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1 Part 1: Singular points of solutions to analytic differential
equations

1.1 Differential equations in the complex domain: basic results

Recall that an analytic (also holomorphic) function w = u + iv of the complex variable
z = x+ iy is a differentiable map

R2 → R2

(x, y) 7→ (u, v)

satisfying the Cauchy - Riemann equations

∂u

∂x
=
∂v

∂y
,

∂u

∂y
= −∂v

∂x
. (1.1.1)

Introducing the complex combinations

z = x+ iy, z̄ = x− iy

one can recast the Cauchy - Riemann equations into the form

∂w

∂z̄
≡ 1

2

(
∂w

∂x
+ i

∂w

∂y

)
= 0.

Theorem 0. Any function w(z) analytic on a neighborhood of a point z = z0 admits an
expansion into a power series

w(z) = w0 + w1(z − z0) + w2(z − z0)2 + . . . (1.1.2)

convergent for |z − z0| < ε for some sufficiently small ε > 0. The coefficients of (1.1.2) can
be computed via the derivatives of w(z) as follows:

w0 = w(z0), wk =
1

k!

dkw(z)

dzk
|z=z0, k = 1, 2, . . . . (1.1.3)

Remark 1.1.1 The function w(z) is sais to be analytic at the point z = ∞ if the function
w(1/u) is analytic at the point u = 0. Such a function can be expanded in a series of the
form

w = w0 +
w1

z
+
w2

z2
+ . . . (1.1.4)

converging for |z| > R for some positive R.

A function f(w, z) of two complex variables is called analytic if two Cauchy - Riemann
equations in z and w hold true:

∂f

∂z̄
= 0,

∂f

∂w̄
= 0.
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Functions of two variables analytic on a polydisk

|z| < r, |w| < ρ

for some positive r, ρ admit expansion in a convergent double series

f(w, z) =
∑
k,l≥0

aklw
kzl. (1.1.5)

Let us begin with considering a first order ODE of the form

w′ = f(w, z) (1.1.6)

with a function f(w, z) analytic in a neighborhood of the point (w0, z0). We are looking for
a solution w = w(z) satisfying the initial condition

w(z0) = w0. (1.1.7)

Without loss of generality we assume that z0 = w0 = 0.

Let us look for a solution in the form of power series

w(z) = w0 + w1z + w2z
2 + . . . . (1.1.8)

Substituting into the equation (1.1.6) one obtains a recursive procedure uniquely determining
the coefficients:

w0 = 0
w1 = w′(0) = f(0, 0) = a00

w2 =
1
2

(
d

dz
f(w, z)

)
(0,0)

=
1
2
[
fz(w, z) + fw(w, z)w′

]
(0,0)

=
1
2

(a01 + a10a00)

w3 =
1
6

(
d

dz

[
fz(w, z) + fw(w, z)w′

])
(0,0)

=
1
6

[
fzz + 2fwzw′ + w′

2
fww + w′′fw

]
(0,0)

=
1
6
[
a02 + 2a11a00 + 2a20a

2
00 + a10(a01 + a10a00)

]
. (1.1.9)

In these computation aij are the coefficients of the Taylor expansion (1.1.5) of the function
f .

In general
wk = Pk(aij) (1.1.10)

where Pk is some polynomial with positive coefficients. It remains to prove convergence of
the series.

Exercise 1.1.2 Prove that the series

w = z + z2 + 2! z3 + 3! z4 + · · ·+ (n− 1)! zn + . . . (1.1.11)

satisfies the differential equation
z2w′ = w − z.

Prove that the series diverges for any z 6= 0.
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The following classical result, due to Cauchy, establishes convergence of the series solution
(1.1.8), (1.1.9) for differential equations with analytic right hand side.

Theorem 1.1.3 If the function f(w, z) is analytic for |z| < r, |w| < ρ for some r > 0,
ρ > 0 then the series (1.1.8), (1.1.9) converges to an analytic solution to (1.1.6) satisfying
the initial condition (1.1.7) on the domain

|z| < r1

(
1− e

− 1
2M

ρ1
r1

)
(1.1.12)

for arbitrary r1, ρ1, M such that

0 < r1 < r, 0 < ρ1 < ρ

assuming that
|f(w, z)| < M for |w| < ρ1, |z| < r1.

Let us begin the proof with a definition. Given two power series

f(w, z) =
∑

aklw
kzl, F (w, z) =

∑
Aklw

kzl (1.1.13)

such that (i) the series F (w, z) converges for |z| < r1, |w| < ρ1, and (ii) all the coefficients
Akl are real positive numbers, we say that F (w, z) is a majorant for f(w, z) if

|akl| ≤ Akl for all k, l ≥ 0.

We will use the following notation

f(w, z) � F (w, z) (1.1.14)

to say that F (w, z) is a majorant of f(w, z). Observe that the power series f(w, z) converges
on the same domain |z| < r1, |w| < ρ1 where the series F (w, z) does converge.

Lemma 1.1.4 Given an arbitrary polynomial P (a00, a01, . . . , akl) with positive coefficients,
then for any pair f(w, z) � F (w, z) the following inequality holds true

|P (a00, a01, . . . , akl)| ≤ P (A00, A01, . . . , Akl). (1.1.15)

The proof is obvious.

Let us now recall the Cauchy inequalities for the Taylor coefficients of an analytic function.

Lemma 1.1.5 Given a function f(w, z) analytic for |w| < ρ, |z| < r, then for any 0 < r1 <
r, 0 < ρ1 < ρ the following equality holds true∑

k,l

|akl|2ρ2k
1 r2l

1 =
1

(2π)2

∫ 2π

0

∫ 2π

0
|f
(
ρ1e

iφ, r1e
iθ
)
|2dφ dθ. (1.1.16)
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Proof: Indeed,

f
(
ρ1e

iφ, r1e
iθ
)

=
∑

aklρ
k
1r
l
1e
ikφ+ilθ,

f̄
(
ρ1e

iφ, r1e
iθ
)

=
∑

āklρ
k
1r
l
1e
−ikφ−ilθ

Multiplying one obtains

1
(2π)2

∫ 2π

0

∫ 2π

0
f f̄ dφ dθ =

1
(2π)2

∑
ak′l′ āk′′l′′ρ

k′+k′′

1 rl
′+l′′

1

∫ 2π

0
ei(k

′−k′′)φdφ

∫ 2π

0
ei(l

′−l′′)θdθ

=
∑
k,l

|akl|2ρ2k
1 r

2l
1

where we use the orthogonality∫ 2π

0
ei(k

′−k′′)φdφ = 2π δk′,k′′ ,
∫ 2π

0
ei(l

′−l′′)θdθ = 2π δl′,l′′ .

Corollary 1.1.6 Denote
M = sup

|w|<ρ1, |z|<r1
|f(w, z)|.

Then the following inequalities hold true for the Taylor coefficients of the function f(w, z)

|akl| <
M

ρk1r
l
1

∀ k, l ≥ 0. (1.1.17)

Proof: Indeed, ∑
k,l

|akl|2ρ2k
1 r

2l
1 < M2.

Hence
|akl|2ρ2k

1 r
2l
1 < M2.

Corollary 1.1.7

f(w, z) � M(
1− z

r1

)(
1− w

ρ1

) . (1.1.18)

Proof: follows from ∑ M

ρk1r
l
1

wkzl =
M(

1− z
r1

)(
1− w

ρ1

) .
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Proof of Cauchy theorem: consider an auxiliary differential equation

W ′ =
M(

1− Z
r1

)(
1− W

ρ1

) . (1.1.19)

Let us consider the power series solution to this equation

W =
∑
m≥1

BmZ
m, W (0) = 0.

The coefficients Bm can be determined by the procedure (1.1.9) in the form

Bm = Pm(b00, b01, . . . )

by the same polynomials Pm as in (1.1.10). Here

bkl =
M

ρk1r
l
1

are the Taylor coefficients of the rhs of (1.1.19). According to Lemma 1.1.4

w(z) �W (Z).

It remains to prove convergence of the power series solution to (1.1.19). This equation can
be solved explicitly by separation of variables:(

1− W

ρ1

)
dW = M

dZ

1− Z
r1

.

This gives (
1− W

ρ1

)2

=
2M r1
ρ1

log
(

1− Z

r1

)
+K.

The initial condition W (0) = 0 determines the integration constant

K = 1.

Finally

W = ρ1

[
1−

√
1 +

2M r1
ρ1

log
(

1− Z

r1

)]
. (1.1.20)

This function has singularities at Z = r1 and

log
(

1− Z

r1

)
= − ρ1

2M r1

i.e. at
Z0 = r1

(
1− e

− 1
2M

ρ1
r1

)
(observe that 0 < Z0 < r1). Hence the Taylor series for the function (1.1.20) converges for

|Z| < r1

(
1− e

− 1
2M

ρ1
r1

)
.

Due to w(z) �W (Z) the series solution w(z) converges on the same domain.
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Remark 1.1.8 Uniqueness of the analytic solution easily follows since the procedure (1.1.9)
determines all the coefficients uniquely.

Remark 1.1.9 Let the rhs of the differential equation

w′ = f(w, z)

be defined on the (punctured) polydisk

|w| < ρ, |z| > R

for some positive ρ, R. We say that the point z = ∞ is a point of analyticity for the
differential equation if, after the change of independent variable

z =
1
u
, −u2dw

du
= f (w, 1/u)

the point u = 0 is a point of analyticity, i.e., the function

f̃(w, u) := −u−2f(w, u−1)

is analytic for

|w| < ρ, |u| < 1
R
.

In that case the Cauchy theorem ensures existence, uniqueness, and analyticity of solutions
to the differential equation with the initial data

w(∞) = w0.

The solutions are represented as power series in 1/z:

w = w0 +
w1

z
+
w2

z2
+ . . .

convergent for |z| > R1 for some positive R1.

I will leave as an exercise to formulate and prove an analogue of the Cauchy theorem for
systems of differential equations

w′1 = f1(w1, . . . , wn, z)
. . . . . . . . . . . . (1.1.21)
w′n = fn(w1, . . . , wn, z)

with analytic right hand sides.

The Cauchy theorem can be improved in certain particular cases. As an important ex-
ample consider a system of linear differential equations

dwk
dz

=
n∑
l=1

akl(z)wl + bk(z), k = 1, . . . , n (1.1.22)

with coefficients akl(z), bk(z) analytic for |z − z0| < r for some positive r.

Exercise 1.1.10 Prove that the solution to the linear system (1.1.22) with the initial data

w1(z0) = w0
1, . . . , wn(z0) = w0

n

with arbitrary (w0
1, . . . , w

0
n) ∈ Cn exists, is unique, and analytic on the same disk |z−z0| < r.
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1.2 Analytic continuation of solutions. Movable and fixed singularities.

The considerations of the previous section describe the local structure of solutions to differ-
ential equations near the point of analyticity. Global considerations require working with
multivalued solutions to differential equations that we will introduce in this section.

We begin with recalling basic facts about analytic continuation.

Definition 1.2.1 An element of analytic function is a pair (U, f) where U ⊂ C̄ is a disc and
f is an analytic function in U .

Definition 1.2.2 An element (V, g) is called analytic continuation of (U, f) if

1) U ∩ V 6= ∅
2) on the intersection U ∩ V the identity g(z) ≡ f(z) holds.

Definition 1.2.3 A multivalued analytic function w(z) on a connected domain Ω ⊂ C̄ is a
set of elements of analytic functions

(Ui, wi,j)i∈I, j∈J (1.2.1)

such that

1)
⋃
i∈IUi = Ω.

2) For any pair Ui1, Ui2 with a non-empty intersection and for any j1 ∈ J there exists
j2 ∈ J such that (Ui2 , wi2,j2) is analytic continuation of (Ui1 , wi1,j1).

3) On triple intersections of Ui1, Ui2, Ui3 the analytic continuations wi2,j2 and wi3,j3 must
coincide.

