On Hamiltonian Perturbations
of Hyperbolic Systems of Conservation Laws I:
Quasi-Triviality of Bi-Hamiltonian Perturbations

BORIS DUBROVIN
SISSA
Steklov Mathematical Institute

SI-QI LIU
Tsinghua University

AND
YOUIJIN ZHANG

Tsinghua University

Abstract

We study the general structure of formal perturbative solutions to the Hamil-
tonian perturbations of spatially one-dimensional systems of hyperbolic PDEs
vi + [¢(v)]x = 0. Under certain genericity assumptions it is proved that any
bi-Hamiltonian perturbation can be eliminated in all orders of the perturbative
expansion by a change of coordinates on the infinite jet space depending ratio-
nally on the derivatives. The main tool is in constructing the so-called quasi-
Miura transformation of jet coordinates, eliminating an arbitrary deformation of
a semisimple bi-Hamiltonian structure of hydrodynamic type (the quasi-triviality
theorem). We also describe, following [35], the invariants of such bi-Hamiltonian
structures with respect to the group of Miura-type transformations depending
polynomially on the derivatives. (© 2005 Wiley Periodicals, Inc.
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1 Introduction

Systems of evolutionary PDEs arising in many physical applications can be
written in the form

(1.1) w; + X/ji(w)w){' + perturbation =0, i=1,...,n,

where the perturbation may depend on higher derivatives. The dependent variables
of the system

w=w'(x,1),...,w"x,1))

are functions of one spatial variable x and the time #; summation over repeated
upper and lower indices will be assumed unless otherwise specified. Vji (w) is a
matrix of functions having real distinct eigenvalues. Therefore system (1.1) can
be considered as a perturbation of the hyperbolic system of first-order quasi-linear
PDEs

(1.2) v+ Vi, =0, i=1,....n

(it will be convenient to denote differently the dependent variables of the unper-
turbed system (1.2) and the perturbed one (1.1)). Recall (see, e.g., [9]) that system
(1.2) is called hyperbolic if the eigenvalues of the matrix Vji (v) are all real and all
n eigenvectors are linearly independent. In particular, strictly hyperbolic systems
are those for which the eigenvalues are all real and pairwise distinct. An important
particular class is the so-called systems of conservation laws

(1.3) v+ ¢ (v) =0, i=1,...,n,

where the dependent variables are chosen to be densities of conserved quantities,
and the functions ¢’(v) are the corresponding densities of fluxes (see, e.g., [9]
regarding the physical applications of such systems). The relationships between
solutions of the perturbed and unperturbed systems have been extensively studied
for the case of dissipative perturbations of spatially one-dimensional systems of
conservation laws (see, e.g., [6] and the references therein). Our strategic goal
is the study of Hamiltonian perturbations of hyperbolic PDEs. Although many
concrete examples of such perturbations have been studied (see, e.g., [45, 26, 19,
11, 34, 15, 32]), the general concepts and results are still missing.

Let us first explain how to recognize Hamiltonian systems among all systems
of conservation laws. Recall [9] that the system of conservation laws (1.3) is sym-
metrizable in the sense of Friedrichs and Lax, Godunoyv, if there exists a constant,
symmetric, positive definite matrix n = (#;;) such that the matrix

0¢*
Nis 507
is symmetric,
0¢* a¢°
1.4 is~ - = Njis—-
(14 7 v/ L av!
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In case the symmetry (1.4) holds true while the symmetric matrix n is only non-
degenerate but not necessarily positive definite, one obtains weakly symmetrizable
systems of conservation laws.

LEMMA 1.1 The system of conservation laws (1.3) is Hamiltonian if it is weakly
symmetrizable.

PROOF: Choosing the Poisson brackets in the constant form
'@ MY =078 @ =y, @)= o)
and a local Hamiltonian
H = /h(v(x))dx,

one obtains the Hamiltonian system in the form (1.3) with

; s 0h(v)
¢ (v) =n" o7 "
"
Both sides of (1.4) coincide then with the Hessian of the Hamiltonian density 4 (v).
The lemma is proved. O

Recall that weakly symmetrizable systems of conservation laws enjoy the fol-
lowing important property: they possess two additional conservation laws, namely,

1, 9k
(1.5) dp) +dq) =0, p= Em./‘v’v’v q=v'——=—h(),

av!

1 ..0h 0h

1.6 o:h Oy =0, = -’ ——
(1.6) h(v) + 9, f(v) S () 21 50 3o

where /i (v) is the Hamiltonian density in the formulae above. For symmetrizable
systems the function p(v) is nonnegative.
The class of Hamiltonian perturbations to be investigated will be written in the
form
w! + {w'(x), H} = w' + Vj"(w)w){ + ZekU,ﬁ(w; wy, ..., wkD)
1.7) k=1
=0, i=1,...,n,

where € is the small parameter, and the U,i(w; Wy ..., w D) are graded homo-
geneous polynomials' in the jet variables

1

1
Wy = (Wy, ..., W), Wey = (W, .

w(k+1) — (wl,k—&-l’ -

n
LW,

wn,k+l)’

L]

LA different class of perturbations for the particular case of the KdV equation was considered
by Y. Kodama [30]. In his theory the terms of the perturbative expansion are polynomials also in w
(here n = 1). The degree on the algebra of differential polynomials is defined by deg u™ =m 42,
m > 0. Also, some nonlocal terms appear in Kodama’s perturbation theory. Further developments
of this method can be found in [31].
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with
(1.8) degw””:m, i=1,...,n, m>0.

They arise, e.g., in the study of solutions slowly varying in the space-time direc-
tions [45].
In what follows, we will call a function that depends polynomially on the jet

variables wy, Wyy, . . ., a differential polynomial, and call a differential polynomial
that is homogeneous with respect to the above gradation a homogeneous differential
polynomial.

The Hamiltonians are local functionals
(1.9 H = f[h[ol(w) + e M (w; wy) + e2h (w; wy, wyy) + -+ - 1dx,
deg h'M(w; wy, ..., w®) =k,

for some differential polynomials A (w; wy, ..., w®). The Poisson brackets are
assumed to be local in every order in €; i.e., they are represented as follows:

m+1

(110)  {w'@). w/ ()= Y AL (wiw,, ... w80 — y)

m=>0 [=0

with coefficients being differential polynomials,

(1.11) deg AV (w; wy, ..., w™ ) =m — 1+ 1.

We also assume that the coefficients of these differential polynomials are smooth
functions on an n-dimensional ball w € B C R". It is understood that the anti-
symmetry and the Jacobi identity for (1.10) hold true as identities for formal power
series in €. It can be readily seen that, for an arbitrary local Hamiltonian of the
form (1.9), the evolutionary systems (1.7) have the needed form.

The leading term

(1.12) {w'(0), w/ ()™ 1= AJ ()8 (x = ») + AW (x); we(0))8(x = y)
is itself a Poisson bracket (the so-called Poisson bracket of hydrodynamic type; see
[14]). We will always assume that

(1.13) det A, (w) # 0
for all w € B C R”. Redenote the coefficients of {w’ (x), w/ ()} as follows:
(1.14) gl (w) =AY, (w), O (wwt := A (w; w,)

(see (1.11)). The coefficient (g"/ (w)) can be considered as a symmetric nondegen-
erate bilinear form on the cotangent spaces. The inverse matrix defines a metric

(1.15) ds* = gij(w)dw'dw’, (g w)) := (g (w))~!
(not necessarily positive definite). Recall [14] 'phat (1.12)—(1.14) defines a Poisson
structure if and only if the metric is flat and Q) (w) = —g" (w)I'},(w) where '},

are the Christoffel symbols of the Levi-Civita connection of the metric (1.15).
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Miura-type transformations are defined by

w' = @6(11)) +Zekcl>};(w; Wey oo, w®), i=1,...,n,

(1.16) k=1 .
i k) e 09
deg &, (w; wy, ..., w"”) =k, satisfying det S # 0.
w
As usual, the coefficients ® (w; wy, ..., w®) are assumed to be differential poly-

nomials. It is easy to see that such transformations form a group. The group of
Miura-type transformations is a natural extension of the group of local diffeomor-
phisms that plays an important role in the geometrical study of hyperbolic systems
(see, e.g. [43]).

The class of the Hamiltonians (1.9), Poisson brackets (1.10), and the evolu-
tionary systems (1.7) is invariant with respect to Miura-type transformations. Two
Poisson brackets of the form (1.10) are called equivalent if they are related by a
Miura-type transformation.

An important result of [25] (see also [10, 16]) says that any Poisson bracket
of the form (1.10) can be locally reduced by Miura-type transformations to the
constant form

(1.17) (' (), ' (»)} = n"8'(x —y), 0" = const.
We will denote the inverse matrix by the same symbol with lower indices
(1.18) (mij) == (")~

Connection of the theory of Hamiltonian systems (1.7) to the theory of systems
of conservation laws is clear from the following statement:

LEMMA 1.2 By a change of dependent variables of the form (1.16) the Hamiltonian
system (1.7) can be recast into the form of a system of conservation laws

W+ Y (W Wy, ...5€) =0, i=1,...,n,

(1.19) Y @; Wy, .. €) = YL by, ..., DY),

k>0
deg Wi (0; s, ..., w") = k.

The system of conservation laws (1.19) is Hamiltonian with respect to the Poisson
bracket (1.17) if and only if

(1.20) Vi =i (03 s,y - €)
satisfy

(1.21) aw, Z( 1)f< )af i th

1=s

foranyi,j=1,...,n,s =0,1,....
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In this paper we will investigate the structure of formal perturbative expansions
of the solutions to (1.7)

(1.22) wi(x,1:€) = v (x, 1)+ €80 (x,1) + €80 (x, 1) + - - - .

The leading term solves (1.2); the coefficients of the expansion 8; v’ (x, t) are to be
determined from linear PDEs with coefficients depending on v, §;v', ..., §_ v’
and their derivatives. Instead of developing this classical technique, we propose a
different approach that conceptually goes back to Poincaré’s treatment of pertur-
bative expansions in celestial mechanics. We will look for a transformation of the
form

(1.23) w =v' + Y Dy, ™), =11,
k>1

that maps any generic® solution v’ (x, t) of the unperturbed system (1.2) to a solu-
tion w' (x, t; €) of the perturbed system. An important feature of such an approach
to the perturbation theory is locality: changing the functions v(x, t) for a given ¢
only within a small neighborhood of the given point x = xy will keep unchanged
the values of w(x, t; €) outside this neighborhood. We call (1.23) the reducing
transformation for the perturbed system (1.7).

Clearly, applying to (1.2) any transformation (1.23) polynomial in the deriva-
tives (in every order in €; in that case m; = k) one obtains a perturbed system of
the form (1.7). This is the case of #rivial perturbations.

It is clear that solutions of trivial Hamiltonian perturbations share many prop-
erties of solutions to the unperturbed hyperbolic PDEs (1.2). In particular, the
trivial perturbation cannot balance the nonlinear effects in the hyperbolic system
that typically cause gradient catastrophe of the solution.

DEFINITION 1.3 The system of PDEs (1.7) is called quasi-trivial if it is not triv-
ial but a reducing transformation (1.23) exists with functions ®} (v; vy, ..., p i)y
depending rationally on the jet coordinates

wl, i=1,...,n, 1<Il<my,
deg @ (v; vy, ..., V") =k, k=>1,
so that (1.7) is reduced to (1.2).

The first example of such a reducing transformation can be found in [4] (see
also [16]) for the KdV equation

2
€
(1.24) w,—i—wwx—kﬁwxm =0

2We will later be more specific in describing the range of applicability of the transformations
(1.23). Namely, it turns out that all our formal transformations (1.23) will be well-defined on the
class of monotone solutions (see the definition of monotone solutions after Corollary 1.10).
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(here n = 1):

3

U(4) 7Uxxvxxx + Uxx + 0( 6)
— €).
115202 192003 ' 3600

e ) 402
(1.25) w=v+ ﬁax logv, + € ax(
It is not an easy task to check cancellation of all the denominators even in this
example! Because of the denominators, the reducing deformation is defined only
on the monotone solutions.

One of the main results of our paper is in proving quasi-triviality of a large
class of Hamiltonian perturbations of hyperbolic systems of conservation laws.
The systems in question are bi-Hamiltonian systems of PDEs. That means that
they can be represented in the Hamiltonian form in two different ways:

(1.26) w = {H, w' ()} = {Hy, w' ()}, i=1,...,n,

with two local Hamiltonians (see (1.9) above) and local compatible Poisson brack-
ets{-,-}1,{-, -} of the form (1.10). Compatibility means that any linear combi-
nation

a{-,-h+ai, )
with arbitrary constant coefficients a; and a, must be again a Poisson bracket.

The study of bi-Hamiltonian structures was initiated by F. Magri [38] in his
analysis of the so-called Lenard scheme of constructing the KdV integrals. Dorf-
man and Gelfand [24] and also Fokas and Fuchssteiner [22] discovered the connec-
tions between the bi-Hamiltonian scheme and the theory of hereditary symmetries
of integrable equations. However, it is not easy to apply these beautiful and sim-
ple ideas to the study of general bi-Hamiltonian PDEs (see the discussion of the
problems encountered in [16]).

