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Abstract. This article is concerned with a conjecture in [B. Dubrovin, Comm. Math. Phys.,
267 (2006), pp. 117-139] on the formation of dispersive shocks in a class of Hamiltonian dispersive
regularizations of the quasi-linear transport equation. The regularizations are characterized by two
arbitrary functions of one variable, where the condition of integrability implies that one of these
functions must not vanish. It is shown numerically for a large class of equations that the local behavior
of their solution near the point of gradient catastrophe for the transport equation is described by
a special solution of a Painlevé-type equation. This local description holds also for solutions to
equations where blowup can occur in finite time. Furthermore, it is shown that a solution of the
dispersive equations away from the point of gradient catastrophe is approximated by a solution of
the transport equation with the same initial data, modulo terms of order €2, where €2 is the small
dispersion parameter. Corrections up to order e* are obtained and tested numerically.
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1. Introduction. Many wave phenomena in dispersive media with negligible
dissipation, in hydrodynamics, nonlinear optics, and plasma physics, are described by
nonlinear dispersive partial differential equations (PDEs). These equations are also
mathematically challenging since the solutions can have highly oscillatory regions and
blowup even for smooth initial data (see, e.g., [33], [19], [21]).

This article is concerned with a conjecture in [10] on the formation of dispersive
shocks [19], [27], [31] in a class of Hamiltonian regularizations of the quasi-linear
transport equation

(1.1) ut +a(u)u, =0, d'(u)#0, u,z€eR.

In the present paper we will consider general Hamiltonian perturbations of (1.1) up
to fourth order in a small dispersion parameter 0 < ¢ < 1. They can be written in
the form of a conservation law,

ug + a(u)u, + eQGI{bl (u)Ugy + bz(u)ui + € [bg(u)uzm + bg (W) ugruy + b5(u)ui]
(1.2) +¢€2 [bg(u)umm + b7 (W) Uggatts + bs (u)uiT + by (u)umui + blo(u)uﬂ } =0,
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where the coefficients by (u),...,b10(u) are smooth functions satisfying certain con-
straints following from the existence of a Hamiltonian representation

0H
Ut-f—awm =0

(see Corollary 2.4 below). Here and below we use the notation

0

This class of equations contains important equations such as the Korteweg—de Vries
(KdV) equation u;+6ut,+€2u,,, = 0 and its generalizations, the Kawahara equation,
and the Camassa—Holm equation in an asymptotic sense (see [10]).

Up to certain equivalencies the Hamiltonian regularizations of (1.1) are charac-
terized by two free functions c(u) and p(u):
(1.3)

1
ug + a(u)uy + €20, |ca gy + 5(0 a')'ui] +€e*o, [<2p a + gcza") Uggrps + * } =0.

Two equations of the form (1.3) with the same invariants ¢(u) and p(u) commute, up
to order O(e%),

(ut); — (ug), = O (66) )

where for an arbitrary function a = a(u)
1 3
uz + a(u)uy + €20, | Uy + 5(0 d')'ui] +€e*o, [<2p a + gczd") Uggps + * } =0.

In this paper the analysis of [10] up to order €* is extended to higher orders of e.
Our analysis suggests that the only obstruction to the functions ¢(u) and p(u) by the
condition of integrability is the condition that ¢(u) must not vanish.

We then proceed to the study of the critical behavior of solutions to (1.2). Namely,
let (x¢,te, u.) be a point of gradient catastrophe of a solution u°(z,t) to (1.1) specified
by an initial value u®(x,0) = ¢(z). This means that the solution is a smooth function
of (z,t) for sufficiently small |z — x| and t — ¢, < 0. Moreover, there exists the limit

lim w0 (z,t) = u
r—Tc, t—t.—0 ( ’ ) ©

but the derivatives ul(x,t), u?(x,t) blow up at the point. The universality conjecture
of [10] says that, up to shifts, Galilean transformations, and rescalings, the behavior
at the point of gradient catastrophe of a solution to (1.2) with the same e-independent
initial data ¢(z) essentially depends neither on the choice of the generic solution nor
on the choice of the generic equation. Moreover, the generic solution near this point
(¢, te, ue) is given by

~ o2y (T —Te—ao(t —tc) t—t. ( 4/7)
(1.4) u(w,t,€) = ue + e U< Fer a7 +o (7)),

where a9 = a(u.) and the constants «, 8, v depend on the choice of the generic
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equation and the solution

1260\ /7
()"
aok

3 0\3 7

0

1/7
(1222
Y= alg .
0

Here a) = a’(u.), bY = bi(u.); it is assumed that b # 0. The constant k in these
formulae is inversely proportional to the “strength” of the breakup of the dispersionless
solution u(z, 1),

T — Z¢

1.6 k=-61lm —M
(1.6) e=ze (40, t,) — uc)3

where we assume that k # 0 (another genericity hypothesis) and apk > 0.
The function U = U(X;T), (X,T) € R?, is defined as the unique real smooth
solution to the fourth order ODE [5], [23]

1 1
(1.7) X=TU- |-U*+ —

1 1
G 24U)2(+EUUXX+—UXXXX ;

240
which is the second member of the Painlevé I hierarchy. We will call this equation
PI2.
The relevant solution is characterized by the asymptotic behavior
22/3T

_ L O(X73), X — +o,
5x)1 (X73)

Wl

(1.8) U(X,T) = —(6X)

for each fixed T € R. The existence of a smooth solution of (1.7) for all real X, T
satisfying (1.8) has been proved by Claeys and Vanlessen [7].

Observe that the principal term of the asymptotics (1.4) depends only on the order
€2 regularization. In the present paper we will numerically analyze, in particular, the
influence of the higher order corrections! on the local behavior of solutions to (1.2)
near the point of catastrophe.