For a multivalued function on Ω ⊂ C̄ it is defined an operation of analytic continuation
of an element (Ui1 , wi1,j1) from a point P ∈ Ui1 to another point Q along a curve C. Namely,
choose a finite number of elements (Ui1 , wi1,j1), . . . , (Uin , win,jn) such that

C ⊂
n⋃
k=1

Uik ,

P ∈ Ui1 , Q ∈ Uin
and the element

(
Uik+1

, wik+1,jk+1

)
is an analytic continuation of an element (Uik , wik,jk)

Exercise 1.2.4 Prove that the value win,jn(Q) of the analytic continuation of an element
(Ui1 , wi1,j1) of a multivalued function from P ∈ Ui1 to Q ∈ Uin along C does not change with
continuous deformations of the curve C.
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In particular, any closed curve

C : {z = z(t), 0 ≤ t ≤ 1, z(0) = z(t)}

induces a bijection
µC : J → J (1.2.2)

defined by the following condition: for any j ∈ J the element
(
Uin , win,µC(j)

)
is the result

of analytic continuation of the element (Ui0 , wi0,j) from the point P = z0 to the same point
P = z1 along the closed curve C. The bijection (1.2.2) depends only on the homotopy class

[C] ∈ π1(Ω, P )

of the closed curve C. In this way one obtains a homomorphism

µ : π1(Ω, P ) → Aut(J)
(1.2.3)

[C] 7→ µC .

(1.2.4)

Definition 1.2.5 The homomorphism (1.2.3) is called monodromy of the multivalued ana-
lytic function.

In particular, if the homomorphism µ is trivial,

µ (π1(Ω, P )) = id ∈ Aut(J)

then the multivalued function is actually a collection of J functions analytic in Ω.

An equivalent version of Definition 1.2.3 is

Definition 1.2.6 A multivalued analytic function on Ω ⊂ C̄ is an analytic function on some
covering Ω̂ of the domain Ω

Remark 1.2.7 The covering Ω̂ has a natural structure of complex variety (of complex di-
mension one).

Back to differential equations: let us consider a more general differential equation

F (z, w,w′) = 0 (1.2.5)

where
F (z, w,w′) =

∑
k,l

ak,l(z)wk(w′)l

is a polynomial in w, w′ with coefficients akl(z) analytic in z on a domain D ∈ C.
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Theorem 1.2.8 If w = w(z) is a solution to the differential equation (1.2.5) analytic on the
disk U ⊂ D and (V, w̃) with V ⊂ D is an analytic continuation of the element (U,w) then
also the function w̃(z) satisfies (1.2.5).

Proof: Indeed,
F (z, w̃(z), w̃(z)) ≡ 0 for z ∈ U ∩ V.

Due to the “principle of analytic continuation” this function vanishes identically for all z ∈ V .

The domain of analyticity and behaviour of solutions to analytic differential equations
are determined by their singularities. The study of positions of the singularities and their
properties is one of the main tasks of the analytic theory of differential equations.

Recall that a point z0 ∈ C̄ is an isolated singularity of a function w(z) analytic in Ω if
there exists a disk U such that

U \ z0 ⊂ Ω

and z0 6∈ Ω.

Let us first subdivide isolated singularities into two big classes.

Definition 1.2.9 We say that z0 is a critical singularity of a multivalued analytic function
w(z) if the analytic continuation along a nontrivial closed loop in U \ z0 changes the value of
the function, and non-critical in the opposite case.

For example, z = 0 is a critical singularity for functions
√
z, log z, but it is a non-critical

singularity for the functions 1/z, 1/zk.

We will now consider isolated singularities of analytic differential equations.

Definition 1.2.10 Let w(z) be a solution to the differential equation

w′ = f(w, z)

with an isolated singularity at the point z = z0. We call this singularity fixed if its position
does not depend on the choice of the solution w(z); in the opposite case the singularity is
called movable.

Example. Consider the differential equation

w′ =
1

2w z
.

The solution can be found explicitly:

w =
√

log
z

C

where C 6= 0 is an integration constant. It has fixed transcendent singularities at z = 0 and
z = ∞. It also has movable critical singularity at z = C.

Observe that the fixed singularities z = 0 and z = ∞ can be determined looking at
the singular points of the coefficients of the differential equation. Localization of movable
singularities is often a hard task. The situation simplifies for linear differential equations.
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Theorem 1.2.11 Solutions of linear differential equations with rational coefficients have no
movable singularities.

Proof: Let z1, . . . , zN ∈ C̄ be all the poles of the coefficients of the system. Any solution
defined in a neighborhood of a point z0 ∈ C̄\{z1, . . . , zN} can be analytically continued along
any curve on the punctured sphere. In this way we obtain a multivalued analytic function
defined on all C̄ \ {z1, . . . , zN}.

Corollary 1.2.12 All movable singularities of Riccati equation

w′ = a(z)w2 + b(z)w + c(z) (1.2.6)

with arbitrary rational coefficients are poles.

Proof: Consider the following linear differential equation

y′′ + p(z)y′ + q(z)y = 0 (1.2.7)

with

p(z) = −b(z)− a′(z)
a(z)

, q(z) = a(z)c(z).

The substitution

w(z) = − 1
a(z)

y′

y
(1.2.8)

into (1.2.7) yields (1.2.6). Since the solutions y(z) to (1.2.7) have no singularities away
from the poles of rational functions p(z), q(z) (these are fixed singularities), the movable
singularities of w(z) are poles (at the zeroes of y(z)).

We want now to prove the following converse statement.

Theorem 1.2.13 A differential equation of the form

w′ = f(w, z)

with rational rhs

f(w, z) =
α0(z)wn + α1(z)wn−1 + · · ·+ αn(z)
β0(z)wm + β1(z)wm−1 + · · ·+ βm(z)

≡ Pn(w, z)
Qm(w, z)

(1.2.9)

has no movable critical singularities iff it is a Riccati equation.

Let us begin the proof from the following lemma (useful by itself) describing the local
structure of solutions to analytic differential equations near the poles of the rhs.
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Lemma 1.2.14 Let the rhs f(w, z) of the differential equation w′ = f(w, z) have a pole at
the point (w0, z0), i.e., the function 1/f(w, z) is analytic near (w0, z0) and

lim
w → w0

z → z0

1
f(w, z)

= 0.

Then the differential equation has a solution in the form of a Puiseaux series

w = w0 + a1(z − z0)1/k + a2(z − z0)2/k + . . . (1.2.10)

for some integer k > 1 convergent for |z − z0| < r for some positive r.

Proof: Rewrite the differential equation for the inverse function

dz

dw
=

1
f(w, z)

.

Applying Cauchy theorem one obtains the solution with the initial data

z(w0) = z0

in the form
z = z0 + b1(w − w0) + b2(w − w0)2 + . . . .

Observe that

b1 =
(

1
f(w, z)

)
(w0,z0)

= 0.

Denote
k := min{i | bi 6= 0}.

Rewriting the equation

z − z0 = bk(w − w0)k + bk+1(w − w0)k+1 + . . .

in the form
z − z0 = bk(w − w0)k

[
1 + c1(w − w0) + c2(w − w0)2 + . . .

]k
where

1 + c1(w − w0) + c2(w − w0)2 + · · · =
[
1 +

bk+1

bk
(w − w0) +

bk+2

bk
(w − w0)2 + . . .

]1/k

we apply the analytic version of the implicit function theorem to the equation

ζ = b̃1(w − w0)
[
1 + c1(w − w0) + c2(w − w0)2 + . . .

]
, b̃1 := b

1/k
k .

One obtains an analytic function w = w(ζ) for sufficiently small |ζ|:

w = w0 + a1ζ + a2ζ
2 + . . . , a1 =

1
b̃1
.
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The substitution
ζ = (z − z0)1/k

gives the needed solution w(z).

We see that poles of the rhs of differential equations correspond to algebraic critical
singularities of solutions.

Example. The solutions to differential equation

w′ =
1

(n+ 1)wn

have the form
w(z) = (z − z0)

1
n+1 .

For any n > 0 it has a movable algebraic critical singularity.

Let us return to the proof of Painlevé theorem. If the degree m of the denominator is
positive then, for any z0 ∈ C such that β0(z0) 6= 0 there exists a point (w0, z0) such that

Qm(w0, z0) = 0.

Without loss of generality one can assume that

Pn(w0, z0) 6== 0

(the polynomials Pn(w, z) and Qm(w, z) by assumption have no common factors) and

∂wQm(w, z)|(w0,z) 6= 0.

The last condition ensures local analytic dependence on z0 of the root w = w0 of the poly-
nomial equation

Qm(w, z0) = 0.

So, according to Lemma 1.2.14 there exists a solution to the differential equation with a
critical singularity at z = z0. The possibility of small variations of z0 proves that this
singularity is movable.

We proved that m = 0, i.e., the differential equation must have the form

w′ = α0(z)wn + α1(z)wn−1 + · · ·+ αn(z).

Put
w̃ =

1
w
.

One obtains
w̃′ = −α0(z) + α1(z)w̃ + · · ·+ αn(z)w̃n

w̃n−2
.

If n − 2 > 0 then this equation has movable critical singularities, i.e., the original equation
has movable critical poles. Hence n = 2 and we obtain a Riccati equation.
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1.3 Singularities for differential equations not resolved with respect to the
derivative. Weierstrass elliptic function.

We consider only a particular class of such equations having the form

F (w,w′) = 0 (1.3.1)

for a polynomial F (w,w′). Let us begin with

Example. Consider one-dimensional motion of a point of mass 1 in the field of a poly-
nomial potential V (x). Recall that the equations of the motion have the form

ẍ = −∂V (x)
∂x

. (1.3.2)

Conservation of the total energy reduces this second order ODE to the first one

1
2
ẋ2 + V (x) = E (1.3.3)

where E is the integration constant.

Question: when solutions x = x(t) to the differential equation (1.3.3) have no movable
critical singularities in the complex t-plane?

Lemma 1.3.1 The solutions to (1.3.3) have no movable critical singularities only if deg V (x) ≤
4.

Proof: The substitution

x̃ =
1
x
,

dx

dt
= − 1

x̃2

dx̃

dt

gives
1
2

(
dx̃

dt

)2

= x̃4
[
E − V

(
x̃−1

)]
= 0. (1.3.4)

If the degree of the polynomial V (x) is greater than 4 then the rhs of (1.3.4) has a positive
power of x̃ in the denominator.

One arrives at the following question: given a differential equation of the form

w′
2 =

P (w)
wn

, n ∈ Z

with a polynomial
P (w) = a0 + a1w + . . . ,

prove existence of movable critical points under the assumption n > 0.

To do this we separate the variables

w
n
2 dw√
P (w)

= dz.
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Let us consider the solution with the initial data w(z0) = 0 with arbitrary z0. It can be found
in the form

2
n+ 2

(a0)−
1
2w

n+2
2
[
1 + c1w + c2w

2 + . . .
]

= z − z0

where the (convergent) series in the square brackets is defined by the following formula

1 + c1w + c2w
2 + · · · =

(
a−1

0 P (w)
)−1/2

.

Inverting one obtains the solution w = w(z) with a movable algebraic critical singularity (if
n > 0)

w = b0(z − z0)
2

n+2 + b1(z − z0)
3

n+2 + . . .

for some coefficients b0, b1, . . . .

We will now prove that for n ≤ 4 all movable singularities of solutions to the equation

w′
2 = a0w

n + a1w
n−1 + · · ·+ an (1.3.5)

are poles. The statement is trivial for n = 0, so we start from

Case 1: n = 1. General solution to

w′
2 = z − a

reads

w = a+
(
z − z0

2

)2

.

Case 2: n = 2. To solve the differential equation

w′
2 = (w − a)(w − b)

with a 6= b let us consider the algebraic curve

p2 = (w − a)(w − b).

The curve admits a rational parametrization

w =
a− b s2

1− s2

p =
(a− b) s
1− s2

.

We have
s =

p

w − a
,

so
p =

dw

dz
= 2(a− b)

s

(1− s2)2
ds

dz
,

i.e.
ds

dz
=

1
2
(1− s2).
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Integration of this equation gives

s =
1− ez−z0

1 + ez−z0
.

Therefore the solutions w = w(z) are represented in the form

w = R(ez−z0)

for some rational function R.

Case 3. n = 3. Doing if necessary an affine change of dependent variable

w 7→ aw + b

we reduce the differential equation (1.3.5) to the form

w′
2 = 4w3 − g2w − g3. (1.3.6)

Here g2, g3 are some complex number. We will construct a particular solution w = ℘(z)
to this differential equation called Weierstrass elliptic function. We prove that this solution
is meromorphic on the entire complex plane. All other solutions are obtained by a shift of
argument

w = ℘(z − z0), z0 ∈ C.

