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Abstract. We represent the genus two free energy of an arbitrary semisimple Frobenius
manifold as a sum of contributions associated with dual graphs of certain stable algebraic
curves of genus two plus the so-called ”genus two G-function”. Conjecturally, the genus two
G-function vanishes for a series of important examples of Frobenius manifolds associated

with simple singularities, as well as for P!-orbifolds with positive Euler characteristics. We
explain the reasons for the conjecture and prove it in particular cases.
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1. INTRODUCTION

Let (M, -,(, ),e, E) be a semisimple Frobenius manifold of dimension n. To such an objectone
can assign (see [5]) a formal series

F= Y ) (11)

920

the so-called free energy of the Frobenius manifold (in the framework of the theory of Gromov—
Witten invariants, its exponential is also called the total descendent potential). Here t = (t*P),
a=1,...,n,p = 0,1, 2,..., are coordinates on the large phase space which coincide with the
time variables of the associated integrable hierarchy of topological type (see [5, 7]). The particular
coordinate z := 0 plays the role of the spatial variable of the integrable hierarchy. The independent
parameter e is referred to in the physics literature as the string coupling constant. Restricting
the free energy to the small phase space Fy(t'°,... ") := Fy(t)|vr=0 (p>0), One obtains a
generating function of the genus g Gromov-Witten invariants. In particular, the function Fy(¢),
t=(t"9,...,t™0), coincides with the potential of the Frobenius manifold.

Write v, (t) = 02F(t)/0t1°0t*0 a = 1,...,n, for a particular set of the genus zero correlators.

A remarkable property of the genus expansion (1.1) is that the higher genus terms can be represented
in the form

Folt) = F, (0(6),0a(8), ., 02 (1)), g =1, (1.2)

where v(t) = (v!(t),...,v"(t)) (the indices are raised with the help of the flat metric on M).
The existence of such a representation, first conjectured in [8], follows from vanishing of certain
intersection numbers on the moduli space of stable maps [16]; in a more general setting, it can
also be derived from the bi-Hamiltonian recursion relation of the associated integrable hierarchy

of topological type [5]. The functions .7:'9 (v,vx, e ,U(39_2>) for ¢ > 2 depend rationally on the

jet variables vg, ..., v®9=2) while the expression for Fi(v,v,) involves also logarithms (see the
formula (2.11) below). Below, the hats are omitted.
In [5], an algorithm was developed for computing F, (v, Ugy e o ,U(39_2>) for g > 1 by recursively

solving the so-called loop equation. In particular, an explicit formula for the genus two free energy

1t also depends on the choice of a so-called calibration of the Frobenius manifold, i.e., on the choice of a basis of
horizontal sections of the deformed flat connection on M. See [5] for details.
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2 DUBROVIN, LIU, ZHANG

Fo = Fo(v, 04,03, 03 04) is given for any semisimple Frobenius manifold. This formula (for the
convenience of the reader, we reproduce it in Appendix 2 below) is represented in terms of the Lamé
coefficients, rotation coefficients, and the canonical coordinates of the Frobenius manifold, which
are not easy to compute for a concrete example. In this paper, we show that F> can be rewritten
as a sum of two parts; the first part is given by correlation functions, which is easy to compute in
the flat coordinates, while the other part is still represented in terms of rotation coefficients and
canonical coordinates; however, it vanishes in many examples, including the simple singularities
and the P'-orbifolds of ADE type.

Let us proceed with formulating the main statements of the present paper.

Theorem 1.1. Let M be a semisimple Frobenius manifold of dimension n. Denote by Fo the
genus two free energy for M given by the formula (3.10.114) in [5], see the formula in Appendiz
B. Then 16

Fo=Y ¢ Qp+ G (t,ug,s,). (1.3)

p=1
Here each term Q, corresponds to one of the following sizteen graphs:

Q13 Q14 Q15 Q16

The constants c, read as follows:

. _ 1 _ 1 _ 1

1= 0’1 €2 = ~g9600 @B = 5760 C4 = 1152)

€5 = 33807 ce =0, C7 = 1920 C8 = ~2g80>
_ _ 1 _ i _

Cg = 1920° €10 = 1920° €11 = 1920 C12 = _960°

€13 = —go» C14 = 713> C15 = — 540> €16 = 1p-

The function G® (u,uy,us,) is called the genus two G-function of the Frobenius manifold. An
explicit expression (A.1) of this function in the canonical coordinates ui, ... , Uy, s given in Ap-
pendix 1.

Before formulating the rules for computing the contributions of the sixteen graphs, let us explain
their realization as dual graphs of stable curves of (arithmetic) genus 2. Recall (see, e.g., [20]) that
dual graphs are used to encode a certain class of singular algebraic curves with marked points.
The vertices of the graph correspond to the irreducible components of the curve. The genus of
the normalization of such a component is called the genus of the vertex. The components of genus
zero on our sixteen graphs are equipped with bullets and the components of genus 1 with circles.
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ON THE GENUS TWO FREE ENERGIES FOR SEMISIMPLE FROBENIUS MANIFOLDS 3

All singularities of a stable curve are at most double points. The points of intersection or self-
intersection of these components correspond to the edges of the dual graph, while the marked
points are associated with the legs. The arithmetic genus of the stable curve is equal to the sum of
genera, of the vertices plus the first Betti number of the dual graph.

We are now ready to formulate the rules for computing the contribution of a dual graph. Let
Fy = F4(t) be the genus g = 0,1 free energy of M, and let 9/0t*?, o = 1,...,n, p > 0, be

__FR .4
910 90 980 2
denote its inverse by (M ~1)®#. Here and below, the summation with respect to repeated upper

and lower indices is assumed. The diagram rules are formulated as follows:

i) the bullets () correspond to Fo;
ii) the circles (o) correspond to Fi;

1 '_a o .
)aa otx,0 ® ota’,00

the tangent vector fields on the large phase space. Introduce a matrix M,z =

iii) the edges correspond to (M~

iv) the legs correspond to %.

It is assumed that all differential operators corresponding to edges and legs act on the vertices Fy
or F; first and all contractions with the matrix M ~! are to be added at the very end. Thus, for
example, the terms Q1, Q2, @15, Q16 are given by

86]:0 —1\ao! -1 !

Q1 = 5710 510 g g0 i 0 170 (M (M7 (1.4)
64F0 -1 aa' 1 BB, _1 77, 85F0

Q2 =g gran grro g M) (M) M) S 5 g g 0 910 (1.5)
01T, C\aa’ (yp—11B8 02 F,

Q15 = gm0 g0 oo oo M) (M G e (1.6)

82-7:1 —1\yaao' (9.7:1
Q16 =510 gran M )™ Grara- (L.7)

The other ;s can be computed in a similar way.

Let us now describe the characteristic properties of the above sixteen graphs distinguishing them
from the other graphs. For a graph @, denote by N,(Q), N.(Q), and N;(Q) the numbers of its
vertices, edges, and legs, respectively. Let vq,...,v,, with m = N,(Q) be the vertices of the graph.
Denote by g(v;) and n(v;) the genus and the valence of the vertex v;. Finally, let B;(Q) be the first
Betti number of the graph Q.

The above sixteen graphs are selected from the set of connected graphs by requiring that each
of these graphs satisfies the following properties.

(1) Each of these graphs is the dual graph of a stable curve of arithmetic genus two. Equiva-

lently, the graph is planar, and the valence and the genus of each of its vertices satisfy the
constraints 2g(v;) — 2 4+ n(v;) > 0 and

390 + Bi(@) =2

(2) The number of edges and the number of legs are equal to N, (Q)+ B;(Q) — 1. This property
is equivalent to the Euler formula for the graph, N.(Q)— N, (Q)+1 = B1(Q), together with
the condition that the function assigned to () as above must have degree two with respect

to the jet variables 02v?, i.e.,
m

> (2g(vi) =2+ n(v;)) — N(Q) = 2.
i=1
Recall that, according to [1, 3], such a function can be represented as a rational function

of the jet variables 0Pv®, p > 1, and its degree is defined by assigning the degree p to any
0Pv®, e =1,...,n. We also note that

Z”(Ui) = 2N.(Q) + N (Q)-
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4 DUBROVIN, LIU, ZHANG

(3) Cutting off an edge connecting two genus zero vertices does not destroy the connectivity
of the graph. A graph with this property is said to be one-particle irreducible (1PI) in the
physics literature.

