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a b s t r a c t

An asymptotic description of the formation of dispersive shock waves in solutions to the generalized
Kadomtsev–Petviashvili (KP) equation is conjectured. The asymptotic description based on a multiscales
expansion is given in terms of a special solution to an ordinary differential equation of the Painlevé
I hierarchy. Several examples are discussed numerically to provide strong evidence for the validity of
the conjecture. The numerical study of the long time behaviour of these examples indicates persistence
of dispersive shock waves in solutions to the (subcritical) KP equations, while in the supercritical KP
equations a blow-up occurs after the formation of the dispersive shock waves.

© 2016 Elsevier B.V. All rights reserved.
1. Introduction

In this manuscript we consider the Cauchy problem for the
generalized Kadomtsev–Petviashvili (KP) equations

(ut + unux + ϵ2uxxx)x = σuyy, n ∈ N, (1.1)

where ϵ is a small positive parameter and σ = ±1. We are inter-
ested in studying the behaviour of solutions u(x, y, t; ϵ) for ϵ → 0
when the initial data u(x, y, t = 0; ϵ) = u0(x, y) are indepen-
dent from ϵ. Generically the solution develops oscillations that
are called Dispersive Shock Waves [1] in the nonlinear wave com-
munity or undular bore in the fluid dynamics community. The re-
lated mathematical problem is now well understood for several
dispersive equations in one space dimension, starting with the
seminal work of Lax and Levermore [2] (see also [3,4]) for the
Korteweg–de Vries (KdV) equation (see [5,6] for a numerical treat-
ment of the problem). However, a rigorous mathematical study of
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two-dimensional dispersive shock waves remains an open prob-
lem even though there are some heuristic arguments for several
dispersive equations in two spatial dimension like [7–9].

Our main result is a description of the solution u(x, y, t; ϵ)
of the generalized KP equation for generic initial data, on the
onset of the oscillations in terms of a particular solution of an
ordinary differential equation, the so-called Painlevé I2 equation
(PI2), the second member of the Painlevé I hierarchy. This
description extends the universality results on critical behaviour of
Hamiltonian PDEs, first obtained for one-dimensional evolutionary
equations [10–13], to PDEs in two spatial dimensions.

For n = 1 Eqs. (1.1) are known as KP equations (KP I for σ = +1
and KP II for σ = −1). They were introduced in [14] to study
the transverse stability of the solitary wave solution of the KdV
in a 2-spatial dimensions. Both cases can be derived as models for
nonlinear dispersive waves on the surface of fluids [14] (see also
[15,16] for further references). The settings studied in this con-
text are essentially one-dimensional waves with weak transverse
modulation. KP I is applicable in the case of strong surface tension,
whereas KP II is a model for weak surface tension. Note that KP I
has a focusing effect, whereas KP II is defocusing. KP type equations
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also arise as a model for sound waves in ferromagnetic media [17]
and in the description of two-dimensional nonlinear matter-wave
pulses in Bose–Einstein condensates, see e.g. [18,19]. As for theKdV
equation, KP equations appear as an asymptotic description in the
limit of longwavelengths. In general the dispersion of KP equations
is too strong compared to what is found in applications. A way to
tilt the balance between dispersion and nonlinearity towards the
nonlinearity is to consider generalized KP equations (1.1) with a
stronger nonlinearity n > 1. Interestingly the generalized KP for
n = 2 appears as a model for the evolution of sound waves in an-
tiferromagnetic materials, see [17].

In the dimensionless generalized KP equation, i.e., Eq. (1.1) with
ϵ = 1, a parameter ϵ can be introduced in the following way: a
possible approach to studying the long time behaviour of solutions
of this dimensionless generalized KP equation is to consider slowly
varying initial data of the form u0(ϵx, ϵy) where 0 < ϵ ≪ 1
is a small parameter and u0(x, y) is some given initial profile. As
ϵ → 0 the initial data approach a constant value. Hence, in order
to see nontrivial effects one has towait until sufficiently long times
of order t ∼ O(1/ϵ), which consequently requires to rescale the
spatial variables ontomacroscopically large scales x ∼ O(1/ϵ), too.
In other words, we consider x → x̃ = xϵ, x → ỹ = yϵ, t → t̃ = tϵ
and put uϵ(t̃, x̃, ỹ) = u(t̃/ϵ, x̃/ϵ, ỹ/ϵ) to obtain Eq. (1.1) (we omit
the ‘tildes’ for simplicity). The limit of small ϵ is called the small
dispersion limit.

We expect that for a reasonable class of smooth initial data
u0(x, y) the solution u(x, y, t; ϵ) to the Cauchy problem for the
generalized KP equation remains smooth on a finite time interval
[0, T ] where T = T (ϵ) and T (ϵ) = ∞ for the KP equation while
in general T (ϵ) < ∞ for generalized KP equation. Furthermore
the solution u(x, y, t; ϵ) depends continuously on the small scaling
parameter ϵ. The solution u(x, y, t, ϵ) of the generalized KP
equation (1.1) is expected to converge in the limit ϵ → 0 to the
solution u(x, y, t) of the generalized dKP equation (1.2)

(ut + unux)x = ±uyy, n ∈ N, (1.2)

for 0 < t < tc where tc is the time where the solution of
Eq. (1.2) first develops a singularity which generically appears
in one point (xc, yc) of the plane where all derivatives of u(x, y)
at (xc, yc) diverge, (blow-up of gradients) except that in one
direction. Eqs. (1.2) are called generalized dKP equations or
generalized dispersion-less KP equations, even though Eqs. (1.2)
have dispersion. For n = 1 these equations were derived earlier
than the KP equation by Lin, Reissner and Tsien [20] and Khokhlov
and Zabolotskaya [21] in three spatial dimensions. However, in this
manuscript we call (1.2) generalized dKP equations.

Local well-posedness of the Cauchy problem for dKP equation
(n = 1) has been proved in certain Sobolev spaces in [22], while for
the generalized dKP equation a similar result is still missing to the
best of our knowledge. Furthermore although many strong results
about the Cauchy problem for the KP equation in various functional
spaces are now available (see, e.g., [23–26]), these results are still
insufficient to rigorously justify the small ϵ behaviour of solutions
to KP and its generalizations. Namely, for t < tc the solution
of the generalized KP equation u(x, y, t; ϵ) is conjectured to be
approximated in the limit ϵ → 0 by the solution u(x, y, t) of the
generalized dKP equationwith the same initial data. The numerical
results of Sections 4, 5 provide a rather convincing motivation
for the above conjectural statement. Such conjectural small ϵ
behaviour is somehow expected for the KP equation where the
solution u(x, y, t; ϵ) exists for all times t > 0. For the generalized
KP the solution u(x, y, t; ϵ) might have blow-up of the L∞ norm in
finite time T = T (ϵ) and our conjecture implies that T (ϵ) > tc .