Let us fix a pair of complex numbers ω1, ω2 such that

Im
ω2

ω1
> 0. (1.3.7)

Denote
Λ := {z = 2mω1 + 2nω2 |m, n ∈ Z} (1.3.8)

the lattice on the plane generated by the vectors 2ω1 and 2ω2. Elliptic functions associated
with the lattice Λ by definition are meromorphic functions on the complex torus

Tω1,ω2 := C/Λ. (1.3.9)

Spelling this definition out we identify elliptic functions with doubly periodic meromorphic
functions on the complex plane:

f(z + 2ω1) = f(z), f(z + 2ω2) = f(z). (1.3.10)

Exercise 1.3.2 Prove that any elliptic function holomorphic on C must be a constant.

The Weierstrass elliptic function is defined by the following infinite sum

℘(z;ω1, ω2) :=
1
z2

+
∑
ω∈Λ\0

[
1

(z − ω)2
− 1
ω2

]
. (1.3.11)

Theorem 1.3.3 The series (1.3.11) converges absolutely and uniformly on any compact in
C \ Λ. The sum ℘(z;ω1, ω2) is a doubly periodic analytic function in z ∈ C \ Λ with double
poles at the lattice points.
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Proof: We first prove the following

Lemma 1.3.4 The series ∑
ω∈Λ

′ 1
|ω|3

converges.

The notation ∑
ω∈Λ

′

will be used for summation over all nonzero elements of the lattice Λ.

Proof: For any positive integer n let us evaluate the contribution of the lattice points
belonging to the boundary of the parallelogram

Πn := {z = 2ω1s1 + 2ω2s2 | − n ≤ s1, s2 ≤ n}.

Denote d the minimal distance from the origin to the boundary points of the parallelogram
Π1. Then the distance from the origin of any lattice point on the boundary ∂Πn is greater
or equal to dn, that is

1
|ω|3

≤ 1
d3n3

, ω ∈ Λ ∩ ∂Πn.

We have 8n lattice points on ∂Πn, hence∑
ω∈Λ∩∂Πn

′ 1
|ω|3

≤ 8
d3n2

.

The estimate for the sum of the series readily follows

∑
ω∈Λ

′ 1
|ω|3

≤ 8
d3

∞∑
n=1

1
n2

=
4π2

3d3
.

We are now in a position to prove convergence of the series (1.3.11) on any disk |z| ≤ r
away from the lattice points. For a given r > 0 there is only a finite number of lattice points
inside the disk of radius 2r. Considering only the points ω ∈ Λ such that |ω| ≥ 2r the
following inequalities hold true∣∣∣∣ 1

(z − ω)2
− 1
ω2

∣∣∣∣ = ∣∣∣∣ 2ω z − z2

ω2(ω − z)2

∣∣∣∣
=

|z(2− z/ω)|
|ω|3|1− z/ω|2

≤
5
2 r

1
4 |ω|3

≤ 10 r
|ω|3

for |z| ≤ r, z 6∈ Λ.

So the convergence readily follows from the Lemma.
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For a z inside the disk |z| < r, z 6∈ Λ rewrite the series for the ℘-function as follows:

℘(z;ω1, ω2) =
1
z2

+
∑

ω∈Λ, 0<|ω|<2r

[
1

(z − ω)2
− 1
ω2

]

+
∑

ω∈Λ, |ω|≥2r

[
1

(z − ω)2
− 1
ω2

]
.

The second series is a function holomorphic for |z| < r. The first (finite) sum, along with the
1/z2 term, is a rational function, hence it is meromorphic on the disk |z| < r. This prove the
statement of the Theorem about the poles.

Let us consider now the derivative

℘′(z;ω1, ω2) = −2
∑
ω∈Λ

1
(z − ω)3

.

It is clear that this meromorphic function is doubly periodic: the shift z 7→ z + 2kω1 + 2lω2

can be absorbed by a change of the summation indices

m 7→ m+ k, n 7→ n+ l.

In order to prove double periodicity of the Weierstrass function let us first observe that
the difference

℘(z + 2kω1 + 2lω2)− ℘(z)

is a constant for any k, l ∈ Z. Indeed, the derivative of this function is identically equal to 0.
To compute the value of the constant ℘(z + 2ω1)− ℘(z) it suffices to set z = −ω1 and then
use that ℘(z) is an even function, hence

℘(ω1) = ℘(−ω1).

In a similar way one proves that ℘(z + 2ω2)− ℘(z) = 0.

Let us now prove that the Weierstrass function satisfies the differential equation (1.3.6)
with

g2 = 60
∑′ 1

ω4
, g3 = 140

∑′ 1
ω6
. (1.3.12)

Theorem 1.3.5 The Weierstrass function ℘(z;ω1, ω2) satisfies the differential equation(
℘′
)2 = 4℘3 − g2℘− g3. (1.3.13)

Proof: Using the geometric series

1(
1− z

ω

)2 = 1 +
2z
ω

+
3z2

ω2
+

4z3

ω3
+

5z4

ω4
+ . . .

18



we derive the Laurent expansion of the Weierstrass function at z = 0:

℘(z) =
1
z2

+
g2
20
z2 +

g3
28
z4 + . . . .

Hence (
℘′(z)

)2 =
4
z6
− 2g2

5z2
− 4g3

7
+ . . .

℘3(z) =
1
z6

+
3g2
20z2

+
3
28
g3 + . . . .

Therefore
℘′

2 − 4℘3 = −g2
z2
− g3 +O(z2).

This implies that the function

℘′
2 − 4℘3 + g2℘+ g3 = O(z2)

is holomorphic at z = 0. Due to double periodicity it is holomorphic everywhere. Thus it
must be equal to a constant. Since the value of this functions at z = 0 is equal to zero, the
constant is equal to 0.

It turns out that, choosing in a suitable way the periods ω1,2 of the lattice one can
obtain a solution to the Weierstrass differential equation (1.3.13) with arbitrary values of the
parameter g2, g3 satisfying

g3
2 − 27g2

3 6= 0. (1.3.14)

Actually the generators of the lattice are defined as the periods of a holomorphic differential
over a suitably chosen basis of cycles a1, a2 ∈ H1(C; Z) on the elliptic curve

C : p2 = 4w3 − g2w − g3, (1.3.15)

2ω1 =
∮
a1

dw

p
, 2ω2 =

∮
a2

dw

p
.

The details of this construction go beyond the scope of this course.

For g3
2 − 27g2

3 = 0 the polynomial 4w3 − g2 − g3 has a multiple root. The curve (1.3.15)
becomes rational:

p2 = 4(w − a)2(w − b)

for some a, b. The rational parametrization of the curve reads

w = b+ s2

p = 2s(b− a+ s2).

The corresponding differential equation w′2 = 4(w − a)2(w − b) integrates in elementary
functions.

Case 4. n = 4. In order to solve the differential equation

w′
2 = a0w

4 + 4a1w
3 + 6a2w

2 + 4a3w + a4 ≡ P4(w)
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let us again consider the algebraic curve

p2 = P4(w). (1.3.16)

The substitution
w = 1

w̃ + α

p = − p̃
w̃2

yields
p̃2w̃−4 = b4w̃

−4 + b3w̃
−3 + b2w̃

−2 + b1w̃
−1 + P4(α)

with
bk =

1
k!
P

(k)
4 (α), k = 1, . . . , 4.

If α is a root of the polynomial P4(w) then one obtains a cubic

p̃2 = b4 + b3w̃ + b2w̃
2 + b1w̃

3. (1.3.17)

One more substitution
p̃ = λy, w̃ = λx+ µ

with
λ =

4
b1
, µ = − b2

3b1
reduces equation (1.3.17) to the Weierstrass normal form

y2 = 4x3 − g2x− g3 (1.3.18)

with

g2 =
1
12

(b22−3b1b3) = a0a4+3a2
2−4a1a3, g3 =

1
432

(9b1b2b3−2b32−27b21b4) =

∣∣∣∣∣∣
a0 a1 a2

a1 a2 a3

a2 a3 a4

∣∣∣∣∣∣ .
If the quartic polynomial P4(w) had no multiple roots so does the cubic polynomial in the
rhs of (1.3.18). Therefore the curve (1.3.18) admits uniformization by Weierstrass elliptic
functions:

w̃ = λ℘(s) + µ

p̃ = λ℘′(s).
(1.3.19)

As
dz =

dw

p
=
dw̃

p̃
= ds

we finally obtain the general solution in the form

w = α+
1

λ℘(z − z0) + µ
.

It is clearly a meromorphic function in z.

More general result is given by the following theorem of Hermite (1873).

20



Theorem 1.3.6 If the polynomial differential equation

F (w,w′) = 0

has no movable critical points then the genus of the Riemann surface

F (w, p) = 0

is less or equal to 1. The solutions can be of the following three types: (i) rational functions
in z; (ii) rational expressions in exponential functions; (iii) rational expressions in elliptic
functions.

Sketch of the proof: On the curve F (w, p) = 0 consider the abelian differential

ω =
dw

p
(= dz).

Since for any abelian differential

#(zeroes)−#(poles) = 2g − 2

the differential has a zero (w0, p0) for g > 1. Choosing a complex coordinate τ near such a
point

w = w0 + w1τ + w2τ
2 + . . .

p = p0 + p1τ + p2τ
2 + . . .

one has
ω =

(
akτ

k + ak+1τ
k+1 + . . .

)
dτ

for some positive k ∈ Z, ak 6= 0. So

dz

dτ
= akτ

k + ak+1τ
k+1 + . . .

and
z − z0 =

ak
k + 1

τk+1 +
ak+1

k + 2
τk+2 + . . .

or

τ =
(

(k + 1)(z − z0)
ak

) 1
k+1

+O
(
(z − z0)

2
k+1

)
.

We obtain a movable critical singularity:

w = w0 + w1

(
(k + 1)(z − z0)

ak

) 1
k+1

+O
(
(z − z0)

2
k+1

)
.

As an application of the Hermite’s theorem consider the problem of finding meromorphic
functions possessing algebraic addition theorem. We say that the function f(z) satisfies an
algebraic addition theorem if there exists an algebraic function P (u, v, w) such that for all
x, y ∈ C the following identity holds true

P (f(x), f(y), f(x+ y)) = 0. (1.3.20)
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Corollary 1.3.7 Meromorphic functions f(z) possessing algebraic addition theorem are ra-
tional functions in z, or in ea z, or elliptic functions.

Proof: Differentiating (1.3.20) in x and y obtain

Puf
′(x) + Pwf

′(x+ y) = 0
Pvf

′(y) + Pwf
′(x+ y) = 0.

Hence

Pu(f(x), f(y), f(x+ y)) f ′(x)− Pv(f(x), f(y), f(x+ y)) f ′(y) = 0. (1.3.21)

Eliminating f(x+ y) from the equations (1.3.20), (1.3.21) we obtain an equation of the form

Φ(f(x), f ′(x), f(y), f ′(y)) = 0.

Fixing y one arrives at a differential equation of above form by assumption having mero-
morphic solutions. Due to Hermite theorem the solutions must be rational, trigonometric or
elliptic.

Example (L.Fuchs). Consider the differential equation

w′
3 − 3w′2 − 9w4 − 12w2 = 0. (1.3.22)

The associated algebraic curve reads

F (p, w) ≡ p3 − 3p2 − 9w4 − 12w2 = 0. (1.3.23)

This irreducible equation is cubic in p. So the associated Riemann surface has 3 sheets over
the complex w-plane.

Step 1: look for the ramification points for the projection (p, w) 7→ w of the Riemann
surface (2.1.19). To this end we have to first solve the system

F (p, w) = 0

Fp(p, w) = 0.

 (1.3.24)

The second equations gives

3p2 − 6p = 0, hence p = 0 or p = 2.

One obtains

p = p1 = 0 ⇒ w = w1 = 0 or w = w2,3 = ± 2 i√
3

(1.3.25)

p = p2 = 2 ⇒ w = w4,5 = ±i
√

2
3
.

