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Hamiltonian PDEs and Frobenius manifolds

B. A. Dubrovin

Abstract. In the first part of this paper the theory of Frobenius manifolds
is applied to the problem of classification of Hamiltonian systems of partial
differential equations depending on a small parameter. Also developed is
a deformation theory of integrable hierarchies including the subclass of
integrable hierarchies of topological type. Many well-known examples
of integrable hierarchies, such as the Korteweg–de Vries, non-linear
Schrödinger, Toda, Boussinesq equations, and so on, belong to this
subclass that also contains new integrable hierarchies. Some of these new
integrable hierarchies may be important for applications. Properties of the
solutions to these equations are studied in the second part. Consideration
is given to the comparative study of the local properties of perturbed and
unperturbed solutions near a point of gradient catastrophe. A Universality
Conjecture is formulated describing the various types of critical behaviour
of solutions to perturbed Hamiltonian systems near the point of gradient
catastrophe of the unperturbed solution.

Given an n-dimensional manifold Mn, denote by

L (Mn) = {S1 → Mn}

the space of loops with values in Mn. The main objects of our study are Hamil-
tonian vector fields on L (Mn) depending on the small parameter ε. They will be
called vector fields on the extended loop space L (Mn)⊗ R[[ε]]. More specifically,
we will study systems of evolutionary partial differential equations (PDEs) with
one spatial variable x represented in the form

ui
t = Ai

j(u)uj
x + ε

(
Bi

j(u)uj
xx +

1
2

Ci
jk(u)uj

xuk
x

)
+ O(ε2), i = 1, . . . , n. (1)

Here u = (u1, . . . , un) are local coordinates on Mn. This manifold will be
assumed to have a trivial topology (an n-dimensional ball), although we will use
non-linear changes of variables in this ball.

It is assumed that the terms of order εk in the expansions in (1) are polynomials
in the derivatives ux, . . . , u(k+1) of degree k + 1, where the degree is defined by

deg u(m) = m, m = 1, 2, . . . .
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It will be required that (1) is a Hamiltonian system with respect to a local Poisson
bracket

ui
t = {ui(x), H} =

∑
k>0

εk
k+1∑
m=0

Aij
k,m

(
u; ux, . . . , u(m)

)
∂k−m+1

x

δH

δuj(x)
, (2)

{ui(x), uj(y)} =
∑
k>0

εk
k+1∑
m=0

Aij
k,m

(
u(x); ux(x), . . . , u(m)(x)

)
δ(k−m+1)(x− y), (3)

deg Aij
k,m

(
u; ux, . . . , u(m)

)
= m,

with local Hamiltonian

H =
∑
k>0

εk

∫
hk

(
u; ux, . . . , u(k)

)
dx,

deg hk

(
u; ux, . . . , u(k)

)
= k.

(4)

Note that δ(x) in (3) is the Dirac delta function. The meaning of this notation
is clear from the explicit expression (2). The integral in (4) is understood in the
sense of formal variational calculus. In other words the integral of a differential
polynomial h = h(u; ux, . . . , u(m)) is defined as the equivalence class modulo total
derivatives:

h(u; ux, . . . , u(m)) ∼ h(u; ux, . . . , u(m)) + ∂x

(
f(u; ux, . . . , u(m−1))

)
,

∂x =
∑
k>0

ui(k+1) ∂

∂ui(k)
, where ui(k)

: =
dkui

dxk
.

Furthermore, δH/δuj(x) is the Euler–Lagrange operator

δH

δuj(x)
=

∂h

∂uj
− ∂x

∂h

∂uj
x

+ ∂2
x

∂h

∂uj
xx

− · · · for H =
∫

h dx.