In this paper we will use a different approach, proposed in [16], to the study
of bi-Hamiltonian PDEs. It is based on the careful study of the transformation
properties of the bi-Hamiltonian structures under the transformations of the form
(1.23). Let us now proceed to the precise definitions and formulations of the results.

We will study bi-Hamiltonian structures defined by compatible pairs of local
Poisson brackets of the form (1.10)

{w' (), w (M)

= {w' (x), w’ ()}
m+1

+ ZZ&”’Az,l;a(w; Wy, ..., w" NSO —y), a=1,2.

m=>1 1=0

(1.27)

As in (1.10), the differential polynomials A} ., and A, ., are homogeneous of
degree m — [ + 1, and their coefficients are smooth functions on an n-dimensional
ball w € B C R". Equivalence of bi-Hamiltonian structures is defined with respect
to simultaneous Miura-type transformations.
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The leading terms of the bi-Hamiltonian structure also yield a bi-Hamiltonian
structure of the form

(1.28) {w' (), w! O = g7 (wx)8' (x — y) + O (wx)whs(x — y),
. det(g"jl) # 0 for genericpointsw e B, i,j=1,...,n, a=1,2

(a bi-Hamiltonian structure of the hydrodynamic type). We additionally assume
that det(alglfl(w) + azglz‘l(w)) does not vanish identically for w € B unless a; =
a) = 0.

DEFINITION 1.4 The bi-Hamiltonian structure (1.27) is called semisimple if the
characteristic polynomial det(g,' (w) — Ag (w)) in A has n pairwise distinct real®
roots Ay (w), ..., A, (w) for any w € B.

Equivalently, the linear operator U = (U ]’ (w)) given by the ratio
(1.29) Ul(w) = g (w)giy(w),  (g1,;(w)) = (g (w) ™",

has pairwise distinct real eigenvalues for any w € B.
The role of the semisimplicity assumption can be illustrated by the following:

LEMMA 1.5 Given a semisimple bi-Hamiltonian structure { - , - }[1(?]2 satisfying the
above conditions, denote by

r=ul(w), ..., u"(w)

the roots of the characteristic equation

(1.30) det (g (w) — A gV (w)) = 0.
The functions u' (w), ..., u"(w) satisfy
du' (w)
det . 0.
(5a) #
Using these functions as new local coordinates
. , ag’
(1.31) w =g, u"), i=1,...n, det( a @) £0,
ou/
reduces simultaneously the two flat metrics to the diagonal form
"\ ou’ du’ : y
D Gor g ) = s,
o dw ow

(1.32)

" oul dul . . o -
D G g W) =g s =u' £ s,
k=1

3 One can relax the requirement of reality of the roots working with complex manifolds. In that
case the coefficients must be analytic in w.
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The coefficients Q;’. ;. in the coordinates W', ..., u") read

(1.33) ZQlku —8”81’ + AV, ZQ“M ——5”8xg + B,

ij /! f7 i ij w' ftoo ufd i
(1.34) Aj=—<f]f] 1_7 jl/lx>, BJZE( fi fijuxjv_ fi f;'ux)

where fkl = 3f"/0uk. The leading term of any bi-Hamiltonian system becomes

diagonal in the coordinates ul, ... ul,

(1.35) b+ Viwu' + 0@ =0, i=1,...,n.

Such coordinates are called the canonical coordinates of the semisimple bi-Hamil-
tonian structure. In what follows we will never use the convention of summation
over repeated indices when working with the canonical coordinates.

The canonical coordinates are defined up to a permutation. The functions
Siw), ..., fu(u) satisfy a complicated system of nonlinear differential equations.
The general solution to this system depends on n? arbitrary functions of one vari-
able. Integrability of this system has recently been proved in [17, 40]. For conve-
nience, we give a brief account of these results, following [17], in the appendix.

The following statement gives a simple criterion to determine whether a Hamil-
tonian system of conservation laws is bi-Hamiltonian.

LEMMA 1.6 Let us consider a strictly hyperbolic system (1.2) Hamiltonian with
respect to the Poisson bracket { - , - }[10]. This system is bi-Hamiltonian with respect
to the semisimple Poisson pencil { -, - }E?]z if and only if the coefficient matrix V. =
(Vji(w)) commutes with the matrix U = (U;(w)) of the form (1.29)

(1.36) [U, V] =0.

Due to the commutativity (1.36) the matrix V becomes diagonal in the canoni-
cal coordinates for the Poisson pencil:

u' ' ; ;
(1.37) Z PN jv, (v) = Vi (w)s!.
k,l=1
Observe that the canonical coordinates are Riemann invariants (see, e.g., [45])
for the leading term of the system of PDEs (1.35). The coefficients V' (u) in the
gas dynamics are called characteristic velocities [45]. In particular, the semisim-
plicity assumption implies hyperbolicity of the leading term of the bi-Hamiltonian

systems.

DEFINITION 1.7 ([16]) The bi-Hamiltonian structure (1.27) is said to be trivial if
it can be obtained from the leading term

(1.38) (v (x), v/ (I = gl (v(x))8 (x—y)+ 0, w()vEs(x—y), a=1,2,
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by a Miura-type transformation
w =1+ ZekF,f(v; Vgyonns v(k)),
(1.39) k>1
degF,i(v; Ve oo VY =k, i=1,...,n,

where the coefficients F} (v; vy, ..., v®) are homogeneous differential polynomi-
als. It is called quasi-trivial if it is not trivial and there exists a transformation

(1.40) w =0+ R v, 0")

k=1
reducing (1.27) to (1.38) but the functions F; depend rationally on the jet coordi-
nates v, m > 1, with

(1.41) deg Fo =k, k>1,

and my are some positive integers. If such a transformation (1.39) or (1.40) exists,
it is called a reducing transformation of the bi-Hamiltonian structure (1.27).

A transformation of the form (1.40) is called a quasi-Miura transformation.
We are now in a position to formulate the main result of the present paper.

THEOREM 1.8 (Quasi-Triviality Theorem) For any semisimple bi-Hamiltonian
structure (1.27) there exists a reducing transformation of the form (1.40). The
coefficients F ,é have the form

Fl (0 vy, ..., v"™)) € C¥(B)[vy, ..., v"™ ] [(ulu? ... u")™],

(1.42) |:3k]
mp < [—1.
2

Here u' = u'(v) are the canonical coordinates (see Lemma 1.5).

Using this theorem we achieve the goal of constructing the reducing transfor-
mation for a bi-Hamiltonian system (1.26), (1.9):

COROLLARY 1.9 The reducing transformation for the bi-Hamiltonian structure
(1.27) is also a reducing transformation for any bi-Hamiltonian system (1.26).

Another corollary says that the solution of any system of bi-Hamiltonian PDEs
of the above form can be reduced to solving linear PDEs. Let us first rewrite the
reducing transformation in the canonical coordinates

(1.43) i =u'+ Y Gy, u"™), =1, n
k>1
Let Wi(u;€),i =1,...,n,bean arbitrary solution to the linear system
oW avi/ou/ . .
(1.44) _ AV/ou (W' =W/, i#],

du’ Vi—Vi
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in the class of formal power series in €. In this system the functions V' (u) are
eigenvalues of the matrix Vj’(w); cf. (1.35). Let us assume that the system of
equations

(1.45) x=Viwt+Ww;e=0), i=1,...,n,
has a solution (x, 7, u) = (xo, ty, ug) such that
Vi AW (u;
det (V00 W i) £0.
au] 8MJ t=ty, u=ug, €=0

For (x, t) sufficiently close to (xo, ty), denote u(x, t) = (u'(x, t), ..., u"(x, 1)) the
unique solution to the equations (1.45) such that

(1.46)

u(xo, to) = uo.

Applying the transformation (1.43) to the vector function u(x, ¢), we obtain a vec-
tor function u(x, t; €). Finally, the substitution

(1.47) g (ix, t;€) = w'(x,t;€), i=12 ...,
yields n functions wl(x, t;€),...,w"(x,t; €). Here the functions q' (u) are defined
asin (1.31).

COROLLARY 1.10 The functions (1.47) satisfy (1.26). Conversely, any solution to
(1.26) monotone at at x = xo, t = ty, can be obtained by this procedure.

By definition, the solution w(x, t; €) is called monotone at x = x( and ¢t = ¢ if
all the x-derivatives

ul(w(x, t;€)), ..., 0u" (wx, t; €))

do not vanish for x = xg, t =19, € = 0.

Finally, we can combine the quasi-triviality theorem with the main result of the
recent paper [35] in order to describe the complete set of invariants with respect to
the group of Miura-type transformations of bi-Hamiltonian structures of the above
form with the given leading term {w'(x), w/ (y)}go]

Introduce the following combinations of the coefficients of €§”(x — y) and
€28" (x — y) of the bi-Hamiltonian structure

PGy = 2Ly, o = 222 4w,
(1.48) a 3u)k8 12a a Jwk dw 23a
ih,j=1,....,n, a=1,2.

Define the functions
1 [ (Pkl u Pk1)2 o
(1.49) ¢;(u) = T ))2< +Z A = )) i=1,...,n.

The functions ¢’ (u) are called central invariants of the bi-Hamiltonian structure
(1.27). The main result of [35] on the classification of infinitesimal deformations
of bi-Hamiltonian structures of hydrodynamic type can be reformulated as follows:
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COROLLARY 1.11 Each function c;(u) defined in (1.49) depends only on u'. In
addition, two semisimple bi-Hamiltonian structures (1.27) with the same leading
terms { -, -}% a = 1,2, are equivalent if and only if they have the same set of cen-
tral invariants ¢;(u'), i = 1, ..., n. In particular, a polynomial in the derivatives-
reducing transformation exists if and only if all the central invariants vanish:

cir=c=---=c¢, =0.

The paper is organized as follows. In Section 2 we recall some basic notions
of the theory of Poisson structures for PDEs and prove Lemmas 1.2, 1.5, and 1.6.
In Section 3 and Section 4, we give the proofs of the quasi-triviality theorem and
Corollary 1.9. In Section 5 we reformulate the main result of [35] on the classi-
fication of infinitesimal deformations of a semisimple bi-Hamiltonian structure of
hydrodynamic type and prove Corollary 1.11. In the final section we give some
examples of bi-Hamiltonian structures of the class studied in this paper and formu-
late some open problems. Last, in the appendix we briefly present, following [17],
the theory of semisimple bi-Hamiltonian structures of hydrodynamic type.

2 Some Basic Notions about Poisson Structures for PDEs

An infinite-dimensional Poisson structure of the form (1.27) or (1.28) can be
represented, as in finite-dimensional Poisson geometry, by a local bivector on the
formal loop space of the manifold M. Recall that in our considerations the mani-
fold M will always be a n-dimensional ball B. In general, let w', ..., w"bealocal
coordinate system of a chart of the manifold M. A local translation-invariant k-
vector [16] is a formal infinite sum of the form

a 0

2.1 =) A A A
R L B T Bwin (xp)

Here the coefficients A’s have the form
(2.2) Al

= By (w(xn); we(xp), .. )8P (= xp) -+ 8 () — xp)
P25 k=0
with only a finite number of nonzero terms in the summation; for a certain integer
N that depends on the indices iy, ..., i, and ps, ..., pk, the B;lz'_'_'_ilk,k(w; Wy, ...)
are smooth functions on a domain in the jet space J"(M). The delta function and

its derivatives are defined formally by

(2.3) / FWO); wy (), wyy (), ... )% (x — y)dy

= 9 f (W) we (), wer (), ).
In this formula the operator of the total derivative 9, is defined by

2.4 Ox s Wyy Wyyy ovn) = bt
2.4) fw; wy, w ) Zw 3

wis :



PERTURBATIONS OF HYPERBOLIC SYSTEMS 571

Note the useful identity

(2.5) Fw); wy(y), wyy (), ... )8R x — y)
k
- Z (I’lk1) a;nf(w(x>, U)x(x)a Wy (X), ... ) 5(k_m)(x — y).
m=0

The distributions
(2.6) Al = Al e s w(xy), ., wxg), L)

are antisymmetric with respect to the simultaneous permutations i,, x, <> iy, X;.
They are called the components of the local k-vector «. Note that in the definition
of local k-vectors given in [16] it is required that the functions B;:lz'j;]?k be differ-
ential polynomials. Here we drop this requirement for the convenience of our use
of these notations during our proof of the theorem. The space of all such local
k-vectors is still denoted by A{‘OC as done in [16]. For k = 0 by definition Ay _ is
the space of local functionals of the form

(2.7) I = / fw, wy, ..., w"™)dx.
The Schouten-Nijenhuis bracket is defined on the space of local multivectors
(2.8) [-,-1: AF. x A, — AR k1 >0.