Let us study the structure of the Riemann surface near the points (pi, wj).
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1) Near (p1, w1) = (0, 0) one has, at the leading order

p ' ±2 i w.

Higher order terms are determined uniquely for both branches:

p±(w) = ±2 i w − 2
3
w2 +O(w3). (1.3.26)

One obtains two analytic functions p = p±(w). Hence (p1, w1) is a double point of the
algebraic curve (2.1.19) (i.e., not a branch point). It is obtained by identification of the two
points (1.3.26) of the Riemann surface.

2) Near (p1, w2) or (p1, w3) one can use the coordinate p as the local parameter:

w = ±

[
2 i√

3
− i

√
3

16
p2 +

i

16
√

3
p3

]
+O(p4) near (p, w) =

(
0,± 2 i√

3

)
. (1.3.27)

So, the points (p1, w2) and (p1, w3) are both second order branch points on the Riemann
surface.

3) Near each of the points (p2, w4) or (p2, w5) both branches of the Riemann surface
(2.1.19) are holomorphic:

w = i

√
2
3
± i

2
√

2
(p− 2)− i

3
√

3± 4
48
√

2
(p− 2)2 +O

(
(p− 2)3

)
(1.3.28)

or

w = −i
√

2
3
± i

2
√

2
(p− 2) + i

3
√

3± 4
48
√

2
(p− 2)2 +O

(
(p− 2)3

)
. (1.3.29)

4) At infinity one has to do the substitution

w =
1
u
, p =

1
q

to arrive at
9q3 − u4 + 12u2q3 + 3qu4 = 0. (1.3.30)

Near u = 0 the curve can be described by a Puiseaux series

q = 3−2/3ε u4/3 − ε2

3 · 31/3
u8/3 +O

(
u11/3

)
. (1.3.31)

Thus at infinity the curve (2.1.19) has a third order branch point.

We obtain on the Riemann surface 3 branch points of orders 2, 2 and 3. The total
multiplicity of the branching locus by definition is equal to

b = (2− 1) + (2− 1) + (3− 1) = 4.

The Riemann - Hurwitz formula for the genus g of a n-sheeted covering of the Riemann
sphere with the total multiplicity b of the branched locus gives

g =
b

2
− n+ 1 = 0.
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A simpler way to establish rationality of the curve is to represent it as a quotient of a
reducible rational curve[

(s− 1)2(s+ 2) + 3w2
] [

(s+ 1)2(s− 2)− 3w2
]

= 0 (1.3.32)

over the involution
(s, w) 7→ (−s, w).

The projection of (1.3.32) to (2.1.19) reads

(s, w) 7→ (p = −1 + s2, w).

Further substitution
s = 2 + 3t2

gives a rational parametrization of the second component

(s+ 1)2(s− 2)− 3w2 = 0

of the curve (1.3.32)
p = 3 + 12t2 + 9t4

w = 3t(1 + t2).

 (1.3.33)

Now we can integrate the equation:

dz =
dw

p
=

dt

1 + t2
, t = tan(z − z0)

that gives the solution in the form

w = 3 tan3(z − z0) + 3 tan(z − z0) =
3 sin(z − z0)
cos3(z − z0)

. (1.3.34)

Other components of the curve (1.3.32) give nothing new.

Exercise 1.3.8 Consider a differential equation of the form

F (w′, w, z) = 0

where F (p, w, z) is a polynomial in 3 variables p, w, z. Assume that for any fixed g the genus
of the algebraic curve F (p, w, z) = 0 is equal to zero. Moreover, assume that the solutions to
the differential equations have no movable critical singularities. Prove that the solutions to
the differential equation expresses rationally through solutions to Riccati equation

du

dz
= a(z)u2 + b(z)u+ c(z)

with rational coefficients a(z), b(z), c(z).
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At the end of this section we consider an example of application of the above approach
to a multi-dimensional mechanical problem.

The Kowalevskaya problem: consider the system of equations of motion of a rigid body
with a fixed point

A1 ω̇1 + (A3 −A2)ω2 ω3 = mg (c2γ3 − c3γ2)

A2 ω̇2 + (A1 −A3)ω3 ω1 = mg (c3γ1 − c1γ3)

A3 ω̇3 + (A2 −A1)ω1 ω2 = mg (c1γ2 − c2γ1)

 (1.3.35)

γ̇1 = ω3 γ2 − ω2 γ3

γ̇2 = ω1 γ3 − ω3 γ1

γ̇3 = ω2 γ1 − ω1 γ2

 (1.3.36)

Here ω = (ω1, ω2, ω3) is the vector of angular velocity of the rigid body, γ = (γ1, γ2, γ3) the
coordinates of the unit vector along the Oz axis; the coordinates of both vectors are given
with respect to the co-moving frame having the origin at the fixed point of the rigid body.
The positive numbers A1, A2, A3 are the eigenvalues of the inertia tensor, c = (c1, c2, c3)
the (constant) coordinates of the baricenter, m is the mass of the body, g is a constant (the
gravitational acceleration). What are the values of the parameters A1, A2, A3, c1, c2, c3
for which the solutions (ω(t), γ(t)) have no movable critical points in t ∈ C? The following
remarkable theorem was proved by S.Kowalevskaya (1889):

Theorem 1.3.9 All singularities of solutions to the equations (1.3.35), (1.3.36) in the com-
plex t-plane are poles if and only if

(i) c1 = c2 = c3 = 0 (the case of Euler - Poinsot).

(ii) A1 = A2 and c1 = c2 = 0 (axial symmetry; the Lagrange - Poisson case).

(iii) A1 = A2 = A3 (spherical symmetry).

(iv) A1 = A2 = 2A3, c3 = 0 (the Kowalevskaya case).

In all four cases the dynamical equations (1.3.35), (1.3.36) reduce to a completely inte-
grable Hamiltonian system. That means that, along with the Hamiltonian (the total energy)

H =
1
2
(
A1ω

2
1 +A2ω

2
2 +A3ω

2
3

)
−mg (c1γ1 + c2γ2 + c3γ3)

(1.3.37)

=
1
2

(
M2

1

A1
+
M2

2

A2
+
M2

3

A3

)
−mg (c1γ1 + c2γ2 + c3γ3)

(here we introduce the vector of angular momentum

M = (M1,M2,M3), Mi = Aiωi, i = 1, 2, 3) (1.3.38)
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and two geometric integrals

(M,γ) = M1 γ1 +M2 γ2 +M3 γ3

(1.3.39)
(γ, γ) = γ2

1 + γ2
2 + γ2

3

there is an additional independent first integral. Namely, in the Euler - Poinsot case the
additional integral is

I = (M,M) = M2
1 +M2

2 +M2
3 . (1.3.40)

In the case of axial symmetry the additional integral is

I = M3. (1.3.41)

In the case of spherical symmetry the additional integral is

(M, c) = c1M1 + c2M2 + c3M3. (1.3.42)

The most nontrivial is the Kowalevskaya case where the additional first integral is quartic:

I =
∣∣A3(ω1 + i ω2)2 +mg (c1 + i c2)(γ1 + i γ2)

∣∣2 . (1.3.43)

Exercise 1.3.10 On the six-dimensional phase space with the coordinates (M1,M2,M3, γ1, γ2, γ3)
introduce the following Poisson bracket:

{Mi,Mj} = εijkMk

{Mi, γj} = εijkγk (1.3.44)
{γi, γj} = 0

Here εijk is the signature of the permutation
(

1 2 3
i j k

)
, summation over repeated index k

is assumed.

(i) Prove that the bracket (1.3.44) satisfies Jacobi identity.

Hint: check first that linear functions on the phase space form a Lie algebra with respect to
the bracket (1.3.44), namely,

{(a1,M) + (α1, γ), (a2,M) + (α2, γ)} = (a3,M) + (α3, γ) (1.3.45)
a3 = a1 × a2, α3 = a1 × α2 − a2 × α1.

Here the coefficients ai, αi of linear functions are considered as vectors in R3. The Lie algebra
(1.3.45) is isomorphic to the semidirect product so3 o R3.

(ii) Check that the functions (M,γ) and (γ, γ) are Casimirs of the Poisson bracket, i.e.,
that they commute with any other function on the phase space.

(iii) Prove that the equations of rotations of rigid body (1.3.35) is a Hamiltonian system
with the Hamiltonian (1.3.37):

Ṁi = {H,Mi}, γ̇i = {H, γi}, i = 1, 2, 3.

(iv) Check involutivity {H, I} = 0 in all four cases (1.3.40) - (1.3.43).
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According to the statements of this Exercise the level surface

(M,γ) = k, (γ, γ) = 1 (1.3.46)

for an arbitrary constant k has a natural structure of symplectic manifolds. The restriction
of the flow (1.3.35) to this level surface is a Hamiltonian system with two degrees of freedom.
Thus it suffices to have one additional first integral to ensure complete integrability.

In the classical cases (i) - (iii) the equations of motion (1.3.35) can be integrated in elliptic
functions. Integration of the case (iv) performed by Kowalevskaya unraveled an important
geometric structure behind this integrable case of equations of motion. Namely, consider the
common level surface of the four first integrals

(M,γ) = k

(γ, γ) = 1

1
2

(
M2

1
2A3

+ M2
2

2A3
+ M2

3
A3

)
− (c1γ1 + c2γ2) = E

∣∣A3(ω1 + i ω2)2 +mg (c1 + i c2)(γ1 + i γ2)
∣∣2 = K


(1.3.47)

for generic values of the constants k,E,K. The dynamics of (1.3.35) takes place on this
level surface. It turns out that a suitable compactification of this two-dimensional complex
algebraic variety has a structure of an abelian variety, i.e., it is isomorphic to a 4-dimensional
torus

T 4 = C2/(integer lattice of rang 4).

The dynamics becomes linear in the natural coordinates on this torus. The solutions to the
Kowalevskaya problem can be expressed via theta-functions of two variables. The final form
of these expressions was obtained by F.Kötter in 1893.

The quite surprising connection of the property of absence of moving critical points with
integrability of the system observed by Kowalevskaya was the starting point for the so-called
Painlevé test in the modern theory of integrable systems.

1.4 Poincaré method of small parameter

The method of small parameter, proposed by Poincaré (1892) in his studies on celestial
mechanics, is also an important tool in the study of properties of solutions of analytic differ-
ential equations. The method is applicable to a system of differential equations depending
on a parameter ε,

dw
dz

= f(z,w, ε) (1.4.1)

where w = (w1, . . . , wn) is the vector of depending variables, the vector function f of the
right hand sides is assumed to be analytic in z, w1, . . . , wn, ε for sufficiently small |ε|. The
system (1.4.1) is considered as a perturbation of the so-called unperturbed system

dw
dz

= f(z,w, 0). (1.4.2)
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Suppose we know how to solve the unperturbed system. What can be said about solutions
of the perturbed one?

Comparing with Cauchy theorem the novelty of the Poincaré method is that, for systems
depending analytically on a parameter in certain cases one can establish global existence of a
solution.

For the sake of simplicity we will formulate it for the case of a system of two first order
differential equations, so we redenote w = (u, v), f = (f, g).

Theorem 1.4.1 Consider a system of two differential equations of the form

du
dz = f(z, u, v, ε)

dv
dz = g(z, u, v, ε)

 (1.4.3)

with the right hand sides f(z, u, v, ε), g(z, u, v, ε) analytic in (z, u, v, ε) for sufficiently small
ε. Assume that for ε = 0 the general solution

u = φ(z, C1, C2)

v = ψ(z, C1, C2)

 , det

 ∂φ
∂C1

∂φ
∂C2

∂ψ
∂C1

∂ψ
∂C2

 6= 0 (1.4.4)

to the system (1.4.3) is given. Moreover, assume that the solution (1.4.4) is analytic on a
neighborhood of a curve

C : z = z(t), t ∈ [0, 1], z(0) = z0, z(1) = z1 (1.4.5)

on the complex plane. Then there exists a unique solution

u = φ(z, C1, C2, ε)

v = ψ(z, C1, C2, ε)

 (1.4.6)

to the full system (1.4.3) analytic for sufficiently small ε and also analytic in z on a neigh-
borhood of the curve C.

