Lemma 1.5 above). Introduce the classical Lamé coefficients

Hi (u) := f
−1/2

i (u), i = 1, . . . , n,

and the rotation coefficients

(A.1) γi j (u) := H−1
i ∂i Hj , i �= j.

Here, as usual,

∂i =
∂

∂ui
;

no summation over repeated indices will be assumed within this section. The clas-

sical Lamé equations

∂kγi j = γikγk j , i, j, k distinct,(A.2)

∂iγi j + ∂jγj i +
∑
k �=i, j

γkiγk j = 0, i �= j,(A.3)

describe diagonal metrics of curvature zero.7 Adding the equations

(A.4) ui∂iγi j + u j∂jγj i +
∑

k �=i, j

ukγkiγk j +
1

2
(γi j + γj i ) = 0, i �= j,

one obtains the defining relations for semisimple Poisson pencils of hydrodynamic

type. The solutions to the system (A.2)–(A.4) are parametrized by n(n − 1) arbi-

trary functions of one variable. Indeed, one can freely choose the functions

γi j (u
1
0, . . . , u j , . . . , un

0)

7 Integrability of the system (A.2)–(A.3) was discovered by Zakharov [46].
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near a given point

(A.5) u0 = (u1
0, . . . , un

0), ui
0 �= u

j

0, ui
0 �= 0.

Equations (A.2)–(A.4) can be represented as the compatibility conditions of the

linear system

(A.6)

∂iψj = γj iψi , i �= j,

∂iψi +
∑
k �=i

γki

uk − λ

ui − λ
ψk +

1

2 (ui − λ)
ψi = 0

(“Lax pair” with the spectral parameter λ for (A.2)–(A.4)). The solutions to the

linear system (A.6) are closely related to the common first integrals of the bi-

Hamiltonian systems of hydrodynamic type, i.e., with the Casimirs of the Poisson

pencil

(A.7)
{ · , I }

[0]
2 − λ{ · , I }

[0]
1 = 0, I =

∫
P(u)dx,

∂i P(u) = ψi Hi , i = 1, . . . , n.

As we already know (see Lemma 1.6 above) the bi-Hamiltonian systems are all

diagonal in the canonical coordinates

(A.8) ui
t + V i (u)ui

x = 0, i = 1, . . . , n.

The characteristic velocities V i (u) are determined from the following linear sys-

tem:

∂kχi = γkiχk, i �= k,(A.9)

χi = Hi V
i , i = 1, . . . , n.(A.10)

For the given rotation coefficients γi j (u) satisfying (A.2)–(A.4), the general solu-

tion to (A.9) depends on n arbitrary functions of one variable. In particular, the

Lamé coefficients χi = Hi (u) give a solution to (A.9). They correspond to the

spatial translations V i (u) ≡ 1, i = 1, . . . , n. Finally, to reconstruct the flat pencil

of metrics starting from a given solution to (A.2)–(A.4) near a given point (A.5),

one has to choose a solution χ1(u), . . . , χn(u) such that

χi (u0) �= 0, i = 1, . . . , n.

Then we put

(A.11) g
i j

1 (u) = χ−2
i (u)δi j , g

i j

2 (u) = uiχ−2
i (u)δi j .

The flat coordinates of the metrics correspond to particular solutions of the

system (A.6). Namely, to find flat coordinates for the first metric, one has to choose

a fundamental system of solutions

ψα
i (u), α = 1, . . . , n, det(ψα

i (u0)) �= 0,
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to the linear overdetermined system

(A.12)

∂iψj = γj iψi , i �= j,

∂iψi +
∑
k �=i

γkiψk =
1

2
ψi ,

obtained from (A.6) at λ = ∞. Then the flat coordinates vα are defined by quadra-

tures

(A.13) dvα =

n∑
i=1

χiψ
α
i dui , α = 1, . . . , n.

Flat coordinates for the second metric are constructed in a similar way by using

a fundamental system of solutions to (A.6) at λ = 0. We deduce that semisimple

bi-Hamiltonian structures of hydrodynamic type with n dependent variables are

parametrized by n2 arbitrary functions of one variable. For n ≤ 2 equations (A.2)–

(A.4) are linear. So an explicit parametrization of the Poisson pencils is available

[40]. The equations become nonlinear starting from n ≥ 3. All nontrivial solutions

known so far are obtained within the theory of Frobenius manifolds. In this case

the rotation coefficients are symmetric,

γj i = γi j

(the so-called Egoroff metrics), and equations (A.2), (A.3), and (A.4) are reduced

to isomonodromy deformations [12]. We will study a more general case in subse-

quent publications.
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