It generalizes the usual commutator of two local vector fields and possesses the
following properties:

29 [ Bl=DYB, al,
(2.100  (=D*[le, B1, y1+ (=DM[IB, ¥1, @] + (=D™[[y, &], 1 = 0,

for any & € AL, B € Al,., and y € AJ'.. For the definition of the Schouten-
Nijenhuis bracket, see [16] and references therein. Here we write down the formu-
lae, used below, for the bracket of a local bivector with a local functional and with

a local vector field.
Let a local vector field £ and a local bivector @ have the representation

_ S el . (m;)
@.11) £= ggaxg (W); wi), .o w ") g
1 0 0
(2.12) w = — Z 050w — AN ———.
2 Todwh(x)  dwl(y)

5,t>0
Here we assume that

(2.13) =" A (@), we(x), ... w™ (1)) 8P (x — ).
k>0
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Then the components of [, I] and of [z, £] are given, respectively, by

(2.14) [w,l]f:ZA"/ak o1

k=0 C i)
i [k ) Bl _8:§i(w(x);...) ok
2.15 [w,&]Y = ; (axg (w(x); .. °)8wkv’(x) B0 () o,

T (w; "')a’,w”‘).
i)

In the last formula it is understood that
O = (=1 A (w(x), wex), .. w"™ () 84 (x — y),
k=0
and identity (2.5) has been used in order to represent the resulting bivector in the
normalized form (2.13).
Let us denote by @ and @, the two bivectors that correspond to the bi-Hamil-
tonian structure (1.28); the components w,,a=1,2, are given by the right-hand

side of (1.28). The bi-Hamiltonian property is equivalent to the following identity,
which is valid for an arbitrary parameter A:

(2.16) |y — Ay, wy — A ] = 0.

Denote by 0, and 9, the differentials associated with @} and @,. By definition
(2.17) 30 AF — AP B0 =[w,,al, YaeAf, a=1,2.
The bi-Hamiltonian property (2.16) can be recast in the form

(2.18) 87 = 87 = 819, + 0,9, = 0.

The important fact that we need to use below is the vanishing of the first and second
Poisson cohomologies

(2.19)  HYLWM), w,) =Kerdy| o /Imd, |1, a=1,2, k=12
loc loc

This fact is proved in [25, 10, 16]. It readily implies, along with the results of [14],
the reducibility of any Poisson bracket of the form (1.10)—(1.13) to the constant
form (1.17).

Let us now give the following:

PROOF OF LEMMA 1.2: For the Poisson bracket written in the form (1.17), the
Hamiltonian system reads

4 , . 0H
w, ={H,w'(x)} =—n"oy——.
=1 ()} = =170, )
This represents the equations as a system of conservation laws W' + ¥ = 0 with

SH
Sl (x)

Y=
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The system of equations (1.21) is nothing but the spelling of the classical Helmholtz
criterion [27] for functions v; to be representable in the form of variational deriva-
tives. [l

We now pass to the theory of canonical coordinates.

PROOF OF LEMMA 1.5: From the results of [17, 40], it follows that there ex-
ists a system of local coordinates ', ..., 4" such that both of the metrics be-
come diagonal and g}/ = Sijh' (i), ¢ = 8ijAi (W' (it). Since by our assump-
tion det(alg’fl(w) + azglz‘l(w)) does not vanish identically for w € M unless
a; = a, = 0, we can choose u! = A;(@'),...,u" = A,(@") as a system of
local coordinates that are just the canonical coordinates. O

We now proceed to the next proof:

PROOF OF LEMMA 1.6: In the canonical coordinates, a bi-Hamiltonian system
ui = (Hy,ul ) = (B, u! ), H, = f W wdx, a=1,2,

has the expression

(2.20) up=—> Viwul, i=1,..n,
j=1
where
(2.21) Vi) = f ) Ayh? ) = u' f1 ) Ayhy ) fori # j.

(Recall that no summation over repeated indices is assumed when working in the
canonical coordinates; all summation signs will be written explicitly.) Here the
linear differential operators .A;; are defined by

92 1d(log fi(u)) o 1d(log f/(u)) a
du'dul 2 du’ dut 2 du’ oul’
Symmetry with respect to the indices i and j implies
(2.23) ' —u)A; b w) =0, i+
Thus Vji (u) = 0 when i # j. This proves the first part of the lemma.

To prove the converse statement, we use the following result of [44]: the diag-
onal system

(2.22) Ay =

u§+Vi(u)u; =0, i=1,...,n,
is Hamiltonian with respect to the Poisson bracket associated with the diagonal
metric of zero curvature

n
ds* =) gi(u)(du')’
i=1
if and only if the following equations hold true:

(2.24) WV W) = (VEw) — VW) logy/gii(w), i+#k.
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By assumption these equations hold true for the first metric

1
gi(u) = )
For the pencil { -, - [20] —2{-,- [10], one has to replace
. 1
gi(u) = W

Such a replacement does not change equations (2.24). The lemma is proved.  [J

3 Proof of the Quasi-Triviality Theorem

In this and the following sections, we assume that the bi-Hamiltonian structure
(1, @) defined by (1.28) is semisimple, and we work in the canonical coordi-
nates u', ..., u".

Due to the triviality of the Poisson cohomology H?(L(M), @), the bi-Hamil-
tonian structure (1.27) can always be assumed, if necessary by performing a usual

Miura-type transformation, to have the following form:
3.1 (' o) ! D = (' @), ! Y
(32) (' (), w (N} = {u' @), w MY+ ko).
k=1
Here QZj are the components of the bivectors QO and have the expressions

k+1

ij }: i (- k+1-D)y s

;(j: Q;{l(u,ux,...,u(+ ))5()()5_)’)
=0

We also denote by Qg the bivector corresponding to the undeformed second Pois-
son structure { -, - }[20]. The coefficients Q;c’ ; are homogeneous differential polyno-
mials of degree kK + 1 — [. The compatibility of the above two Poisson brackets
implies the existence of vector fields X, k > 1, such that

(3.3) Qr =0 Xy, k=0,

and the components of X; are homogeneous differential polynomials of degree k.
The strategy of our proof of the quasi-triviality theorem is to construct a se-
ries of quasi-Miura transformations that keep the first Poisson structure (3.1) un-
changed while removing the perturbation terms of (3.2) in a successive way.
The key property of the bi-Hamiltonian structure (3.1)—(3.2) that we use to
construct the first of such a series of quasi-Miura transformations is given by

(3.4) 010X, = 0.
It results from the vanishing of the Schouten-Nijenhuis bracket

[Zeka,Zeka].

k>0 k>0
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Indeed, by using the result of Theorem 3.2 that will be proved below, we know that
identity (3.4) implies the existence of two local functionals

(3.5 I =/h1,1(u(X))dx, Ji =/hz,1(u(X))dx,

such that X; = 0,1; — 0, J;.
The first quasi-Miura transformation that we are looking for is given by

(3.6) u' > exp(ed; J) u'.

After its action, the first Poisson structure (3.1) remains unchanged while the sec-
ond Poisson structure (3.2) is transformed to

(3.7) exp(—eadgljl)(Qo + ) €y Xk> = Qo+ Y € X,

k>1 k>2

Here the vector fields X have the expressions
d;
(3:8) Z( 1y {2ua). M X, k=22

Let us note that (3.6) is in fact a usual Miura-type transformation, so the com-
ponents of the new vector fields X, are homogeneous differential polynomials of
degree k.

Now we proceed to construct the second quasi-Miura transformation in order to
remove the first perturbation term 6281)?2 of the Poisson structure (3.7). We need
to use the property of the vector field X, that is the analogue of (3.4),

(3.9) 910, X, = 0.

Due to the result of Theorem 3.9 that will be given below, we can find two local
functionals I, and J, such that X, = 9,1, — 0,J,. Then our second quasi-Miura
transformation is given by

(3.10) u' > exp(e2d, o) u',

which leaves unchanged the form of the first Poisson structure while transforming
the second one (3.7) to the form

(3.11) exp(—e2ad3112)(Q0 + ) €y Xk> = Qo+ Y € X,.
k>2 k=3
Here the vector fields X; have the expressions
[k/2]
d; ~ ~
(3.12) X = Z( [ i EEL (a 61’2) Xi o X,=0, k>3

From (3.108)—(3.110) we see that (3.10) is no longer a usual Miura-type transfor-
mation, since in general the components of the vector field d; J, are not differential
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polynomials; instead, they belong to the ring .4 of functions that can be represented
as a finite sum of rational functions of the form

Pl (u;uy,...)
(3.13) Ao 27 7 ., m>0
uil ‘u)]Cm

(no denominator for m = 0). Here Pji
mials.

.....

Define a gradation on the ring A by
(3.14) degu™ =m, i=1,...,n, m>D0.
DEFINITION 3.1 We call elements of A almost differential polynomials.

Below we will also encounter functions that belong to the ring
A= Allogu!, ... logu"].
It is also a graded ring with the definition of degree (3.14) and
(3.15) deg(logu') =0, i=1,...,n.

The density of the above functionals I, J> can be chosen as homogeneous almost
differential polynomials of degree 1; thus the resulting vector fields X; have com-
ponents that are homogeneous almost differential polynomials of degree k.

By continuing the above procedure, with the help of the result of Theorem
3.3 to be given below, we can construct in a successive way the series of quasi-
Miura transformations that reduce the bi-Hamiltonian structure (3.1)—(3.2) to the
one given by its leading terms, and the final reducing transformation is the com-
position of this series of quasi-Miura transformations. We thus prove the quasi-
triviality theorem with the help of Theorems 3.2, 3.3, and 3.9. We now start to
formulate and prove these theorems.

THEOREM 3.2 Assume that a vector field X has components of the form

(3.16) X' =Y "Xlwul, i=1,....n,
J

and satisfies
(3.17) 01X = 0.
Then there exist two local functionals I and J of the form

(3.18) I=/G(u(x))dx, J:/G(u(x))dx,

such that X has the representation X = 011 — d,J.
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PROOF: In this proof summations over repeated Greek indices are assumed.
Let us redenote the components of the two bivectors that correspond to the bi-
Hamiltonian structure (1.28) in the form

@) = g8 (x — y) + Tus(x — y),

wzij =378/ (x —y) + TUu%8(x — y).
The Levi-Civita connections of the two metrics g’/ and '/ are denoted by V and V,
respectively. Denote V; and V; the covariant derivatives of these two connections
along d/du’. We also introduce the notation V! = g'*V, and V! = gi*V,,.

Condition (3.17) implies existence of a vector field ¥ with components of the
form

(3.19) Yi=Y"Yiwul, i=1...n,
J
such that 9; X = d,Y. Denote by
(3.20) 7V =" ZU (), ue(x),...) 8P (x — y) := (01X — 0,¥)"
p=0

the components of the bivector 9; X — d,Y, and denote by Z;f .m) the derivatives
BZ;,j/auk*’". Then we have

(3.21) 7Y = (xV - x/y - -y =0,
(3.22) Zg 4ny = (VX7 = V' X] 4+ T, (X = X'*))
— (MY = VY] + T, (" —y™®) =0
where X = g/®XJ and Y/ = g'®Y/J. From the above two equations we obtain
(3.23) VY — VIYH = gh (VX — VIXT + Tl (X" — XP1y).

Here the components of the (1, 2)—tensor T are defined by Tajﬁ = f‘éﬁ — Fiﬂ. Since
the left-hand side of the above equation is antisymmetric with respect to k£ and i,
we have

(3.24) (VX — VIX] + TJ(X"P — XPP))
+ 8 (Vo XY — VEXI 4+ T (X% — XP4) = 0.
The trivial identity
(6]{Yij _ 61ij) 4 (%lyjk _ %lek) 4 (%ijl _ 6]{Y]1)
= V(YT — Y 4+ Vi(YIR - YY) 4 I (rR - v
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implies that
@k(Xij _ in) + @i(Xjk _ ij) + @j(in _ ka)
_ ~ka(VaXij _ ViXé + TO{E(XM _ Xﬁi))
+ gia(Vank _ Vij, + Tofﬂ(Xjﬁ _ Xﬂj))
+ 87 (Va X = VEX[, + Ty (XM — XP4).

(3.25)

By using the formula
ViAY = Vi AT + T, A% + T}, A™
we can simplify equations (3.25) to the form
gV X = VX + Ty(X7P — XPT))
(3.26) + &V XY — VIXE + TI (X" — XPh)
+ 8 (Vo X' = VEXI 4+ Th (X7 — XP1)) = 0.

Let us employ equations (3.24) and (3.26) to prove the existence of two local func-
tionals / and J of the forgn (3.18) such that X = 9,1 — 9,J. Equivalently, we need
to find functions G and G that satisfy the conditions

(3.27) Xt =g V'V'G — g, V' V*G.

To this end, we first define two symmetric (2, 0)—tensors A and A such that

(3.28) X = gja A% — gja A

In the canonical coordinates, the off-diagonal components of A and A are uniquely
determined by the above relations and have the explicit forms

(3.29) AV , for i#j.

Here we use the fact that in the canonical coordinates the two metrics have compo-
nents of the form g/ = §;; f* and gV = §;;¢' = &;;u’ f'. For an arbitrary choice of
the diagonal components A’?, the above relation uniquely determines the diagonal
components A” by

(3.30) AT = (AT - f1XD).