Proof: Step 1. Construct the solution as a formal series in ε

u = φ+ ε φ1 + ε2φ2 + . . .

v = ψ + ε ψ1 + ε2ψ2 + . . . .
(1.4.7)

We will prove that the coefficients are analytic in z near the curve C. They will be determined
uniquely by the normalization

φi(z0) = 0, ψi(z0) = 0, i ≥ 1. (1.4.8)

Let us adopt the following short notations: denote f , g, ∂f/∂u, ∂f/∂v, ∂f/∂ε etc. for the
values of the functions f(z, u, v, ε), g(z, u, v, ε) and their derivatives at

(z, u, v, ε) = (z, φ, ψ, 0).
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The construction: for the corrections (φi, ψi) one derives from (1.4.3) a recurrent system
of inhomogeneous linear differential equations of the form

dφk
dz = ∂f

∂u φk + ∂f
∂v ψk + Fk

dψk
dz = ∂g

∂u φk + ∂g
∂v ψk +Gk

 (1.4.9)

where

Fk = Fk

(
∂mf

∂ui∂vj∂εl
, φa, ψb

)
, Gk = Gk

(
∂mg

∂ui∂vj∂εl
, φa, ψb

)
(1.4.10)

i+ j + l = m ≤ k, a, b ≤ k − 1.

E.g., for (φ1, ψ1) we obtain the following system

dφ1

dz = ∂f
∂u φ1 + ∂f

∂v ψ1 + ∂f
∂ε

dψ1

dz = ∂g
∂u φ1 + ∂g

∂v ψ1 + ∂g
∂ε ,


so F1 = ∂f/∂ε, G1 = ∂g/∂ε. For the second correction one has

F2 =
1
2

[
∂2f

∂ε2
+
∂2f

∂u2
φ2

1 + 2
∂f

∂u ∂v
φ1ψ1 +

∂2f

∂v2
ψ2

1

]
+

∂2f

∂u ∂ε
φ1 +

∂2f

∂v ∂ε
ψ1

G2 =
1
2

[
∂2g

∂ε2
+
∂2g

∂u2
φ2

1 + 2
∂g

∂u ∂v
φ1ψ1 +

∂2g

∂v2
ψ2

1

]
+

∂2g

∂u ∂ε
φ1 +

∂2g

∂v ∂ε
ψ1

etc. Observe that the vector functions δφ

δψ


1

=

 ∂φ
∂C1

∂ψ
∂C1

 and

 δφ

δψ


2

=

 ∂φ
∂C2

∂ψ
∂C2

 (1.4.11)

give a fundamental system of solutions to the associated homogeneous linear system

d
dz δφ = ∂f

∂u δφ+ ∂f
∂v δψ

d
dz δψ = ∂g

∂u δφ+ ∂g
∂v δψ.

 (1.4.12)

due to the assumption (1.4.4). Therefore one can solve the system (1.4.9) iteratively by
quadratures using the “variation of constants” method: φk(z)

ψk(z)

 =
∫ z

z0

dz′


∂φ(z)
∂C1

∂φ(z)
∂C2

∂ψ(z)
∂C1

∂ψ(z)
∂C2




∂φ(z′)
∂C1

∂φ(z′)
∂C2

∂ψ(z′)
∂C1

∂ψ(z′)
∂C2


−1 Fk(z′)

Gk(z′)

 . (1.4.13)

The solutions are chosen in such a way that

φk(z0) = ψk(z0) = 0, ∀ k ≥ 1. (1.4.14)
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By construction every term of the series is analytic on some neighborhood of the curve C.
Step 2: proof of convergence. Denote

F (z, δφ, δψ, ε) := f(z, φ+ δφ, ψ + δψ, ε)− f(z, φ, ψ, 0)
(1.4.15)

G(z, δφ, δψ, ε) := g(z, φ+ δφ, ψ + δψ, ε)− g(z, φ, ψ, 0).

By definition we have
d
dz δφ = F (z, δφ, δψ, ε)

d
dz δψ = G(z, δφ, δψ, ε).

 (1.4.16)

Let

F =
∑

aklm(z)(δφ)k(δψ)lεm, a000(z) ≡ 0

G =
∑

bklm(z)(δφ)k(δψ)lεm, b000(z) ≡ 0

be the Taylor expansions of the analytic functions F (z, δφ, δψ, ε), G(z, δφ, δψ, ε). Choose a
small positive number ρ in such a way that

|F (z, δφ, δψ, ε)| < M

|G(z, δφ, δψ, ε)| < M


for z ∈ C
|δφ| < ρ
|δψ| < ρ
|ε| < ρ.

From the Cauchy inequalities

|aklm(z)| < M

ρk+l+m

|bklm(z)| < M

ρk+l+m

one readily derives the following majorants for the functions F and G:

F (z, δφ, δψ, ε) �
∑ M

ρk+l+m
(δφ)k(δψ)lεm −M

=
M

ρ

δφ+ δψ + ε

1− δφ+δψ+ε
ρ

� M

ρ

(δφ+ δψ + ε)
(
1 + δφ+δψ+ε

ρ

)
1− δφ+δψ+ε

ρ

,

same for G.

Consider an auxiliary system

d

dz
δφ =

M

ρ

(δφ+ δψ + ε)
(
1 + δφ+δψ+ε

ρ

)
1− δφ+δψ+ε

ρ

(1.4.17)

d

dz
δψ =

M

ρ

(δφ+ δψ + ε)
(
1 + δφ+δψ+ε

ρ

)
1− δφ+δψ+ε

ρ

.
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Let us find the solution to this system with the initial data

δφ(z0) = δψ(z0) = 0 identically in ε.

Due to the symmetry of the system and of the initial condition with respect to the permutation

δφ↔ δψ

for the solution the identity
δφ(z) ≡ δψ(z)

holds true. Denote

∆ :=
δφ+ δψ + ε

ρ
=

2 δφ+ ε

ρ
.

For the function ∆(z) one obtains the following Cauchy problem

d∆
dz

= 2
M

ρ
∆

1 + ∆
1−∆

, ∆(z0) =
ε

ρ
. (1.4.18)

Separating the variables

2
M

ρ
dz =

(1−∆) d∆
∆(1 + ∆)

=
(

1
∆
− 2

1 + ∆

)
d∆

and integrating one obtains the solution in the form

∆
(1 + ∆)2

=
ε ρ

(ε+ ρ)2
e

2M
ρ

(z−z0)
.

Denote a the right hand side of the equation. For z = z0

a(z0) =
ε ρ

(ε+ ρ)2
.

Solving the quadratic equation

∆ = −1 +
1
2a
[
1±

√
1− 4a

]
yields

∆(z0) = −1 +
(ε+ ρ)2

2ε ρ

[
1± ρ− ε

ρ+ ε

]
=


ρ
ε , for + sign

ε
ρ , for − sign.

Therefore one must choose the “-” sign. Finally one obtains the solution in the form

∆(z) = −1 +
(ε+ ρ)2

2ε ρ
e
− 2M

ρ
(z−z0)

[
1−

√
1− 4 ε ρ

(ε+ ρ)2
e

2M
ρ

(z−z0)

]

=
ε ρ

(ε+ ρ)2
e

2M
ρ

(z−z0) + 2
ε2ρ2

(ε+ ρ)4
e

4M
ρ

(z−z0) + 5
ε3ρ3

(ε+ ρ)6
e

6M
ρ

(z−z0) + . . . .

This function is analytic for ∣∣∣∣ 4 ε ρ
(ε+ ρ)2

e
2M
ρ

(z−z0)

∣∣∣∣ < 1,

i.e., for sufficiently small |ε| for any z near the compact C. Like in Section 1.1 from analyticity
of solutions to the majorant system (1.4.17) one deduces convergence of the “perturbation
series” solutions (1.4.7), (1.4.8) to the initial system.
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1.5 Method of small parameter applied to Painlevé classification problem

Painlevé addressed the problem of classification of the second order ordinary differential
equations

w′′ = R(w′, w, z) (1.5.1)

having no movable critical singularities. His application of the Poincaré method to this
problem is based on the following simple corollary from the Theorem 1.4.1.

Theorem 1.5.1 Under the assumptions of Theorem 1.4.1 consider the case of the closed
curve C, z1 = z0. The solution (u(z, ε), v(z, ε)) is single-valued along C iff the coefficients
φk(z), ψk(z) of the perturbative expansion (1.4.7) are single-valued for all k ≥ 0.

Proof: Let the functions φk(z), ψk(z) satisfy

φk(z1) = φk(z0), ψk(z1) = ψk(z0) for k < K,

|φK(z1)− φK(z0)|2 + |ψK(z1)− ψK(z0)|2 6= 0.

Then
lim
ε→0

ε−2K
[
|φ(z1, ε)− φ(z0, ε)|2 + |ψ(z1, ε)− ψ(z0, ε)|2

]
6= 0.

To warm up let us explain how to obtain a simple proof of Theorem 1.2.13 by applying
the small parameter method. We will prove first that the rhs of the equation

w′ = f(w, z)

must have no poles. In the opposite case one can locally represent the equation in the form

w′ =
F (w, z)

(w − a(z))k
, F (a(z), z) 6= 0

with a positive integer k. After the substitution

w = a(z) + u

the equation will read as

u′ =
G(u, z)
uk

for some function G(u, z) such that G(0, z0) 6= 0 for some z0. Observe that after the substi-
tution

z = z0 + εmτ

u = εnv

the equation will take the following form

du

dτ
= εn−(k+1)mG(εnv, z0 + εmτ)

uk
.
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The choice
m = 1, n = k + 1

yields the following equation

du

dτ
=
G(εnv, z0 + εmτ)

uk
=
G(0, z0)
uk

+O(ε)

with the rhs depending analytically on the small parameter ε. The solutions of the unper-
turbed equation

du

dτ
=
G(0, z0)
uk

have critical singularity at z = z0 if k > 0:

u = a τ
1

k+1 , a = [(k + 1)G(0, z0)]
1

k+1 .

Since z0 can locally take arbitrary values, the singularity will be movable. So, to avoid critical
singularities one must have k = 0.

The next step is to prove that, for a polynomial rhs the equation

w′ = a0(z)wk + · · ·+ ak(z)

has no critical singularities only if k ≤ 2. The susbtitution

z = z0 + εmτ

w = ε−nu

gives

du

dτ
= εm−n(k−1)

[
a0 (z0 + εmτ)uk + εna1 (z0 + εmτ)uk−1 + · · ·+ εnkak (z0 + εmτ)

]
.

The choice
n = 1, m = k − 1

yields the following unperturbed equation

du

dτ
= a0(z0)uk.

The solution
u =

b0

τ
1

k−1

, b0 = [(1− k)a0(z0)]
1

1−k

has a critical singularity if k > 2.

Let us return to the Painlevé classification problem. We are looking for the second order
ordinary differential equations of the form

w′′ = R(w′, w, z) (1.5.2)

admitting no movable critical singularities (the so-called Painlevé property). It is assumed
that the right hand side R(w′, w, z) is a rational function in (w′, w) with coefficients that are
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analytic function in z on some domain Ω ⊂ C. There are some obvious classes of equations
satisfying Painlevé property. First, second order linear differential equations with rational
coefficients are already known to meet the Painlevé condition. Next, second order differential
equations of the form

w′′ = 3a(z)ww′ −
[
p(z) + 2

a′(z)
a(z)

]
w′ − a2(z)w3 +

[
a(z)p(z) + 3a′(z)

]
w2

(1.5.3)

−
[
q(z) + p(z)

a′(z)
a(z)

+
a′′(z)
a(z)

]
w +

r(z)
a(z)

obtained from the linear equation

y′′′ + p(z)y′′ + q(z)y′ + r(z)y = 0

with rational coefficients by substitution

w = − 1
a(z)

y′

y

(cf. (1.2.6)). One has to also take into account second order differential equations solved by
elliptic functions. E.g., differentiating Weierstrass equation

(℘′)2 = 4℘3 − g2℘− g3

in z and dividing by 2℘′ one arrives at

℘′′ = 6℘2 − g2
2
. (1.5.4)

Remarkably, besides these essentially obvious classes of second order differential equa-
tions satisfying Painlevé property there are six new equations discovered by Painlevé and his
student B.Gambier. They are the celebrated Painlevé equations:

w′′ = 6w2 + z PI

w′′ = 2w3 + z w + α PII

w′′ = w′2

w − w′

z + αw2+β
z + γ w3 + δ

w PIII

w′′ = w′2

2w + 3
2 w

3 + 4z w2 + 2(z2 − α)w + β
w PIV

w′′ =
(

1
2w + 1

w−1

)
w′2 − w′

z + (w−1)2

z2

(
αw + β

w

)
+ γ w

z + δ w(w+1)
w−1 PV

w′′ = 1
2

(
1
w + 1

w−1 + 1
w−z

)
w′2 −

(
1
z + 1

z−1 + 1
w−z

)
w′

PV I

+ w(w−1)(w−z)
z2(z−1)2

[
α+ β z

w2 + γ (z−1)
(w−1)2

+ δ z(z−1)
(w−z)2

]
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Theorem 1.5.2 (i) Solutions to the differential equations PI - PV I have no movable critical
singularities.