First numerical tests of the P12 asymptotic description at the critical point for the
class of PDEs in [10] have been presented in [18] for the KdV and the Camassa—Holm
equation. In [6] a rigorous proof of the asymptotic behavior (1.4) has been obtained
for the KdV equation, namely (1.3) with a(u) = u, ¢(u) = 1, and p(u) = 0.

In this paper we generalize the numerical investigation of [18] to a larger class of
equations which include the generalized KdV equation, the Kawahara equations with
a dispersion of fifth order, and the second equation in the KdV hierarchy; see [1], [2]
for the importance of these equations in applications.

We comment on the formation of blowup and on the role of integrability in the
formation of oscillatory regions. In particular we show the differences in the formation

1One should also take into account [10] that the actually small parameter of the expansion (1.4) is
(12b(1)62) Y7 In other words, the asymptotic expansion (1.4) makes sense only under the assumption
be? <« %7 in agreement with [3].
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of dispersive shock waves between integrable and nonintegrable cases. The KdV
equation has been extensively studied numerically in [17].

Then we show numerically that the solution of the dispersive equation (1.2) con-
verges to the solution of the dispersionless equation (1.1) for times much smaller than
the time for the point of gradient catastrophe at a rate of order €2. Finally, we show
that the solution of the dispersive equation (1.2) is well approximated as a series in
even powers of € in terms of the solution of the dispersionless equation (1.1) up to
order €* by the so-called quasi triviality transformation [10] away from the point of
gradient catastrophe. Such an approximation has already been obtained for conser-
vation laws with positive viscosity [16]. Furthermore the existence of an expansion
in even powers of € has already appeared and been proved in the context of large N
expansions in Hermitian matrix models [4], [15].

In this paper we consider local Hamiltonian perturbations of the Riemann wave
equation. Non-Hamiltonian perturbations, especially of “random” type, introduce
in general dissipation. Systems with dissipation and dispersion are known in the
literature as the KdV-Burgers equation; see, e.g., [28]. In such systems, there is
a competition between dissipative and dispersive effects. There is, in principle, no
problem in studying such equations numerically; the problem is mainly which type
of effects one is interested in. The focus of the present paper is on local dispersive
effects and on their asymptotic description at the point of gradient catastrophe.

The paper is organized as follows. In section 2 we briefly review the results of
[10]. In section 3 we discuss higher order in € regularizations of (1.1) and obstructions
on the function c(u) by the condition of integrability. In section 4 we study a quasi
triviality transformation for the solution before the critical time. A numerical study of
the applicability of the conjecture to generalized KdV equations is given in section 5.
We also comment on the possibility of blowup. In section 6 the conjecture is tested
numerically for equations with high order dispersion such as the Kawahara equation.
Differences in the formation of rapid oscillations in the solutions to integrable and
nonintegrable equations are studied. In section 7 we add some concluding remarks.
Details about the used numerical methods are given in the appendix.

2. Hamiltonian PDEs and their invariants. In this paper we mainly study
scalar Hamiltonian PDEs of order at most five. They are written in the form of a
conservation law:

(21) Uy + amsp(ua €Uy, 62’11/11, eguwwwa €4uwwww) = 07
where
0H
2.2 =
(2:2) ?= Sua)’

H = /h(u,eux,ezum) dx.

Recall that the Euler-Lagrange derivative is defined by

SH _Oh . Oh  _, Oh
(2.3) Su(z)  Ou O Ouy + Oy

Here and in what follows, the integral of a differential polynomial is understood, in
the spirit of formal calculus of variations, as the equivalence class of the polynomial
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modulo the image of the operator of the total xz-derivative,

oh Oh

It worth recalling that a differential polynomial p(u; g, . . ., u™)) belongs to Im 9, iff

opP

(2.5) e

0, P:/p(u;uz,...,u(m))da:.

The Poisson bracket of two local functionals H, F' associated with (2.1), (2.2), is a
local functional of the form

o0H i oF
ou(zx) dx du(x)

(2.6) (H,F} =

Applying the criterion (2.5), one obtains the following useful statement.
ProposiTION 2.1. Two Hamiltonians

H:/h(u;uw,um,...)dx and F:/f(u;uw,um,...)dx
commute,
(H,F} =0,

iff their densities satisfy the equation

0 0H d OF

(2.7) du(w) J ulw) dz dulx)

r = 0.

Ezxample 2.2. Two Hamiltonians of the form

H:/ﬁmmL F:/jmmx

always commute. Indeed,

0H d oF

Sule) da Ju() " / W (W) f" (w)ug da.

Here h/(u) = dz(f), etc. So

5 SH d OF 9 . )

Let us now derive necessary and sufficient conditions for existence of a Hamilto-
nian representation (2.1), (2.2) of an equation of the form (1.2).

LEMMA 2.3. Equation (2.1) can be written in the Hamiltonian form (2.2) iff the
function ¢ satisfies the following two constraints:

dp 5 dp 1 dp

3ur o auxm 5 wauzzz ’
(2.8)
99 ¢
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Proof. According to the classical Helmholtz criterion (see [9]) the function ¢(u, u,
Ugz, - --) can be locally represented as the variational derivative of some functional
H = [ h(u,ug,...)dz iff it satisfies the following system of constraints:

dp i (m+1)! m 0P .
For the particular case under consideration, the equations (2.9) reduce to (2.8). 0

Applying the lemma to a PDE (2.1) written in the form of the weak dispersion
expansion, one arrives at the following claim.
COROLLARY 2.4. The equation
(2.10) g + a(u)uy + 0y {€bo(u)ug + € [by(w) gy + ba(u)ul]
+é [b3 (W) Ugzr + ba(U)Upgtiy + by (u)ui}
+¢ [bg (W) Ugzre + b7 (W) Upprtie + be(w)u?, + bo(u)upru? + blo(u)ui] } =0

is Hamiltonian iff the coefficients by, . .., b1o satisfy
by =0,
1
b2 = 5[)/1,
b3 = 07
1
b5 = § 217
by = 2by,
3
b8 = 5 /67
1
bl() - Zbé

The Hamiltonian equations (2.1) are considered modulo canonical transformations
written in the form of a time-e shift,

2
(2.11) u(z) = a(z) = u(z) + e{ul(x), K} + BN Hu(z), K}, K} + -+,

generated by a Hamiltonian
(2.12) K:/k(u,eum,...)dx.