Moreover, our numerical results strongly support the conjec-
tural analytic description of the leading term in the asymptotic ex-
pansion of solutions near the critical time tc that we will explain
now. Let (xc, yc) be the pointwhere the solution of generalized dKP
equation (1.2) develops a singularity and let uc = u(xc, yc, tc). Fur-
thermore let us denote by x̄ := x − xc , ȳ := y − yc and t̄ := t − tc
the shifted coordinates in the neighbourhood of the critical point
and let us introduce the following variables

X = x̄ − un
c t̄ + c1 t̄ ȳ + c2ȳ + c3ȳ2 + c4ȳ3, T = t̄ + b ȳ2 (1.3)

where c1, . . . , c4 and b are constants that depend on the equation
and the initial data. Then in the double scaling limit x̄ → 0,
ȳ → 0, t̄ → 0 and ϵ → 0 in such a way that X/ϵ

6
7 and

T/ϵ
4
7 remain finite, the solution of the generalized KP equation

u(x, y, t; ϵ) in a neighbourhood of the point (xc, yc, tc) at the onset
of the oscillations has the following expansion

u(x, y, t; ϵ) = uc +
6

nun−1
c


ϵ2

κ2

 1
7

U


X
(κϵ6)1/7

,
T

(κ3ϵ4)1/7


+ β ȳ + O


ϵ

4
7


, (1.4)

where β and κ are constants and X and T have been defined above
in (1.3).

The function U = U(X, T ) satisfies the PI2 equation

X = 6T U −


U3

+
1
2
U2

X + UUXX +
1
10

UXXXX


. (1.5)

The relevant solution is uniquely determined by the asymptotic
conditions

U(X, T ) = ∓|X|
1
3 ∓

2T

|X|
1
3

+ O(|X|
−1), X → ±∞. (1.6)

The existence for real X and T of a smooth real solution of the
PI2 equation (1.5) satisfying the boundary conditions (1.6) has
been conjectured in [10] and proved in [27]. The solution has an
oscillatory region that is formed around the point X = 0 and
at about the time T = 0 and it is developing for T ≫ 1 into
the Gurevich–Pitaevskii solution [1,28,6,29]. We remark that from
(1.4) for generic initial data the oscillatory front is, approximately,
a straight line in the (x, y) plane, while for initial data having a
y-symmetry, the oscillatory front has a parabolic shape.

Several numerical examples are presented to provide strong
numerical support for our conjecture. Furthermore we will show
in Section 6 that the formula (1.6) catches some of the qualitative
features of the oscillatory regime also for some time considerably
bigger then the critical time tc .

The paper is organized as follows: in Section 2 we collect
some mathematical facts about KP equations and present the
main conjecture of this paper. In Section 3 we briefly summarize
the used numerical techniques. Solutions to the KP equations are
discussed for various initial data in the vicinity of the critical
points in Section 4 and compared to the asymptotic description. In
Section 5we study solutions to the generalized KP equation for n =

3 for the same initial data near the critical points. We conclude in
Section 6 with a preliminary discussion of the longtime behaviour
of solutions to KP and generalized KP equations, i.e., the formation
of dispersive shocks for all times in the former and eventual blow-
up in the later, and we outline directions of further research.

2. Asymptotic description of dispersive shock waves in KP
solutions

In this section we present an asymptotic description of
the formation of a dispersive shock wave in solutions to the
generalized KP equations for initial data in the Schwartz class.
We first collect some mathematical facts about generalized KP
equations, then summarize previous work on the formation of
dispersive shock waves in KdV solutions. Finally the latter results
are generalized to the case of KP equations.
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2.1. Mathematical preliminaries

The integrability of the KP equations was obtained in 1974 [30]
via Lax pair. However, the problem to effectively integrate the
equation proved to be quite difficult and the first achievements
were obtained in [31–34]. For initial data u0(x, y) in the Schwartz
class, the solution u(x, y, t; ϵ) immediately leaves the Schwartz
space of rapidly decreasing functions as soon as t > 0 even though
it remains in L2(R) since the quantity

R2
u2(x, y, t; ϵ)dxdy =


R2

u2
0(x, y)dxdy,

is conserved in time.
For t > 0 and x → −∞ the solution is still rapidly decreasing

while for x → +∞ one has for KP I [35]

u(x, y, t; ϵ) =
c

√
tx

3
2


R2

dx′dy′u0(x′, y′) + o

|x|−

3
2


(2.1)

with c a constant. Furthermore the solution for t > 0 satisfies an
infinite number of dynamical constraints, the first two, taking the
form [36]

R
u(x, y, t; ϵ)dx = 0, (2.2)

R
xuy(x, y, t; ϵ)dx = 0. (2.3)

The dynamical constraints are satisfied even if the initial data do
not satisfy them. This is a manifestation of the infinite speed of
propagation inherent to the KP equations. The constraint (2.2) is
satisfied also for the generalized KP equation [37]. For initial data
in the Schwartz space and such that

R2
(1 + ξ 2)û0(ξ , y)dξdy ≪ 1 (2.4)

where û0(ξ , y) is the Fourier transform of u0(x, y) in the x variable,
the solution u(x, y, t; ϵ) of the KPI equation is a C∞ function in
R3

+
= {(x, y, z) ; t > 0} even if the constraint (2.2) is not satisfied

at t = 0. Such result was obtained via inverse scattering in [38]
and the small norm assumption (2.4) is mainly a technical issue
to avoid to formation of lump solitons in the solution. Similar
results have been obtained for the KP II equation in [34]. The KPI
and KPII equations admit analytical solutions that are called line
solitons and do not decay at infinity along these lines. The problem
of solving the initial-value problem of KP in the background of
line solitons is a difficult problem which was finally solved in the
works [39–41].

Global well-posedness for KP II was shown using PDE tech-
niques in [23] in Hs(R2), s ≥ 0, which is the space of functions
whose s derivative is square integrable. For initial data in Hs(R2),
with s ≥ 4 one gets classical solutions. Global well-posedness for
KP I was obtained in some subset of the Sobolev space Hs(R2) [25].
For the generalized KP equation, local well-posedness results have
been established in some weighted Sobolev space, see e.g. [42].

We can conclude that for initial data in the Schwartz space the
solution u(x, y, t; ϵ) of the generalized KP equation is sufficiently
regular in space and time for 0 < t < T , where T = T (ϵ) and in
general T < ∞ for the generalized KP equations, while T = ∞ for
the KP equations. We also assume that the solution of the general-
ized KP equation depends continuously on the small parameter ϵ.