The coefficients of the Poisson bracket as well as the Hamiltonian densities are
assumed to be polynomials in the derivatives at every order in ε. The antisymmetry
and Jacobi identity must be satisfied as identities for formal power series in ε. The
bracket (3) defines a Lie algebra structure Gloc on the space of all local functionals

{F,G} =
∫

δF

δui(x)
Aij δG

δuj(x)
dx, (5)

Aij : =
∑
k>0

εk
k+1∑
m=0

Aij
k,m

(
u; ux, . . . , u(m)

)
∂k−m+1

x ,

F =
∑
k>0

εk

∫
fk

(
u; ux, . . . , u(k)

)
dx, G =

∑
l>0

εl

∫
gl

(
u; ux, . . . , u(l)

)
dx,

deg fk

(
u; ux, . . . , u(k)

)
= k, deg gl

(
u; ux, . . . , u(l)

)
= l.

The full ring of functions on the infinite-dimensional ‘manifold’ L (Mn)⊗ C[[ε]] is
defined as a suitably completed symmetric tensor algebra over Gloc.
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The above formulae define a class of functions, vector fields, and Poisson
brackets on the infinite-dimensional ‘manifold’ L (Mn)⊗C[[ε]]. In order to develop
a geometric approach to the study of these objects we will now introduce a class of
admissible ‘changes of coordinates’ on our ‘manifold’. They will be given in terms
of the so-called generalized Miura transformations

ui 7→ ũi =
∑
k>0

εkF i
k

(
u; ux, . . . , u(k)

)
, (6)

deg F i
k

(
u; ux, . . . , u(k)

)
= k, det

(
∂F i

0(u)
∂uj

)
̸= 0.

The coefficients F i
k

(
u; ux, . . . , u(k)

)
must be differential polynomials. It is easy to

see that the transformations (6) form a group. Indeed, to invert the transformation
(6) one has to solve a system of differential equations for u1, . . . , un. The needed
solution is obtained as the WKB expansion in the small parameter ε. It is an easy
exercise to prove that the class of evolution PDEs (1), the Poisson brackets (3), as
well as the class of local Hamiltonians (4) is invariant with respect to the group of
generalized Miura transformations.

We will say that two objects of our theory (that is, two systems of evolution
PDEs (1), two local Poisson brackets (3), or two local Hamiltonians (4)) are
equivalent if they are related by a generalized Miura transformation.

The main problems of our research are
• the problem of classification of general Hamiltonian systems of PDEs,
• application to the study of integrable PDEs,
• new approaches to studying the properties of solutions.

Let us begin with classifying the Poisson brackets.

Theorem 1. Under the assumption

det
(
Aij

0,0(u)
)
̸= 0 (7)

any Poisson bracket of the form (3) is equivalent to the following standard Poisson
bracket :

{ũi(x), ũj(y)} = ηij δ′(x− y), ηij = ηji = const, det
(
ηij

)
̸= 0. (8)

In the proof of this theorem we use the theory of Poisson brackets of hydrody-
namic type developed by Novikov and the author in 1983. According to this theory
the leading term

gij(u) := Aij
0,0(u)

of the Poisson bracket defines a (contravariant) metric of vanishing curvature on
the manifold Mn. We also use triviality of the Poisson cohomology of the bracket
(8) proved by Getzler in 2001.

Next in the realization of our programme is the classification of bi-Hamiltonian
structures of the form (3), (7). Recall that the systems

ui
t = {ui(x), H1}1 = {ui(x), H2}2, i = 1, . . . , n,
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Hamiltonian with respect to two compatible Poisson brackets { · , · }1 and { · , · }2 of
the above form can always be included into a maximal Abelian subalgebra called
an integrable hierarchy in the Lie algebra of Hamiltonian vector fields (this can be
proved).

Theorem 2. Under the additional assumptions of strong non-degeneracy and
semisimplicity, every bi-Hamiltonian system is defined by

1) a pencil of Poisson brackets of hydrodynamic type

{vi(x), vj(y)}2 − λ {vi(x), vj(y)}1 =
(
gij
2 (v(x))− λ gij

1 (v(x))
)
δ′(x− y)

+
(
Γij

k 1
(v)− λ Γij

k 2
(v)

)
vk

x δ(x− y); (9)

2) a collection of n functions of one variable

c1(w1), . . . , cn(wn),

called central invariants.