The transformations (2.11) preserve the canonical form of the Poisson bracket (2.6).
Two Hamiltonian equations are called equivalent if they are related by a canonical
transformation of the form (2.11), (2.12). For example, the degree 3 terms in a
Hamiltonian PDE of the form (2.10) can be eliminated by a transformation (2.11) if
a’(u) # 0. Indeed, it suffices to choose the generating Hamiltonian in the form

2
K=-< / b4(u>u§ dzx.
6 J da(u)
The following lemma describes a normal form of Hamiltonians of order 4 (cf. [10])
with respect to transformations (2.11).
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LEMMA 2.5. Any Hamiltonian equation of the form (2.10) with a’'(u) # 0 is
equivalent to

1 3
ug 4 a(u)uy + €20, {blum + §b’1ui + 2 ( b6 Urzzz + 2bGUzrrts + §bguiw
(2.13)
o, L,y
+ bougzuy + Zbguw =0.

The Hamiltonian PDEs (2.13) and

up + a(u)uy + €20, {Z}lum + %B’lug + 2 ( b6 Unzwz + 205Upzstiy + g?a’ﬁufm
(2.14)
+ l;gumui + %bgui)] =0
are equivalent iff
(2.15) a=a, bi=by, bg=bg.

Proof. We have already proved that the coefficients of degree 3 in € can be
eliminated by a canonical transformation of the form (2.11). One can easily see that
the coefficients a, by, and bg are invariant with respect to these transformations. Two
Hamiltonians of the form

H—/ f—fbu2+fbu2 =]
and

ia=|f i 4 b, — hout|
- 92 1Ug 2 6 U g 12 Uy Ly
generating the flows (2.13) and (2.14) with the same coefficients a = a, by = by,
bs = bg but with different by # by, are related by a canonical transformation (2.11)
with
63 l~)9 — bg 3

=2 p uydx. O

Thus the coefficients a, by, bg are invariants of the Hamiltonian PDE (2.13).

As it was discovered in [10], any Hamiltonian PDE of the form (2.13) is integrable
at the order e* approximation. More precisely, assuming a’ # 0, let us replace the
invariants by = b1 (u) and bg = bg(u) with

bl b6 3 2 CLN
Then (2.13) is equivalent to the PDE

(2.17)
1 3
up + alu)u, + €20, |ca'ugy + 5(6 a')'ui} + e*o, {<2p a + gc2a") Ugggr + ] =0
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with the Hamiltonian

2
Hf — /{f _ %CfWUi + 64 {<pf/// + %CQf(4)) uiw
(2.18)

1 (3cc’f® 43¢ fO) 4 2f0)

where, as above,
f(u) = a(w).

The approximate integrability means that, fixing the functional parameters ¢ = ¢(u),
p = p(u), one obtains a family of Hamiltonians satisfying

(2.19) {Hy, Hy} = O (%)

for an arbitrary pair of smooth functions f = f(u), g = g(u). In particular, choosing
f(u) = u?, one obtains the Hamiltonian

.3

(2.20) H= / % - ez@ui + e4p(u)uiz] dx

of a general order 4 dispersive regularization of the Hopf equation
[ 1

(2.21) Up + Uy + €20y | CUpy + gc’ui}

+ 648w [2]9 Uggzr T 4p/uwwwuw + 319/“21 + 2]9//’11/11113] =0

introduced in [10].%
More generally [11], [12], we call a perturbation

H=H0+6H1+€2H2+"'

3
U
HOZ/de

N-integrable if, for any smooth function f = f(u), there exists a perturbed Hamilto-
nian

of the Hopf Hamiltonian

Hy=H}+ Y ¢"Hf
k>1

such that for f = %3 the Hamiltonian H; coincides with H and, moreover, for any
pair of functions f, g the Hamiltonians Hy, H, satisfy

{Hy, Hy} = O (V).

For example, the perturbed Hamiltonian (2.20) is 5-integrable. The commuting Ham-
iltonians have the form (2.18). In the next section we will discuss the problem of
constructing higher integrable perturbations of (2.20).

2In the present paper we use a different normalization, c(u) +— 12¢(u).
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3. On obstacles to integrability. We will now study the possibility of ex-
tending the commuting Hamiltonians (2.18) to the next order of the perturbative
expansion. In particular, we will check whether obstructions appear on the functions
c(u) and p(u) by the condition of integrability in higher orders.?

THEOREM 3.1. (1) Any order 6 perturbation of the cubic Hamiltonian Hy =

J %3 dx can be represented in the form

ud €
(3.1) H = / [? — Ec(u)ui + etp(u)u?, — €8 (a(u)uim + B(u)uir)] dx.

Such a perturbation is T-integrable for arbitrary functional parameters ¢ = c(u), p =
p(u), a = a(u), 8= P(u).
(2) The perturbation (3.1) can be extended to a 9-integrable one iff c(u) # 0 and

1 2
(3.2) @ =g [80%—67pc'—|—330p’—|—12cc’2—9020”} .