’

ut —ul ul —ul

We will specify the choice of A", i =1, ...,n,in a moment.
Let us now express equations (3.24) and (3.26) in terms of the components of
the tensors A and A. By substituting the expression (3.28) of X j’ into (3.24) and

(3.26) and by using the fact that g,s, g4s. and Toiﬁ are all diagonal with respect to
o and B in the canonical coordinates, we arrive at

. . S 1 1 o~ .~y
(3.31) (u* — u)(VFAT — VAN (7 — —_>(va” — ViAM) =0,
u u'
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N . | SO (AU
uF(VFAT — v ARy — (—.va'J - —.VlAkJ)
u’ u'
i i A jk i ik 1~i~'k 1~'~ik
(3.32) +ul (VIATF — iRy — [ ZVIATK - —VIiA

uk ul

L y | 1~ ~
+ul (VAN —VEAT) — (—.VJA’“ — —kvaﬂ> =0.
ut u

Rewrite (3.32) in the form

. S 1 ~, ~.. o~
(3.33) u*(VFAY — V' AV) 4 —(VFAY — VI A
u
+ terms obtained by cyclic permutations of (i, j, k) = 0.

By using (3.31), we can replace u* by ' in the first two terms of (3.33). Then after
the cancellation of some terms we arrive at the simplification of (3.32),

. . L , 1 1 -~ o o~
(3.34) (u' — ul) (VAR — VR AT 4 <f — —j)(VfA"’ — VkATy = 0.
u' u

Changing the indices (i, j, k) — (Jj, k, i), we obtain
. . L. 1 1 o~ -~
(3.35) (! — b (VFAT — VI AN + (—j — —k>(valf — VIAMY = 0.
u u
From equations (3.31) and (3.35) it readily follows that
(3.36) VKA = VIAN | VKAT = VAN fori # j, k# j.

Now let us proceed to choose the diagonal components A’ in such a way to
ensure that the components of the tensor VK A"/ are totally symmetric in i, j, and
k. This amounts to requiring that A" satisfy

(3.37) VKA =VIAM i k=1,...,n, k#Ii.

The existence of solutions A’ is guaranteed by the compatibility of the above sys-
tems due to the equalities

(3.38) VI (VAR = v¥(VI A7) for distinct i, J, k.

Fix a solution A", i = 1, ..., n, of system (3.37). From the validity of equa-
tions (3.31) and (3.36), we know that tensor A with components A’/ determined by
(3.29) and (3.30) also has the property of symmetry of V¥ Alin i, j, and k. Thus
we can find functions G (#) and é(u) such that

AT =VIVIG, AT =V'VIG,
The theorem is proved. 0

The above theorem implies that the linear-in-e terms of the bi-Hamiltonian
structure (1.27) can be eliminated by a Miura-type transformation.
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THEOREM 3.3 Let X € Al

1oc be a local vector field with components

(3.39) X, ug,o..;u™), i=1,....,n, N>1,

where X' are homogeneous almost differential polynomials of degree d > 3. If X
satisfies condition (3.17), then there exist local functionals

(3.40) I:/f(u,ux,...,u([N/z]))dx, J:/g(u,ux,...,u([N/z]))dx,

with densities that are homogeneous almost differential polynomials of degree d — 1
such that X = 011 — 0, J.

Let us first sketch an outline of the proof. We will prove the theorem by induc-
tion on the highest order of the x-derivatives of u* on which the components X'
of the vector field X depend. Due to the triviality of Poisson cohomology of the
Poisson structure given by the leading terms of (3.2) and the result of Lemma 3.7
that will be given below, we are led to the following problem:

Let X, Y be two local vector fields with components
X', ...,u™), Yi@,...,u™, i=1,...,n, N>1,

where X' and Y' are homogeneous almost differential polynomials of degree d >
3. Assuming that X and Y satisfy the relation 0,X = 0,Y, prove existence of
two local functionals 1 and J such that the components of the local vector field
X — (31 — 0,J) depend only on u, ..., uN V.

We are to solve this problem in several steps following Lemmas 3.4, 3.5, 3.6,
and 3.8 below. Lemma 3.4 separates the terms containing u™ (which will be
called the leading terms) from X' and Y'. Lemma 3.5 proves some combinatorial
identities. By using these identities, Lemma 3.6 reduces the leading terms of X'
and Y’ to the simplest form. The last lemma, Lemma 3.8, gives the explicit condi-
tions for the leading terms of X’ and Y’ to ensure the existence of the needed local
functionals I and J. Finally, in the proof of Theorem 3.3, we fill the gap between
Lemma 3.6 and Lemma 3.8 to finish the proof of the theorem.

In what follows, for a function A = A(u, u,, ...), we will use the subscript
(k, m) to indicate the derivative of A with respect to ukm e, Awem = A /u*m.

LEMMA 3.4 For any two vector fields X and Y with components of the form
BG4l X' =X ue ..., u™), Y =Y uy, ..., u™), N=>1,
the conditions that

ij _ ij _
Zo,(k,2N+1) =0, Zo,(k,zN) =0, when N > 2,

ij _ ij _ ijo_ _
Zo,(k,3) =0, ZO’(M) =0, Z;, =0, whenN =1,
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where the coefficients Z;,j of ZU = (3, X — 8,Y)" are defined as in (3.20), imply
that the components of the vector fields X and Y must take the form
n
X = Z (ujGj.(u, cuNTDy 4 Ff(u, e, u(N_l))) ulN
j=l

(3.42) + O, ..., u™ ),

n
i i (N=1)y , j.N i (N=1)
Y_ZGj(u,...,u Ju”" +R'(u,...,u ).
j=1

Moreover, when N > 2 the functions Fj" and G; satisfy the following equations:

(3.43) F.{'(k’,\_]) - ka;(i,,\_]) + ' — uk)G,{’(i’Nil) =0.

1

PROOF: By definition, we have

ij _ N+1, pi yvi i v
Zo,(k,2N+1) =(=D (fl X(i,N)(k,N) - gl Y(i,N)(k,N))'

So the vanishing of Zé{ (.2n-+1) implies that the functions X “and Y’ can be repre-
sented as

n
X = Z(uj(};(u, o uNTD; uj’N)
j=1
+ Ff e u™ ) 4+ QN u™NTD),

i A (N=1). j,N
Y—ZGj(u,...,u cul™).
j=1
When N > 2 the equations (3.42) of X' and Y' follow from the vanishing of
. N -
i 1 [
Zg iomy = (DT (N + Q)f Gy i nyiny
In the case of N = 1, formulae (3.42) follow from the vanishing of Zé{ (i.2n) and of
Z;j . Finally, for N > 2, equation (3.43) is derived from the vanishing of
Zf)j,(k,zzv) = (_1)N+1fi(FiJ,(k,N71) - ij,(i,Nfl) + - Mk)GlJc,(i,Nfl))'
The lemma is proved. O

LEMMA 3.5

(1) Assume that the vector fields X and Y have components of the form (3.42)
and N > 2. Thenforanym = 1,2, ..., [%], the following identity holds true:

m— N —l ii i /
(3.44) Z(—l) l(m _ l>Zl,j(k,2N+1ml) = (=DM Fl 4 N
10

Here and below we denote Z' as in (3.20).
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(i) Assume that the vector fields X and Y have components of the following
form:

n
X' =) (WG, ™D Ny Fl L u N
j=1

(3.45) + O u, ..., u™ D,

n
Y= Z Giu,...,u™="m=D, o N=my N 4 Riu, ..., u™=D)
J
j=1

withN >3and1 <m < [%]. Then we have
(3.46)
N -1\ _;;

m—I 1

l;(—l) <m _ l)zlf(k,mmn
- (_1)N+1|:fi(Fi{(k,N—m—1) - Fli(i,N—m—1>) + - uk)Gi’(i’N—m—l)
L\ i i ik
+(N—-—m+ > f uka)(i)me)(S

+ (Aik _ ukBik)G]{’(k’N_m)}-
Here A'* and B'* are defined by (1.34).

PROOF: By using formula (2.15) the components Z'/ of the bivector 9; X —d,Y
have the explicit expressions

8xfi s j : ik qs j
S (X0 + ) ARG )
k=1

Zij — Z(_l)s+l (fla;_H(X{l,S)(s) 4
s>0

R, — Z Bl”‘a;(y(fk,s)a)) 4o
k=1

38’
2

_ gia;-i-l (Y(quv)g) _

Here § = §(x — y). It is easy to see that when m < [%], the first two terms in
formula (2.15) don’t affect identity (3.44). So we denote their contributions by
an ellipsis in the above expressions of Z/ and will omit them in the calculations
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below. Then Z;,j reads

3, f

ij st cif ST 1Y asaio x S\ os—
Zi =Y (=" (f( >a+ . 0t ( )a "X
= P P
n il S s+ 1 -
+ZA ( )as PX}es — gl< )a” Y
k=1 P
axgi S s— J - ik S s— J
- <p)a PYl, - B )% PYiy )-

k=1

Denote by LHS the left-hand side of the identity (3.44). We obtain

LHS

— _1\ym—pts+l
B v

p,s=0

s+ 1 s+1—p j
< ( )Z( t )3 X(l §)(k,2N—m—s+t)

t>0
()5 (PN o
t>0
+ ZAIZ( ) <S ¢ p>a)th{l,s)(k,2N+lms+t)
t>0
A

il
_ZB ( )Z( P )8 Y(jls)(k2N+1 —m— s+t)>

t>0

Here we used the commutation relations

0 . m\ _, 0
duia ax - Z (t)ax Qui-a—m+t :

>0

By using the identity

2 GG =007

p=0
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and by changing the order of summation, we can rewrite LHS as follows:

LHS

s s+1\(/N—s+1t—
= (= 1)*“(( )( . )faxm(mmw

s,t>0
S\ (N —s+1\of
+<t>< m ) 2 0, X{l $)(k,2N+1—m—s+t)

S N — S +t " il /
3.47) + (t)( m ) Z A a)lcxgl,s)(k,ZN+l—m—s+t)

=1

s+1\(N—-—s+1r—-1
_( ¢ )( m ) aY(zv)(k2Nms+t)

S\ (N —s+1)\0.:8g j
- (l)( m ) D) 8xY(ts)(kZN+l —m—s—+t)

S N—s +1 il i
— <t>< m ) ZB 8XY(1 s)(k,2N+1—m— H—t))

=1

Now we substitute the expression (3.42) of X and Y into the right-hand side of the
above formula. By using the properties of binomial coefficients, it is easy to see
that all terms in the above summation vanish except for the terms with s = N,
t = 0, so the above formula can be simplified to

1 ix 'Y/
= "D F X v — D8 Y )
= (=D f FJ(kN —m) -

So part (i) of the lemma is proved.
Similarly to the derivation of (3.47), we can prove the following formula:

N =1\ _;i
(348) Y (=" (m _ I)Zz,f(k,m_m_n

>0

s+I\(N—s+t—1\ .,
- Z( 1)m+s+]<( )( m >f a)th{i,s)(k,ZNflfmfs+t)

s,t>0

S\(N—s+1\o.f"_, _;
+(f)< m ) 2 aX(H)(kZN m—s+1)

S\(N—s+1 ,
+ <,)< m )ZAla X)) o on s

=1

s+1\/N—s+1t—1
- ¢ m 8 8x (i,5) (k2N —1—m—s+1)
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s\(N—s+1\0:8 , ;
- (f)( m ) 2 Y )k 2N—m—st)

S\(N—s5+1\ <= i ;
- <l>< m ) Z B a;Y(jl,s)(k,ZN—m—s-i-t))‘

=1

The summands of the right-hand side vanish except for the terms with (s, ) =
(N,0),(N—m—1,0),(N—m,1), (N —m,0). Then LHS of identity (3.46) reads

N+, piyd ivJ

LHS = (-D"* (legi,N)(k,mefl) - le(i',N)(k,mefl))
Ny pivi i

+ (-1 (le(Jk,N)(i,N—m—l) - le(jk,N)(i,N—m—l))

(3.49) + (=DNYUN —m + 1)( ffaxxg'k,N)(i,me) —g'o, Y(f,;,N)(l.’me))

P fi . P gi )
N+1 X J X J
+ (=D ( ) X(k,N)(i,N—m) - —2 Y(k,N)(i,N—m)

n

il yrJ ilyJ
+ Z (Al Xenyi.n—m — B Y(k,N)([,Nm)))'
=1
Note that our X and Y have the properties

J ke ki J _ ki
X(k,N)(i,N—m)—” Gk,(i,N—m)5 ’ Y(k,N)(i,N—m)—Gk,(i,N—m)5 :

Then identity (3.46) follows from (3.49) immediately. Part (ii) of the lemma is
proved. g

LEMMA 3.6 Let X and Y be two local vector fields that have components of the
Jorm (3.41) and satisfy the relation

(3.50) X = d,Y.
Then the following statements hold true:

(i) When N = 2M + 1, the components of these vector fields have the expres-
sions

n

(3.51) X' =Y X g, w2 0, ),
j=1

(3.52) Yo=Y Y g ™2 Ry, u ).
j=1

(ii)) When N = 2M, there exist local functionals 1,, a = 1, 2, 3, such that the
components of the vector fields X and Y have, after the modification,

(3.53) X+ X— (011 —h), Y—Y— (01— 01)
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(if necessary), the expressions

(3.54) X' = ij(u, Uy oo ™M N2M O iy, L u®MTY),
J#
(3.55) Y = Z Y (g, oo u™ )M Ry, u M),
J#
In the case when the components X' of the vector field X are homogeneous almost
differential polynomials of degree d > 3, we can choose the densities of the local

functionals 1, such that they are homogeneous almost differential polynomials of
degree d — 1.