2.2. Singularity formation in dKP solutions

The same concepts can be applied to the solution of the gen-
eralized dKP equation (1.2). For generic initial data the solution of
(1.2) exists till a time tc where a singularity appears in the form of
blow-up of the gradients. However for t < tc the solution u(x, y, t)
of the generalized dKP equation is expected to be smooth both in
time and space for initial data in the Schwartz class. As for the gen-
eralized KP equation the solution u(x, y, t) of the generalized dKP
equation immediately leaves the Schwartz class. However the L2
norm of the solution is conserved as for the generalized KP equa-
tion. Integrating the generalized dKP equationwith respect to x one
obtains the constraint

0 = ±


R
(ut + unux)xdx =


R
uyy(x, y, t)dx.

While the Cauchy problem for the generalized KP equation
has seen considerable attention, the generalized dKP initial valued
problem has been less studied. A Lax pair for dKP equation (n =

1) was obtained in [43]. A definition of integrability for the dKP
equation was obtained in [44] where themethod of hydrodynamic
reduction is used. This method was introduced in [45], to obtain
particular solutions of the dKP equation while more general
solutions have been obtained in [46,47] using inverse scattering.
General solutions have also been obtained [48,49]. In [22] it is
proved that the Cauchy problem of dKP (n = 1) is well posed in
the Sobolev spaces Hs(R2), for t < tc and s > 2, while a similar
statement is missing for generalized dKP equation.

In a recent paper, two of the present authors, inspired by
the works [46,47] have studied the Cauchy problem for the
dKP equation with smooth initial data using a change of the
independent variable x suggested by the method of characteristics
for the one-dimensional case [50]. In the followingwe are using the
same idea to obtain the solution of the generalized dKP equation
(1.2) in the following formu(x, y, t) = F(ξ , y, t)
x = tF n(ξ , y, t) + ξ
F(x, y, 0) = u0(x, y)

(2.5)

where u0(x, y) is an initial datum in the Schwartz class S(R2) of
rapidly decreasing smooth functions. Plugging the above ansatz
into the generalized dKP equation one obtains an equation for the
function F(ξ , y, t)

Ft ± ntF n−1F 2
y

1 + ntF n−1Fξ


ξ

= ±Fyy, (2.6)

with initial condition

F(x, y, 0) = u0(x, y).

One can re-write Eq. (2.6) in the nonlocal form

Ft = ±∂−1
ξ Fyy ± ntF n−1(Fξ∂

−1
ξ Fyy − F 2

y ) (2.7)

where ∂−1
ξ is the anti-derivative, suitable defined. One can easily

check that for y-independent initial data the function F(ξ , y, t) is
independent from y and t , namely, F(ξ , y, t) = u0(ξ) and Eq. (2.5)
is equivalent to the method of characteristics. As in the method
of characteristics, the solution u(x, y, t) of the generalized dKP
equation has a singularity (blow-up of gradients) when the change
of coordinates (ξ , y, t) → (x, y, t) given by x = tF n(ξ , y, t) + ξ is
not invertible.

The advantage of the transformation (2.5) is that while the
solution u(x, y, t) of the generalized dKP equation develops a
singularity at a certain critical time tc and at the point (xc, yc),
the solution F(ξ , y, t) of Eq. (2.6) remains numerically regular for
longer times then the critical time tc (see below the examples in
Sections 4–6). A qualitative justification of this fact can be deduced
by observing that the nonlinear term in Eq. (2.7) is multiplied by
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the time t , so that for short times the nonlinear effects are damped.
A rigorous justification of this issue is however still missing.

The first singularity in the solution u(x, y, t) of the dKP equa-
tion appears when the change of coordinates x = tF(ξ , y, t) + ξ is
not invertible anymore. The equations that describe the singularity
formation have been considered in [51] using PDE techniques. To
study the local behaviour of the function u(x, y, t) (as a multival-
ued function) around the critical time tc when the first singularity
appears wemake a Taylor expansion of (2.5) near the critical point
uc(xc, yc, tc) where ξ = ξc . Let us consider the gradients

ux =
Fξ

∆
uy =

Fy
∆

, ∆ = 1 + ntF n−1Fξ (ξ , y, t). (2.8)

The time of gradient blow-up is the smallest time tc where the gra-
dient goes to infinity, namely where

∆ = 1 + ntF n−1Fξ (ξ , y, t) = 0.

For simplicity let us introduce the quantity

G(ξ , y, t) := F n(ξ , y, t).

Since the quantity ∆(ξ , y, t), for t < tc , has a definite sign in the
ξ and y plane, the first point where it vanishes is a double zero,
therefore the point of blow-up of the gradients is characterized by
the equations

∆ = ±1 + ntF n−1Fξ (ξ , y, t) = 1 + tGξ (ξ , y, t) = 0

∆ξ = ntF n−2(FFξξ + (n − 1)F 2
ξ ) = tGξξ = 0

∆y = ntF n−2(FFξy + (n − 1)FyFξ ) = tGξy = 0
u(x, y, t) = F(ξ , y, t)
x = tF n(ξ , y, t) + ξ .

(2.9)

The first above three equations give ξc, tc and yc , and the quantities
xc and uc = u(xc, yc, tc) are obtained by substitution from the last
two equations. The derivatives of u(x, y, t) diverge at (xc, yc, tc) in
all directions except along the vector field V = ntF n−1Fy∂x + ∂y
where

Vu = Fy.

The point of gradient blow-up is generic if

∆ξξ (ξc, yc, tc) ≠ 0, ∆ξy(ξc, yc, tc) ≠ 0
∆yy(ξc, yc, tc) ≠ 0.

Furthermore, at the point of gradient blow-up it turns out (numer-
ically) that Fyy remains bounded. So the solution of Eq. (2.6) at the
critical time satisfies the necessary conditions obtained from (2.6)

F c
t ± tcGc

yF
c
y = 0, F c

yt ± (tc(Gc
yF

c
yy + Gc

yyF
c
y )) = 0,

F c
ξ t ± tc(Gc

yF
c
yξ + Gc

yξ F
c
y ) = 0.