Proof. A general order 6 perturbation of the cubic Hamiltonian Hy must have
the form

u? e 2 4 2
H= = —C(U)Uw +e p(u)uww
6 2
— ¢ [a(u)uim + Blu)ul, + y(u)u? u? + 5(u)ug} } dz.
The last two terms can be eliminated by a canonical transformation,
H—H—-e{HF}+---,
with
5 (1 2 1 5
F=|[¢ E’y(u)umum + Zé(u)um dzx.
For an arbitrary function f = f(u) the density of a Hamiltonian
Hf = /hf dx
commuting with (3.1) modulo O (¢%) must have the form
he = f_ icf//IUZ +€4 pf"’+ 302]0(4) u2 _1 p/f(4) + §CC” (4) +pf(5)
! 2 @ 10 w6 4
(3.3)

3 1
+ec O 230 k| = ¢ oW+ By 0+ a3y ()]

with some smooth functions ay = af(u), By = Br(u), vf = vs(uw), o5 = d¢(u)
depending on f. From the commutativity

{H,Hs} =0 (")

3CH. [26] where an alternative approach to asymptotic integrability has been developed.
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one uniquely determines these coefficients:

8 3 9
Qy = Oéfm + <?Cp+ 7—OCQC/> f(4) + 7—003f(5),
3 253pc +169¢p’  ccd® B 2 )
_ |2 !
br=>01 <2O‘+ 168 o 35 T |/
29 31 5.4\ +6) A f©
(210p+ 70° > / 7
A7
vy = <%ﬂ — go/ + %(c’3 — 2" = 3cd )+ cp — ﬂpc —cp > @
37 3 8
- (2a = 11¢? Zcp' ) f®
< 14pc + 35(66 + 112" + 7cp) f
1
-1 (23cp + 92 f© — 3 c3f(7)7
1 10cc’c" + 7cc 0(4) +c2e® 2
§5e= [ — / /// o4 = 4 (4)
f (0 ¢ 40 +pPe +600p /
Loy, L 3 2 3 o, ccdd” 1 11 el (5)
+<5 I T T R A A T K
2 o 2 1 Tedd" 4 3¢ 1 6)
+ ioz+l c’+cc/2+ic 3 ) gy (Lepy 2o f(8>+i
T AR TR T L i 207 " 30° 240

Thus the resulting Hamiltonian H; satisfies

{Hva} = 0(68)'

It is not difficult to also verify the commutativity

{Hy,Hy} = O (68)

for an arbitrary pair of functions f = f(u), g = g(u).
Let us now analyze the possibility of extension to a commutative family of order 8.
We add to (3.1) terms of the form
HHE’ZH—F/ [Alu —I—Ag’u

+ Asuiud, + Aqul,

x 1}1} x II

2,2 2 2
+ A5uruzzz + Aﬁuﬁﬁurrr + A7uzzzz] dﬂ]‘,

and to (3.3) a similar expression,

Hf — Hf = Hf + / [Blu + Bguwum + Bguwum + B4U

+ BsuZu?,, + Beugu> dz.

xrrrx

+ Bru

rrx 1111}

Here Ay,..., A7, By, ..., By are some functions of u. The goal is to meet the condition

(3.4) {H,H} =0 ().
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The order 8 terms in the brackets in (3.4) are represented by a differential polynomial
of degree 9. From the vanishing of the coefficient of u(®u, it follows that

10 10 10 1 1 1
— A - V2 Y - (- (4)
7f +(9ac+9p+63 ceP = 315¢ c+21 p+7occ f
52 .3 ) A (6
+(7c p+70 )f t75 !

Next, from the vanishing of the coefficient of u(®)u,,, we get (3.2).

Further calculations allow one to determine Bg from the coefficient of u(®) ug g,

s from the coefﬁcient of u 6)u3 By from the coefficient of u(4)ug2mum, Bs from the
coefﬁment of u® umu , Bs from the coefficient of u 4)uw, and, finally, By from the
coefficient of ug,u. All these coefficients are represented by linear differential oper-
ators of order at HlObt 12 acting on the arbitrary function f = f(u). The coefficients
of these operators depend linearly on Aq, ..., A7 and their u-derivatives and also on
c(u) and p(u) and their derivatives. The explicit formulae are rather long; they will
not be given here. As above, one can verify validity of the identity

{a7.0,} =0()

for any pair of functions f(u), g(u). O
COROLLARY 3.2. Let p(u) be an arbitrary nonvanishing function. Then the
Hamiltonian

(3.5) H = /{ +e*p(u Z}da:

cannot be included in a 9-integrable family.

4. Quasi triviality transformations and perturbative solutions. In this
section we will develop a perturbative technique for constructing monotone solutions
to equations of the form (2.21) for sufficiently small time ¢. This technique is based on
the so-called quasi triviality transformation [10] expressing solutions to the perturbed
equation (2.21) in terms of solutions to the unperturbed equation.

To explain the basic idea let us consider

1 0H
(4.1) Up + U Uy + €20, (cum—kgc’ui) +...:ut+8rm =0,
H= / [ - —cu + - ] dx.
The quasi triviality transformation for this equation,
2| € Vzza U2 1 ", 2 4
(4.2) Vo U=0v+e€ 5 v—_v_ —l—cvm—i—§cv + O(e%),
is generated by the Hamiltonian
(4.3) K= —%/cvmlogvm dx+(’)(e3),

u:v—l—e{v(az),K}—l—%{{v(x),K},K}+-~- )
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Substituting into (4.1), one obtains a function u(x,t; €) satisfying (4.1) up to terms of
order €*. Indeed, one can easily derive the following expression for the discrepancy:

1
et [u Uy + €20, (c Uy + —c’ui) — ut}

2
5 3 2 2
20,5 4 vyt 4,3 4,3
2 v,2 40,2 2 vy
4 2 2
+cc | — 3 T+ 3 - - +
4v, Vg Vg 4o, 2

3 113 130,200 15 w2 TrT
+CC” ( ;}1} + Y ;) +3 wavwww) + CC/I/ <% + Svmvwwz)

+5c D30, + 500(5)02 +c7 <;)— A R i)

Vg 2
+de! (217}12”111

5 + 10%1}112) +9¢ "3 0pe + /W

5
+5¢" 03 vg0 + Zc”c’”vi +O(e%).