PROOF: For the case when N = 1, the result of the lemma follows from
Lemma 3.4, so we assume that N > 2. It follows from Lemma 3.4 that the com-
ponents of X and Y must take the form (3.42). The result of part (i) of Lemma
3.5 then shows that the F]’ are independent of uN=m form =1, ..., [%], so the
identities in (3.43) read

' —u"G] i y_y) = 0;
thus the G,{ are independent of u*V~! when i # k. When N > 3 we use the
identity (3.46) of Lemma 3.5 with m = 1 to obtain, by putting i = &,

G}!,(i,Nfl) =0.

So the G,{ are in fact independent of uY~. Now identity (3.46) shows that

G,’{’(i’N_z) =0, i#k.
By repeatedly using identity (3.46), we know that G; is independent of u~ =™ for
m=1...[%'],and G/, =0for N=2M >2andi #k.

For the case of N = 2M + 1, M > 1, the above argument shows that the
components of the vector fields X and Y have the form (3.51)-(3.52) where X ]’

and Yj" are given by the expressions

(3.56) Xj. = ujGé(u, Ugy . nns u(M)) + I’;(u, Ugyonns u(M)),
) Y}:G}(u,ux,...,u(M),

and for the case of N = 2M, M > 1, we have
G357 X' = (WG, . ... u™ VWM 4 Flu, ... ™))l
j=1

—"_ Ql(u? AR M(N_l))’

n
(358) Y = Gl ... .u™ D wMyu 4 R, u™).
j=1



PERTURBATIONS OF HYPERBOLIC SYSTEMS 587

From the vanishing of the coefficients of @Y+ (x — y) in the expression of
(3; X — 3,Y)¥, it follows that

(3.59) f{@F + flwF! =o.
In particular, we have
(3.60) Fi=0, i=1,...,n.

Define the functionals

v [N g2 @G
(3.61) L= (D" | Y 00 —————dx, k=123
o (M)

Then the components of the vector fields X=X- (011; — 9,1,) and Y=Y —
(011, — 0,13) have the form of (3.57)—(3.58) with Gj = 0. Since the vector fields X
and Y still satisfy the relation 0, X = 8217, we can assume without loss of generality
that the components of X and Y have the form (3.57)—(3.58) with vanishing Gj By
using equations (3.59), we check that identity (3.46) is still valid for i = k when
m = M and N > 2. This leads to the fact that the functions Gj. fori # j do not
depend on u/*M. Thus we have proved that the components of X and Y have the
form (3.54)—(3.55) after the modification (3.53) if necessary.

When the components of the vector field X are homogeneous almost differential
polynomials of degree d > 3, equations (3.60) and the expression (3.57) imply that
the functions G! are also homogeneous almost differential polynomials of degree
d—2M. So, when M > 2 we can choose the densities of the functionals I, defined
in (3.61) to be homogeneous almost differential polynomials of degree d — 1. In
the case when M = 1, since the functions Gﬁ = Gf(u; ui) are homogeneous of
degree d — 2 > 1 (recall our assumption d > 3), the function Gf(u; ui)/ui is in
fact a polynomial in u’. Thus in this case we can still choose the densities of the
functionals I, defined in (3.61) to be homogeneous almost differential polynomials
of degree d — 1. The lemma is proved. O

LEMMA 3.7 Let the vector fields X and Y have components of the form (3.41) with
N > 2 and satisfy relation (3.50). If the functions X', i =1, ..., n, do not depend
on u™), then we can modify the vector field Y by

(3.62) Yis ¥ — 8y

for a certain local functional J such that the components of this modified vector
field Y depend at most on u, ..., u'N=Y, and relation (3.50) still holds true.

PROOF: We first assume that N = 2M + 1. From the assumption of the lemma
and the result of Lemma 3.6 we know that the components of the vector fields
X and Y have the form (3.51)-(3.52) with X]". = 0. To prove the lemma, we

need to find a local functional J with density h(u, u,, ..., u™)) that satisfies the
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conditions
9%h

1 .
_ M i ..
W—(—l) —Y l,]—l,...,l’l.

g )’

Denote by A;; the right-hand side of the above formulae. Then from the van-
ishing of the coefficients of §2¥*2) (x — y) in the expression of the components of
the bivector 01 X — d,Y, it follows that the functions A;; are symmetric with respect
to the indices i and j. From equation (3.46) with m = M, we also know that

oY/ ay/
Juk-M — uiM
So the functions dA;;/du* are symmetric with respect to the indices i, j, and &,
which implies the existence of a function A (u, u,, ..., u™) satisfying the require-
ment (3.63).

Next let us assume that N = 2M. As we did in the proof of Lemma 3.6, we
can show that the components of X and Y have the form (3.57)—(3.58) with

(3.65) Fi = —u/G'.

(3.63)

(3.64)

Since the functions FJ’ do not depend on u™, we deduce that the functions X’ and
Y’ must have the expressions (3.54) with X j’ = 0. From (3.60) and the indepen-
dence of X' on u™), it also follows that Gf =0fori =1,...,n. Now by using

the vanishing of the coefficients of §®¥*1 of the components of 3; X — 3,Y and
that of the left-hand side of (3.46) with m = M, we obtain

(3.66) Yij+Y; =0,
(3.67) Yik,i,m—1) = Yik,jom—1) — Yi,ge,m—1) = 0.
Here ?,;, = (1/ gi)Yj.". The above two equations ensure the existence of a 1-form
o= " hi(u, ..., u™D)du M= such that
1 o i M1  M—1
(3.68) da = > > Yy dut M A du M

i,j

Now the functional J defined by
(3.69) J= / Zhi(u(x), o u MV )y M (x)dx
i=1

meets the requirement of the lemma, and we have finished the proof. O
LEMMA 3.8 Let X be a local vector field with components
X' =X uy, ..., u™), i=1,....,n, N>4,

that are homogeneous almost differential polynomials of degree d > 3. Assume X
also has the following properties:
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(1) When N = 2M + 2, the components of X have the form
(3.70) X=X, w2 O, L u M)
J#i
and satisfy the conditions
(BT W —u)(Xij.e.an — Xit.an) + @ =) X .o + @ —u') Xy .r) = 0
for

(3.72) X, = Xiu, ..., u™)y.

1
fraw
(i) When N = 2M + 1, X has components of the form

(3.73) X=X, a9l u )
j=1

and satisfies the conditions

(3.74) X]l:,(k,M) - Xlim(j,M) =0,

(3.75) (u* — uj)Xij,(k,M) + W' — uk))?jk,(i,M) + (! — ui)f(ki,(j,M) =0.

Then there exist two local functionals I} and I, with densities that are homogeneous
almost differential polynomials of degree d — 1 such that the components of the
vector field X — (011, — 0, 1) depend at most on u, u,, ..., uN=D,

PROOF: We first prove the lemma for the case whend > 3, N > 5. Assume
N = 2M + 2 and the vector field X satisfies conditions (3.70)—(3.71). We want to
find two local functionals /; and /> with densities of the form

(3.76) ha =Y haj(u, g, . u™uM g =12,
j=1

such that they meet the requirements of the lemma. For this we need to find the
functions h,.j,a = 1,2, j =1, ..., n, satisfying the following equations:

(3.77) (—1)M+‘X}=f’( i LJ)‘g’( i 2”)-

ouiM  guiM ouliM  JyiM
Denote
i yi iyJ
M g’ X./‘ +8'X;
figl—fig”
Then it follows from (3.71) that the 2-forms

i vi iyJ

3.78 Py = (-1 1
G = fig/ = fig'

Qij = (—

1 ) . 1 ) .
(379 wi=3 > PydutM AduM, oy = 5 > Qijdu™ A dut M,
i

i,j
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are closed. So there exist 1-forms

(3.80) Ay = Zha;j(u, ey oo u™Mydu!M, g =1,2,
J

such that do, = @, and the functions &, ; are homogeneous almost differential
polynomials of degree d — M — 2. Now it’s easy to see that the functions A, ;
satisfy (3.77). So we have proved the lemma for N =2M 4 2 > 4.

Next we assume that N = 2M+1 > 4 and the vector field X satisfies conditions
(3.73)—-(3.75). Let the two local functionals /; and I, that we are looking for have
densities of the form

(3.81) hoGu,tiyy ..., u™), a=1,2.

Since the i component of the vector field d,/; — 9,1, depends at most on u, ...,
u®M+D “and, moreover, it depends linearly on u*>Y*! we only need to find func-
tions /1 and %, such that

3@ — )

(3.82) X; = T ouieMT1 (=DM (f hmnGom — 8 hamGm)-

To this end, let us define P; and Q;;, i = 1,...,n, by solving the following
systems:

P —M+L X X/
i _( ) (u] Jj,G,M) o 1,(1,M))’ j£i,

quiM i — i i j
(3.83) " w—ul A f ; !
0Qi _ (=D (Xjin _ Xiwm P
dul-M ut —ul fi fi) '
Conditions (3.74) and (3.75) imply the compatibility of the above systems, i.e.,
384 0 8Pii _ d aPii ik .
(3.84) QukM \ guiM | guiM \ gukM )’ Sk

So we have a set of functions
M M
Pi=Pi(uty, ..., u™), Q= Qiiu,uy,....u™),

satisfying conditions (3.83). The ambiguity in the definition of these functions lies
in the following shifts:

(3.85) P> P+ Wii(u,uy, ..., u™M=D M),
Qii > Qi + Rij(u uy, .., u™D M),

Here W;; and R;; are arbitrary functions to be specified later.
We also define functions P;; and Q;;, i # j, by the following formulae:

—M+L o xE x) —M+L o xE o xd
(386) P,'j:# l/t]—].—l/tl—l. s Qij:¥ —j——l .
ul — ul fl fj ul —ul fl f]
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By using conditions (3.74)—(3.75), we easily verify that
d P;j 00Q;;
quk-M’  QukM’

are symmetric with respect to their indices i, j, and k. So there exist functions
ha(u, ty, ..., u™), a =1,2, such that

3%h, 3%hy
g~ U gy — Q0
Now it’s easy to verify that, when i # j, functions /; and &, satisfy the conditions
given in (3.82). When i = j we have

(3.88) X;— (=DM (f! hiimimy — &' haGmyi.m)
=X; - (—1)M(fl P — g Qi)

It follows from the definition of P;; and Q;; and the conditions given in (3.74)
that the right-hand side of the above formula does not depend on u** for any
k # i, so we can make it O by adjusting functions P;; and Q;; as in (3.85). By the
above construction, functions #; and A, can be chosen to be homogeneous almost
differential polynomials of degree d — 1. So the lemma is proved for the case
mentioned above.

Now let us consider the case d > 3, N = 4. Proceeding in the same way as
for the case of N = 2M + 2, M > 2, we can find the 1-forms (3.80) such that the
2-forms | and @ that are defined as in (3.79) can be represented by w, = da,,
a = 1,2. The pecularity of this case M = 1 lies in the fact that the functions
h, j that we constructed above are in general no longer rational functions of the jet
coordinates u"*, k > 1 they can be chosen to have the form

(3.87)

(3:89) haj= Y Wajulusu)logul + Uy jusuy), a=1,2, j=1,....n.
k=1

Here W, j.x, U,,j € A and are homogeneous of degree d — 1. Since

oh, ;i Ohy,
(3.90) S 8 e A,
du', ul
we must have
ow, .. ow, ;.
(3.91) wrk  ZTek g i =1, n.

dul du’
This implies the existence of functions A, ;(u; uy) € Aof degree d — 2 such that
0 Ak (u; Uy)
8u){ '
Since W, ., are almost differential polynomials, the functions A, ; can also be
chosen as homogeneous almost differential polynomials of degree d —2 > 1 up to

(3.92) W = a=12 jk=1,...n
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the addition of terms of the form

(3.93) > Baa(u)logud.
=1

However, such functions have degree 0O, so they are not allowed to appear in the ex-

pressions of A, ;. Now the needed functionals / and J that satisfy the requirements
of the lemma can be chosen to have densities 4 and &, of the form

- " 1
(394) ha = Z <Ua,k(u’ Mx) - Aa,k(u, Mx)u_k)ul;xa a = 1» 2.

k=1 X

The lemma is proved. O

PROOF OF THEOREM 3.3: Assume that the components X' of the vector field
X have the form

(3.95) X' =X, ....u™M), N>4, i=1,...,n.