(4) There is at most one vertex of the valence n(v;) = 3 — 2¢g(v;) in the graph. Moreover, if the
graph contains only one genus one vertex, then the valence of each of its vertices v; satisfies
the inequality n(v;) > 3 — 2g(v;).

Remark 1.2. If a graph Q is obtained from a graph Q by adding a genus zero vertex with a leg
in the middle of an edge of @), then the functions assigned to Q and Q are the same. This follows
immediately from the above definitions. Thus, we view the new graph Q as a graph equal to the
old one, to Q.

The main point of the decomposition (1.3) of the genus two free energy into a sum of 16+1 terms
is the following assertion.

Lemma 1.3. The restrictions of the terms Q1, ..., Q¢ to the small phase space vanish.

The proof of the lemma easily follows from the above explicit expressions, from the rules
Uy |phase space = € and U(k)|phase space = 0 for k& > 2 for restrictions of jets, and from the iden-
tity .G = 0 (for details, see [5]). Here e stands for the unit of the Frobenius manifold and G is
the G-function of the Frobenius manifold that enters (2.11) below.

Thus, the part of the free energy “responsible” for the would-be genus two Gromov—Witten
invariants (i.e., without descendents) is entirely contained in our genus two G-function.

Another important feature of the genus two G-function can be observed in the analysis of im-
portant examples coming from singularity theory and orbifold Gromov-Witten invariants. In the
present paper we consider two classes of examples: first, the case of simple singularities and, sec-
ond, the Gromov-Witten invariants of P*-orbifolds with positive Euler characteristic. Both classes
of examples are associated with Dynkin diagrams of ADFE type. The connection of the simple
singularities with the ADFE Weyl groups is well known. The Frobenius structure on the base of
universal unfolding in this case can be constructed with the help of K. Saito theory of primitive
forms [23]. The integrable hierarchies of topological type coincide with the Drinfeld—-Sokolov ADE
hierarchies [18, 6, 27]. The associated cohomological field theory was constructed in [26, 12, 13, 14,
15, 11].

The case of P1-orbifolds is relatively more recent. In this case one deals with the Pl-orbifolds of
positive Euler characteristic. Hence, there are at most three orbifold points with multiplicities p, g,
and r. These positive integers must satisfy the condition 1/p + 1/g + 1/r > 1. This inequality has
only finitely many solutions, which are listed in the following table:

(p,q,7) Dynkin diagram
(p.q,1) 4,4
(2,2,7) Dyyo
(2,3,7) E, .3

The second column of this table refers to the so-called extended affine Weyl groups of ADE type.
The Frobenius manifolds in these cases were constructed in [2]. The construction depends on the
choice of a vertex of the Dynkin diagram. A connection between these Frobenius manifolds and the
orbifold quantum cohomology of the P!-orbifolds was discovered in [21] for the A, , case and in
[22] for other Dynkin diagrams. An important connection between these Frobenius manifolds with
Frobenius structures on the spaces of the so-called tri-polynomials (see below) was also established
in [22] (the role of tri-polynomials in the homological mirror symmetry was revealed in [25]).

The main conjecture of the present paper is as follows.

Conjecture 1.4. If M is a Frobenius manifold obtained from the genus zero Fan-Jarvis—Ruan—
Witten (FJRW) invariant theory for ADE singularities or the genus zero Gromov—Witten invariant

theory for P-orbifolds of ADE type, then
G (U, g, tgg) = 0. (1.8)

Remark 1.5. In FJRW theory includes a symmetry group G. We assume that the singularities
and their symmetry groups are chosen in such a way that the corresponding Frobenius manifolds
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ON THE GENUS TWO FREE ENERGIES FOR SEMISIMPLE FROBENIUS MANIFOLDS 5

coincide with the ordinary ones constructed from the singularities of the same type [1]. In particular,
when the singularities are of A and E type, or D type with even Milnor number, the group G can be
chosen as the minimal one, (J). For the singularities of D type with odd Milnor number, one needs

to start from the mirror of D,,, i.e., DI = "~y + y2, and choose the group G to be the maximal
one, Gpaz. The reason is that the FJRW theory is an A-model theory, while the construction
given in [1] from singularities to Frobenius manifolds is on the B-side, and thus there are mirror
symmetry phenomena between them. For more details, see [13, 15].

The main conjecture can also be formulated in the following way.

Conjecture 1.6. If M is a Frobenius manifold assigned to ADE singularity or an extended
affine Weyl group of ADE type, then
G (1, g, Ugy) = 0. (1.9)

The validity of this conjecture has been verified in many special cases; the main goal of the
present paper is to explain the tools relevant for such a verification.

Remark 1.7. Formulas for the genus two free energies for the Frobenius manifolds associated
to Ay singularity and to the extended affine Weyl group W (A1) are given in [9, 10]. They have
the graph representations Fo = Tlsz Q1 — % Q2 — T152 Qs + 3%0 Q4 and Fy = Tlsz Q1 — % Q2 —
Tlsz Qs+ ﬁ Q4 — Klo W, + % Wy + % W3, respectively. Here W1, Ws, and W3 are as follows:

~__ -
— T

W]_ W2 W3

When computing the coefficients ¢, for our examples, we find the following interesting identity.

Theorem 1.8. If M is the Frobenius manifold obtained from the genus zero FJRW invariant
theory for ADE singularities or the genus zero Gromov—Witten invariant theory for P-orbifolds
of AD type, then

(@1 — Q) +2(Q7 — Q5) +3(Qs — Q2) +4(Qo — Q3) +6(Qa + Q1o — Q11 — Q12) =0.  (1.10)

Identity (1.10) remains valid for an arbitrary two-dimensional semisimple Frobenius manifold
(i.e., for a topological field theory with two primary fields in the terminology of [10]) as well as for
the three-dimensional Frobenius manifolds on the orbit spaces of Coxeter groups of type Bs or Hs.
It is interesting to find necessary and sufficient conditions for the validity of this identity in the
general case.

The paper is organized as follows. In Sec. 2.1 we recall first some basic properties of semisimple
Frobenius manifolds and their genus zero, one, and two free energies. Then we give a proof of
Theorem 1.1. In Sec. 2.2 we prove Theorem 1.8. In Secs. 2.3 and 2.4 we give some general formulas
for calculating the rotation coefficients for Frobenius manifolds arising in singularity theory. In
Sec. 3 we present more explicit formulas for the rotation coefficients, case by case, for simple
singularities of ADE type and for P! orbifolds of A and D type, and provide evidences to support
the validity of the conjectures. In Appendices we give formulas for the function G (u, u,, uyy)
that were presented in (1.3) and for the genus two free energy of semisimple Frobenius manifolds
which was given in [5].

2. GENERAL RESULTS

2.1. Proof of Theorem 1.1

For a semisimple Frobenius manifold M™, denote by v!,...,v™ the flat coordinates, by (, ) the
flat metric, (9/9v*,0/00%) = n4s, (1°?) = (Nap) ™!, and by F(v) = F(v,...,v"™) the potential.
The canonical coordinates u1, ..., u, are defined in such a way that the multiplication table defined

on the tangent spaces is given by 0/0u; - 0/0u; = 6;;0/0u;. In the canonical coordinates, the flat
metric takes the diagonal form Eaﬂna[;dvadvﬂ =>r, nii(u)du?. Write h; = hi(u) = /T,
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6 DUBROVIN, LIU, ZHANG

i = 1,...,n for the Lamé coefficients of the diagonal metric for some choice of the signs of the
square roots. Define the rotation coefficients y;; = y;; by vi; = (1/h;)(0h;/0u;) for i # j, vii = 0.
The nonzero Christoffel symbols of the Levi-Civita connection for the flat metric in the canonical
coordinates are written out in the following table.

El 17zlha i =7 =k;

Yij k=i#j;

k. = J 22 T (2.1)
Vij it k=3 #1;
ks, k#i=j.