Note that the same quasi triviality transformation works for solutions v = v(z,t) to

the nonlinear transport equation

v + a(v)vy =0,

transforming it to solutions, modulo O(e?), to the perturbed equation (1.1).
Denote by ¢(x) = v(x,0) the initial data for the Hopf equation. The initial value
of solution u(z,t; €) given by formula (4.2) differs from ¢(z):

(bzzz im

bz O3

In order to solve the Cauchy problem for (4.1) with the same initial data u(x,0;€) =
@(x) one can use the following trick. Let us consider the solution ¢ = ¥(x, t;€) to the
Hopf equation with the e-dependent initial data

(4.4) u(z,05€) = ¢ + € [g < ) + e + %c”gbi] + O(e*).

(4.5) (x,0;¢) = ¢ — € [E (¢wm — iw) + by + lc”qﬁi] .
2\ ¢ @2 2
Such a solution can be represented in the form
(4.6) oz, t;€) = v(x,t) + Ew(z, t) + O(e*),
where the function w(z,t) has to be determined from the equation
"2 / 7 " 7

Here ®(v) is the function inverse to ¢(x). Applying the quasi triviality transformation
to the solution o(x,t; €), one obtains a function

(4.8) u(z,t;€) = v + 2w + €2 € [ Yraz _ @ + Vg + 1c"v2
2\ v, v2 2"
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satisfying (4.1) modulo terms of order ¢* with the initial data
(4.9) u(z,05€) = p(x) + O(e*).

5. Generalized KdV equations. In this section we will first study the role
of the function a(u) in (1.1) on the validity of the conjecture. This is done for the
generalized KdV equations having the form

(5.1) up + a(u)ug + €Uggy = 0.

We will assume that a(u) is monotonic in an open neighborhood of each critical point.
The functional parameters ¢(u) and p(u) in (2.18) are given by

b g e

The basic idea of the PI2 approach to the breakup behavior is that the equa-
tion behaves in this case approximately like the KdV equation. We will test this
assumption first for a(u) of the form a(u) = 6u™, n € N.

5.1. Breakup. To begin we will study the solutions to generalized KdV equa-
tions close to the breakup of the corresponding dispersionless equation. A generic
critical point (z, tc, uc) is given by

a(ue)te + ®(ue) = .,
(5.3) a' (ue)te + @' (uc) =0,
a”’(ue)te + @ (u.) = 0,
where ®(u) is the inverse of the initial data ¢(x) (which might consist of several

branches). We will always study the initial data ¢(z) = sech?z, which imply ®(u) =
In((1 ++/1 —u)/y/u). For the critical values we obtain

" — 2n
T oam4 1
1 2) n+1/2
(5.4) g = L2
6(2n)n+1

Vn+1 <\/2n+1+1)
ro=———+In| —— |,
2n \/%

1 (2n + 1)%/2
k= —g(am(uc)tc + " (u.)) = ooz

We first study the difference between the numerical solution to the generalized KdV
equation and the solution to the dispersionless equation, a generalized Hopf equation,

on the whole computational domain. For values of e = 1071,107%2%, ..., 10~ we find
that this difference scales for n =1 (KdV) roughly as €* with a = 0.299 (correlation
coefficient » = 0.99997 in linear regression, standard deviation o, = 0.0018), for

n = 3 we have a = 0.317 (r = 0.9998, o, = 0.0046), for n = 4 we have o = 0.324
(r =0.9998, 0, = 0.005), and for n = 5 we have @ = 0.325 (r = 0.9998, o, = 0.0053).
The predicted value is 2/7 = 0.2857. It can be seen that the above values are all
higher, and that the scaling for the generalized KAV equations is close to €'/3. Thus
the decrease is at least of the predicted order. It is not surprising that higher values
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F1c. 5.1. The lighter line is the solution of the generalized KdV equation u +6u" Uz +€2Uppy = 0
for different values of n for the initial data ¢(x) = 1/Cosh2 x and e = 10™3 at the time t. and near
the point of gradient catastrophe x. of the Hopf solution (center of the figure). The darker line is
the multiscale approximation in terms of the PI2 solution.

for the exponent are found since we consider comparatively large values of € for which
the contributions of higher order in the difference still play a considerable role.

As discussed in the previous section, it is conjectured that the behavior of the
solutions to the generalized KAV equation in the vicinity of the critical point is given
in terms of the special solution to the PI2 equation. Expanding a(u) for u ~ u. as
in [10], one finds the behavior shown in Figure 5.1 for different values of n. It can
be seen that the asymptotic description is much better for the KdV equation due
the fact that the PI2 transcendent gives an exact solution. For other values of n this
transcendent gives the conjectured description in the vicinity of the critical point. The
quality of the asymptotic description shows the expected scaling for smaller values of
€, as can be seen on the left in Figure 5.2.

The quality of this PI2 approximation is not limited to functions a(u) in (5.1)
which are polynomial in w. If we consider the case a(u) = 6sinhu, we obtain the
right-hand panel of Figure 5.2. It can be seen that the PI2 asymptotics gives the
same excellent description as for KdV.

5.2. Oscillatory regimes and blowup. It is known that solutions to initial
value problems with sufficiently smooth initial data for the generalized KdV equation
with n < 4 are globally regular in time. This is not the case for for n > 4, where
blowup can occur at finite time with n = 4 being the critical case. For this case a
theorem by Martel and Merle [29] states that solutions on the real line, with negative
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FIG. 5.2. The lighter line is the solution of ut + a(u)uz + €2 ugze = 0 with a(u) = 6u® (left) or
a(u) = 6sinhu (right) for the initial data ¢p(x) = 1/ cosh®?z and e = 10~* at the time t. near the
point of gradient catastrophe x. of the Hopf solution (center of each figure). The darker line is the
multiscale approrimation in terms of the PI2 solution.