The proof of this theorem is based on
• the quasi-triviality theorem: every bi-Hamiltonian structure becomes equiva-

lent to a dispersionless one (9) if one extends the class of admissible transforma-
tions (6), allowing rational dependence of the coefficients F i

k(u; ux, . . . ) for k > 1
on the jets ux, uxx, . . . .
• calculation of the bi-Hamiltonian cohomology, that is, of the deformations of

a pair of acyclic anticommuting differentials on the multivectors on L (Mn)⊗R[[ϵ]]
defined by the bi-Hamiltonian structure.

Let us outline the construction of the central invariants. To every Poisson bracket
(3) we assign a series of matrices depending on an auxiliary parameter p:

πij(u; p) =
∑
k>0

Aij
k,0(u)pk. (10)

Recall that the degree in the derivatives (in x of u) in the coefficients Aij
k,0 is equal

to zero, and therefore these only depend on u. To a pair of Poisson brackets we
assign a characteristic equation

det
(
πij

2 (u; p)− λ πij
1 (u; p)

)
= 0. (11)

Let λ1(u; p), . . . , λn(u; p) be the roots of this equation:

λi(u; p) =
∑
k>0

λi
k(u)pk,

where
λi

0(u) = wi(u), λi
k(u) = 0 for odd k.

The conditions of semisimplicity and strong non-degeneracy imply that the leading
terms w1(u), . . . , wn(u) of these expansions are pairwise distinct and non-constant.
From this one can derive that these functions can be used as local coordinates
on Mn. Put

ci =
1
3

λi
2(u)

⟨dwi, dwi⟩1
, i = 1, . . . , n. (12)
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It turns out that for every i = 1, . . . , n the function ci depends only on
one coordinate wi. Moreover, two bi-Hamiltonian structures with the same
dispersionless limit (9) are equivalent if and only if they have the same central
invariants.

Example 3. The bi-Hamiltonian structure of the Korteweg–de Vries (KdV) equa-
tion

ut + u ux +
ε2

12
uxxx = 0, (13)

is

{u(x), u(y)}2−λ{u(x), u(y)}1 =
(
u(x)−λ

)
δ′(x−y)+

1
2

uxδ(x−y)+
1
8

ε2δ′′′(x−y).

(14)
The canonical transformation

u = v − ε2

12
(log v′)′′ + ε4

(
vIV

288v′2
− 7v′′v′′′

480v′3
+

v′′
3

90v′4

)′′
+ O

(
ε6

)
, (15)

rational in the derivatives v′ = vx, v′′ = vxx, . . . . transforms the dimensionless
bi-Hamiltonian structure

{v(x), v(y)}2 − λ{v(x), v(y)}1 =
(
v(x)− λ

)
δ′(x− y) +

1
2

vxδ(x− y) (16)

into (14). Here w = u and the unique central invariant is equal to the constant
c1 = 1/24.

Example 4. The bi-Hamiltonian structure of the Camassa–Holm equation

ut − ε2utxx =
3
2

uux − ε2

[
uxuxx +

1
2

uuxxx

]
(17)

is given by the formula

{u(x), u(y)}2−λ{u(x), u(y)}1 =
(
u(x)−λ

)
δ′(x−y)+

1
2

uxδ(x−y)+λ
ε2

8
δ′′′(x−y).

(18)

The dispersionless limits for (14) and (18) coincide. However, the central invari-
ant of the bi-Hamiltonian structure (18) is equal to

c1 =
1
24

w, w = u.