The canonical and the flat coordinates of the Frobenius manifold are related by the following
equations:

0™ "~ ov®
— k=~ 2.2
Ou;0uj kZ:1 Y Oy, (22)

Write & (u) = (1/h;(u))(0v*(u)/du;), Yia = na[g@b , where the summation with respect to the
repeated upper and lower Greek indices is assumed. Assuming that the unit vector field of the
Frobenius manifold is e = 9/0v!, we see that

Vi1 = hy (2.3)
and ,
0 F ¢za¢z,3¢z’y
Caby = 8vaavﬂam Z Pi1 (24)

The following formulas [1] will be used below to represent the correlation functions in terms of the
canonical coordinates:

Ov® Ou; Yia Oia . a@bm

o, T Vi ,Ol’ = ) =% a k', = ) as

Ou; Pt ov™ iy oup, I * Vhar 87 Z Vik ¥k 25
Oy, Oy s n o Ve — Vi '
Ly YikVkj> i, ],k distinct, Vij _ Dok (U = ) Vik Vs Yij

Oui du; U; — U

The principal hierarchy associated with the Frobenius manifold is a hierarchy of integrable Hamil-
tonian systems of hydrodynamic type, dv®/0t%4 =17 (9/0z) (005 4+1/0v7), 0, =1,...,n, ¢ > 0.
Here 6, (v;2) = Zp>0 Oap(v)2?, a=1,...,n, are related to the flat coordinates of the deformed
flat connection of the Frobenius manifold. They satisfy the conditions

0o (v;0) = 107, (VO (v, —2), VO, (v,2)) = Nag, 00030 (v; 2) = 2035859 (v 2),

E(8ﬂ9a,p(”)):p8ﬂ9a,p(”)+ﬂz¢8ﬂ9%p(v)+ﬂg879a,p(”)+(R0 Oy0a.p(v —1—235 ok (V) (Ri)g,

where E stands for the Euler vector field of the Frobenius manifold which has the following repre-
sentations in the flat coordinates and in the canonical coordinates, respectively:

E = ZEO‘(U)&% = Zuza%,
a=1 i=1 v

and i and Ry are the semisimple and nilpotent parts of the antisymmetric constant matrix V = (Vg‘)
with V§ = ((2 —d)/2) 6§ — OE®(v)/0v®. The constant matrices Ry, Ry,... R, (m is a certain
integer depending on the Frobenius manifold) form a part of the monodromy data of the Frobenius
manifold at z = 0 (see [1] for detail), they have the properties (R)) 1,5 = (—l)k“(Rk)g Nyas
[, Rp] = kR, k =0,1,...,m. The potential F'(v) can be chosen in such a way that the functions
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0q,1(v) have the expression 0,1 (v) = 0, F (v), 0o = 0/0v®. Thus the first set of equations of the
principal hierarchy reads dv® /0?0 = n®cep, (v)v) with dv® /0t10 = v, o, B =1,...,n. By using
the above formulas, we obtain the following formula for solutions of the principal hierarchy:

ou; Ov® B ou; o iy if i =j,
e T X R A BN R (2.6)
Moreover, for higher jets uz(.p ) = 0Pu;, write
; oulP) v
o= hwj=1,...,n, p=0. (2.7)
J 8ta,0 8’(1,]' ~
Then the following recursion relation holds:
UjP = 0,U;P 7t = Y D, Ui ig=1n, p> L. (2.8)
k

(m)

Using this recursion relation, one can represent U;’p in terms of jets u, ’ with m > 1, the rotation

coefficients v;;, and the Lamé coefficients h;, starting from U;’O = 5;-uj,m. Such expressions will be
useful in dealing with differential operators of the form

o™ 0 i, 0
_ FE4 )
. a,0 Z ?
Ou; Ot = augf’)

The topological solution v(t) = (v'(t),...,v"(t)) of the principal hierarchy is found from the
system of n equations Y t*PVl, , = 0, t*P = t*P — §¢§%. By using the topological solution v(t),
one can define the genus zero free energy Fy = Fy(t) of the Frobenius manifold [1] satisfying the
equations

D3Fo(t) ¢
0900 (V) Mey, . B,y=1,...,n, (2.9)

where Mey = ceyp(v(t))v5.

Remark 2.1. By taking a = 1 in (2.9), we see that the matrix Mg, coincides with the one
occurred in the definition of the sixteen diagrams of Theorem 1.1. For this reason, we use the same
notation.

Observe the following useful formula for the entries of the inverse matrix:

n @ 8
(MY =% h;aiav - (2.10)

We also need the genus one free energy Fi(t) defined for a semisimple Frobenius manifold by the
following expression:

1 &
Fi(t) = Fl(uaur)|vazua(t) with  Fy(u,u,) = 2 Zlogui,r + G(u), (2.11)
=1

where the function G is called the G-function of the Frobenius manifold. It is given by a quadrature,
due to the following equations [3]:

o St - g S (- 1) (212
' j#i ki !
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To express the correlation functions in terms of canonical coordinates, we write Cj, ;,,.. i, =
O Fo(t) vt Jv*:  Qum B 0" Fi(t) vt Qu*2  Qum

- D. . . o= e
0ta1,09¢2,0 | gm0 8’U,i1 8’U,i2 8uim PITIRetm T Gpan 09,0 Qom0 8’U,i1 8’U,i2 8uim
for the 1nd1ces 1 <41, yim <n. Then

L h2uz | if 'il :7:2 = 'L.3, 7.0 8F1 U ur)
Civsiaia = { ‘o otherwise; Di Z Ui (p) : (2.13)

By using the relation (2.2), we obtain the following recursive formula:

o ) _ D1 5eeeslm z :
X11712,~~~,74m+1 - a (p) X1m+1 X7fly ;Zk 17571k+17 aZmF1k1m+1uZm+la$7 (2]‘4)
k=1 p=0 Ug, k=1

which holds for X = C and X = D.

Proof of Theorem 1.1. Since the genus two free energy F» given in [5] is represented as

a rational function of the canonical coordinates u;, their z-derivatives uEp ) = 0Pu;, the rotation
coefficients +;;, and the Lamé coefficients h;, it follows that, to prove the theorem, we are to
represent the functions Q1,...,Q16 assigned to the 16 dual graphs as rational functions of the
above variables. In fact, for the functions @); and Q6 defined in (1.4), we have

O = 9% Fy Z 1 o v 1 P P’
P 9tL0 9EL0 §tas0 §ta’s0 §tBs0 B’ P hZ wj, o Ougy Ougy b3 ug, o Ouj, Ouy,
B zn: ov*t Ju*2 0% F, 1 o v 1 P P’

. . a1,0 9+a2,0 H+a,0 H+a’,0 ,0 0 B2 ,,. . . 2, . . .
it Oui, Ouj, Oto1:0 91o2:0 90 9”0 9tP-0 OtF" 0 h2 wj, o Ouj, Ougy h% uj, » Oujy Ougy
n

_ CzlaZZajlajlijajZ
= 2 e

i1,i2,J1,J2=1 J1 5o Uitz Uja,x
and
Q . 82‘7:]_ i ]_ (91)0‘, 8.7:1 _i 82]_‘1 avﬂ 1 a’l)a aq)a, 8]:1 i
16 ™ 51,0 91a.0 h2uZ - Ouz Ou; Ot 0 at,B,Oata,O du; Wiy Ou; Ou; DD w2 uz -

1,5=1 ’ 1,5=1

Here we have used the identity > ., Ov®/du; = v®/Ov' = §¢ (since the unit vector field e of the
Frobenius manifold is equal to 9/9v' = Y7 | 0/0u;).

It follows from formulas (2.5)—(2.14) that the functions C;, ;, j, i\ js.i»s Di, and D; ; can also be
represented as rational functions of the canonical coordinates u;, their z-derivatives uz(.p ) = Pu;,
the rotation coefficients «;;, and the Lamé coefficients h;. In a similar way, we can find similar

expressions for other functions @Q)s, ... @15. Now, by subtracting the linear combination of the 16
functions Q1, ..., Q16 occurring on the right-hand side of (1.3) from the linear combination given

by the left-hand side of (1.3), we obtain the desired expression for G (u, u,, u,,) by a tedious but
straightforward computation. This completes the proof of the theorem.

2.2. Proof of Theorem 1.8
In this section, we reduce identity (1.8) to a simpler one, (2.17).

RUSSIAN JOURNAL OF MATHEMATICAL PHYSICS Vol. 19 No. 3 2012
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Lemma 2.2. Let ' be a dual graph, and let x = t*°. Then

0,T= > T,—- > T (2.15)

v: vertex of I’ e: edge of T

where Ty, is the dual graph obtained from T' by adding o new leg at the vertex v, and T, is the dual
graph obtained from I' by adding a new vertex of genus zero with two legs on the edge e.