The relation (3.17) implies the existence of a local vector field Y such that 9; X =
d,Y. By using Lemma 3.7 we can choose the vector field Y such that its com-
ponents depend at most on the coordinates u, ..., u™Y). Then it follows from the
results of Lemma 3.6 that the components of X and Y have the expressions (3.51)—
(3.52) when N is odd and those of (3.54)—(3.55) when N is even (after a modifica-
tion of (3.53) that does not affect our result).

We now proceed to employ the result of Lemma 3.8 in order to find two local
functionals I and J with densities that are homogeneous almost differential poly-
nomials of degree d — 1 such that X —(d; I —9,J) depends at moston u, ..., u™ =D,
To this end we need to verify that the X' satisfy equations (3.71) when N is even
and (3.74)—(3.75) when N is odd.

Let N be an even integer 2M + 2. Then by using the vanishing of the left-hand
side of (3.46) with m = M, we obtain

3.96) Xjk.i.m — Xik,i.my — Xji,oemny = w' ! Yig iy — Yik, (v — Yoo m) -

Here the I?i ; are defined as in the (3.67) and the X ij are defined by (3.72). We also
have the equation

(3.97) X/ + Xj = u'u! (Vi + Yi))

due to the vanishing of the coefficients of §**+1) in the components of 9; X — 3,Y .
Denote by L; ; x and R; ; x the expressions of the left-hand side and right-hand side
of (3.96), respectively, multiplied by u*. Then we have
Rijx — Rixi — Reij — Risj = u'w u* Vi g + Yij.i.m)
= u' (Xje. ) + Xij.i.m)-
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Here in the last equality we used the equations in (3.97). By equating the last
expression with L; j x — Lj x i — Ly.;,j — Lix, j, we arrive at the proof that the vector
field X satisfies the conditions given in (3.71).

Now let us assume that N = 2M + 1. From (3.46) with m = M, we know that

(3.98) PG = X)) = 8 Flaown = Vo)
This equation together with the one that is obtained from it by exchanging the
indices i and k implies that

J — v/ J —_vy/
(3.99) Xi,(k,M) - Xk,(i,M)’ Y',(k,M) - Yk,(i,M)‘

1

So the components X' and Y’ satisfy the conditions of form (3.74). We are left to
prove that they also satisfy the conditions of form (3.75). For this, let us consider
the coefficients of §®M*+2(x — y) in the expressions of the components of the
bivector 9; X — 9,Y. Vanishing of these coefficients leads to the equations

(3.100) Xji— Xij = u'u (¥ = Yi)).

By taking the derivative with respect to u** and multiplying by u* on both sides
of the above equation, we obtain

(3.101) Mk(in,(k,M) — Xij.k.m) = ukuiuj(yji,(k,M) —Yijm)-

Denote the right-hand side of the last equation by W; ;. Then condition (3.75)
follows from W; j« + Wi + Wi j = 0.

Above we showed that the vector field X satisfies the requirements of Lemma
3.8. So we can find local functionals / and J with densities that are homogeneous
almost differential polynomials of degree d — 1 such that X — (9, —9,J) depends at
most on u, ..., u"N~D_ Repeating this procedure by subtracting terms of the form
d11 — 9, J, we reduce the proof of Theorem 3.3 to the case when the components
X' of the vector field X have the form (3.95) with N = 1,2, 3.

Note that in the case when N = 3 or N = 2, the components of the vector
field X and the accompanying one Y also have the forms (3.51)—(3.52) and (3.54)-
(3.55) with M = 1, and the above equations (3.96)—(3.97) and (3.98), (3.100) still
hold true. Thus when N = 3, the vector field X fulfills the requirements of Lemma
3.8, and we can find local functionals /; and I, such that X — (d;1; — d,1) depend
at most on u, u,, and u,,. The difference of this special case from the general one
lies in the fact that now it is not obvious that we can choose the densities &, (u, u,),
a = 1,2, to be almost differential polynomials. What can easily be seen from our
construction is that they can be chosen to have the form

hao(u,uy) = Z Va;i,j(u’ u,)log Mi log Lt){
i#]
(3.102)

n
+ Z Va;i(”a u,)log M; + Uy (u, uy).
i=1
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Here the functions V,.; j, Vi, and U, are homogeneous almost differential poly-
nomials of degree d — 1. The vector field X =X-— (0117 — 0,1>) still has the
property 313X = 0, so the same argument as above shows that the components
of X have the form (3.70) with M = 0 and satisfy equations (3.71). By using the
construction of Lemma 3.8 we can find local functionals /3 and I such that the
vector field X — (0113 — 014) depends at most on u# and u,. A careful analysis
of this construction shows that the densities of these local functionals can also be
chosen to have the form of (3.102).

Let us denote the densities I = I} + Iz and J = I, + I, also by h; and k5,
respectively, which have the expression (3.102). A simple calculation shows that

(1 — 0,J) - 0%h - 0%h
(3.103) L =) _ T
Aty dul Juy oul duy
AT —dJ) 3. . 0°hy
3.104 —=——f ———
(3-104) out_ SR mE
The right-hand side of the above two identities equal, respectively,
X' X'
. an —.
drx GITE
We deduce that the functions
9°h, .
(3.105) —, a=12,i,j=1,...,n,
dul Juy

are homogeneous almost differential polynomials of degree d — 3. This fact yields
the restriction on the coefficients V,.; ; and V,; in the expression of the densities
(3.102) that they depend on u, at most linearly. Since h; and h, have degree
d — 1 > 2 (recall that we assume d > 3), it follows that the functions V,; ; and
V,.; must vanish, and as a result the densities /; and h, of the local functionals /
and J are homogeneous almost differential polynomials of degree d — 1.

Now let us prove that we have in fact

(3.106) X =011 —0,J.

This is due to the fact that the vector field X = X — (9,1 — 9,J) still satisfies
the property 8;8,X = 0. So, by using Lemma 3.7 we can find a vector field Y
that depends at most on u and u, such that 3; X = 8,Y. Then by using Lemma
3.4 we know that the components of X depend at most linearly on u,; since they
are homogeneous almost differential polynomials of degree d > 3, we must have
X = 0. Thus we have proved the theorem. O

THEOREM 3.9 Let the vector field X satisfying condition (3.17) have components
of the form

n
(3.107) X' =Y "Xiwul, + ) Ot
j=1 k.l
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Then each function X i=(ffaw)'Xx l’ (u) depends only on u', and there exist local
functionals 1, and I, with densities that are homogeneous differential polynomials
of degree 1 such that

(3.108) X=0(L+1)—0(L+D)
where
2 < . a .
(3.109) I, = -3 ;/(u')z—ax,-,-(ul)u; logu' dx, a=1,2.

Note that the densities . and &, of the functionals /; and I, can be chosen as
n ‘ ui
3.110 h, = Voi(u')—=2=, =1,2,
(3.110) Z W a

which are homogeneous almost differential polynomials of degree d — 1 = 1. Here
the functions V, ; are defined by Va,i(ui)’ = %(ui)z_”Xii(ui).

PROOF: Since the X' are differential polynomials, condition (3.17) implies the
existence of a vector field ¥ with components Y’ of the same form (3.107) of X'
such that 9, X = 0,Y. By using the vanishing of the left-hand side of (3.46) with
k =i # j, we deduce that

(3111) 8)21'1' i ja?ii 0 ;é . 1
. - —y'u!— =0, i =1,...,n
du’ oul J
Since (3.97) also holds true in this case, we obtain
N 1 4
3.112 Yii = —»th’
( ) )2
which yields, together with (3.111), the first result of the theorem
0Xii .
(3.113) - =0, i#j=1,...,n
du’

From definition (3.51) it is easy to see that the components of the vector field
X=X- (d 1, — d» 1) are still homogeneous differential polynomials of the form
(3.60) with Xl’f (u) =0, i =1,...,n. Then by using the same construction as we
give in the proof of Lemma 3.8 for the local functionals with densities (3.76), we
can find functionals 7, and I, with homogeneous differential polynomial densities
of degree 1 such that the vector field X =X-— (04 11 — 8212) depends at most on
u and u,. The equation 9,0, X = 0 then implies that X depends at most linearly
on u,. Since the components of X are homogeneous differential polynomials of
degree 2, we arrive at the equalities

(3.114) X=0(L+1)—0(L+ D).
The theorem is proved. O
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From the proof of Theorems 3.2, 3.3, and 3.9 and the argument given at the
beginning of this section for the proof of the quasi-triviality theorem, we see that
the reducing transformation

(3.115) u u"+Ze"Fk(u,...,u<mk>)
k>1

of the bi-Hamiltonian structure (1.27) has the properties that the F; are homoge-
neous almost differential polynomials of degree k and that m; < %k.

4 Reducing Bi-Hamiltonian PDEs
In this section we study properties of bi-Hamiltonian systems (1.26).

LEMMA 4.1 Let I and J be two local functionals

“4.1) I = /p(u, ey oo u™ydx, J= /q(u, Uy . u™Mydx,
that satisfy the relation
4.2) o1l = 0,J.

Then up to additions of total x-derivatives, the densities p and q do not depend on
the jet coordinates uy, . . ., u®™,

PROOF: Denote by X the vector field 3,/ — 9,J and by X' its components.
Then from the vanishing of

X' v i 9P i g
4.3) AN (=1 (f Sui-NguiN 8 Jui-NguiN )’
we see that the functions p and ¢ satisfy
. . azq 82]9 . 82q
i _ i —
@5 @ —u )8u’7N8uJ¥N =0, AN guiN " YuiNguiN 0

So the functions p and g can be represented by some functions p;, r;, and s as

n
N=1) 0N
pzzpi(u""’u( )’Ml )7
i=1

n

q = Z [uip,'(u, o™V WY i, u(N*U)u"’N] +s@u, ..., u™D),
i=1

By substituting these expressions of p and ¢ into the equations

X!
we deduce that
L %
(4.6) flui 2P _

oub-Noui-N
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Thus we can rewrite the functions p and ¢ in the forms

p= Za,-(u, o u NN e YD)y,

4.7) f:‘
q= Zbi(u, o u NN g D)y,

i=1

From the identity
X'
m = ori ?ﬁ ]

we have

9°p 9’p ; d9%q 9%q
4.8) - - — - - =u - - — - - .
out-Noui-N-1 gy NgyiN-1 oul-Noui-N-1  guJ.Ngyi.N-1

These equations imply that the functions a; and b; satisfy

8a,~ Baj 8b, 819,
(4.9) uiN—T — 9uiN—1"  guiN-1  guiN-1'
So there exist functions A(u, ..., u“ V) and B(u, ..., u™ ") such that
d0A 0B )
(410) ai=m, iZW, l=1,...,7’l.

Now we can replace the densities p and g of the Hamiltonians / and J, respec-
tively, with

(4.11) p=p—0A, qg=q—0dB.
Then the new densities become independent of the jet variables ubtN i=1,..., n.
Repeating the above procedure successively, we arrive at the result of the lemma.

O

PROOF OF COROLLARY 1.9: Let us assume that after the quasi-Miura trans-
formation the Hamiltonians of system (1.26) have the expansions

412)  H,=) HM= Zek/ﬁg‘](u, g, ..., u™dx, a=1,2.
k>0 k>0

Here m, are some positive integers that may also depend on the index a, and the
functions A1 have degrees k. Due to the bi-Hamiltonian property

(4.13) 01 Hy = 0, Hs,

we know in particular that

(4.14) aH" = o, H".

Then the result of the above lemma implies that /"' = HIY' = 0. Similarly,

we prove that all other Hamiltonians HX, k > 2, are trivial. The theorem is
proved. O
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COROLLARY 4.2 Any two bi-Hamiltonian flows of the form (1.26) that correspond
to the same bi-Hamiltonian structure (1.27) mutually commute.

PROOF: Denote by X and Y the vector fields corresponding to the given bi-
Hamiltonian systems; then their commutator [ X, Y] is also a bi-Hamiltonian vector
field of degree greater than 1. From Lemma 4.1 it follows that under the quasi-
Miura transformation reducing the bi-Hamiltonian structure (1.27) to (1.28) this
vector field must vanish. Thus we have proved the corollary. g

5 Central Invariants of Bi-Hamiltonian Structures

One of the important applications of the property of quasi-triviality is the classi-
fication of deformations of a given bi-Hamiltonian structure of hydrodynamic type.
The problem of classification of quasi-trivial infinitesimal deformations was solved
in [35]. It was also conjectured that all deformations of the form (1.27) have re-
ducing transformation. The quasi-triviality theorem proves this conjecture. In this
section we reformulate the main result of [35] in order to describe the complete list
of invariants, with respect to Miura-type transformation (1.39), of a bihamiltonian
structure with a given leading-order term {-, - }[1(?]2. Recall that these transforma-
tions must depend polynomially on the derivatives in every order in €.