(2.10)

Now we are going to study the analytic behaviour of the solution
(1.2) near the point (xc, yc, tc). Introducing the shifted variables

x − xc = x̄, t − tc = t̄, y − yc = ȳ, ξ − ξc = ξ̄

we obtain the equation

x̄ − t̄(Gc
+ tcGc

t ) − t̄ ȳ(Gc
y + tcGc

yt)

− tc


Gc
yȳ +

1
6
Gc
yyyȳ

3
+

1
2
Gc
yyȳ

2


=
tc
6
Gc

ξξξ ξ̄
3
+

1
2
tcGc

ξξyȳξ̄
2
+

1
2
(tc ȳ2Gc

ξyy

+ (2tcGc
ξ t + 2Gc

ξ )t̄)ξ̄ + o(t̄2, ȳ4, ξ̄ 4, t̄(ȳ2 + ξ̄ 2)) (2.11)
where the notation Gc
ξξξ stands for ∂3

∂ξ3
G(ξ , yc, tc)


ξ=ξc

and analo-

gous notations hold for the other quantities. This suggests to intro-
duce shifted variables (using tc = −1/Gc

ξ ):

ζ = Gc
ξ


ξ̄ +

Gc
ξξy

Gc
ξξξ

ȳ



X =


x̄ − t̄(Gc

+ tcGc
t ) − t̄ ȳ(Gc

y + tcGc
yt)

− tc


Gc
yȳ +

1
2
Gc
yyȳ

2
+

1
6
Gc
yyyȳ

3


−
1
3
tc

(Gc
ξξy)

3

(Gc
ξξξ )

2
ȳ3

+
1
2
tc
Gc

ξξyG
c
ξyy

Gc
ξξξ

ȳ3 + Gc
ξ

Gc
ξξy

Gc
ξξξ

ȳt̄



T =


t̄ +

t2c
2
ȳ2


(Gc
ξξy)

2

Gc
ξξξ

− Gc
ξyy


,

(2.12)

so that in the variable ζ , (2.11) takes the form

−
k
6
ζ 3

+ Tζ = X + o(t̄2, ȳ4, ξ̄ 4, t̄(ȳ2 + ξ̄ 2)), (2.13)

where

k = t4c G
c
ξξξ . (2.14)

Introducing the rescaling

X → λX

t̄ → λ
2
3 t̄

ȳ → λ
1
3 ȳ

ζ → λ
1
3 ζ ,

(2.15)

in the limit λ → 0 reduces (2.13) to the universal cusp singularity

−
k
6
ζ 3

+ Tζ = X, (2.16)

of the solution of a one-dimensional hyperbolic equation.
To leading order in the limit λ → 0, it is consistent to expand

u(x, y, t) to linear order in ξ̄ , ȳ:

u(x, y, t) − uc = F(ξ , y, t) − F c
≃ F c

ξ ξ̄ + F c
y ȳ

=
F c
ξ

Gc
ξ

ζ (X, T ) + β̄ ȳ, (2.17)

with

β̄ = F c
y −

F c
ξ G

c
ξξy

Gc
ξξξ

. (2.18)

Thus putting ū = u(x, y, t)−uc , from (2.17)we find the local profile
of the solution near the singularity to be an s-curve, which has the
universal similarity form:

−
k
6


ū
Gc

ξ

F c
ξ

− β̄ ȳ

3

+ T


ū
Gc

ξ

F c
ξ

− β̄ ȳ


≃ X .

The above relation shows that the profile of the solutions near
the critical point (xc, yc, tc) corresponds to the unfolding of an A2
singularity as for the dKP case [50].

2.3. The small dispersion limit of the KdV equation

We conjecture that, before the critical time tc the solution
u(x, y, t; ϵ) of the generalized KP equation (1.1) in the limit ϵ → 0
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can be approximated by the solution u(x, y, t) of the generalized
dKP equation (1.2)with the same ϵ-independent initial data as long
as the gradients remain bounded, namely for t < tc one is expected
to have

u(x, y, t; ϵ) = u(x, y, t) + O(ϵ2), t < tc .

We are interested to understand the behaviour of the KP solution
u(x, y, t; ϵ) in a neighbourhood of the critical point (xc, yc, tc). For
this purposewe first recall some results from the theory of the KdV
equation.

We consider the small dispersion limit of the KdV equation

ut + β uux + ϵ2ρ uxxx = 0

where β and ρ are constants and ϵ is a small parameter.
For given smooth rapidly decreasing initial data u0(x), such

a limit has been extensively studied in the works [2–4]. It was
pointed out in [10] and numerically shown in [6] that some regions
of the (x, t) plane escape the analysis of the small dispersion
limit of the KdV equation. In particular one of these regions is a
neighbourhood of the critical point (xc, tc) where the solution of
the Hopf equation

ut + βuux = 0

obtained by setting ϵ = 0 in the KdV equation has a singularity.
The solution of this equation for initial data u0(x) takes the form
u(x, t) = u0(ξ)
x = βu0(ξ)t + ξ .

The solution has a point of gradient blow-up at the time tc with

tc = min
ξ


−

1
βu′

0(ξ)


.

The minimum point ξc gives uc = u0(ξc) and the position xc =

tcu0(ξc) + ξc . The expansion near the critical points of the Hopf
solution gives

x̄ := x − xc − βuc(t − tc) ≃ β(t − tc)(u − uc)

−
t4c β

3

6
u′′′

0 (ξc)(u − uc)
3.

It has been conjectured in [10] and proved in [52] (and for the KdV
hierarchy in [53]) that near the point (xc, tc) the solution of KdV in
the limit ϵ → 0 is approximated by

u(x, t; ϵ) = uc +


18ϵ2b
γ 2

 1
7

U


(48)1/7x̄

(ϵ6b3γ )
1
7
, β

t − tc

(3422ϵ4b2γ 3)
1
7


+O


ϵ

4
7


,

where

b = 12
ρ

β
γ = −t4c β

3u′′′

0 (ξc)

and the function U(X, T ) satisfies the ODE (1.5) with the asymp-
totic conditions (1.6).We remind that this solution of the PI2 equa-
tion also satisfies the KdV equation [10]

UT + 6UUX + UXXX = 0.

2.4. The small dispersion limit of the KP equation

Now let us consider the KP equation (1.1). We are looking
for a solution of u(x, y, t; ϵ) near the point of gradient blow-up
(xc, yc, tc) for the dKP equation of the form

u(x, y, t; ϵ) = uc +
1

nun−1
c

h(X, T ; ϵ) + β ȳ

with X and T defined in (2.12) and β is defined in (2.18) and
h(X, Y ; ϵ) a function to be determined. We are interested in the
multiscale expansion of this function of the form

h(X, T ; ϵ) = λ
1
3 H(X, T ; ϵ̄) + O(λ)

X = λX, T = λ
2
3 T , ϵ = λ

7
6 ϵ̄, ȳ = λ

1
3 Y. (2.19)

Theorem 2.1. Let

u(x, y, t; ϵ) = uc +
1

nun−1
c

h(X, T ; ϵ) + β ȳ (2.20)

be a solution of the generalized KP equation (1.1). Suppose that the
limit

H(X, T ; ϵ̄) = lim
λ→0

λ−
1
3 h

λX, λ

2
3 T ; λ

7
6 ϵ̄


exists. Then the function H(X, T ; ϵ̄) satisfies the KdV equation

HT + HHX + ϵ̄2HXXX = 0. (2.21)

Proof. Plugging the ansatz into the generalized KP equation one
obtains

∂

∂t
h(X, T ; ϵ) +


uc +

F c
ξ

Gc
ξ

h(X, T ; ϵ) + β ȳ

n
∂

∂x
h(X, T ; ϵ)

+ ϵ2 ∂3

∂x3
h(X, T ; ϵ)


x

= ±
∂2

∂y2
h(X, T ; ϵ).