Fic. 5.3. Solution of the generalized KdV equation with n = 4 for the initial data ¢(x) =
1/ cosh?z, e = 10™1, and time t = 0.3180 > t. (left); e = 10~2 and time t = 0.2235 > t. (right).

energy, blow up in finite or infinite time. For the general case n > 4 and periodic
settings considered here, the question is still open. Since the energy has the form

n+2
5 / [ B 6unt dz,
(n+ 1)(n +2)
it will be always negative for sufficiently small e and positive u.

Here we address numerically the question of whether the formation of dispersive
shocks, i.e., of a region of rapid modulated oscillations, precedes a potential blowup.
We expect that the breakup of the solution to the dispersionless equation is regularized
by the dispersion in the form of oscillations, which then develop into blowup if the
latter exists. This is exactly what we see in the following. Notice that the breakup
time is given by the dispersionless equation and is thus independent of e. We first
study the case n = 4. For € = 1, the energy is positive and no indication of blowup
is observed. For e = 0.1 we obtain for the initial data ¢(z) = sech’z; see Figure 5.3
(left). For smaller € (¢ = 0.01) the behavior is similar, but there are as expected more
oscillations, and the size of the oscillations reaches higher values earlier, as can be seen
in Figure 5.3. For obvious reasons it is numerically difficult to decide whether the
dispersive shock will lead to a blowup. In practice we run out of resolution before the
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Fic. 5.4. Logarithm with base 10 of

the modulus of the Fourier coefficients of the
function shown in Figure 5.3(right).

FiG. 5.5. L°-norm of the solutions in
Figure 5.3.

FiGc. 5.6. Solution of the generalized KdV equation with n = 5 for the initial data ¢(z) =
1/cosh?x, e = 1071, and t = 0.2362 > t. (left); e = 1072 and t = 0.2235 > t. (right).

code breaks down because of a blowup. This is due to oscillations in Fourier space, as
can be seen in Figure 5.4. Though there is in principle enough resolution to approach
u(zx,t), the oscillations of the Fourier coefficients make an accurate approximation via
a Fourier transform impossible.

The reason for this behavior is as discussed in [32]: singularities of the form
(z—z;)" in the complex plane lead asymptotically to Fourier coefficients with modulus
of the form Ck~(#+1) exp(—dk), § > 0. If there are several such singularities, there
will be oscillations in the Fourier coefficients. In the present case there are at least two
such singularities, the breakup—which is, strictly speaking, singular only for € = 0,
but has an effect already for finite e—and the blowup—which leads to the behavior
seen in (5.4). In Figure 5.5 we give the L>°-norm of the solutions in Figure 5.3. It
cannot be decided on the basis of these numerical data whether there is finite time
blowup in this case; if it exists, it is clearly preceded by a dispersive shock.

In the supercritical case n = 5 we obtain a similar picture. In Figure 5.6 we see
the solution in the case e = 0.1. Again it appears as if the rightmost peak evolves into
a singularity. For smaller € (¢ = 0.01) there are again more oscillations, which stresses
the importance of dispersive regularization before a potential blowup. Studying the
L*-norm of the solutions in Figure 5.7, we can see that the case ¢ = 0.1 indeed seems
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Fic. 5.7. L°°-norm of the solutions in Figure 5.6.

to approach an L°° blowup in finite time. Because of the above-mentioned resolution
problems, we could not reach a similar point for e = 0.01.

6. Kawahara equations. The Kawahara equations [24], which appear in gen-
eral dispersive media where the effects of the third order derivative is weak as in
certain hydrodynamic or magneto-hydrodynamic settings, can be written in the form

1
6.1 ut + _awf U, € Ug, €2uww + ﬁ 64”11111 =0.
2
Here we will mainly study the case
(6.2) flu, euy, ezum) = 6u’ + 20 2uyy

with o = 1 and § = +1. The global well-posedness of solutions of (6.1) in a suitable
Sobolev space has been proved in [30].
The functional parameters c¢(u), p(u) in (2.18) are constants

(63) cw)=za,  plu) = P,

At the critical point we obtain for 8 = —1 that the breakup behavior is well
described by PI2 in lowest order, as can be seen in Figure 6.1.

It can be seen that the P12 solution gives close to the breakup point a much better
description of the Kawahara solution than the corresponding Hopf solution. The
oscillation closest to the breakup point is too far away from the latter to be correctly
reproduced, but the PI2 solution qualitatively catches the oscillatory behavior of the
Kawahara solution near the critical point. With smaller €, the agreement gets better,
as expected; see Figure 6.1(right).

For 8 =1, the breakup behavior of solutions to the Kawahara changes, as can be
seen from Figure 6.2. In this case the oscillations in the Kawahara solution appear on
the other side of the critical point and around it with small amplitude. This behavior
cannot be captured by the PI2 solution but is a higher order effect. Close to the
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FiG. 6.1. The blue line is the solution of the Kawahara equation (8 = —1) for the initial data
é(x) = 1/ cosh?z and € = 10~2 (left) or ¢ = 103 (right). The plot is taken at the time t. near
the point of gradient catastrophe z. of the Hopf solution (center of the figure). Here x. ~ 1.524,
te >~ 0.216. The red line is the corresponding Hopf solution, and the green line is the multiscale
approzimation in terms of the PI2 solution.
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F1G. 6.2. The blue line is the solution of the Kawahara equation (B = 1) for the initial data
é(x) = 1/ cosh?z and € = 10~2 (left) or € = 1073 (right). The plot is taken at the time t. near
the point of gradient catastrophe z. of the Hopf solution (center of the figure). Here x. ~ 1.524,
te ~ 0.216. The red line is the corresponding Hopf solution, and the green line is the multiscale
approzimation in terms of the PI2 solution.

critical point, the multiscale solution gives, as before, a much better description of
the Kawahara solution than the Hopf solution.