Proof. The dual graph I" corresponds to the product of several multi-point correlation functions
and the inverse of the matrix M. According to the Leibniz rule, when the operator d, acts on multi-
point correlation functions, we obtain terms standing in the first summation on the right-hand side
of (2.15) and, when it acts on the inverse of M, we obtain terms occurring in the other summation.
This completes the proof of the lemma.

Introduce the following dual graphs:

o oo €5 e
Py Py Py Py Ps
OO ——
01 02

An auxiliary assertion holds.

Lemma 2.3. The following identities hold:

0:Pr=Q1—-2Q3, 0:P2=Q3+Q5—Q7—2Qy, 0:P3=CQs+ Qs+ Qro—2Q11 —2CQ12,
0Py = Q6 +Q2—3Q10, 0:P5=2Q2—-3Q4, 0,01=P —2P, 0,0:=P,+ P5-3DP3,

and hence

(Q1—Q6)+2(Q7—Q5)+3(Qs — Q2) +4(Qo — Q3) +6(Qa+ Q10— Q11— Q12) = 92 (01 — O3) . (2.16)
Proof. These relations are easy consequences of Lemma 2.2.

Lemma 2.4. For any semisimple Frobenius manifold, the following identity holds:
(h7 +h3)?
= Y v W (2.17)

1<i<jsn

Proof. The functions O; and Oy have the following expressions:

O, = CJI:]I:jZan Oy — 011,31,32,3'303'113'2,3'3
1= h2 h2 w; Ui o 2T h2 h2 h2 w; pUiy o
11 a<n - 91 J2 T IE I 1< 1 o ja<n 91 a2 g CILE e, s ,w

By using formulas (2.13) and (2.14), one can see that

(h12 Ujze + h? Us ac)2 - (h{L + hz;)(ui,ac - u',x)2 ~ Uiy
Ol = Z ’774] J J ] + Z >

h3hu Us; 242 7
1<i<i<n i,z Uj,x i=1 i i

n
0o = h’ Ui,z h Uj,ax )(u]yl’ B ui@) j : Ui xa
2 = 5 Yig + 2,2
h h Ui Uy C—~ h2u

1<i<j<n =1 't LT

Then it can readily be seen that the difference O; — O3 is equal to the right-hand side of (2.17).
This completes the proof of the lemma.

To prove Theorem 1.8, it suffices to prove the following lemma.

Lemma 2.5. For a Frobenius manifold associated to ADE singularities, or P'-orbifolds of AD
type, the difference O1 — Oy is always a constant.

We will give the proof of the above lemma case by case in Section 3.
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2.8. Rotation coefficients for simple singularities

Let f be a polynomial on C™ which has an isolated critical point at 0 € C™ of ADE type. Let

n be the Milnor number of f. The coordinates in C™ are z = (2,...,2™). Denote by 9, or 0«

the partial derivatives %.

Let F: C" x B — C, (z,t) — F(z,t), be a miniversal unfolding of f (avoid confusions with
the potential of the Frobenius manifold!), where B is an open ball in C". Let C C B be the
caustic. For a given point ¢ in the complement B \ C, the function F(z,¢) has n Morse critical

points 2z (t) = (21, ..., 20m) (i =1,... n), Ol (2,t)] ;=) 4y = 0, @ = 1,...,m. Define the
canonical coordinates u; on B\ C as the critical values

wi(t) = F(z9(t),t), i=1,...,n. (2.18)

We often use the brief notation 9; or 9,, for the partial derivatives 9/0u;.

There is a semisimple Frobenius manifold structure on the base space B \ C. The flat metric
(, ) is defined by

(O F(2,8))(0"F(z,t)) dz* A -+ A dz™
O F -0 F

for any 9', 0" € T, B. Write hap(2,t) = 0,05 F (2,t) and H(z,t) = det(haps(2,t)). Let (h*?) be the
inverse matrix of (hqg). Then the residue theorem implies that

(al, 8”>t = - Resz:oo

(2.19)

" 2, 1)) (0" F (2,1
(0/,0"), = ; (OF( }}()( 5 (1) o (2.20)
Write
W) = HEOW,0, na) = (HEO®.0) . (221)
By using (2.20) and the identity
OiF (2,t)| =200 (¢) = Oy (2.22)
we then obtain
(05,051 ; (Zat)F(Z 1)) oy = 2 zlkké(”tk) = i mia (t). (2.23)
It follows from the definition of the critical points z(¥)(¢) that
0i0aF (2,t)| et (1) = —hap (2 (), 1) 0;2)P (t). (2.24)
0;2 "B (1) = = (20) (1), 4) 0;0aF (2,1)| .= 0 (1)- (2.25)

By using these equations and the identity 0, det A(z) = det A(z) Tr (A~*(2)d, A(z)) for any non-
degenerate matrix function A(z), we obtain

31'77%
nkk

= (h*(2,1)Dihap(2,t) — h* (2,)0yhap(2,t) K17 (2,1) 0:0: F (2,1)) |.—o 0 1) (2.26)

= (h*%(2,1)0:hap(2,t) + 0ah®” 0;0:F(2,1)) |—oo ) = Oa (B (2,8) 0:08F (2,1)) | om0 ) -

As above, denote by h; = /1; the Lamé coefficients and by yi; = 0i hy;

of the metric Y, ; mii(du;)?. We often use the coefficients I'f; of the Christoffel symbols of the
metric with k # ¢, for this reason, we introduce a notation for these coefficients, namely,

0; 1
Tpi =Tk, = S 25 (h*P (2,4) i05 F (2,1)) |- (2.27)
2 Nk 2
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Then
Vi = (hi/hi) Tk (2.28)

Remark 2.6. Equations (2.12) satisfied by the G-function of the Frobenius manifold can be

represented as
1 1
0iG(u) = 5 Z(Uz’ = uk)Twili — 57 Z(Fki —Tip). (2.29)
k#i k#i

The explicit expressions of I'y; given in Sec.3 for the Frobenius manifolds associated to ADE
singularities can be used to re-derive the known explicit formulas G = 0 [17, 24] for the G-functions
of this class of Frobenius manifolds. We can also obtain the explicit formulas (3.21), (3.23) for
the G-functions of the Frobenius manifolds defined on the orbit spaces of the extended affine Weyl
groups of AD type. Strachan [24] proved formula (3.21) (see below) and conjectured formula (3.23).

Equations (2.27) and (2.28) give us a formula to compute the rotation coefficients of the Frobenius
manifold. However, the computation of the derivatives of F'(z,t) with respect to the canonical
coordinates is also needed. To this end, we assume below that the miniversal deformation F'(z,t) is
given by F(z,t) = f(2)+>_j_; t7 ¢;(z), where ¢1(2),...,¢n(2) is a basis of the Milnor ring. Define
W: (C™)" = C by W(z,...,2,) = det($;(z)).

Lemma 2.7.

W(z®, ... 2070 5 20+ (1)

%F(2t) = WD, ™)

(2.30)

Proof. By (2.22), >;_, ot7 Jou; i (2F)(t)) = Six. Thus, Ou;/ot7 = ¢;(2)(t)). Next, consider
the following system of linear equations for partial derivatives 0;F(z,t) = 0F(z,t)/0u;:

¢](Z) - T - 81F(Zat) 8tj - ¢](Z )8iF(Zat)a J = 13---an-

The statement of the lemma now follows by using Cramer’s rule.

2.4. Rotation coefficients for P*-orbifolds

Let p, g, be positive integers satisfying 1/p+1/g+1/r > 1. It is shown in [22] that the quantum
cohomology of the P!-orbifold IF’Il,,q’r is isomorphic to the Frobenius structure on the space of tri-
polynomials of type (p, q,r).

We take m =3 and n =p+ ¢+ r — 1. A tri-polynomial is a function F': C"™ x B — C, (z,t) —
F(z,t) such that

F(z,t) = — 212223 + Pi(21) + Pa(22) + P3(23), (2.31)
p—1

Pl(Zl) :thzi -I-Zzlu, (232)
i=1
qg—1

Py(z5) =Y tpo14izh+ 25, (2.33)
i=1

T .

Py(23) =Y tprg-1+i%, (2.34)

i=0

where B is an open set in C*~! x C* defined by the condition ¢® # 0. Let C C B be the caustic.
As in the previous section, the critical values

ui(t) = F(z9(t),t), i=1,...,n, (2.35)

define the canonical coordinates u’ on B\ C.