Therefore the KdV and Camassa–Holm hierarchies are inequivalent.
The theory of central invariants describes the structure of the space of infinites-

imal deformations of bi-Hamiltonian structures of hydrodynamic type. It remains
an open problem to prove the vanishing of higher obstructions to the deformation;
that is, the problem of the existence of a bi-Hamiltonian structure with a given
dispersionless limit and given central invariants. We will now consider a particular
subclass of the so-called integrable hierarchies of topological type associated with
semisimple Frobenius manifolds.
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Frobenius manifolds Mn correspond to a particular class of Poisson pencils of
hydrodynamic type. The characteristic feature of Frobenius manifolds is the exis-
tence of a commutative and associative multiplication on the tangent bundle

∂

∂ui
· ∂

∂uj
= ck

ij(u)
∂

∂uk
,

and also of a zero curvature metric defined in the flat coordinates u1, . . . , un by
a constant symmetric non-singular matrix〈

∂

∂ui
,

∂

∂uj

〉
= ηij .

The local existence of a potential F (u) such that〈
∂

∂ui
· ∂

∂uj
,

∂

∂uk

〉
=

∂3F (u)
∂ui ∂uj ∂uk

is required. Moreover, the existence of a flat unit vector field e and a linear Euler
vector field E satisfying

[e, E] = e, E F = (3− d)F + quadratic terms

are also required. Here d is a constant.
A remarkable property of Frobenius manifolds (and characteristic, under certain

additional assumptions) is the existence of a flat pencil of metrics

(dui, duj)1 = ηij ,

(dui, duj)2 = iE dui · duj .
(19)

Thus on the loop space L (Mn) there arises a bi-Hamiltonian structure of hydro-
dynamic type and, therefore, an integrable hierarchy. We will not enter into details
concerning the construction of this hierarchy here but simply write explicitly one
of the equations of the hierarchy:

ut + u · ux = 0, u = (u1, . . . , un) ∈ Mn ≃ TuMn. (20)

In this formula the Frobenius manifold is locally identified with its tangent space
due to the existence of the flat metric.

Frobenius manifolds also possess many other remarkable properties. In partic-
ular, semisimple Frobenius manifolds (for which the algebra on the tangent plane
TuMn at a generic point u ∈ Mn is semisimple) can be described in terms of
isomonodromy deformations of certain linear differential operators with rational
coefficients. There is also a remarkable connection between the theory of semisim-
ple Frobenius manifolds and the theory of reflection groups. Of particular impor-
tance for our study is the existence of a tau-function for the integrable hierarchies
associated with Frobenius manifolds. This is the main motivation for considering
the particular subclass of integrable hierarchies we are now going to explain.

The main question to be addressed is the reconstruction problem: for which
Frobenius manifolds can the system (20) be considered as the zero dispersion limit
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of an integrable hierarchy on L (Mn) ⊗ C[[ε]]? And if such an ε-extension exists,
how may they all be classified?

Theorem 2 above says that every such hierarchy is uniquely determined by its
dispersionless limit along with the collection of central invariants. The characteristic
feature of integrable hierarchies of topological type is that
• the dispersionless bi-Hamiltonian structure is described via the flat pencil of

metrics of the form (19) associated with a semisimple Frobenius manifold;
• all central invariants are constant and equal to each other.

Theorem 5. For any semisimple Frobenius manifold there exists a unique inte-
grable hierarchy of topological type associated with this manifold with the central
invariants

c1 = c2 = · · · = cn =
1
24

.

The clue to the proof of this theorem lies in the invariance of integrable hierar-
chies of topological type with respect to Virasoro symmetries acting linearly on the
tau-function.

Table 1. List of examples of Frobenius manifolds and the associated inte-

grable hierarchies of topological type

n = 1 F =
1

6
v3 KdV 1

n = 2 F =
1

2
uv2 + u4 Boussinesq

n = 2 F =
1

2
uv2 + eu Toda

n = 2 F =
1

2
uv2 +

1

2
u2

(
log u− 3

2

)
NLS

n = 2 F =
1

2
uv2 − Li3(e

−u) Ablowitz–Ladik

n = 3 F =
1

2
(uw2 + u2v)

+
1

6
v2w2 +

1

60
w5

A3 Drinfeld–Sokolov hierarchy, intersection
theory on the moduli spaces of spin 3 curves

n = 3 F =
1

2
(uv2 + vw2)