Performing the rescalings (2.19) one obtains

(HT + HHX + ϵ̄2HXXX)X + λ−
1
3 HXX

×


∂X
∂t

∓


∂X
∂y

2

+ Gc + βnun−1
c ȳ



= ±2HT X

∂T
∂y

∂X
∂y

± λ
1
3 HT T


∂T
∂y

2

± λHT
∂2T
∂y2

± λ
2
3 HX

∂2X
∂y2

−

n
k=2

n
k


λ

k−1
3 un−k

c

 F c
ξ

Gc
ξ

H + βY

k

HX


X

.

Using (2.12) and taking into account the constraints (2.10) one
arrives at the relation

(HT + HHX + ϵ̄2HXXX)X = O

λ

1
3


,

which in the limit λ → 0 implies that

HT + HHX + ϵ̄2HXXX = const. (2.22)

In order to show that the constant is equal to zero it is sufficient
to observe that the solution H(X, T ; ϵ) of (2.22) has to match the
outer solution (2.17) when X → ∞. �

We observe that choosing λ = ϵ
6
7 one has ϵ̄ = 1 in (2.21). In

the rescaled variables

X =
X

ϵ
6
7
, T =

T

ϵ
4
7
,
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the function H(X, T ; ϵ̄) satisfies the KdV equation (2.21) with
ϵ̄ = 1. Furthermore for ϵ → 0 and fixed X and T the solution
has to match the outer solution (2.17), namely

H(X, T ; ϵ̄) ≃ ∓


6
k

 1
3

|X|
1
3 ∓ 2T


6
k

−
1
3

|X|
−

1
3 + O(X−1),

|X| → ∞.

Using the results of the previous section on the KdV equation, we
arrive at the following conjecture.

Conjecture 2.2. Let us assume that the solution u(x, y, t; ϵ) to the
Cauchy problem for the generalized KP equation

(ut + unux + ϵ2uxxx)x = ±uyy

with ϵ-independent initial data

u(x, y, t = 0; ϵ) = u0(x, y),

is at least C4 in R3
+

= {(x, y, t) | t > 0}. Then the solution u(x, y,
t; ϵ) admits the following expansion near the critical point (xc, yc, tc)
and uc = u(xc, yc, tc) for the solution of the dKP equation (ut +

unux)x = ±uyy with the same initial data u0(x, y). In the limit ϵ → 0
and x → xc , y → yc and t → tc in such a way that the limits

lim
X

ϵ
6
7
, lim

T

ϵ
4
7
, lim

y − yc

ϵ
2
7

remain finite, with X and T defined in (2.12), the solution of the
generalized KP equation (1.1) is approximated by

u(x, y, t; ϵ) = uc +
6

nun−1
c


ϵ2

κ2

 1
7

U


X
(κϵ6)1/7

,
T

(κ3ϵ4)1/7


+ ȳ


Fy − Fξ

Gξξy

Gξξξ


+ O


ϵ

4
7


(2.23)

where

κ = −36Gc
ξξξ t

4
c

and U(X, T ) is the particular solution of the PI2 equation (1.6) de-
scribed in the introduction.

In the particular case in which the initial data is an even function
of y, namely u0(x, y) = u0(x, −y) one can easily check that this
property is preserved by the KP equation, namely u(x, y, t, ϵ) =

u(x, −y, t, ϵ) and therefore all the odd derivatives with respect to
y of the function F vanish. The formula (2.23) can be simplified to
the form

u(x, y, t; ϵ) ≃ uc +

6


ϵ2

κ2

 1
7

nun−1
c

U

 x̄ − un
c t̄ −

tc
2 G

c
yyȳ

2

(κϵ6)1/7
,

t̄ −
t2c
2 ȳ

2Gc
ξyy

(κ3ϵ4)1/7

+ O

ϵ

4
7


, (2.24)

where x̄ = x − xc , t̄ = t − tc and ȳ = y − yc and G = F n.

3. Numerical approaches

The numerical task in this paper is to solve the generalized KP
equation (1.1) in evolutionary form,

ut + unux + ϵ2uxxx = σ∂−1
x uyy, σ = ±1, (3.1)
and the generalized dKP equation (Eq. (3.1) after formally putting
ϵ = 0) after the transformation (2.5), i.e., (2.6) in evolutionary
form,

Ft = σ

(1 + tnF n−1Fξ )∂

−1
ξ Fyy − tnF n−1F 2

y


; (3.2)

the nonlocal operators ∂−1
x and ∂−1

ξ are defined in Fourier space
by their respective singular Fourier symbols −i/kx and −i/kξ

respectively where kx and kξ are the Fourier variables dual to x
and ξ respectively. To avoid problems with these singular Fourier
symbols, we will always consider initial data with ∂−1

x u(x, y, 0) ∈

S(R2), i.e., initial data which are the x-derivative of a function in
the Schwartz space of rapidly decreasing smooth functions.

As discussed in [54], for such initial data it is convenient to
use Fourier methods. Denoting with û the 2-dimensional Fourier
transform of u, Eqs. (3.1) and (3.2) can be written in the form

ût = Lû + N (û), (3.3)

whereL is a linear, diagonal operator, which is ik2y/kξ for (3.2), and
ik2y/kx+ iϵ2k3x for (3.1), andN (û) is a nonlinear term. The idea of an
exponential time differencing (ETD) scheme is to treat the linear part
of (3.3) exactly. We use the fourth order ETD method by Cox and
Matthews [55], but other schemes offer a very similar performance
as discussed in [54].

The Fourier transformwill be approximated in standardmanner
by discrete Fourier transforms. This means the solution will
be treated as essentially periodic on the domain Lx[−π, π] ×

Ly[−π, π], where Lx, Ly are chosen large enough that the function
and the discrete Fourier transform decrease to machine precision
(here 10−16) if possible. We are working here on serial computers
and can access a resolution of NxNy = 215. Note that the nonlocal
operators in (3.1) and (3.2) imply that solutions for this equation
for generic initial data in S(R2) will not stay in this space, but
will develop tails with an algebraic fall off towards infinity, see
the discussion in [56] and references therein. The resulting loss
of regularity at the domain boundaries leads to a slower decrease
of the Fourier coefficients than for an exponentially decreasing
function. Thus one is forced to use higher resolution or larger
domains for KP than for KdV solutions where the solution for
initial data in S(R) stays in this space. As mentioned, the nonlocal
terms in (3.1) and (3.2) correspond to singular Fourier symbols. To
compute their action numerically, we regularize these symbols by
adding some constant of the order ofmachine precision. In addition
we use for (3.2) Krasny filtering [57], i.e., Fourier coefficientswith a
modulus smaller than 10−10 are put equal to zero. This is necessary
for (3.2) since the nonlocality there appears not only in the linear
part that is treated exactly in ETD schemes.