The flat metric of the Frobenius structure on the space of tri-polynomial is also defined by (2.19).
One can easily see that all lemmas from the previous section hold true also for tri-polynomials.
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12 DUBROVIN, LIU, ZHANG
3. EXAMPLES

3.1. A, singularities
In this case, m = 1, f(z) = 2"}, and ¢; = 2" 7.

Lemma 3.1.

1 F'(z,t)
0;F(z,t) = po—— F”(z(i),t)' (3.1)
Proof. The lemma can readily be proved by using the identities
Fliz,t) = (n+1) [[(z =20 @),  F'D0),0) = n+1) [P 1) — 2P @),
k=1 ki
and Lemma 2.7.
Lemma 3.2. 1
Thilt) = (3.2)

(zB)(t) — 20 ()2 F" (2 (t),8)
Proof. This follows from (2.26) and Lemma 3.1.
Remark 3.3. By applying the residue theorem to the meromorphic functions

F(z) = F(zV)
F'(2)(z — 2(0)%’

F”(z) _ F//(z(i))
F(2)(z = 20)2

m(z) = m(z) =
one can easily prove that the G-functions of the A,, singularities vanish.
Let us now use formula (3.2) to verify the validity of Conjecture 1.4 for A,, singularities. We

use the critical points z(V, ..., 2(") and an additional parameter z(°) to represent F(z,t) = 2"t +
ttz" ! 4 ... 4+ ¢" in the form

F(z,t) = \z) = / n+1) ﬁ — 2"))dg + 2O (3.3)

Note that z(1),... 2(") are not independent, because they satisfy the relation

n—1
2" = — Z P (3.4)
k=1

We have 1 hi h
U; = A(z(z))a h; = @bi,l = Ay VT m

D) (3.5)

By substituting these expressions into formula (1.1) for G (u,u,, u,, ), we obtain a rational func-

tion of 2(®), ... 2"~ For n < 8, one can check (with the help of a suitable symbolic computations
software) that this rational function vanishes, and thus Conjecture 1.4 is valid in these cases.

Proof of Lemma 2.5 for A, singularities. First,

h2+h2) B 1 >\”(Zi) >\”(Zj) _ n >\”(Zi)+>\”(2j)
D T el Dl -2(»f(z;-)*x'(zn+2>‘¥2<zz’—zﬁ>”’<zﬂ'

zZ; — Z
1€i<ji<n 1<i<ji<n (zi J)
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For a fixed 1,
A\ (Zz) + >\ )\//( ) + )\//( ) X’(z) + >\”(Zi) 1 )\(4)( )
Z Res =—Res,_, ————— = .
_ 2 " Z R=Z5 0 N2 M (o) 2=z )2 ) "
2 PN ) 2 AN ) G-z NGE) 6 V()
Thus,
" N'(z:) + N'(z)) 1 ¢ >\(4) AW(z) 1 AD(z)
__1 — —2 S Res,_,. — ~ Res,eo =2 .
;;(zi—z-)2)\”(z~) 6 & Z F=m NG T 6T NG

The lemma, is proved.

3.2. D,, singularities

In this case, m = 2. Write z = 2%, y = 22, and f(2) = 2"~! + zy?. A basis in the Milnor ring is

given by ¢; = 2" 71 (j =1,...,n— 1), ¢, = y. The critical points are defined by the equations
F,=(Mn-1)z""24...+t"?2+y?>=0and F, =22y + "™ = 0, or, equivalently, y = — 2 and

2
(n—1)z" 24 ... 4" 24 (4tn—)2 = 0. Introduce the function

I2 -

LN g, )

A =z"" T — .
(z,t) == +Zt i
=1
Then the critical points and the critical values of F(z,t) are given by those of A(z,t). Write
20 = (zi,y5)-
Lemma 3.4.

1z Nk t"Q2xy+t")

0;F(z,t) = — :
(1) T — 3 ; N(x;) Az zZN(z;)

(3.6)

Proof. Let us compute the denominator and numerator of the right-hand side of (2.30).
Since y; = —;—:i, the denominator can be converted to a Vandermonde determinant
t’n

(1) )y — _
Wz, .., 2\ T

(ﬂ?k — J?l).
" 1gk<I<n

To compute the numerator, we rewrite y in the form y = (—%) + (y + %) and then split the
determinant into two parts,

W (=M, 2070 5 040 L)
n—2 n—3 1 " n—2 n—-3 1 "

T $1 oI T2, Ty Ty I1 BEER
_ | gn—2 gn-3 .. tn .. s
=|z T x 1 ~or +1 0 0 0 0 y+
n—2 n—3 t" n—2 n—3 tn
Ty Ty R T Ty Ty R T

The first determinant is similar to the denominator, while the second one, by the Laplace expansion,
is again a Vandermonde determinant, and thus we have

) . m : —
W(z(l)"”’z(z—l)’z’z(z+1)’“.,z(n)):_27& H (H?k—ﬂjl) H - =
L1 Tp T Ly — Tk
1<k<I<n ki
0 (v+55) T @—a) [[—
— (= — T — T .
y 2 k ! - T; — Tk
1<E<IKn k#i
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Using Lemma 2.7, we see that
i — 21y Ty n
QiF(z,t) = 2 1T Tk 4 (—p)n e <y—l——>.
T g TP~ T " Tlpgi(zi — z) 2x
Applying the simple identities
22 N(x - 2 N'(z; . )2

n—1 n—1 -
k=1 k#i

we can compete the proof of the lemma in a straightforward way.
Lemma 3.5.
T + x;

I'y; = .
k (Ik _$i)22xi )\”(]Ti)

Proof. This follows from (2.26) and Lemma 3.4.
Remark 3.6. By computing residues of the meromorphic functions
m(z) = (A(z) = A=) (z +$i)2’ (z) = (z \"(2) — o X' () (2 + ﬁﬁi)’
(z —z;)*z N () (z —z;)? z XN ()
one can easily prove that the G-functions of D,, singularities vanish.

To verify Conjecture 1.4 for D,, singularities, we represent A(x) = A(z,t) in terms of z1, ...,
Tn—1 and zg in the form

n

Az) = /Ox(n — D& T (€ = wi)de + mo. (3.8)

k=1
Here .- = — Sd - Then
1 (z; +xzj)hih;
(@) Vi 2o N (20) Yig (z: — ;)2 (3.9)
By using these data, one can also verify Conjecture 1.4 for small n.
Proof of Lemma 2.5 for D,, singularities. First,
(hi +h3)? xz—i-% zi N'(x;) + 25 X' (z5)
Z YT I h} h3 Z Z — T, xj N'(x;) '
1<i<jsn =1 j;éz
For a fixed 1,
Z zi +x; oz N'(z;) + x5 N () ZReSz . z+x; zN'(2) +x; N (x;)
iz i w)? i N () oy Tz — ;)2 Z N (2)
z4+x; zN'(2)+x; M%) 2 1 MN"(x) 3 X3 (x)
— (R z= R z=z; = — —\—
(Rese—o 4 Resee)) 0 = 2n2) xi Niz) T W)
. i . )\m(ﬂ?i) . 3]71 >\(4>($Z)
Z; )\”(]Ti) >\"(£Bi) ’
and thus
iz $Z+I] z>\ (IZ)—FH?J " 1 >\I”( ) 3331 )\(4)(271)
P j;éz —z;)? xz; N (x = \Ti Nz N (x;)

N(z)  3zXH)(2)
G

"1
=Y — + (Res.—o + Res.— oo)( >:0+0+0+0+0:0.
=1

Z;
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3.8. Eg and Eg singularities

In this case, m = 2 Eg: f(r,y) = 2° + y*, and Eg: f(z,y) = 2> + ¢°. Let v = n/2; then
f(z,y) = 23 + y*1, and the miniversal deformation F reads