For smaller values of €, both asymptotic solutions become more satisfactory, as
can be seen from Figure 6.2(right). It is interesting to note that with decreasing ¢, the
oscillations become smaller in amplitude in this case but appear closer to the critical
point. It can also be seen that the solution has the tendency to form one oscillation
on the other side of the critical point close to the corresponding PI2 oscillation. The
fact that the oscillations to the right of the critical point disappear more rapidly with
€ as € — 0 than the oscillations captured by the PI2 asymptotics is obvious and can
also be clearly seen in Figure 6.3 for an even smaller value of e.

Tracing the solution for larger times, it can be recognized that this will be the
only oscillation to the left of the critical point, whereas a zone of high-frequency
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Fig. 6.3. Solution to the Kawahara equation (8 = 1) with ¢ = 104 (lighter line) and its
approzimation by the PI2 solution (darker line).

e=1072
15 ‘
; R i
S 05F \ i
AW
o v V \\A/\/V\/\/\/\/\/\/\/\/\M,M
05 ‘ ‘ ‘ ‘ ‘
16 1.8 2 22 24 2.6
X
e=1073
15 ‘
1 \w I
> 05f g
ok TN |
05 ‘ ‘ ‘ ‘ ‘
16 1.8 2 2.2 24 2.6

FiG. 6.4. Oscillatory zone of the solutions to the Kawahara equation (8 = 1) for the initial
data ¢(x) = 1/ cosh? z and two values of € at time t = 0.25 > t..

oscillations which appears to be essentially unbounded (see [14], [22]) develops to the
right; see Figure 6.4. The oscillations appear to be, as in the KdV case, more and more
confined to a zone similar to the Whitham zone, though no asymptotic description
of the oscillations (see, e.g., [13]) exists since the equation is not integrable. The
different behavior of the dispersive effects in the cases § = +1 can be qualitatively
understood as follows: the dispersive effects are due to the term g, + BUzzzzs, OF in
Fourier space by the multiplier —ik3(1 — 8k?). Thus the case f = —1 is qualitatively
as for KdV since the dispersion has the same sign, whereas it will change for g = 1;
see also [14].
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Fic. 6.5. Solutions of the Kawahara equation (6.1) with 8 = 1 and o« = 1 (left) or a = 0
(right). The solution is given for the initial data ¢(x) = 1/ cosh® z and e = 10~3 at the time t. near
the point of gradient catastrophe x. of the Hopf solution.

It seems also that this one oscillation to the left is really due to the third order
derivative in the Kawahara equation, as can be seen in Figure 6.5, where one has to
the left the Kawahara solution from Figure 6.2 and to the right the analogous solution
for « = 0, i.e., Kawahara without a third order derivative, a nonintegrable case even
in the considered order of €. The oscillations to the right of the critical point, being
due to the fifth order derivative, are present in both cases and have only slightly
different forms.

6.1. PDE with nonlinear dispersion. To show that the breakup behavior
discussed in the previous sections is typical, we will now consider equations of the form
(2.17) with nonlinear dispersion, i.e., with functions ¢(u) and p(u) not constant. The
Camassa—Holm equation (CH) falls into this class if the nonlocal term is expanded in a
von Neumann series (see [10]) for functions ¢(u) ~ u and p(u) ~ u. The applicability
of the PI2 asymptotics to CH was studied numerically in [18]. For simplicity we
restrict our analysis to the case ¢(u) and p(u) both proportional to u? with the Hopf
equation as the dispersionless equation and initial data of the form ¢(x) = sech’z.
More complicated functions ¢ and p can be considered, but the results are qualitatively
the same.

In Figure 6.6 the behavior at the critical time can be seen for c¢(u) = u? and
p(u) = 0. The situation is obviously like that in the KdV case.

As for the Kawahara equation, the relative sign between the third and the fifth
derivatives is important for the form of the oscillations. The situation with the op-
posite signs of ¢ and p can be seen in Figure 6.7. It is qualitatively the same as in
the KdV case. New features appear as in the case of the Kawahara equation for the
same sign in front of the third and fifth derivatives. As can be seen in Figure 6.8,
oscillations of small amplitude appear as in the Kawahara equation on the other side
of the critical point. Thus nonconstant functions ¢(u) and p(u) as expected do not
change the picture from the case of constant functions as long as they do not vanish
at the critical point.

6.2. Quasi triviality transformation. In this subsection we study numeri-
cally the validity of the expansion given in section 4. For times ¢ < t. the behavior
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F1G. 6.7. Solution to (2.17) for a(u) =
u, c(u) = —p(u) = u?, and initial data
é(x) = sech’z at the critical time, and the
corresponding multiscale solution in terms of
the PI2 transcendent.
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FIG. 6.8. Solution to (2.17) for a(u) = u, c(u) = p(u) = u2, and initial data ¢(z) = sech’z at
the critical point, and the corresponding multiscale solution in terms of the PI2 transcendent.

of the solution of (4.1) should be described to order €2 by the solution of the Hopf
equation u; + uu, = 0 with the same initial data. In fact we find that the difference
between the Hopf solution and the solution to Kawahara equation (6.1) with 8 = 1,
o = 1 for the initial data ¢(z) = sech’z at t = t./2 scales as €7 with v = 1.94 (values
of e =10"1,1071125 ... 1073, correlation coefficient » = 0.9997 in linear regression,
standard deviation o, = 0.027). For the same setting in the interval x € [0.8,2], the
difference between the quasi triviality solution as described in section 4 and the Kawa-
hara solution scales as € with v = 3.77 (correlation coefficient » = 0.999 in linear
regression, standard deviation o, = 0.088). This confirms the theoretical expecta-
tions. In Figure 6.9 the difference between the Kawahara and the Hopf solutions and
the quasi triviality transform in order €2 can be seen for this case. A similar scaling
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FIG. 6.9. Solution to the Kawahara equation with o = 1 for the initial data ¢(z) = 1/ cosh®z
at the time t = t./2 for two values of €; in blue the difference between the Kawahara and the
corresponding Hopf solution, in green the order €2 term of the quasi triviality transformation.

is observed for « = —1 and a = 0 (KdV).