The decrease of the Fourier coefficients allows in any case
to control the spatial resolution in the numerical solution. The
accuracy in time is controlled via the L2 norms of the solutions
u and F which are both exactly conserved for solutions of (3.1)
and (3.2). Due to unavoidable numerical errors, the L2 norm of
the numerical solutions will depend in general on time. We use
the relative computed L2 norm denoted by ∆2 as an indicator of
the numerical accuracy of the solution. As discussed in [54] this
quantity is a valid criterion for sufficient spatial resolution and
overestimates the numerical accuracy by one to two orders of
magnitude.

Since the focus of this paper is on the critical behaviour of the
solution to generalized KP equations near the critical points (2.9)
of the solutions to the corresponding dispersionless equations, it
is crucial to obtain these critical points and the solution at this
point with high accuracy. To this end we run the code for (3.2)
with a resolution of Nx = 29 and Ny = 211 for the data symmetric
with respect to y → −y and with Nx = Ny = 210 for the non
symmetric data with Nt = 1000 time steps to some estimated
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Fig. 1. Solutions to the KP equation with ϵ = 0.01 for the initial data (4.1) at the critical time tc ≈ 0.222; on the left for KP I, on the right for KP II.
break up time. Once the quantity ∆ in (2.9) becomes negative,
the code is stopped. Then it is restarted with the same parameters
between the last time ti with positive ∆ and the first time te with
negative ∆ with the computed solution at ti as initial data (this
means the time resolution for this step has been increased by a
factor 1000). If needed, this procedure is iterated. Note that the
Fourier coefficients in all studied examples for (3.2) decrease to the
order of the Krasny filter during the whole computation, and the
computed L2 norm of the solution to (3.2) is conserved to better
than 10−12.

It turns out that the precision obtained in this way for the
critical time tc is sufficient to assure that Eqs. (2.9) can be satisfied
to better than plotting accuracy (10−3). If much higher precision
were needed, an interpolation of the solution on the recorded time
steps could be used. To identify the critical values xc and yc via (2.9),
an interpolation in the spatial coordinates is, however, needed
(the interpolation is done by using the exact representation of the
truncated Fourier series). To solve the equations Gξξ = Gξy = 0,
we identify the coordinates of the minimum of ∆ at the found
critical time. These values are used as the starting values for an
iterative solution via the algorithm [58] distributed in Matlab as
fminsearch. The equations are solved to machine precision. At the
identified critical point, the derivatives entering formula (2.23) are
computed.

The PI2 transcendent appearing in the asymptotic formula
(2.23) is computed as detailed in [59] to essentially machine
precision.

4. Solutions to the Kadomtsev–Petviashvili equations near the
critical points

In this sectionwe study solutions to the KP I and II equations for
ϵ = 0.01 near a critical point of the solutions to the corresponding
dispersionless equations for the same initial data. The solutions are
compared to the asymptotic formula (2.23). Throughout the paper,
we consider the initial data

u0(x, y) = −6∂x sech2(x2 + y2), (4.1)

which are symmetric with respect to y → −y, and

u0(x, y) = 6∂x exp(−x2 − 5y2 − 3xy), (4.2)

which do not have such a symmetry. Solutions to the dKP equation
for these initial data have been discussed in detail in [50], where
also figures can be found. Therefore we will concentrate here on
the related KP solutions.

4.1. Symmetric initial data

In Fig. 1 we show the solution to the KP I and II equation with
ϵ = 0.01 for the symmetric initial data (4.1) at the critical time
tc ≈ 0.222.WeuseNx = 213 andNy = 210 Fouriermodes andNt =

1000 time steps. Note that while a solution to the dKP I equation
(1.2) gives under the simultaneous transformation x → −x, u →

−u a solution to the dKP II equation, this is not the case for the full
KP equation. As can be seen in Fig. 1, the KP I solution for localized
initial data develops a tail with algebraic decrease to the right,
whereas such a tail goes to the left for KP II solutions. Due to the
imposed periodicity, these tails reenter the computational domain
on the opposing side. Since we are interested here in the formation
of dispersive shocks that are not affected by this reentering of the
tails,we canuse the showndomain size (the Fourier coefficients for
both cases decrease to at least 10−7). The numerically computed
L2 norm of the solution is conserved to better than 10−10. The
oscillations are hardly visible on these plots which is whywe show
only close-ups in the following.

The mass transfer to infinity via these tails implies stronger
gradients on the respective side and leads to a break-up exactly on
this side. Consequently also the first oscillation of the KP solutions
are observed on the side of the tails. For dKP I the first critical point
is xc ≈ 1.79 and yc = 0. First oscillations appear around the critical
time near this point as can be seen in Fig. 2. Near the critical point,
the KP I solution is well approximated by the asymptotic solution
(2.23) in terms of the PI2 transcendent. The approximation is local
(for small |x−xc | and small |y−yc |), but it can be seen that even the
first oscillation will be approximately captured for small enough ϵ.
Also the y-dependence iswell reproduced, but getsworse for larger
values of |y − yc |.

The asymptotic description (2.23) via the PI2 transcendent of
the KP solutions is local near the critical point (xc, yc, tc). For the
spatial dependence, this can be seen in Fig. 2 at the critical time.
However the description is also valid for small |t−tc | as is visible in
Fig. 3 for times before and after the critical time. It can be seen that
the PI2 asymptotics is shifted slightly to the left for KP I as before
and moves with higher speed than the KP I solution to right. Thus
the approximation becomes close the inflection point better with
time, but the oscillations are less well reproduced. Note, however,
that there appears to be the same number of oscillations of the KP
and PI2 solution.