(ii) General solutions to these equations are new transcendental functions, i.e., they can not
be expressed via algebraic functions, or via solutions to linear differential equations, or via
elliptic functions.

(iii) Given a second order differential equation of the form (1.5.2) with the right hand side
depending rationally on w, w′ with coefficients analytic in z, suppose that solutions to this
equation satisfies Painlevé property. Then solutions to this equation can be expressed via
algebraic functions, or elliptic functions, or solutions to linear differential equations, or via
solutions to one of the equations PI - PV I .

In this section we will give some hints about the proof of the last statement of the theory,
namely, we develop an approach to the classification of the second order differential equations
satisfying Painlevé property based on the small parameter method.

Proof: Step 1. We prove that the rhs R(w′, w, z) must be a polynomial in w′ of degree at
most 2.

Let us first prove that poles in w′ are not allowed in the rhs. Indeed, in the opposite case
the equation near the pole reads

w′′ =
Q(w′, w, z)

[w′ − a(w, z)]k

where k is a positive integer and Q(a(w, z), w, z) is not an identical zero. The substitution

u = w′ − a(w, z) (1.5.5)

represents the equation as a system

dw

dz
= a(w, z) + u

du

dz
=
Q1(u,w, z)

uk

with some new function Q1(u,w, z) analytic and non vanishing near u = 0. Introducing a
small parameter

z = z0 + εpZ, w = w0 + εqW, u = εrU

with arbitrary (z0, w0) yields

εq−p
dW

dZ
= a(w0 + εqW, z0 + εpZ) + εrU

ε(k+1)r−pdU

dZ
=
Q1(εrU,w0 + εqW, z0 + εpZ)

Uk
.

The choice
q = p = (k + 1)r
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of positive numbers p, q, r gives the following unperturbed system

dW

dZ
= a(w0, z0)

dU

dZ
=
Q1(0, w0, z0)

Uk
.

Integration of the last equation gives critical points for U(Z) if the integer k is positive:

U = [(k + 1)Q1(0, w0, z0)Z + C]
1

k+1 .

However, from the definition (1.5.5) it follows that the function u(z) cannot have critical
points if the solution w(z) has none.

We proved that the rhs of (1.5.2) is a polynomial in w′. Let us show that the degree of
this polynomial is at most equal to 2. Indeed, rewriting the differential equation

w′′ = A0(w, z)w′
n +A1(w, z)w′

n−1 + · · ·+An(w, z)

as a system

dw

dz
= u

du

dz
= A0(w, z)un +A1(w, z)un−1 + · · ·+An(w, z)

introduce the small parameter as follows

z = z0 + εpZ, w = w0 + εqW, u = ε−rU.

The system will read

εq+r−p
dW

dZ
= U

εr(n−1)−p dU

dZ
= A0(w0 + εqW, z0 + εpZ)Un +O(ε)

Choosing
p = q + r = r(n− 1)

gives the following solution to the unperturbed system

U = [C − (n− 1)A0(w0, z0)Z]
1

n−1 .

This is a critical pole if n ≥ 3. We arrive at an equation of the form

w′′ = A0(w, z)w′
2 +A1(w, z)w′ +A2(w, z) (1.5.6)

with some rational functions A0(w, z), A1(w, z), A2(w, z).

In these notes we will be unable to reproduce all details of the proof of the Part (iii) of
the Painlevé - Gambier theorem. However, to give some flavour of the remaining part of the
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proof let us jump to considering the particular case of equations of the form (1.5.6) having
A0 = A1 = 0. So, consider an equation of the form

w′′ = R(w, z) (1.5.7)

satisfying the Painlevé property. As before, the function R(w, z) is rational in w.

Step N , (N >> 1). Let us prove that all poles of the rhs in w are simple.

We will now proceed to studying the particular case of equations of the form

w′′ = a0(z)w3 + a1(z)w2 + a2(z)w + a3(z). (1.5.8)

First of all, in the case a0(z) 6= 0 doing the transformation

z 7→ z̃ = f(z)
(1.5.9)

w 7→ w̃ = λ−1w

with
f ′(z) = a

1/3
0 (z), λ(z) =

√
2 a

− 1
6

0 (z)

one can achieve
ã0(z̃) ≡ 2.

If this is already the case in (1.5.8) then, after the shift

w 7→ w − 1
6
a1(z)

the equation reduces to the form

w′′ = 2w3 + a(z)w + b(z). (1.5.10)

We have now to derive conditions for the functions a(z), b(z) necessary for absence of movable
critical singularities.

Introducing a small parameter by means of the substitution

w = ε−1W, z = z0 + εZ

we obtain

W ′′ = 2W 3 + ε2a0W + ε3
[
a′0ZW + b0

]
+ ε4

[
1
2
a′′0Z

2W + b′0 Z

]
+O(ε5). (1.5.11)

Here we use the following short notations

a0 := a(z0), a′0 := a′(z)|z=z0 etc.

The unperturbed equation
W ′′ = 2W 3

has a first integral
W ′2 = W 4 + C.
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The general solution to this equation is given in elliptic functions. However, for the particular
case C = 0 it has a simple solution

W = φ(Z) ≡ 1
Z + C

or W = φ(Z) ≡ − 1
Z + C

.

Now let us look for the perturbative series solution

W = φ+ ε2φ2 + ε3φ3 + ε4φ4 + . . . . (1.5.12)

After the substitution one obtains the following recursive equations

φ′′2 − 6φ2 φ2 = a0 φ

φ′′3 − 6φ2 φ3 = a′0 Z φ+ b0 (1.5.13)

φ′′4 − 6φ2 φ4 =
1
2
a′′0 Z

2φ+ b′0 Z + 6φφ2
2 + a0φ2.

Choose first
φ =

1
Z + C

.

The following statement will be useful in sequel.

Exercise 1.5.3 Linear differential equation of the form

xny(n) + a1x
n−1y(n−1) + · · ·+ an−1x y

′ + any = 0, a1, . . . , an−1, an ∈ C (1.5.14)

is called Euler equation. The polynomial

P (k) := k(k − 1) . . . (k − n+ 1) + a1k(k − 1) . . . (k − n+ 2) + · · ·+ an−1k + an (1.5.15)

is called the characteristic polynomial of the Euler equation.

(i) Given a root k0 of the characteristic polynomial,

P (k0) = 0, P ′(k0) 6= 0 (1.5.16)

prove that
y(x) = xk0 (1.5.17)

is a solution to the Euler equation.

(ii) If k0 is a root of multiplicity m, i.e.

P (k0) = 0, P ′(k0) = 0, . . . , P (m−1)(k0) = 0, P (m) 6= 0 (1.5.18)

then prove that the functions

y1 = xk0 , y2 = xk0 log x, . . . , ym = xk0 logm−1 x (1.5.19)

are linearly independent solutions to the Euler equations.

(iii) Prove that solutions of the form (1.5.17), (1.5.19) where k0 runs through the set of
all roots of the characteristic polynomial give a basis in the space of solutions to the Euler
equation.
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The linearized equation
(Z + C)2ψ′′ − 6ψ = 0 (1.5.20)

is a particular case of Euler equation. The characteristic equation

k(k − 1)− 6 = 0

has two roots
k = −2 and k = 3.

Thus the general solution depending on two arbitrary constants k1, k2 reads

ψ =
k1

(Z + C)2
+ k2 (Z + C)3. (1.5.21)

The following statement will be of use for solving inhomogeneous Euler equation.

Exercise 1.5.4 Consider inhomogeneous Euler equation of the form

xny(n) + a1x
n−1y(n−1) + · · ·+ an−1x y

′ + any = a xκ. (1.5.22)

(i) Prove that, if κ is not a root of the characteristic polynomial (see Exercise 1.5.3 above),
P (κ) 6= 0, then a particular solution to the inhomogeneous equation is given by the formula

y =
a

P (κ)
xκ. (1.5.23)

(ii) If κ is a simple root of the characteristic polynomial, i.e.

P (κ) = 0, P ′(κ) 6= 0

then prove the following formula for a particular solution:

y =
a

P ′(κ)
xκ log x. (1.5.24)

Generalize to the case of roots of higher multiplicities.

Applying this method we find general solutions to the linearized equations

φ2 = −1
6
a0 (Z + C) +

k1

(Z + C)2
+ k2 (Z + C)3 (1.5.25)

φ3 =
1
6
a′0C(Z + C)− 1

4
[
a′0 + b0

]
(Z + C)2 +

k1

(Z + C)2
+ k2 (Z + C)3. (1.5.26)

Integration of the subsequent equation yields logarithmic terms:

φ4 =
1
10

(Z+C)3
[
a′′0 + 2b′0

]
log[Z+C]− 1

50
[
a′′0 + 2b′0

]
(Z+C)3+

1
4
C (a′′0 +b′0)−

1
2
C2a′′0(Z+C)

(1.5.27)
(we choose integration constants k1 = k2 = 0 in (1.5.25)). Cancellation of logarithmic terms
implies

a′′(z0) + 2b′(z0) = 0. (1.5.28)

39



Doing similar calculations with the perturbative solution starting with

φ = − 1
Z + C

yields another constraint:
a′′(z0)− 2b′(z0) = 0. (1.5.29)

Therefore
a′′(z0) = 0, b′(z0) = 0.

Since z0 is an arbitrary complex number we finally obtain that

a(z) = λ z + µ, b(z) = ν (1.5.30)

with some constants λ, µ ν. For λ = 0 one obtains differential equation solved in elliptic
functions. If λ 6= 0 then, doing if necessary an affine transformation of the independent
variable z and a rescaling of w we finally arrive at the Painlevé-II equation

w′′ = 2w3 + z w + α.

In a similar way one can deal with equations of the form

w′′ = a0(z)w2 + a1(z)w + a2(z), a0(z) 6= 0. (1.5.31)

After the substitution of the form (1.5.9) with

λ = 6 a
− 1

5
0 (z), f ′(z) = a

2/5
0 (z)

and a suitable shift of the dependent variable one reduces the equation to the form

w′′ = 6w2 + a(z). (1.5.32)

Introducing the small parameter by the substitution

z = z0 + ε Z, w = ε−2W

one arrives at the following equation

d2W

dZ2
= 6W 2 + ε4a0 + ε5a′0 Z +

1
2
ε6a′′0 Z

2 +O
(
ε7
)
. (1.5.33)

The notations a0, a′0 etc. are similar to those used above.

For the unperturbed equation choose the particular solution

φ(Z) =
1

(Z + C)2
.

The coefficients of the perturbative solution

W = φ(Z) + ε4φ4(Z) + ε5φ5(Z) + ε6φ6(Z) + . . .
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are determined from the following recursive procedure:

φ′′4 − 12φφ4 = a0

φ′′5 − 12φφ5 = a′0 Z

φ′′6 − 12φφ6 =
1
2
a′′0 Z

2.

The general solution of the homogeneous linearized equation

(Z + C)2ψ′′ − 12ψ = 0

is obtained in the form
ψ = k1(Z + C)4 +

k2

(Z + C)3
.

Applying the method of Exercise 1.5.4 we obtain single valued solutions φ4 and φ5 but

φ6 =
1
14
a′′0(Z + C)2 log(Z + C)− 1

3
a′′0C (Z + C)− 1

12
a′′0 + k1(Z + C)4 +

k2

(Z + C)3
.