Let us rewrite the bi-Hamiltonian structure (1.27) in terms of the canonical
coordinates u' = u'(w),i =1,...,n,

{u! ), u? (P)}a

Gy =R
m+1

+ 3N AT, TS0 — ), a=1,2.

m>1 1=0
Then the functions P;j and QZj defined in (1.48) have the expressions
(5.2) Pl = A}, . QYw)y=A4Y, w, i j=1....n a=12.

PROOF OF COROLLARY 1.11: First we assume that the bi-Hamiltonian struc-
ture (5.1) has the following special form:

(5.3) (@1, @y + €’y + O())).

Here (@, @) denotes the bi-Hamiltonian structure given by the leading terms of
(5.1), and y is a bivector that can be represented as y = 9;X through a vector
field with components that are homogenous differential polynomials of degree 2.
Due to Theorem 3.9, the vector field X can be represented up to a Miura-type
transformation in the form

54 X =01-0J
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where the functionals / and J are defined by
(5.5) I =quiéi(ui)ui logu' dx, J =/Zéi(u")u; logu' dx,
i=1 i=1

with
L
3(fi(u))?

Here (y)éi denotes the coefficients of §”(x — y) in the components ()" of the
bivector y. The main result of [35] together with the quasi-triviality theorem shows
that any two bi-Hamiltonian structures of the form (5.3) are equivalent if and only
if they correspond to the same set of functions ¢;,i = 1, ..., n. In the case that the
two bi-Hamiltonian structures of the present theorem have the form (5.3), it is easy
to see that ¢; (u') = ¢; (1), and the result of the theorem follows.

Now return to the general form (5.1) of a bi-Hamiltonian structure. We redenote
it as

(5.7) (1 + €ay + €21, wr + €ar + €2B2) + O(e).

(5.6) ¢y = Wy, i=1,...,n

By using the result of Theorem 3.2, we can eliminate the linear-in-€ terms by a
Miura-type transformation

(5.8) u' exp(—eX)ui, i=1,...,n,

given by a local vector field X with components of the form
(5.9) X' =" Xiwul.
j=1

This implies that P; = 0, X and P, = 9, X, and they in turn yield
Pif = =) X ) + 1) Xf W),

(5.10) . . .
P = —g" () Xi(u) + g' () X* ),

where the functions Pli'/ and Pzij are defined by (5.2). Solving the above system,
we obtain

P2ki . I/li Plkl
SR Wk —ut)’
After the Miura-type transformation (5.8), the bi-Hamiltonian structure (5.7)
becomes

1 1
(5.12) (wl + ez(ﬁl - 5IX a1]>, @y + Ez(ﬂz - 5X ozz])) + O(€).

(5.11) Xi(u) = k #i.

Then there exists a local vector field Y such that

1
(5.13) a1Y =B —E[X,al].
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So the Miura-type transformation

(5.14) u' > exp(—eX)u', i=1,...,n,
reduces the bi-Hamiltonian structure (5.12) to the form of (5.8)

1
(5.15) (wl,w2+62(,32— E[X’ as] —32Y)> + O(e),

and we need to compute the coefficients Xéj of "’ (x — y) in the components of the
bivector x = B, — %[X ,ay] — 0,Y. By using the notation introduced in (5.2), we
have
[X. a0l =Y Xp (P = Pf'y = -2) " Xx;Pf,
k ki
[X. ol = > X (P — P}y =-2) XiPy,
k ki
ii i ii i 1 § i L ii
(82Y)3 =u (81Y)3 =u ﬁl_i[xval] =u Ql _5” [Xaa1]3-
3
Here as above, for any bivector n we denote by néj the coefficient of §”(x — y) in
the components n*/. These formulae together with the expressions (5.11) for X:,
k # i, show that the functions ¢&; (') that are defined by (5.6) with y replaced by
x coincide with the functions c; (#) introduced in (1.49). Thus we have proved the
theorem. O

From this theorem, the following corollary easily follows:

COROLLARY 5.1 Any deformation (1.27) of the bi-Hamiltonian structure (1.28) is
equivalent, under an appropriate Miura-type transformation, to a deformation in
which only even powers of € appear.

This result can also be seen from the construction of the functionals / and J in
the proof of Theorem 3.3 and the argument given in the proof of the quasi-triviality
theorem.

THEOREM 5.2 If we choose another representative
Coh=clc e tdich G =al bl
ad — bc # 0,

of the bi-Hamiltonian structure (5.1), then the functions c;(u) that we define in
(1.49) are changed to

(5.16)

- i cu' +d ; i
(5.17) ci(u)=ad_bcc,-(u ), i=1,...,n,
where
. i b
(5.18) e A T T

cul +d’
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are the canonical coordinates of the bi-Hamiltonian structure (5.1) with respect to
the new representative (5.16).

PROOF: The result of the theorem is obtained by a straightforward calculation
with the help of formula (5.18) and the tensor rule abided by P;’ and Q; under the
change of coordinates u' +— ' (u). O

From the above theorem we see that, for the bi-Hamiltonian structure (5.1), the
following %—forms

(5.19) Qi = ¢; (u')(du'H)'?

are invariant, up to permutations, under transformation (5.16) with

<i z) € SL(2, C).

6 Examples and Concluding Remarks

Let us give some examples of bi-Hamiltonian structures, their central invariants
and reducing transformations.

Example 1. The bi-Hamiltonian structure of the KdV hierarchy [23, 38, 47] has
the form

(6.1 {we), wMh =8 -y,

1
{wx), w)} =wx)8'(x —y) + 3 w'(x)8(x —y)
+3ce?8"(x —y).

(6.2)

The canonical coordinate is u = w, and the constant c is the central invariant. Up
to terms of order €°, the reducing transformation [16] is given by*

2.2 @ 3 .
B 5o ce v Vrx Urax vy, 4
63) w=v+e Bx[c logvx+—10 (S—v% —21 o +16—v§>+0(6 )_.

Observe that the inverse transformation can be written in a similar form,

2.2 o 3
c’e (Sw _gw“ Wiy +4wx:>+0(64) .
w

6.4) v= w—{—ezaﬁ[—c log w, +

0 w2 T 0 ! _
The transformations of the form
Ut>u —I—EZBfF(u; Uy, Uy, ...} €)

form a subgroup of the group of all Miura-type (or quasi-Miura-type) transfor-
mations. The appearance of this subgroup is closely related to the existence of a
tau-function in the theory of the KdV hierarchy (see details in [16]).

4The (inverse to the) reducing transformation for the KdV equation was constructed in [4]. How-
ever, the action of this transformation on the Poisson pencil was not studied.
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The Poisson pencils (6.1)—(6.2) with different values of ¢ are inequivalent with
respect to Miura-type transformations.

Example 2. The bi-Hamiltonian structure related to the Camassa-Holm hierarchy
[7, 8, 20, 21, 22] has the expression

2

6.5) W), wh = 8'(x —y) — %6’”(x — ),
1
(6.6) (W), W)k = wHF (x = y) + 5w @8 - ).

The canonical coordinate u also coincides with w, and the central invariant c(u) =
21—4u. As shown in [37], the reducing transformation is, up to €*, given by

) (vvxx vx>
w=v+ed|—"—-——

24v, 48
702 vl v? vt Verx 99V Ury Uyxx
4 64 . XX xx_ xx _
67) 2880w, 180w 90w} 512 5760 v2
' 370202 vp,  TV202 . Svu®@
1920 v? 1920 v3 1152 v,

3102 v, v@ v2v®
T TS56000 1152 vg>'

Example 3. Let us consider the bi-Hamiltonian structure related to the multicom-
ponent KdV-CH (Camassa-Holm) hierarchy. Define

i 2
6.8) D, =w's(x—y)+ %S(x —y) —I—ai%é”/(x ), i=0,1,....n.

Here w° = 1 and ay, . .., a, are given constants with at least one nonzero. Define
also the numbers

-1 i,j<m
(6.9) fi=341 i,j>=m+1
0 otherwise.

Then we have the following n + 1 compatible Hamiltonian structures:
(6.10) {w'(x), w (Ml = (=" fl Ditjom-1,

1§l7.] Sn, Wl=0,1,...,n.
When i < O ori > n, we assume that D; = 0. These Hamiltonian structures

were introduced® in the study of the hierarchies of integrable systems (called the

3 To the best of our knowledge, connections of these bi-Hamiltonian structures with the Camassa-
Holm equation and its multicomponent generalizations were never considered in the literature.
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coupled KdV hierarchies) associated with the compatibility conditions of the linear
systems of the form [1, 2, 3, 39]

1
(6.11) (5@¢V+Amgm)¢=o,
(6.12) Y = le 1B W
. r — 2 X 4 X .

Here A(wj; X) has the expression

n -1 i i)\ﬂ—i
6.13) Aw: 2y = =T WA

D izo(=Diaiar

and B is a certain polynomial or Laurent polynomial in A with coefficients that
are differential polynomials of w'!, ..., w" which can be chosen according to the
equation

Ay €?
(614) At:ABx+78+§Bxxx-

As shown by Ferapontov in [18], if a system of hydrodynamic type with n
dependent variables possesses n + 1 compatible Hamiltonian structures of hydro-
dynamic type, then this (n + 1)-Hamiltonian structure must be equivalent to the
one obtained from the leading terms of (6.10).

From (6.10) we readily have the following bi-Hamiltonian structures:

(615) Bk,l=({'9'}k’{'a'}l)v k#l

Denote by A;(w), ..., A,(w) the roots of the polynomial P(1) = A" — w!A"~! 4
-+ 4+ (—=1)"w". Then the canonical coordinates for the bi-Hamiltonian structure
By, are given by u' = (), i =1,...,n, and the central invariants, ¢, . . ., ¢,
have the expressions

Yo (=Diani™

6.16 ¢i(u') = , i=1,...,n
(©10) ) 241 — kar

In particular, for the one-component case n = 1, choosing @y = 0 and a; = 1,
we get the bi-Hamiltonian structure B, o, which coincides with (6.1)—(6.2) for the
KdV hierarchy. The choice ¢y = —1 and a; = 0 yields the bi-Hamiltonian struc-
ture (6.5)—(6.6) of the Camassa-Holm hierarchy. In general, we call the hierarchy
generated by the bi-Hamiltonian structure By ; the multi-component KdV-CH hier-
archy.

For the case when n = 2, the above defined bi-Hamiltonian structure 5, ;
yields, with different choices of the constants ag, a;, and a, and up to certain
Miura-type transformations and rescaling of the Poisson structures, the following
four bi-Hamiltonian structures that appeared in the literature. They have the same
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leading terms

lp), oM =0, {px), eI = 8'(x — ),
(), p(MI =0,
(), oMY =28 — ¥, {p(), oMY = ()8 (x — ),
(o), b =20(x0)8 (x — y) + o' (1) 8(x — ¥).

A bi-Hamiltonian structure related to the nonlinear Schrodinger hierarchy is given
by the above brackets with the only difference [5, 35]

(6.18) {p(x), M = (p(x), p(MIY + €8”(x — y).

After the Miura-type transformation

(6.17)

(6.19) w! =20, w?=¢*—4p +2eq,,

it is transformed to the bi-Hamiltonian structure 813, ; with the choice of constants
ay = a1 = 0 and a; = —8. Here 85, denotes the bi-Hamiltonian structure
obtained from B, ; by the multiplication of an overall factor 8.

In [35] a generalization of the Camassa-Holm hierarchy is introduced that is
called the 2-component Camassa-Holm hierarchy. It is reduced to the usual Ca-
massa-Holm hierarchy under a natural constraint on its two dependent variables.
The related bi-Hamiltonian structure is defined by the brackets (6.17) except

(6.20) (@), e = (p(0), oY + €8 (x — ).
After the Miura-type transformation
(6.21) w' =2¢ +2ep,, w?=¢’—dp,

it is converted, up to the approximation to €2, to the bi-Hamiltonian structure 813, |
with the choice of constants ¢y = —8, a; = 0, and a, = 0.

In [29] the bi-Hamiltonian structure for the so-called classical Boussinesq hier-
archy is given. It is defined by the brackets (6.17) except for

1 "
(6.22) (p(x), pPMh = (p(x), oY + €8x =y
After the Miura-type transformation
(6.23) w! =2¢, w?=¢*—4p,

it is transformed to the bi-Hamiltonian structure 813, ; with the choice of constants
ap =0,611 =O,a2 = -8.

Note that, for the bi-Hamiltonian structure related to the nonlinear Schrodinger
hierarchy, by moving the perturbation term from the second Poisson bracket to
the first one we obtain the bi-Hamiltonian structure of the 2-component Camassa-
Holm hierarchy. Doing precisely the same procedure we obtain from the above bi-
Hamiltonian structure of the classical Boussinesq hierarchy the one that is defined
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by (6.17) except for the bracket

1
(6.24) {px), pMh = (px), PO — €% = y).

After the change of dependent variables
(6.25) w! =2¢, w?=¢*—4p,

it is transformed to the bi-Hamiltonian structure 813, ; with the choice of constants
ap = 0,a; = 8, and a, = 0. This bi-Hamiltonian structure is related to the Ito-type
equations [28, 33].