The difference between the solution of generalized KdV equation wu; + uu, +
€2Upze = 0 and the solution of the corresponding conservation law scales, at t = ¢, /2
as € with v = 1.9890 (values of e = 107,107 1125 . 1073, correlation coefficient
r = 0.99998 in linear regression, standard deviation o, = 0.0068).

6.3. Second equation in the KdV hierarchy. In this subsection we study the
formation of dispersive shock waves for a family of equations that includes integrable
and nonintegrable PDEs. Interestingly the family of equations

(6.4) ug + 30u?uy + 10ae? (WUggr + 2ugUyy) + Huppres = 0,
having the invariants

1 1—a?
C(U) = gaa p(u) = 1200 )

is completely integrable for « = 41 and coincides with the second equation in the KdV
hierarchy (KdVII). Varying this factor, one can study the transition to the Kawahara
equation. As expected, KdVII shows oscillations similar to those of KdV [17], as can
be seen in Figure 6.10.

For larger values of a one can recognize in Figure 6.10 also a formation of oscil-
lations on the other side of the inflection point, as in the Kawahara equation. These
effects become smaller for larger values of & (a > 1.2), but it shows that the phenom-
enon of integrability with the appearance of KdV-type oscillations is rather subtle.
Thus it seems that the decisive factor for the appearance and the size of these oscil-
lations is the relative sign and size of the factors in front of the third and the fifth
derivatives in the equation. Notice that for smaller « (6.4) is closer to the noninte-
grable (in higher orders in €) equation

ur + ?)Ouzu‘T + 64U11111 =0
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Fic. 6.10. Oscillatory part of the solution to the KdVII equation for the initial data ¢(x) =
1/ cosh?z and e = 1072 at a time t = 0.04 > t. = 0.029 for several values of c.

(see section 3 above). It would be interesting to elaborate upon this observation in
order to develop numerical tests of (approximate) integrability based on the study of
the phase transition from regular to oscillatory behavior.

7. Outlook. In the present paper we have presented local Hamiltonian pertur-
bations of the Riemann wave equation that are integrable up to order €. This
allowed us to identify possible obstructions on the free functions appearing in order €2
by the condition of integrability in higher order. We were able to test the conjectured
asymptotic description near the point of gradient catastrophe and before. Since we
were working with double precision numerics, we could access only values of € > 10~*
and the first order correction in the quasi-triviality approximation for small times. To
test higher order corrections, we will use multiprecision computations in the future.

A similar analysis will be presented for Hamiltonian perturbations for systems
of equations. The case of nonlocal Hamiltonian perturbations seems to belong to a
qualitatively different class of phenomena and will be subject of a subsequent inves-
tigation.

Appendix A. Numerical methods. In this appendix we will briefly review
the methods used in the numerical study of the PDE in the small dispersion limit and
of the PI2 solution, and we will give references in which details can be found.

Since critical phenomena are generally believed to be independent of specific
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boundary conditions, we restrict our analysis to essentially periodic functions. Typ-
ically we consider Schwarzian functions on a domain at the boundaries of which the
functions are smaller than machine precision (10716 in double precision, which is used
throughout this paper). Such functions can be periodically continued and are smooth
with numerical precision. This allows a Fourier discretization of the spatial variables
and an approximation of the solutions via truncated Fourier series. The use of Fourier
spectral methods is especially efficient for the studied dispersive PDE because of the
excellent approximation of smooth functions and the only minimal introduction of
numerical dissipation. The latter is especially important if one is interested in the
study of dispersive effects.

After discretization of the spatial coordinates, the PDE is equivalent to a typically
large system of ODEs in the time variable. Because of the high order of the spatial
derivatives and because of the strong gradients we want to study, these systems will
be typically stiff. If the stiff part is linear, as is the case for the generalized KdV
equations and for the Kawahara equations, the system of ODEs has the form

Lv+ Nv] =0,

where v is the discrete Fourier transform of the solution, L is the stiff linear opera-
tor, and the nonlinear term N[v] contains only derivatives of lower order. For such
systems, efficient integration schemes exist. We use a fourth order exponential time
differencing scheme [8]; see [25] for a comparison of fourth order schemes for KdV.
The numerical accuracy is controlled by sufficient spatial resolution, i.e., Fourier coef-
ficients decreasing to at least 1078, and by numerically checking energy conservation.
Since all equations studied here are Hamiltonian, energy is a conserved quantity. Due
to unavoidable numerical errors, it will be weakly time-dependent in numerical time
integrations. As discussed in [25], conservation of the numerically computed energy
typically overestimates the accuracy of a solution by two orders of magnitude. We
always compute with an error in energy conservation smaller than 1076, which implies
that the error is well below plotting accuracy.

The situation is different for the equations with nonlinear dispersion in section 6.2.
For these PDEs we use an implicit fourth order Runge-Kutta method (the Hammer
and Hollingsworth method [20]). These equations are numerically much more demand-
ing. Therefore we compute with lower spatial resolution and an energy conservation
of the order of 1074,

The special solution of the PI2 equation is generated with the code buvp4 dis-
tributed with MATLAB; for details see [18]. The Hopf solution is obtained from the
implicit form u(x,t) = ¢(&), x = tp(§) + £ with a fixed point iteration to machine
precision. The derivatives of the Hopf solution are obtained by evaluating the analytic
expressions following from the characteristic method.
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