This function has no critical point at Z = −C iff

a′′(z0) = 0.

Due to the freedom in the choice of z0 the function a(z) must be linear,

a(z) = λ z + µ.

In the case λ = 0 the differential equation (1.5.32) integrates in elliptic functions. Otherwise
doing an affine change of the variable z and a rescaling of w (1.5.32) becomes the Painlevé-I
equation

w′′ = 6w2 + z.

It remains to prove1 that solutions to the equations PI - PV I have no movable critical
singularities. Actaully we will explain in sequel how to prove that

• solutions to PI , PII and PIV equations are meromorphic functions on C having essential
singularity at the fixed singularity z = ∞;

• solutions to PIII and PV are meromorphic functions on the universal covering of C∗ =
C \ {z = 0};

• solutions to PV I are meromorphic functions on the universal covering of Riemann sphere
with three punctures (the fixed singularities) z = 0, z = 1 and z = ∞.

In all the cases the position of fixed singularities can be easily guessed by looking at the
singularities of coefficients of the equation. The proof of meromorphicity is more involved.

1One has to also prove that general solutions to the equations PI - PV I cannot be expressed via known
functions. The proof of this statement required some technique of differential Galois theory. It will not be
given in the course. Besides, we have to note that some particular solutions to these equations can be expressed
via known special functions, some of them even via elementary functions. The classification problem of these
particular solutions can be difficult. For example the problem remains open for the case of Painlevé-VI
equation.
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The technique to be used is based on a realization of the Painlevé equations as monodromy
preserving deformations of linear differential equations with rational coefficients. In the next
section we will begin with explaining the basics of the monodromy theory of solutions to
these equations.
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2 Part 2: Monodromy of linear differential operators with
rational coefficients

2.1 Solutions to linear systems with rational coefficients: the local theory

Let us begin with recalling some basics from the theory of systems of linear differential
equations. Consider an n-th order system linear homogeneous system of the form

y′ = A(z) y, y =



y1

y2

.

.

.
yn

 , A(z) =



a11(z) . . . a1n(z)
a21(z) . . . a2n(z)
. .
. . . . .
. .

an1(z) . . . ann(z)

 , z ∈ C. (2.1.1)

The space of solutions defined in a neighborhood of a regular point z0 of coefficients aij(z) is
a linear space of dimension n. Indeed, there exists a unique solution to (2.1.1) with arbitrary
initial data

y1(z0) = y0
1, y2(z0) = y0

2, . . . , yn(z0) = y0
n,



y0
1

y0
2

.

.

.
y0
n

 ∈ Cn.

Choosing a basis of n linearly independent solutions one can represent an arbitrary solution
as a linear combination

y(z) = c1



y11(z)
y21(z)
.
.
.

yn1(z)

+ · · ·+ cn



y1n(z)
y2n(z)
.
.
.

ynn(z)

 (2.1.2)

with some constant coefficients c1, . . . , cn. The basic vector functions are columns of the
fundamental matrix for the system (2.1.1)

Y (z) =


y11(z) . . . y1n(z)
. .
. . . . .
. .

yn1(z) . . . ynn(z)

 .

Linear independence of the vector functions is equivalent to never vanishing of the determi-
nant of this matrix

W (z) := detY (z) 6= 0. (2.1.3)
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Any solution (2.1.2) can be represented in a matrix form as follows

y(z) = Y (z) c, c =



c1
c2
.
.
.
cn

 (2.1.4)

with an arbitrary constant vector c ∈ Cn.

The fundamental matrix is a matrix solution to the system (2.1.1):

Y ′ = A(z)Y (2.1.5)

Conversely, any matrix solution to (2.1.5) satisfying (2.1.3) is a fundamental matrix of the
system.

Lemma 2.1.1 Any two fundamental matrices Y (z), Ỹ (z) for the system (2.1.5) are related
by a linear transformation of the form

Ỹ (z) = Y (z)C (2.1.6)

with a nondegenerate constant n× n matrix C.

Proof: follows from (2.1.4).

Example 1. Linear systems with constant coefficients

y′ = Ay. (2.1.7)

A fundamental matrix is given by the matrix exponential function

Y (z) = eAz. (2.1.8)

Let a1, . . . , an be the eigenvalues of the matrix A (more precisely, the roots of the charac-
teristic polynomial of A). Denote

â := diag (a1, . . . , an)

the diagonal matrix. Suppose that the matrix A is diagonalizable. For example this is always
the case if the roots of the characteristic polynomial are pairwise distinct. Denote T the
matrix of eigenvectors of A. The conjugation by this matrix reduces A to the diagonal form

T−1AT = â.

Then a fundamental matrix can be computed as follows

Y (z) = T eâ z, where eâ z = diag (ea1z, . . . , eanz) . (2.1.9)
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It is related to (2.1.30) by the multiplication by T−1 on the right. In the presence of multiple
roots of the characteristic polynomial

det (A− a · Id) = 0

the fundamental matrix (2.1.30) involves also polynomials. They can be computed by reduc-
ing the matrix A to Jordan normal form and using the following formula for exponential of
an elementary Jordan block of size k:

eJ z = ea z



1 z z2

2!
z3

3! . . . zk−1

(k−1)!

0 1 z z2

2! . . . zk−2

(k−2)!

. .

. . . . . . . . . . . . . .

. .
0 . . . . . . 1 z
0 0 1


, J =



a 1 0 0 . . . 0
0 a 1 0 . . . 0
. .
. . . . . . . . . . . . . .
. .
0 . . . . . . a 1
0 0 a


.

(2.1.10)

Example 2. The system

y′ =
A

z
y (2.1.11)

with constant matrix A can be reduced to (2.1.7) by the substitution

log z = t,
dy

dt
= Ay.

Thus, for a diagonalizable matrix A the fundamental matrix (2.1.32) becomes

Y = T zâ, where zâ = diag (za1 , . . . , zan) , (2.1.12)

a1, . . . , an are eigenvalues of the matrix A, T−1AT = â. Observe that the function

zµ := eµ log z

is a multivalued function on C∗ = C \ {0} unless µ is an integer. However, the following
simple statement holds true.

Lemma 2.1.2 For an arbitrary µ ∈ C there exists an integer N and a positive ρ such that
for an arbitrary choice of the branch of the function zµ and arbitrary two real numbers α < β
there exists a constant C such that

|zµ| < C |z|N for |z| < ρ, α < arg z < β. (2.1.13)

Proof: Denote µR, µI respectively the real and imaginary parts of µ. Then

|zµ| =
∣∣∣e(µR+i µI)(log |z|+i arg z)

∣∣∣ = e−µI arg z|z|µR .
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We choose

N = max{k ∈ Z | k ≤ µR}
ρ = 1

C =
{
e−µIα, µI > 0
e−µIβ , µI < 0

To be short we will say that the multivalued function zµ has a polynomial growth at the
singular point z = 0. It is important to impose restrictions for the argument: if z → 0 but
is not constrained within a sector on the complex plane then the polynomial growth can be
violated.

Like in the previous example for a nondiagonalizable matrix A logarithmic terms will
appear in the fundamental matrix (cf. the theory of Euler equation above). The solutions
will still have a polynomial growth at the origin.

Example 3. Consider now equation

y′ =
A

zr
y, r ∈ Z, r ≥ 2. (2.1.14)

This case can also be reduced to a system with constant coefficients by a substitution

t = − 1
r − 1

1
zr−1

,
dy

dt
= Ay. (2.1.15)

So the fundamental matrix, for a diagonalizable matrix A can be chosen in the form

Y (z) = T e−
â

r−1
z1−r

(2.1.16)

in the notations of the previous examples. The matrix entries of this fundamental matrix are
single valued functions on C∗ but they have an essential singularity at z = 0. We leave as an
exercise to establish the structure of the fundamental matrix in the case of a nondiagonalizable
matrix A.

We will now address the problem of studying the local behaviour of solutions to linear
systems of differential equations near a singular point of coefficients analytic on a punctured
disk. To be more specific we will assume that the coefficients have a pole at the puncture.
Without loss of generality we will assume the puncture to be put at the origin. The system
then will be written in the form

zry′ = A(z) y (2.1.17)

for some integer r ≥ 1 where the matrix valued function A(z) is analytic on the disc

|z| < ρ

for some positive ρ and
A(0) 6= 0.
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Definition 2.1.3 The number r − 1 is called the Poincaré rank of the singular point z = 0.
The singularity of the system (2.1.17) will be called Fuchsian if r = 1.

We have seen, looking at simple examples, that the local behaviour of solutions near
the singularity is qualitatively different for the cases r = 1 (at most polynomial growth in
the sense of Lemma 2.1.2) and r > 1 (exponential growth). We will now analyze the local
behaviour for the more general case of systems (2.1.17). We will see that the treatment is
different for Fuchsian and non-Fuchsian cases. One can see some difference by applying the
method of small parameter to the systems

z y′ = (A0 +A1z +A2z
2 + . . . ) y (2.1.18)

or
zry′ = (A0 +A1z +A2z

2 + . . . ) y, r ≥ 2. (2.1.19)

Introducing the small parameter by rescaling

z 7→ εz

one obtains a regular dependence on ε in (2.1.18)

z y′ = (A0 + εA1z + ε2A2z
2 + . . . ) y

but a singular one in (2.1.19)

zry′ =
1

εr−1
(A0 + εA1z + ε2A2z

2 + . . . ) y.

An equivalent approach to the study of singularities of the fundamental matrix is based
on the theory of gauge transformations of the system (2.1.17).

Given an invertible matrix valued function G(z) defined on the punctured disk, one can
transform the system (2.1.1) by the substitution

y(z) = G(z)ỹ(z) (2.1.20)

to another system of the same type
ỹ′ = Ã(z) ỹ (2.1.21)

with
Ã = G−1AG−G−1G′. (2.1.22)

The transformations of the form (2.1.22) are called gauge transformations.

Definition 2.1.4 Two systems of the form (2.1.1), (2.1.21) are called strongly equivalent if
there exists a gauge transformation (2.1.22) with the matrix valued function G(z) analytic on
some disk |z| < ρ with never vanishing determinant. They are called weakly equivalent if such
a gauge transformation with an analytic matrix valued function exists with the determinant
never vanishing for |z| > 0.

The proof of the following statement is straightforward.
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Lemma 2.1.5 Given a system of the form (2.1.1), then any weakly equivalent system has a
form

zr̃ỹ′ = Ã(z) ỹ, Ã(z) 6= 0 (2.1.23)

with some r̃ > 0, or the new system has no singularity at z = 0. Any strongly equivalent
system has the form (2.1.23) with r̃ = r.

Let us begin with the Fuchsian case.

Definition 2.1.6 A square matrix M is called resonant if there exist two eigenvalues λ1, λ2

of M such that the difference λ1 − λ2 is a positive integer. If such a pair does not exist then
the matrix M is called nonresonant.

The main result of the local theory of Fuchsian systems is the following

Theorem 2.1.7 Any Fuchsian system of the form (2.1.18) with nonresonant leading term
A0 is strongly equivalent to the “unperturbed” system

z ỹ′ = A0ỹ. (2.1.24)

Proof: We have to find an invertible analytic matrix valued function G = G(z) satisfying
the following linear differential equation

z G′ = A(z)G−GA0. (2.1.25)

The proof will consist of two steps. First we will construct a formal series solution

G(z) = G0 + z G1 + z2G2 + . . . (2.1.26)

to (2.1.25). At the second step we will prove convergence of the series.

For the sake of technical simplicity the proof of the first part will be done under the
additional assumption of diagonalizability of the matrix A0. Doing if necessary a conjugation

A(z) 7→ T−1A(z)T

with a suitable invertible constant matrix T we may assume the matrix A0 to be diagonal,

A0 = diag (λ1, . . . , λn) =: Λ.

Then we choose G0 = Id. Substituting (2.1.26) to (2.1.25) and collecting the coefficient of zk

we obtain a recursion relation for the coefficients G1, G2, . . .