The bi-Hamiltonian structures related to the nonlinear Schrodinger hierarchy
and the classical Boussinesq hierarchy are equivalent. Indeed, their central invari-
ants are given by ¢; = ¢, = 21—4. The central invariants for the bi-Hamiltonian
structure related to the 2-component Camassa-Holm hierarchy are given by ¢; =
(u")?/24 and ¢, = (u?)?/24, and those for the bi-Hamiltonian structure defined by
(6.17) and (6.24) have the form ¢; = u'/24 and ¢, = u?/24.

We omit here the presentation of the reducing transformations of the above bi-
Hamiltonian structures due to their cumbersome expressions.

Example 4. The equations of motion of one-dimensional isentropic gas with the
equation of state p = 5 p**! read

u>
(6.26) u;, + (7 + pK> =0, p+(u)y=0.
Here « is an arbitrary parameter, k¥ # 0, —1. For a gas with m degrees of freedom
one has
K= —

m
(see, e.g., [9]). This is a weakly symmetrizable system with

_ (0 1
T=\1 o)
This gives the first Poisson structure of the equations with the Poisson brackets
[0]
(6.27) {u@), oM = 8'(x =y

other brackets vanish.
The second Hamiltonian structure

[, u)y = 205718 (x — y) + pE 18 (x — ),

[0] , 1,
(6.28) {u(x), ,O(y)}2 =u(x)d(x —y) + U (x)8(x —y),

o _

{p(0), (M},
was found in [41, 42].

1
= ;(2/0(?6)5’(16 =)+ ()8(x —y)),
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As shown in [16] the isentropic gas equations have the following deformation,
which preserves the bi-Hamiltonian property (up to corrections® of order €°):

ou u? k(K —2) K2
- 9,1 — K 2 k=3 2 & k=2 o
o T {2+p +e [78 Po P TSP TP

+ €' — 2)(k = 3)[arp ™ uip: + axp* 0} + azp urcupy

+agp Ul 4 asp Ut oo + asp T p o + arp* o2

B B o k(K> —4) o
+ agp 2Mxl'txxx + ang 4;0xpxxx + app “ zui] + 64Tﬂ 3pxxxx}

= 0(€),

ap 2—«k)Kk —3) 1
ar + Bx{pu + 62(—12Kp Uy Py + guxx)

+ et =2k = 3)[b1p ™ urpl + bap 7 piitee + b3p Py
+ bap s rx + bsp Cthxx pr + bep Uy Prrr + b1 tirn
+ b Ul uy, + b9,0_K_2Lt§C,0x]} = O(e%).

The coefficients are given by

18 + 75k — 15k2 4 20k3 + 2«*
a) =

2880k3 ’
6 + 113k + 409«% — 185> + 17«*
@ = 5760k2 ’
18 + 11k + 3«2 7 —64 3k — k?
a3=———F >, 4= —, d5=——————,
720k2 720k 480k?2
—6 — 39 — 10«2 + 5«3 14 + 5k + 5«2 1
96 = 480k T T e BT o
_ 2+5k kK + 2k +3) (kT —1)
D= a0 0 0T 5760kc* ’
b 42 + 83k — 53k? + 8«3 _ 6 + 35k — 24x% + 513
e 144013 T 7203 ’
12 + 40k — 13k2 + 5«3 b 6 — 4k + K2 6+ K+ x2
by=- 72013 Y P R R bY)

In principle one can continue the expansions until an arbitrary order in €. However, the compu-
tations become very involved.
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6+ Kk + K2 1 (k+2)(k +3)
b6:72» 7 = — ) b8=——4,
720k 360« 720k
Kk + 1Dk +2)(k +3)
by =
1440k*

The corresponding bi-Hamiltonian structure (at the approximation up to €*) is
given in section 4.2.3 of [16]; the central invariants are ¢; = ¢; = ﬁ. The above

system can be represented as

d
B_Ltt ={H,ux)} = KLH{HZ’ u(x)}a,
0
-5::uup@n1=;§Twupun}

Here the densities /4 and 4, of the Hamiltonians H; and H, have the expressions

N _1 2+'OK+1+Ah
1—2,0M 1 1,
hy = pu+ Ahy,

where

2
Ahy = ulAh, — E—((K2 — 3k + 6)us + k(2% — Sk + 6)p* *p})

24k
(k —2)(k —3) 1 _
+€424—0K3<_§K(K2 — 4k +6)p luxuxxx

1 ) -2
+ gK(ZK — 13k + 12)p™ " Uty r P
1 Bk +35)(k +3)(k +2)
72 K
1 —3.2 2
— E(2K —3)(k +3)(k +2)p " uyp;

k2(k — 1)(3k? — 8k + 12) ‘3 2
2(k —3)

—k—1_4

1
— ﬁK(K — D(16k* — 100> 4 229«* — 211k + 6)pK—5p;*),

, (kK —2)(k — 3)'0_1

Ahy = —€ 2% Ux Px
4k =2)(k =3) 5 s
+e€ R —2Kk (k" — 8k +6)p” Uy Prxx

+ k(T — 61k +42)p U oy o
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79 55
+ (—5/<3 + 7K2 — 7/( + 3>p_4ux,03

1
+ (e + 3+ + 1>p—k—2uipx].

To write down the reducing transformation of the perturbed system of the one-
dimensional isentropic gas and its bi-Hamiltonian structure, we introduce the op-
erators 77 and 7,

Tu™ = 3" (kp* 2 py), Top™ =u™t,

We will use Greek subscripts for the result of the operators acting on the functions
pand u,i.e.,

’]’1u(m) — u(m-i-l), f]’lp(m) _ p(m-i-l),
m > 0.

Pajay- = 7:)(17-0(2 P, Uy gy = 7;(17:)12 ceu.

Define the functions

2 1 (k—2)(c —3)

—M)——— ogp,
K

Fi= —log(K,oK 2 24

1 1
-7:2 - 1152pa1a2(x3a4M&1a2M&3a4 - 360,00[1(120[3,00[40[50[6Ma1a4Ma2a5Ma3a6

e P Pasasasag M MM
3éopalazpa3a4a5paﬁmgM“““ MO2%6 4T poses

k= 2)( — 3D [—ﬁm T

* 221351;0 kP pieh;

N 7 +19 _|_7 6 4+11 =352,
5760 " 5760 T 960 PrxPr T 5gg0P  Pulhax

(k* =9 + k> + 53 +6)p* p 6

5760k
+L/0K 3,0214 M+L,0K73,0,0 uz—Lp“3puu 0
240 xxxx*x 240 XMXXXx 720 XWX Xxx Mxx
1
+ 2250” Ml 1440(11A< —21)p " plu
1 k—4 2 2
—|—m(22K — 4T —42)p" " piu Prx
+ 5760K2(12K4 — 45k + 15k + 101k + 6)p* u? p?
1 -1 3 11 -1,2 2 1 -2 3
240¢ P et ¥ ogeoe P et T g P et
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+ 5760K2(7K2 — 13k +42)p 2 pyut

~ S76003 (8k? — 31k? + 43k — 6)pulp?
1 —k—1,,6

- W(K +3)k+2)p Uy

Here the matrix M = (M“#) and differential polynomial D read

1 [(—kp<? u _
M=D 1( . Px _;X), D =u —kp**p}.

Then the reducing transformation is given by the formula
ur>u+ TL(EF +€e'F), prp+TT (ezfl + 647-'2).

We leave as an exercise for the reader to check that the denominator D # 0 on the
monotone solutions.

In conclusion, let us formulate some open problems.

Problem 1. Study the convergence (or at least the asymptotic nature) of the reduc-
ing transformations for the case of analytic-in-e perturbations (1.7) (e.g., for the
case of polynomial dependence on €).

Problem 2. Near the point of gradient catastrophe of the hyperbolic system (1.2)
one expects to have

So, all the terms of the reducing transformation become of the same order and
the formal series in € diverge. How does this expected divergence influence the
qualitative properties of the solutions to bi-Hamiltonian PDEs near the point of
gradient catastrophe? The arguments of [13] suggest that, at least in the case n =
1, the generic solutions must locally behave in a universal way near the point of
gradient catastrophe. This behavior is rather different from the shock formation
present in the solutions to the dissipative perturbations of hyperbolic systems. We
postpone discussion of this behavior for subsequent publications.

Problem 3. Are there more wide classes of perturbations of systems of hyperbolic
PDEs admitting reducing transformations? The natural candidate to be considered
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is the perturbation of the so-called semi-Hamiltonian systems in Tsarev’s sense
[44], i.e., hyperbolic systems written in the diagonal form and possessing a com-
plete family of commuting flows. First results in this direction were obtained in the
recent paper [36].

Problem 4. According to our results, classes of equivalence of semisimple bi-
Hamiltonian structures depend at most on n(n + 1) arbitrary functions of one vari-
able. Prove existence of such bi-Hamiltonian structures for an arbitrary choice of
these functional parameters.

Appendix: Bi-Hamiltonian Structures of Hydrodynamic Type

In this appendix we will describe in more detail, following [17], the defin-
ing equations for semisimple bi-Hamiltonian structures of hydrodynamic type as

well as their Lax pair representation. We will work in the canonical coordinates

u', ..., u" (see Lemma 1.5 above). Introduce the classical Lamé coefficients

Hiw):=f W), i=1,...,n,
and the rotation coefficients
(A.T) viju) = H7'9:H;, i # j.

Here, as usual,

0
Coul
no summation over repeated indices will be assumed within this section. The clas-
sical Lamé equations

Gl

k]

(A.2) OkYij = YikYxj» 1, J,k distinct,
(A3) 0vij + 0¥+ Y vavig =0, i #J,
ki, j

describe diagonal metrics of curvature zero.” Adding the equations
i j k 1 o,
(A.4) u' oy, +ul oy + Z u" Vi vej + E(yij +yi) =0, i#],
ke#i, j

one obtains the defining relations for semisimple Poisson pencils of hydrodynamic
type. The solutions to the system (A.2)—(A.4) are parametrized by n(n — 1) arbi-
trary functions of one variable. Indeed, one can freely choose the functions

. .
Yij (g, - u!, oo ug)

7 Integrability of the system (A.2)—(A.3) was discovered by Zakharov [46].
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near a given point

(A.5) ug = (u(l), co Uy, ub# ué, ug # 0.

Equations (A.2)—(A.4) can be represented as the compatibility conditions of the
linear system

Wi =viivi, 1# ],
(A.6) uk — A 1
0 i i . i =0
vi+ Y yku’—kwk+2(ul—k)w

ki

(“Lax pair” with the spectral parameter A for (A.2)—(A.4)). The solutions to the
linear system (A.6) are closely related to the common first integrals of the bi-
Hamiltonian systems of hydrodynamic type, i.e., with the Casimirs of the Poisson
pencil

(¥ =il =0, 1= [ Paoax.
aiP(l/t):lﬁ,‘H,‘, l:1,,n

(A7)

As we already know (see Lemma 1.6 above) the bi-Hamiltonian systems are all
diagonal in the canonical coordinates

(A.8) w4+ Vi, =0, i=1,...,n.

The characteristic velocities V' (u) are determined from the following linear sys-
tem:

(A9) kXi = VkiXe, 1 F#k,
(A.10) v =HV, i=1,...,n.

For the given rotation coefficients y;; (u) satisfying (A.2)—(A.4), the general solu-
tion to (A.9) depends on n arbitrary functions of one variable. In particular, the
Lamé coefficients x; = H;(u) give a solution to (A.9). They correspond to the
spatial translations Vimy=1,i=1,...,n. Finally, to reconstruct the flat pencil
of metrics starting from a given solution to (A.2)—(A.4) near a given point (A.5),
one has to choose a solution x;(u), ..., x,(#) such that

Xi(wo) #0, i=1,...,n
Then we put
(All) gllj(u) — Xiiz(u)Sl‘j, glzj(u) — I/liXiiz(u)(S,-j.

The flat coordinates of the metrics correspond to particular solutions of the
system (A.6). Namely, to find flat coordinates for the first metric, one has to choose
a fundamental system of solutions

Yiw), a=1,...,n, det(y(ug) #0,
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to the linear overdetermined system

ain:Vjil/fia l#]y
1
(A.12) 0 + ;ykiwk = Ewi,

obtained from (A.6) at A = co. Then the flat coordinates v* are defined by quadra-
tures

(A.13) dv* =) xidu', a=1,....n.

i=1

Flat coordinates for the second metric are constructed in a similar way by using
a fundamental system of solutions to (A.6) at A = 0. We deduce that semisimple
bi-Hamiltonian structures of hydrodynamic type with n dependent variables are
parametrized by n? arbitrary functions of one variable. For n < 2 equations (A.2)—
(A.4) are linear. So an explicit parametrization of the Poisson pencils is available
[40]. The equations become nonlinear starting from » > 3. All nontrivial solutions
known so far are obtained within the theory of Frobenius manifolds. In this case
the rotation coefficients are symmetric,

Yii = Vij
(the so-called Egoroff metrics), and equations (A.2), (A.3), and (A.4) are reduced

to isomonodromy deformations [12]. We will study a more general case in subse-
quent publications.
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