F(z,t) = 2° +p(y) = + q(y), (3.10)

where , ,

W) =Yty F aly) =y D by

k=1 k=1
Here the indices of #’s are written as subscripts for convenience. The critical points are defined
by the equations F, = 322 + p(y) = 0 and F, = p'(y)z + ¢'(y) = 0. Thus, z = —¢'(y)/p'(v),

and R(y) := R(F,,F,,z) = 3¢ (y)*> + p(y)p'(y)> = 0. Here and below, R(f1(u), f2(u),u) stands
for the resultant of polynomials f; and f; with respect to the variable u. The R(y)’s roots give

us the y-components of all the critical points z*) = (z3,y) (k = 1,...,n). The corresponding
z-components x’s can be found from z, = —¢'(yx) /P (yx), k =1,...,n.
Lemma 3.7. Let A = R(q'(y),p'(v),y). Then
1 2v—2
W, 20 = (T ) (3.11)
1<k<I<n
Proof. By definition,
R T ST S Tt P T|
W(Z(:l)’...,z(n)): e e e e e e e
T by, ! Tow Yy, o Zay yh ! Yo’ e 1
Thus,
(=1 ([T pk) WD, 20)
k=1
O Y R VA TR U
= .. DO L =V =LV
/ v—1 / v—2 / / v—1 / v—2 /
a2y Y2y a2y Y2y Gy P2y Yoy P2y Yopu 0 P2
Here p, = p'(y;) and ¢} = ¢'(y:), and the matrices U, V read
L VT VR
U= . . . : )
T T
( 4 0 0 0 0 0
0 4 0 0 0 0
2, 0 4 24, 0 0 L3
ts 2ty O ta 2t O ’ e
0 ts 2t4 0 2] 2tl
0 0 ¢t O 0 t
V= ) 0 0 0 0 0 0 0
0 5 0 0 0 0 0 0
3ts 0 ) 0 3t O 0 0
2t 3ts 0 5 2ty 3ty O 0 "
tr 2tg 3ts O ts 21> 3ty O ’ o
0 tr  2tg 3ty O ts 2ty 3t
0 0 t; 2t 0 0 t3 2ty
L\ 0 0 0 t O 0 0 i3
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The matrix U is just the Vandermonde matrix of y1, ..., y,, and therefore
= 11 r—w):
1<k<IKn

The determinant formula for the resultant R(¢'(y),p'(y),y) = A gives now |V| = (v + 1)2 A. On
the other hand, according to the properties of the resultant, we have

[15 = (A6 + 1),

This completes the proof of the lemma.

Lemma 3.8. We have

O F = ’) (R(y) —3F,(z,y) 2) (3.12)

where Y reads
Fy(xiay)a V:3a

Y= 2
{Fy(xi,y) + 3y -y (y), v=4

Proof. According to Lemma 2.7, we have 0;F = W,/Wy, where W, = W (21, ..., 2(™) and
Wo=W(W, .. 2070 2,20+ () Let us now compute Wo.
First, represent Wy in the form Wy = A(z — z) + B, where 2 = —¢'(y)/p'(y), and

Z1 ylll_l z1 y;_z 1 yf_l y;_z 1
Y SO S S SR
et wmyls? o mm il g
zy Yy Ty z1 yy ! Yy 2 1
T e O A G S
R D Y S S A S

The determinant B is very similar to Wy, and thus we can see that

B 1 P (y:)
B = mw py) T W

The determinant A is less easy to compute. By using the Laplace expansion, we obtain

. v4+1 2v—4 v b
A=(-1) +1%P'(yi) > Cijyr,
=1

where C;; is the (4, j)th cofactor of the matrix U - V.
Let Uy; and Vi; be the (k,I)th minors of the matrices U and V, respectively. Then the Binet—
Cauchy formula gives
Cij = (=1 Ui, - Vij.
k=1
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The minors U;; are similar to the Vandermonde determinants,

H1<s<t<n(ys — Yt)

Uir = ~ ex—1(7i)

T (D Ty — ) e
where e (7;) stands for the kth elementary symmetric polynomial in y1,...,%;,...,Y,. Note that
Y1, .-, Yn are roots of the polynomial R(y), and thus these elementary symmetric polynomials can

be expressed as polynomials in y; with the coefficients of R(y). It is also easy to compute the minors
Vij. Their explicit expressions are simple but not illuminating, and we omit them here.

By using the above results, we obtain

F = 1 p'(ys) B .
= W B P (R(y) — 3, (z,9) %),

where

= yzzz 1) en—1(§:) Viej v .

j=1lk=1

For v = 3, it is easy to show that ¥ = Fj(z;,y). For v = 4, after a very lengthy computation, it
can be seen that ¥ = F,(z;,y) + (¢3/5)(y — vi)p'(y). This completes the proof of the lemma.

Lemma 3.9.

T, +x
[ =3 kz Niis (3.13)

(yi — yx)
where n;; = —p'(y;)/ R' (y:)-
Proof. One can prove the lemma directly, using Lemma 3.8.

Remark 3.10. The vanishing of the G-functions of the Eg and Eg singularities can also be
proved by the residue theorem; however, the computation procedure becomes very long.

Although for Eg and Es we obtain formula (3.13) for the rotation coefficients, we still have no
simple way to relate the variables y; to t;, which was possible above for the A,, and D,, cases. Thus,
at this moment, we can only check the validity of the conjecture for the Eg and FEg singularities
numerically. We first randomly generate the complex values of t¢1,...,t¢, and solve the equations
F, = 0,F, = 0 numerically to obtain the values of the critical points 2z .., 2" Then one can
determine the data u®, h;, 7;;. Our computation shows that Conjecture 1.4 is valid in this numerical
sense for the Fg and Fg cases.

Proof of Lemma 2.5 for the Eg and Eg singularities. First,

Z " (h? +h3)? _3 Z zi+x; (B +h3)°
T 1313 0. )\2 212
1<z<g<n h h 1<i<j<n (yz yJ) hi hj
q'(y;)R (yi) . ' (y;)d (ys) R (ys) Q’(yi)>
=-3 + +2 .
; ; (p’(yi)R’(yj) P'(yi) >R (y;) ' (yi)

For a fixed 7, we then have
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and thus

(b +13)? _ <~ R'(yi) q'(y)
Z Yii 3373 h3 h3 _3; Resy:yi( —y,)2R(y)

/ .
< Ti<n P (ys)

q'(y) R (yi) — 4 d (R’(y) 1 )
+ 3 —=——""" Res =y T m < + 6 —
; p'(yi)? e (y—y Z () o dy \ Rw)  y—;

= Z Resy=yi g(y) = - (Resy=oo + Resy:roots of p’(y)) g(y),

- <§ P ) +p"(y)d') By _ 3" )d" W) +p"W)d'(y) B"(y) | ¢'(v) R”’(y)>
2 p'(y)? R(y) 2 p'(y)? R(y) ~ PRy )

2t . One can derive that Res,— ¢g(y) = 12/t; and

For n = 6, p’(y) has a unique root y =
= —12/t;, and thus the n = 6 case is proved. For n = 8, denote by a; and as the two

Res,__ 1t g(y)
2ty

roots of p’(y). We have Res,—a, g(y) = — Resy—a, g(y) = (8(10tats + t1tats — 9t3ts))/(9t3 (a1 — a2)?),}
and Resy— g(y) = 0, and thus the n = 8 case is also proved.

3.4. E7 singularity

In this case, m = 2 and f(z,y) = 23 + zy3. The miniversal deformation can be chosen in the
form F(z,y) = 2° + p(y) 2> + q(y) © + r(y), where p(y) =ty + 12, q(y) = y° +t3y + ta, r(y) =
ts y? +te y +t7. The critical points are defined by the equations F, = 322+ 2p(y) z+ q(y) = 0 and
F,=p'(y)z*> + ¢'(y) = + r'(y) = 0, which imply z = %, and R(y) = R(F,,F,,z) =Q*—PS =0,
where P=2pp’' — 3¢, Q=3r"—p'q, S=qq —2pr'.

Lemma 3.11.

1 P(y;) P(y;) 5t
0;F = (Ry—Py xi—Q(y))(Ply) z—Q(y )—i— (3 y+uy; Fw——F>.
TG Pl (B0~ (PW)ri Q) (P 7= Q) + gl (3 u) Fa— 5,
(3.14)
The proof of the above lemma is quite similar to that of Lemma 3.8, and we omit it.
By using the above lemma and (2.25), one can prove the following assertion.
Lemma 3.12. Let &), = =, + %p(yk) Then,
T; + T,
Pyi =3———35Mii 3.15
=0 19

where n;; = P(y;) /R (yi).

The above expression of I'y; is similar to that of the Eg case. This fact has an interesting
explanation. Let us first introduce a modification of the miniversal deformation of the E; singularity

F = 2%+ p(y) 22 + q(y) z + 7(y), where 7(y) = r(y) + ts y®. Make a coordinate transformation

U\|b—\

1 t
z=z+ < ply), gjo(g—ﬁ), where 7 = (tg)7.