The oscillatory zone of the corresponding KP II solution can be
seen in Fig. 2 on the right. It appears near xc ≈ −1.79, and due
to the symmetry between dKP I and dKP II solutions, it is again
decreasing with x. Note, however, that the asymptotic solution
(2.23) is slightly shifted towards more positive values of x with
respect to the KP II solution, whereas it is slightly shifted to more
negative x-values for KP I. The quality of the approximation is
the same in both cases. The time dependence of the asymptotic
description can be seen in Fig. 3 on the y-axis. The PI2 asymptotics
is slightly shifted to the right for t ≤ tc and travels with somewhat
higher speed than the KP II dispersive shock front to the left. Thus
the approximation of the shock front becomes again better with
time, and this time also the oscillations are better approximated.
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Fig. 2. Solutions to the KP equations with ϵ = 0.01 for the symmetric initial data (4.1) at the critical time tc ≈ 0.222 near the critical points xc ≈ ±1.79 and yc = 0 in blue
and the corresponding PI2 asymptotic solution (2.23) in green; on the left the KP I solution, on the right the KP II solution. (For interpretation of the references to colour in
this figure legend, the reader is referred to the web version of this article.)
Fig. 3. Solutions to the KP I equation in the upper row and KP II equation in the lower row with ϵ = 0.01 for the symmetric initial data (4.1) on the left for t = 0.204 < tc ,
in the centre for t = tc and on the right for t = 0.24 > tc on the y-axis near the critical point xc ≈ −1.79 in blue and the corresponding asymptotic solution (2.23) in terms
of the PI2 transcendent in green. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
4.2. Second critical point for symmetric initial data

The initial data (4.1) are odd functions in x. For the 1 + 1
dimensional Hopf equation, a possible break up would occur at
the same time at the points ±xc . For dKP solutions for such initial
data, this is no longer true. But the method detailed in [50] to
numerically integrate the dKP equation also allows to reach the
second breaking of the dKP solution for the data (4.1). It occurs
at the time tc ≈ 0.3001 at xc ≈ −2.033 for KP I and −xc for
KP II. The behaviour of the solution of KP I near the critical point
(xc, tc, yc) is shown in Fig. 4 in the upper row. It can be seen that
the PI2 asymptotic description (2.23) is slightly worse than at the
first breaking, it is again somewhat shifted towards the left.

The same situation for KP II can be see in the lower row of Fig. 4.
Here the asymptotic solution is as for the first breaking in KP II
shifted towards the right.

4.3. Non symmetric initial data

Both the numerical approach to dKP in [50] and the asymp-
totic formula (2.23) are applicable to non symmetric initial data as
for example in (4.2). For such data, we could not reach the second
breaking, but the first break-up is well resolved. The KP I solution
for these data can be seen in the upper row of Fig. 5 at the critical
time tc ≈ 0.0855 in the vicinity of the critical point xc ≈ 0.1045
and yc ≈ −0.2566 on the left. Visibly the PI2 asymptotic descrip-
tion (2.23) captureswell the onset of the oscillations, also in depen-
dence of y−yc . The corresponding situation for KP II can be seen in
upper row of Fig. 5 on the right. The PI2 asymptotic solution (2.23)
matches also well with the KP II numerical solution.

It can be seen in the upper row of Fig. 5 that the situation is
not the same for KP I and KP II, the asymptotic solution (2.23)
approximates the critical behaviour better for KP I than for KP II.
This persists for larger values of t as can be seen in the lower row of
Fig. 5. Still it is remarkable that the asymptotic solution also catches
at least qualitatively the behaviour of the KP solution in larger
distance from the critical points, especially the y-dependence.

5. Solutions to the generalized Kadomtsev–Petviashvili equa-
tions near the critical point

Generalized KP equations allow to study the competing
influence of dispersion and nonlinearity in a 2 + 1 dimensional
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Fig. 4. Solutions to the KP equation with ϵ = 0.01 for the symmetric initial data (4.1) at the critical time t ≈ 0.3001 of the second break-up in blue and the corresponding
asymptotic solution (2.23) in green; on the left in the vicinity of the critical point, on the right on the y-axis, in the upper row for KP I, in the lower row for KP II. (For
interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
Fig. 5. Solutions to the KP equations with ϵ = 0.01 for the asymmetric initial data (4.2) in the vicinity of the critical point in blue and the corresponding PI2 asymptotic
solution (2.23) in green; on the left KP I, on the right KP II, in the upper row at the critical time t ≈ 0.0855, in the lower row at the time t = 0.09 > tc . (For interpretation of
the references to colour in this figure legend, the reader is referred to the web version of this article.)
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Fig. 6. Solutions to the generalized KP equations with n = 3 and ϵ = 0.01 for the symmetric initial data (4.1) at the critical time tc ≈ 0.0059 near the critical points xc and
yc = 0 in blue and the corresponding PI2 asymptotic solution (2.23) in green; on the left in dependence on x and y, on the right on the y-axis, in the upper row for KP I, in
the lower row for KP II. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
model. It is known that solutions to generalized KP I equationswith
n ≥ 4/3 can have blow-up. There is no theoretical description of
this blow-up, it is just known that the L2 norm of uy can explode
in finite time, see [26,24]. There are no theoretical predictions for
generalized KP II so far. It is just expected that the defocusing
effect in generalized KP II should make blow-up less likely than
in generalized KP I situations (there is an analogy between
generalized KP and nonlinear Schrödinger (NLS) equations in this
respect). Numerical studies in [16] and in more detail in [60]
have indicated that a self-similar blow-up can be expected for
generalized KP I for n ≥ 4/3 (see also the following section). No
blow-up was found for generalized KP II for n < 3. Therefore we
consider here only the case n = 3 where also for generalized KP
II blow-up was observed. In addition an odd exponent n has the
advantage that the breaking is similar to the case n = 1 studied in
the previous section. We always use Nx = Ny = 212 Fourier modes
and Nt = 2000 time steps.

We consider the same initial data as in the KP case. It is expected
that the balance between dispersion and nonlinearity is here tilted
towards the nonlinearity. This means that dispersive shocks will
be less pronounced (less oscillations confined to smaller domains),
and that the break-up will happen at earlier times. In fact we find
for the symmetric initial data (4.1) that a first break-up in the
generalized dKP solution occurs at tc ≈ 0.0059 (we did not study
a second breaking) and xc ≈ 1.33 and yc = 0. The corresponding
solution to the generalized KP I equation can be seen for the critical
time in the vicinity of the critical point in Fig. 6 in the upper
row. Due to the reduced dispersive effects, the PI2 asymptotic
description (2.23) is almost more accurate than for KP I, but in a
smaller domain.

In Fig. 6 in the lower row we show the corresponding solution
for the generalized KP II equation. The PI2 asymptotic description
(2.23) again matches the generalized KP II solution well in the
vicinity of the critical point and catches qualitatively the first
oscillation. The domain of applicability of the approximation is
more confined than for KP II.

The solutions to the generalized KP I equation with ϵ = 0.01
and n = 3 break for the asymmetric initial data (4.2) at tc ≈ 0.0028
at xc ≈ 0.2074 and yc ≈ −0.0085. The resulting solution at
the critical time can be seen in the vicinity of the critical point
in Fig. 7 on the left. The PI2 asymptotic solution (2.23) describes
the breaking well. The corresponding generalized dKP II solution
breaks at the same tc at −xc , yc . It can be seen in Fig. 7 on the right.