− 1

24
w4 + 4weu

generalized Toda lattice associated with
difference Lax operator of bidegree (2,1);
orbifold Gromov–Witten invariants for
a curve with one second-order singularity

n = 3 F =
1

2
(τv2 + vu2)

− iπ

48
u4E2(τ)

higher corrections to elliptic Whitham
asymptotics, the KdV case

n = 4 F =
i

4π
τv2 − 2uvw

+ u2 log

[
π

u

θ′1(0|τ)
θ1(2w|τ)

] higher corrections to elliptic Whitham
asymptotics, the NLS/Toda case

1In this table we write KdV, Boussinesq, Toda, NLS to refer to the integrable hierarchies
associated with the Korteweg–de Vries equation, Boussinesq equation, Toda lattice equations,
and the non-linear Schrödinger equation, respectively.
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Let us now study the properties of the solutions to the equations constructed. It
is natural to ask how these properties depend on the choice of a Frobenius manifold;
how they change with variation of the truncation order in ε; and what part of these
properties continues to hold for non-integrable perturbations.

Figure 1. Critical behaviour of solutions to KdV

Figure 2. Critical behaviour of solutions to the focusing non-linear

Schrödinger equaion iψt +
1

2
ψxx + |ψ|2ψ = 0; the graph of u = |ψ|2 is

displayed

For small times the contribution of higher ε-corrections is small. Solutions of
the dispersionless system and of its perturbation begin to diverge near the point
of gradient catastrophe where the derivatives ux, ut become large. It turns out that
the behaviour of solutions to Hamiltonian evolution PDEs is qualitatively different
from what happens with solutions to dissipative systems: namely, instead of a shock
wave, rapid oscillations with the period ε occur (see Fig. 1).
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The first impression is that the behaviour of solutions to different PDEs looks
completely different. For example, it is difficult to find any similarity between the
critical behaviour shown in Fig. 1 (the KdV case) and Fig. 2 (the NLS case).

Nevertheless, there are various reasons to expect that only a finite number of
types of critical behaviour may occur in generic solutions to generic Hamiltonian
PDEs according to the Universality Conjecture we next discuss.

As one can see from Table 2, for n = 1, 2 the types of critical behaviour for
generic solutions to the unperturbed systems are described by algebraic functions
known from singularity theory, such as the bifurcation diagram of the A3 singu-
larity, the Whitney singularity, and also Thom’s elliptic umbilic singularity. For
solutions to the perturbed systems these algebraic functions are replaced by certain
particular solutions to Painlevé equations and their generalizations. Let us describe
these solutions.

Table 2. Types of critical behaviour of solutions to low-order Hamiltonian PDEs

Number of
dependent
variables

Dispersionless system Perturbed system

n = 1 for t < 0 solution to

x = ut− 1

6
u3

a special solution U(X,T ) to
the ODE P2

I

X = UT − 1

6
U3

−
[

1

24
(U ′

2
+ 2UU ′′ ) +

U IV

240

]
n = 2 hyperbolic

case
for t < 0 solution to the
system in the characteristic
variables
x+ = r+,

x− = r+r− −
1

6
r3−

same function U(X,T ),

r+ = x+ + U ′′(x−, x+),

r− = U(x−, x+)

n = 2 elliptic case for z ̸= 0 the solution to
complex quadratic equation

z =
1

2
w2

the tritronquée solution W0(Z)
to the ODE PI

W ′′ = 6W 2 − Z

We will begin with the equation

X = TU −
[
1
6

U3 +
1
24

(U ′2 + 2UU ′′) +
1

240
U IV

]
. (21)

This is an ODE for the function U = U(X) depending on the parameter T . In
the theory of Painlevé equations it is known as the higher order analogue of the
Painlevé-I equation (see below). It is known that for all values of the parameter
T any solution to (21) is a meromorphic function of the complex variable X. The
particular solution we are interested in has no poles on the whole real line X for all
real values of the parameter T (the existence of this solution was only proved by
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Claeys and Vanlessen in 2006). We will denote by U(X, T ) such a solution uniquely
defined for all (X, T ) ∈ R2 (see Fig. 3).