Then, in these new coordinates, the deformation F reads
F=3+3"+ (P + g +i3G+1s) T+150° + 1697 + 17§+ s,
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which is a miniversal deformation of an Eg-type singularity. Here #; (i = 1,...,8) are certain
rational functions of ¢; (i =1,...,7) and 7, and we omit their explicit expressions here.

Let us now take the limit 7 — 0. Then it is easy to see that one of the canonical coordinates,
say ,u®, goes to oo, and the other seven ones become the canonical coordinates of the original E;
singularity. By comparing Lemma 3.9 and 3.12, one can also prove that the Christoffel symbols

I'x; associated to the Fg singularity also tend to the Christoffel symbols I'y; associated to the E7
singularity, whenever k,72 =1,...,7.

By using the above observation, it is easy to see that, if the G-function of the Ej singularity
vanishes, then the same holds for the G-function of the E7 singularity. Similarly, if Lemma 2.5 had
been proved for the Eg singularity, it also holds for the E7 singularity.

3.5. The P -orbifold of A, , type
In this case, m = 3, (p,q,7) = (p,q, 1), and thus n = p + ¢. The tri-polynomial F(z,t) reads
F(z,t) = —2'222° + Pi(2') + Po(2%) + ty_1 + a2,

Its critical points are defined by the equations

0. F = —222° + P/(2Y), (3.16)
0,2 F = —2'2% + Pj(2?), (3.17)
0,3F = —2'2% +t,. (3.18)

We introduce an auxiliary function \(z) = Py(z) + P2(t"/z) + t,—1 and denote by z1,...,z2, the
critical points of \. It is easy to see that z; coincides with the first component of the critical point
2 of F(z,t), and the critical values of \(z) also coincide with the critical values of F. Thus,
ut = \(z).

The Hessian for F' reads

H = P{()PY ()P (%) = 221225° — (1P (1) = (22 P4 (22) = ()2 P4 (%),

Then, using (3.16)(3.18), one obtains n* = H (2" (t),t) = —22)\"(2;).

Lemma 3.13. N(2)
2N (2
OiNz) = . 3.19
Proof. Write
n a+1
R(z)=[](z—2) = N ().
i=1 p
By using (2.22) and the Lagrange interpolation formula, one obtains
R(z)
95 (2IN(2)) = 27
 (#A2)) = 7 (z — 2z)R' (%)’
which implies formula (3.17) immediately.
Lemma 3.14. B
Ty = b (3.20)

(2 — 2:)22\" (2:)

Proof. The proof of this lemma is very similar to the derivation of (2.26). We omit the details
here.
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Lemma 3.15.

log t,,

Proof. By using the residue theorem, one obtains 9;G = 7;;/24. On the other hand, the com-
parison of the coefficients of 277 in A(z) and 9;A(z) yields 0; log ¢, = —n;;. The lemma is proved.

Lemma 3.16. 1
01— 0y = g(p3+q3—p—Q)- (3.22)

Proof. Note that hi_2 = —22)"(2;) and 7;; = —h;h;zzj(z; — z;) "2, and thus one can prove the
lemma by using the residue theorem.

3.6. P-orbifold of DH_Q type

In this case, m = 3 and (p,q,r) = (2,2,7), and thus n = r + 3. The tri-polynomial F(z,t) reads
F(z,t) = =2'2223 + (21 + t12' + (22)% + t22° + P3(23),

The critical points are defined by the equations 9,1 F = —222% 4+ 221 + 1, 0, F = —212% + 222 + 1,
and 9,3 F = —z'22+4 P§(23). Introduce an auxiliary function \(z) = P3(2)+t? + 2ty to + t3/(2% — 4)

and denote by z1, ..., z, its critical points. Similarly to the A, , cases, we have u® = ().

The following lemmas are similar to those for the flp,q cases, and we omit their proofs.

4 — 22 N (z)
4—22(z—zi)N(z1)’

Lemma 3.17. 7" = (4 — 22))N/(%), |0:\(z) = and Ty; = =2k

)

Lemma 3.18. log £
ogtny
G(t) = ——— 3.23
(1) = -2 (3.23)
Lemma 3.19. .
01 —09 = —(7’3 — ’f') + 2. (324)

6

According to the results of Lemmas 3.15, 3.16, 3.18, and 3.19, we can state the following con-
jecture.

Conjecture 3.20. For P'-orbifolds of ADE type,

logt 1
G(t):—%, 01—0226(p3+q3+7"3—p—q—7"). (3.25)

For Pl-orbifolds of E type, we were unable to verify the validity of the conjectures, even numer-
ically, because the numerical errors are too large in these cases.

3.7. Some other examples

Example 3.26. If the dimension of the Frobenius manifold is equal to 2, then it is easy to see
that O1 — Oy = y12(h3 + h3)2h73h5 3 = 0 since h? + h3 = 0. By using the formulas h; = /—1 hs
V=T

and Y12 = uy—g

one can easily prove the following statement.

Lemma 3.21. The genus two G-function vanishes if and only if py = 1/2, 1/3, 1/6, which
correspond to Ay X A1, Az, and Ay 1, respectively.

Note that the above three cases are also the only cases for which the genus one G-function G(t)
is analytic on the caustics.
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Example 3.26. Let M be the Frobenius manifold corresponding to the quantum cohomology
of P* (n > 2). Then G® (u, uy, 1) # 0.

Indeed, the restrictions of the (), terms to the small phase space vanish, while the restriction
of F> to the small phase space does not always vanish. More generally, we obtain the following
criterion.

Lemma 3.22. The restriction of Fa to the small phase space wvanishes if and only if
G(2)|ug=1, i =0, 1<i<n 15 equal to zero.

Since P" has nontrivial genus two Gromov-Witten invariants, we have G'®) (u, u, uy,) # 0 in this
case.

4. CONCLUSION

It would be of interest to elucidate the geometric meaning of the genus two G-function G(2). In

particular, the conditions for the vanishing of G(2) = 0 are of interest. Last but not least, finding
a higher-genus g > 3 generalization of the decomposition (1.3) is the main challenge. We plan to
address these problems in a subsequent publication.
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APPENDIX

A. THE GENUS TWO G-FUNCTION

The genus two G-function G® (u,u,,u,,) depends rationally on the z-jets of the canonical
coordinates

G (u, Uy, Uy ZG(Z) (w, Uy ) Uy, +ZG(2) ZP(Z) Jubud + ZQEZ)(U) (u;)2
i=1

i#]

(A.1)
with coefficients written in terms of the Lamé coefficients h; = h;(u) and rotation coefficients
vij = 7ij(w) of the semisimple Frobenius manifold. To simplify the expressions of these coefficients,
we use the function

1 .
J#i
with u;; = u; — u;, these functions are given by the gradients of the isomonodromic tau function
of the Frobenius manifold [3, 4]. Then we have

@ _ OchiHi  30ihiH, 19 (9;hi)*>  7;hidshi
Y 60uighi  40A3 2880 b 5760w h}

Yir H; Yir Hy, Uk,z Vik Oph;
74 o) 40;h;
+Z [120h By 120 hihy ( * um> 5760 12y, < T win

_’szakhk( Uka 7) YikOkhe  Opvirhe | Oivikhrue,s

hih? \1152u;, @ 2880) ' 384h%  384K7 ' 1920w h?
N ;i N O Yik n ik uk 4 7 n ’Yikhiakilk
2880 h; hy, 5760 Uz’,xhihk hihg \ 2880 u?, 2880 2880 hk
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sz k

Tuy 19N B i L
n2 \1152uf ~ 720) T 144007 | T 2=\ 2880 hh? T 1920uihih? )

2 3 2
o __ gt o v vy (i v\ | Yy (ki 30k
9T T 12002 T A80Ah; 5760 \ K2 A2

5760 \ h3 h3
2
i Z Vi VikVik Vij Yik ik
5760 h2 5760 hy \ h;  h; ’