6. Outlook: longtime behaviour

In this section we study the solutions of the previous sections
for times t ≫ tc . The solution of the KP equations develops in the
(x, y) plane a region of fast oscillations after the critical time tc , the
dispersive shock waves.

The generalized KP equation with n ≥ 4/3 is, however, critical
or supercritical and its solutionmaydevelop blow-up in finite time.
In [26,24], it was shown that in generalized KP I solutions, a blow-
upof the L2 normofuy canbe observed for certain initial data. There
are no rigorous analytic results on blow-up in the generalized KP
II solutions so far. The first numerical studies of the generalized KP
solutions appear to have been presented in [61,62], amore detailed
study was performed in [60]. The numerical results in [60] led to
the conjecture that there is an L∞ blow-upwith a self similar blow-
up profile for n ≥ 4/3 for generalized KP I and for n ≥ 3 for
generalizedKP II. In [63], blow-up in dispersive shocks for solutions
to generalized KdV equationswere studied numerically in the limit
of small dispersion. These results are compared with the blow-up
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Fig. 7. Solutions to the generalized KP equations with n = 3 and ϵ = 0.01 for the asymmetric initial data (4.2) at the critical time t ≈ 0.0028 in the vicinity of the critical
point in blue and the corresponding PI2 asymptotic solution (2.23) in green; on the left generalized KP I, on the right generalized KP II. (For interpretation of the references
to colour in this figure legend, the reader is referred to the web version of this article.)
Fig. 8. Solution to the KP I (left) and KPII (right) equations with ϵ = 0.01 for the symmetric initial data (4.1) for t = 0.4 > tc ≃ 0.22. The KP I focusing effect can be
observed from the different scales in the u-axis of the two plots. A zoom in of these plots is shown in Figs. 9 and 10 respectively.
found below in solutions to generalized KP equations in the small
dispersion limit.

Sincewedid not have access to parallel computers for thiswork,
we lack the necessary resolution to address these questions with
the needed resolution (we use here Nx = 213 and Ny = 212 with
Nt = 5000 up to Nt = 20 000). The figures shown below have thus
to be seen as indicative with the goal to outline directions of future
research.

6.1. Solution to the KP equations for symmetric initial data

In Fig. 8 we show the dispersive shock waves that are formed
in the KP I and KP II solutions for the initial data (4.1) at t =

0.4 > tc i.e. well after both break-ups. In Fig. 9 we zoom in the
oscillatory zones in the KP I solution. The oscillations appear near
the two critical points discussed in Section 4. It can be seen that
the oscillations follow a parabolic pattern initially as suggested
by the asymptotic formula (2.23). But the focusing effect of the
KP I equation appears to lead to the formation of a cusp. This is
presumably a real effect and not related to a lack of resolution
since a similar behaviour was seen in [64] where considerably
higher resolution could be used. The analogy between KP and NLS
suggests that this cusp could be related to higher genus solutions
appearing in the asymptotic description of the oscillations. For
times closer to the critical time, the PI2 asymptotic (2.23) in
the lower row of Fig. 9 gives a qualitative approximation to
the oscillations both for the parabolic shape and the number of
oscillations. For larger times, the PI2 asymptotic has considerably
more oscillations.

The corresponding KP II solution can be seen in Fig. 10. Due to
the defocusing character of KP II, the oscillations have a parabolic
pattern at least in the range of times we considered. It is unclear
whether some sort of cusp will appear at later times in the
envelope of the oscillatory profile. In the lower row of Fig. 10
we show the corresponding PI2 asymptotic solution (2.23) which
shows a similar behaviour as for KP I.

The asymptotic description of these oscillation in the small
dispersion limit will be the subject of further research. The task is
to derive and solve the Whitham equations which asymptotically
describe the oscillations and to find the needed phase information
in the asymptotic solutions.

6.2. Solution to generalized KP equations for symmetric initial data

In [60] blow-up in generalized KP solutions was studied
numerically. It was conjectured that a self similar L∞ blow-up is
observed.

We consider again the symmetric initial data (4.1) for general-
ized KP I with ϵ = 0.01 and let the code run with Nt = 20 000 and
Nx = 213, Ny = 212. High resolution in x is needed to resolve the
dispersive shock as before, but an evenhigher resolution in ywould
be necessary since the blow-up in y according to [60] is stronger in
y than in x direction. Thus on the used computers, just indication
for future work on larger computers can be obtained. For KP, the
relative mass conservation drops below 10−3 at t ≈ 0.0085, but
the Fourier coefficients deteriorate even earlier. We show the gen-
eralized KP I solution for t = 0.00695, i.e., at a time where the
solution is still resolved, on the left in Fig. 11. It seems that the
cusped structure in the oscillatory zone in Fig. 9 blows up in the
gKP I solution.

In Fig. 12 we show the L∞ norm of the solution which appears
to explode. The fuzzy structure of the L∞ norm indicates a lack
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Fig. 9. Solution to the KP I equations with ϵ = 0.01 for the symmetric initial data (4.1) for t = 0.4 > tc ≃ 0.22; in the upper row on the left the dispersive shock wave
appearing first, on the right the dispersive shock wave appearing at a later time (tc ≃ 0.3), in the lower row the corresponding PI2 asymptotic solutions (2.23).
Fig. 10. Solution to the KP II equation with ϵ = 0.01 for the symmetric initial data (4.1) for t = 0.4 > tc ≃ 0.22; in the upper row on the left the dispersive shock wave
appearing first, on the right the dispersive shock wave appearing at a later time (tc ≃ 0.3); in the lower row the corresponding PI2 asymptotic solutions (2.23).
of resolution. In fact we did not manage to fit the norms to the
asymptotic formulae of [60] which means we do not get close
enough to the actual blow-up.
The corresponding generalized KP II solution can be seen in
Fig. 11 on the right. There appears to be some blow-up at a slightly
later time which is in accordance with the defocusing character of
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Fig. 11. Solution to generalized KP equations with ϵ = 0.01 and n = 3 for the initial data (4.1); on the left the generalized KP I solution for t = 0.00695 L∞ norm of u, on
the right the generalized KP II solution for t = 0.0071.
Fig. 12. L∞ norm of the solution to generalized KP equations with ϵ = 0.01 and n = 3 for the initial data (4.1) in dependence of time; on the left for KP I, on the right for
KP II.
generalized KP II. The blow-up is again in the region of positive
values of u, not on the side of the algebraic tails as for generalized
KP I. The L∞ norm of the solution shown in Fig. 12 on the right also
indicates a blow-up. Againwedonotmanage to fit the norms to the
formulae of [60] for lack of spatial resolution. It will be the subject
of future work to study the details of the blow-up in the presence
of a dispersive shock. For instance for generalized KdV in [63] the
dependence of the blow-up time as a function of ϵ was obtained.
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