Figure 3. The solution U(X,T ) to the ODE (21) for two values of the

parameter T

We are now ready to formulate the Universality Conjecture for scalar Hamilto-
nian PDEs.

Conjecture 6. Let us consider a generic Hamiltonian perturbation of the equation

vt + a(v)vx = 0, a′(v) ̸= 0. (22)

A generic solution to the perturbed equation near its critical point (x0, t0, v0) may
be represented in the following form :

u ≃ v0 +
(

ε2c0

κ2

)1/7

U

(
x− a0(t− t0)− x0

(κ c3
0ε

6)1/7
,

a′0(t− t0)
(κ3c2

0ε
4)1/7

)
+ O(ε4/7), (23)

where a0 = a(v0), a′0 = a′(v0), c0 and κ are some constants, and U(X, T ) is the
solution to the ODE (21) described above.

A proof of this conjecture for solutions to the KdV equation with rapidly decreas-
ing analytic initial data has recently been obtained by Claeys and Grava.

As follows from Table 2, the same special function also describes the critical
behaviour of generic solutions to a perturbed Hamiltonian hyperbolic system of the
second order. For the critical behaviour of solutions to Hamiltonian perturbations
of elliptic systems (for example, for the focusing non-linear Schrödinger equation)
another special function is needed. We shall now describe this function.

It appears as a particular solution to the classical Painlevé-I equation (PI)

W ′′ = 6W 2 − Z. (24)

As above, all solutions to this equation are meromorphic functions of the complex
variable Z. The asymptotic distribution of poles of a generic solution to PI was
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thoroughly studied by Boutroux in 1913. Boutroux proved that the lines of poles
of a generic solution to PI accumulate along the five rays in the complex plane

arg Z =
2πn

5
, n = 0,±1,±2. (25)

Boutroux’ main discovery was the proof of the existence of special solutions for
which the lines of poles asymptotically truncate along three consecutive rays of the
form (25). These solutions, called tritronquée, are determined uniquely for every
triple of consecutive rays.

Let us denote by W0(Z) the particular tritronquée solution associated with the
triple of rays (25) with n = 0,±1. By definition this solution has at most a finite
number of poles in the sector | arg Z| < 4π/5 − δ for an arbitrary positive δ. The
following conjecture, due to Grava, Klein, and the author, claims that there are no
poles in this sector.

Conjecture 7. The tritronquée solution W0(Z) is an analytic function for all com-
plex Z satisfying

|arg Z| < 4π

5
. (26)

From the graph shown in Fig. 4 it follows that the solution under consideration
has no poles in the sector (26).

Figure 4. The graph of the real (left) and imaginary (right) parts of the

tritronquée solution W0(Z) to PI in the sector |argZ| < 4π/5

We are now ready to formulate the Universality Conjecture describing the critical
behaviour of solutions to Hamiltonian perturbations of systems of elliptic type. By
definition the unperturbed system possesses a pair of complex conjugate Riemann
invariants w and w̄. The characteristic directions z and z̄ are also complex conju-
gate. One can conclude from Table 2 that the critical points of the unperturbed
solution are isolated. Moreover, in a neighborhood of a critical point the solution
has a singularity described by the square root of a complex quantity.

Conjecture 8. A generic solution to a generic Hamiltonian perturbation of an
arbitrary quasi-linear second order system of elliptic type near a critical point can
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be represented in the form

w ≃ w0 + αε2/5W0(ε−4/5z) + O(ε4/5), z = β+x + β−t + z0, (27)

where α ̸= 0, β±, z0 are some complex constants such that

|arg z| < 4π

5
for small |t− t0|

for all x ∈ R.

This conjecture, first formulated by Grava, Klein, and the author in the study of
the critical behaviour of solutions to the focusing non-linear Schrödinger equation,
so far remains open.
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