P2 _ 27inz’Hj L 2O Hi | vighidhiHy 1995H; 0y H
B 5 hih; 20 hih? 20 h? 30K 60hhy
Al Alydy L Oimig0ihi 19750ihs  7ij0ihidihy  ijhi(9ih;)”
240 h;h; 1440 h? 1440 h; h? 1440 h? 720 h? h? 288 h?
Vi YikHj  YiwviehihiHy  vigvishi Hy  yaeviehiH;  7yivishi Hy
+ Z Z p) + D) 2
— \ 60 30 60 12 60 h; 2 60 121y
Vi YikO5hy n YigVikhiOih  YievikhiOihy i VikhiOkhk | YikVikhih;Okhie
72002k, | 240A3h, 1440 h2h2 7202 28813
L ik 9vig  hiheyiiOivik  hiBvik0ivij + 27i0vik) 7h;vij Ok (hy Yik)
1440 B, 360 /! 1440 K2y, 1440 12
 hihjvik Ok ViV 7hi’7ij732k n 113k Yk n hiv2 ik
480 h4 120 hjhy, 160 h;f 2880 hi 96 hz
n Z hihgvavje (Y Vi) hiviivirvm
720 hkh2 hy 2h; 720 hkhl2 ’
QP = 4H3 _ TO;hH? N 7(0ihi)*Hi  (9;hi)? 3 TikHiH, — yik0ihiH;
i TERZ T 10M3 48 h2 12007 <\ 10hihy 12007
70k (hy i) Hi  Tyinihi Hy, Vit Hp (2H; + TH)0;vik
240 hi 80 hlzhk 576 uikhihk 240 hihk
n vicho Hi  3Iyi Hi  vin(9:hi)® | 253973,0ihi  OpyikOihi  v5,0khi
BT6uph?  144h? ' 720h3h; | 5T60h3  960h2h;  2880h3
Tk (hi "yik) Oihi _ T0ikOkhe 41 0;vikOihihi | 0;(hivir) O hi
1920 12 5760 h;h? 5760 h 2880 h
U3y vie | B0k + Okvie) vie  Givikhk Oy
n Z 'Ykla hivit) n Yoy vikYa | w0k n WkYik OV
2880 hkh2 2880 hih; 240 h;hy 2880 h;h; 1152w h;hy

+Ukmk7sz9i%'z hvikOivit  hukryOiva hiuiey3.0ivin
144 12 1440 h2hy 1152 ugph? 1013

In these expressions, the summations are taken over indices defining nonzero denominators

B. GENERAL FORMULA FOR THE GENUS TWO FREE ENERGY

In this formula, derived in [5], we use the notation V;; = (u; — w;)y;; and u;; = u; — u;

A summation over repeated indices is assumed in each term (of the formula) producing nonzero
denominators.

IV 3 ‘ 7 2
]. Uu; ; ’LL” UI” ]. ’LLI! ]. I”
F — 2 2

1152 /2 p2 1920 /3 h2 360 u/* b2 T u”u h2
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1 Vighjuhu® 19 Viju"hy 1 Viu'hi 7 Vi Vigui
LVQ. Vik uy by (32u), — 7Tu}) iVij ijk ul h; 1 Vi ka u; u!

B ————: 10 g T A8y up il by
3 Viguy 11 Vw29 Vi Vi h by (uj, — 2uj)
64 u?j h% 480 Ujj uQZ h? 5760 Uij Ujk, u; h?
1 Vi Vigu!” by, (u}, — ul) 1 Vij Vi ug hj hy, (54u;2 — 25 u} u; —u;- u%)
384 Uij Uik U h;’? 1920 Wij Uik u;z hi
1 Vi Vigu by (2uf —ug) 1 Vi Vi ug ul b (27 ) + u))
576 Wij Wik W) hy h? 5760 Ujk Uik u;z h3

19 Vi, Vigu!’ hy 1 Vij Vik b (27u2 uy, —u;-2+2u;- u%) ul

B 1920 Ujj Uik h? 5760 Uz’j ujk u;z hg’
A Vi View'he 1 Vi Vigwpwi b 1 Vi Vik ug uf
L Vi Vaewpuhe 1 ViuPhy (Wuf —5u) 1 Vigufufhy
2 2
L1 Vijui hy (57u; —27u;u;-—u;-) 1 Vijul by (4u) — 3ul)
5760 NERVETE: 1152 R
L Vyuu! 1 Vguluf 1 VEVEVEW

B % ’U,?j U; hz hj B 1152 Uy U; U; hz hj 10 Usj Uik Uql hZZ
T VEVEVahil? 7 VEVE Vahijup 1 V3 Vi Vi ufuj,

— 3 3 — _
20 Ujj Uik Ujl hz 40 Ujj Uik Usgg h,z 8 Ujj Uik Uk h,Z h,k

2 2
1 VAV Vi (17 = 30 = 2 o)) L 3 VEVaViuiuih
40 wij ik, Ut hy 40 i i wig b

2 2
40 uij Ukl Uil hg’ 48 uij Uik Ukl hi hz

N 5 Vi3 Vik Vit by hy (4UQ2—4u;u§€+u§€u;> 83 V2 V2 2

1V Vi Vi Vi 1 Vi Vi Vi Viewy” 1 Vi3 Vi Vi u g
144 Usk Ug1 Usg] hz2 144 Ujj Uik Ukl hz2 48 Usj Uk] Usg] hi hl
99 Vij Vik Vit hy by (u%u;—u;u;€+2u;2—2u;u;)
29 Vij Vir Vi hi hy u (2u;€u;+2u;u9—u9u;€—4ugu;)
5760 uij Uik ujl h;l u;
_ 1 VijViijlhkhl (4u;u;—4u;u;+u;€u;)
1152 Usj Uik Ujl hzz h]2
2
1 Vi VeV ) 29 Vi Vir Vi bae huup” (20 — uf)
384 Ujj Wik U ), B} 5760 Uik Wy i b ul
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1 Vi Vi Vi how” (uf = 3up) 1 Vi Vig Vig ha g g

1152 Ujj Wik Wig wy hd 384w wjy ug uh
1 VgV Vihiu)® (3up—2u)) 1 Vi Vi Vbl (u) — 2u7)
1152 Ujj Ugi Ujk u;c hz 288 Uik Uj] Ujk hz
L Vi Vik Vithoup (Qup —3up) 1 Vi Vi Virhyup®
576 Uik ujk Ul hi 1152 ujl Uk Uqi u;C hi
L Vi Vae Vichaw)® 1 Vi Vig Vi hy uf (ug, — 2u))
288 Uik Uj] Ukl hi 576 Uik Uj1 Ug] h? hl
7 Vij Vi Vit hj hi by (8u23—12u22u9—u;-u;cu;—i—ﬁu;-u;-u;ﬁ)
B 1440 Ugj Uik Uyl hf u;
1 Vi Vi Viugup 29 Vi Vi Vigws”? 53 Vi3 Ve b uf g,
1152 Usk Uj1 Ul hk hl 1152 U5 Usy, h? 1920 Usj Uik Ujk hg’
2 2
| VEViehe (30 =84”) 2Ry (21 233
_ — — U — —— U
320 ug; uZ, h u? ujp b3\ 640 * 2880

ViVauihe (233 67 N1 VVahiu? 1 ViViehsu?
u? up b3\ 2880 * 960 k 1152 w;ju? uj hy 576 u%j Ui wh, by
LV Vieujuy 233 Vidhju® 43 Vihjujul 1 Viuju)

48w uZ hy hy T 1140 ud k384wl h3 - 12 u; h; hj-
29 Vi Vi hs P (3wl + 3 uf, + 6wl — 6l — 2u)”)
5760 2 o B
29 Vi Vik u; uy hj hy (u), — GJu;-) 1 Vij Vig u; hi (2w — uy,)
5760 wij u?, ul hi 576 g uk b hj
. 1 Vij Vik ugj ha, (3 u;2 uj, — 3u) uﬁcz + u§€3 - u;3)
1152 ufk ujzk u; h;’
1 Vij Vi ik by (—u;?’ + 3u;-2 up, — gl ug + 2u§2 u; — 2u93>
o T
1 Vij Vik ha (—u; ut? + uf® —6u}2u;€> 1 Vi Vi by w2l
384 Ui u?k u) h;’? 384 u%j Uj U h;?
L1 VoVl (4uf v +u” =20 +30,7) 1 VgVaulu
288 Ujj “3k h? 576 u; ujzk hj hy
. LVij Vik hi <2u; u;f - ugzu;C - u;c?’) . 1 Vii Vik, by, (u;gz — 2ujuy, + uf)
384 Ui ujzk u; h? 288 Ui u?k h?
. 11152 V2 ul (37u; b2 + 12:;;95,; 3ui? b2 + 11u)? h?)
ig 4g i
1 Vish (4U§3+4U2U}2—6“22“9—“93) 1 Vijulu
~ 576 w3l B3 576 U3, hi by
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