[Λ, Gk]− k Gk = −Ak −
k−1∑
i=1

AiGk−i, k = 1, 2, . . . (2.1.27)

Assuming the coefficients G1, . . . , Gk−1 already known we have to determine the matrix Gk.
Observe that for a n × n matrix M = (Mij) the commutator [Λ,M ] = ΛM −M Λ has the
following entries

([Λ,M ])ij = (λi − λj)Mij
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So we can put

(Gk)ij = − 1
λi − λj − k

(
Ak +

k−1∑
i=1

AiGk−i

)
.

Due to the nonresonancy assumption the denominators λi − λj − k never vanish.

We have proved, under assumptions of nonresonancy and diagonalizability of A0, existence
of a formal gauge transformation between the systems (2.1.18) and (2.1.24). The assumption
of diagonalizability is purely technical and can be eliminated due to the following statement.

Exercise 2.1.8 Let Λ be an arbitrary n× n matrix. Consider the linear map

Mat(n,C) →Mat(n,C), M 7→ [Λ,M ] (2.1.28)

of the space Cn2
= Mat(n,C) of all n × n matrices to itself. Prove that characteristic roots

of this map belong to the set of all differences λi−λj where λ1, . . . , λn are the characteristic
roots of the matrix Λ.

We now proceed to the proof of convergence of the series (2.1.26). This will follow from
the following general statement.

Lemma 2.1.9 Consider a system of N linear differential equations

z Y ′ = A(z)Y (2.1.29)

with a Fuchsian singularity at the origin and the right hand side analytic for |z| < r. Suppose
the system has a formal series solution

Y(z) = Y0 + z Y1 + z2Y2 + . . . . (2.1.30)

Then the series converges for |z| < r.

Proof: Denote A0, A1, A2, . . . the coefficients of Taylor expansion of the analytic function
A(z),

A(z) = A0 + zA1 + z2A2 + . . . . (2.1.31)

For the coefficients of the formal series solution to (2.1.29) one obtains the following recursion

A0Y0 = 0, kYk = A0Yk +
k∑
i=1

AiYk−i, k ≥ 1. (2.1.32)

Because of convergence of the series (2.1.31) there exist positive constants c and ρ such that

‖Ak‖ ≤ c ρk, k = 1, 2, . . .

that is, the inequality
|AkY| ≤ c ρk |Y| (2.1.33)

holds true for an arbitrary vector Y. Indeed, it suffices to choose

ρ >
1
r
.
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Choose a sufficiently big positive integer m in such a way that

|A0Y| ≤ m |Y|

for any vector Y. It is easy to see that the matrix A0− κ Id is invertible for any κ > m since

|A0Y − κY| ≥ |κ |Y| − |A0Y|| ≥ (κ−m) |Y| 6= 0 ∀ Y 6= 0.

Thus the linear inhomogeneous equation

A0Y − κY = Z

with an arbitrary right hand side Z for any κ > m has a solution. Moreover for the norm of
the solution one has an estimate

|Y| ≤ |Z|
κ−m

.

A somewhat stronger estimate
|Y| ≤ |Z|

follows if κ ≥ m+ 1.

We want to establish estimates for the coefficients determined by (2.1.32)

|Yk| ≤ C Rk (2.1.34)

for some positive constants C, R. More precisely, we first choose sufficiently large R > ρ in
such a way that

c ρ

R− ρ
< 1. (2.1.35)

Next, choose the constant C in such a way that the inequalities (2.1.34) hold true for small
values of k, namely, for 0 ≤ k ≤ m.

Let us now derive (2.1.34) inductively for all k. Rewriting (2.1.32) in the form

A0Yk − kYk = Zk, Zk = −
k∑
i=1

AiYk−i

and using (2.1.33) and the inductive assumption we obtain

|Zk| ≤
k∑
i=1

c ρiC Rk−i = cC ρRk−1
k−1∑
i=0

( ρ
R

)i
< cC ρRk−1

∞∑
i=0

( ρ
R

)i
= C Rk

c ρ

R− ρ
.

Due to the choice (2.1.35) we derive that

|Zk| < C Rk.

Finally, for k ≥ m+ 1 this implies that |Yk| < C Rk.

We proved that the series (2.1.30) converges for

|z| < 1
R
.

50



The last step in the proof of Lemma is in observing that any analytic solution to the lin-
ear system (2.1.29) can be analytically extended onto the entire domain of analyticity of
coefficients, i.e., the series (2.1.30) converges for all |z| < r.

We can now complete the proof of the Theorem. We can consider the equation (2.1.25) as
a system of linear differential equations for the n2-dimensional vector valued function G(z).
We have proved above existence of a formal series solution to this system. Due to Lemma the
formal series converges. Since G(0) = G0 = Id the matrix G(z) is invertible for sufficiently
small |z|.

Corollary 2.1.10 A Fuchsian system (2.1.18) with diagonalizable nonresonant matrix A0 =
A(0),

T−1A0T = Λ = diag (λ1, . . . , λn)

has a fundamental matrix of the form

Y (z) = G(z)zΛ, zΛ = diag
(
zλ1 , . . . , zλn

)
(2.1.36)

with the matrix G(z) analytic and invertible for sufficiently small |z|.

What happens in presence of resonances? We give an answer leaving the proofs as an
exercise.

Let J be the Jordan normal form of the matrix A0. Recall that it is an upper triangular
matrix determined uniquely up to a permutation of Jordan blocks. We will choose a good
Jordan form in such a way that the diagonal entries λ1, . . . , λn (not necessarily distinct) of
the matrix J satisfy

Reλi ≥ Reλj for i < j. (2.1.37)

Decompose
J = Λ +R0 (2.1.38)

where
Λ = diag (λ1, . . . , λn)

is a diagonal matrix and R0 is a collection of Jordan blocks with all zeroes on the diagonal.
The upper triangular matrix R0 is nilpotent. The only non-zero entries of this matrices are

(R0)ij 6= 0 only if i 6= j and λi = λj . (2.1.39)

Theorem 2.1.11 There exist upper triangular matrices R1, R2, . . . such that

(Rk)ij 6= 0 only if λi − λj = k (2.1.40)

such that the Fuchsian system (2.1.18) is strongly equivalent to a system with polynomial
coefficients of the form

z ỹ′ = (Λ +R0 + z R1 + z2R2 + . . . ) ỹ (2.1.41)

(only finite number of non-zero terms).
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Theorem 2.1.12 The system (2.1.41) has a fundamental matrix of the form

Ỹ (z) = zΛzR, R = R0 +R1 + . . . . (2.1.42)

Hint: Use the following property of the matrices Rk:

zΛRkz
−Λ = zkRk, k = 0, 1, 2, . . . . (2.1.43)

Corollary 2.1.13 Any system of linear differential equations near a Fuchsian singularity
has a fundamental matrix of the form

Y (z) = G(z)zΛzR (2.1.44)

where the diagonal matrix Λ and a nilpotent matrix R are as above and the matrix valued
function G(z) is analytic and invertible on a neighborhood of the point z − 0

Exercise 2.1.14 Find a fundamental system of the form (2.1.44) for the system

z y′ =
(

1 z
0 0

)
y.

Since the upper triangular matrix R is nilpotent the function

zR = Id +R log z +R2 log2 z

2!
+ . . .

is a polynomial in log z. We arrive at important

Corollary 2.1.15 Solutions of a Fuchsian system have at most polynomial growth at z = 0.

Definition 2.1.16 We say that an isolated singularity at z = 0 of the system (2.1.1) is
regular if all solutions to this system have at most polynomial growth at z → 0.

From the previous results it follows that

Fuchsian singularity ⇒ regular singularity.

The converse statement is false, as it follows from a simple

Counterexample. The system

z2y′ =
(

0 z2

1 −z

)
y (2.1.45)
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has a singularity at z = 0 of Poincaré rank 1. However this is a regular singularity. Indeed,
for the components y1, y2 one obtains the following system

y′1 = y2

z2y′2 = y1 − z y2.

The substitution y2 = y′1 into the second equation gives Euler equation for y1,

z2y′′1 + z y′1 − y1 = 0.

Solving the latter
y1 = c1 z +

c2
z

yields
y2 = c1 −

c2
z2
.

So the fundamental matrix reads

Y (z) =
(
z 1/z
1 −1/z2

)
.

In general the following statement holds true.

Theorem 2.1.17 A system of the form (2.1.1) with an isolated regular singularity at z = 0
is weakly equivalent to a Fuchsian system.

The proof of this theorem consists of two parts. First, we establish existence of a funda-
mental matrix of the form

Y (z) = G(z)zL

with some matrix L and a matrix valued function G(z) analytic and invertible on a punctured
disk (see Exercise 2.2.6 below). Since the singularity is regular we derive that G(z) has at
most a pole at z = 0,

G(z) =
1
zr
M(z)

for some r ≥ 0 and a matrix M(z) analytic for |z| < r and nondegenerate for |z| > 0. For
the sake of simplicity of notations let us do a shift

L 7→ L− r · Id

in order to recast the fundamental matrix into the form

Y (z) = M(z) zL.

If detM(0) 6= 0 we are done: the coefficient matrix

A(z) = Y ′(z)Y −1(z) = M
L

z
M−1 +M ′M−1

has a simple pole at z = 0.

It remains to consider the case of degenerate matrix M(0) (recall that detM(z) 6= 0 for
|z| > 0). The crucial point in the proof is the following statement, sometimes called Sauvage’s
Lemma.
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Lemma 2.1.18 Given a matrix valued function M(z) analytic for |z| < r, invertible for
|z| > 0 such that detM(0) = 0. Then there exist a matrix P (z) polynomially depending on z
satisfying

detP (z) ≡ 1, (2.1.46)

a matrix M̃(z) invertible and analytic on |z| < r, and n nonnegative integers k1, . . . , kn such
that

M(z) = P (z) zK M̃(z), K = diag (k1, . . . , kn). (2.1.47)

In order to complete the proof of the Theorem let us apply to the original system a gauge
transformation

Y (z) = P (z)zK Ỹ (z). (2.1.48)

The new system will have a fundamental matrix of the form

Ỹ (z) = M̃(z) zL with M̃(0) 6= 0.

So the new system will have a Fuchsian singularity at z = 0. It remains to observe that

det
(
P (z)zK

)
= zk1+···+kn .

Therefore (2.1.48) is a weak equivalence of the original system with a Fuchsian system.

The proof of this Lemma can be found, e.g., in §11 of Chapter IV of Hartman’s book.

Exercise 2.1.19 Find a weak equivalence of the system (2.1.45) with a system Fuchsian at
z = 0.

At the end of this section we consider the case of scalar linear differential equations of
higher order

y(n) + a1(z)y(n−1) + · · ·+ an(z)y = 0 (2.1.49)

with coefficients analytic on a sufficiently small punctured disk

0 < |z| < ρ.

Exercise 2.1.20 Let the coefficients satisfy the following conditions near z = 0:

ziai(z) is analytic at z = 0, i = 1, 2, . . . , n. (2.1.50)

Prove that the substitution

y1 = y

y2 = z y′1

. . . (2.1.51)
yn = z y′n−1
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reduces the equation (2.1.50) to a system with a Fuchsian singularity at z = 0 of the form

z y′ =


0 1 0 . . . 0
0 0 1 . . . 0
. . . . . . . . .
0 0 . . . 0 1

−bn(z) −bn−1(z) . . . −b2(z) −b1(z)

 y (2.1.52)

with some functions b1(z), . . . , bn(z) analytic at z = 0.

Hint: rewrite the equation (2.1.50) in the form(
z
d

dz

)n
y + b1(z)

(
z
d

dz

)n−1

y + . . . bn(z)y = 0. (2.1.53)

Remark 2.1.21 The characteristic equation

λn + b1(0)λn−1 + · · ·+ bn(0) = 0 (2.1.54)

for the eigenvalues of the unperturbed matrix for (2.1.52) can be also obtained from the limiting
Euler equation

zny
(n)
0 + α1z

n−1y
(n−1)
0 + · · ·+ αny0 = 0 (2.1.55)

where
αi := lim

z→0
ziai(z), i = 1, . . . , n.

Definition 2.1.22 Under the assumptions (2.1.50) we say that the n-th order linear differ-
ential equation has a Fuchsian singularity at z = 0.

Differently from the case of systems the notions of regular and Fuchsian singularities
coincide for scalar differential equations, as it follows from the following theorem, due to
L.Fuchs.

Theorem 2.1.23 All solutions to the scalar differential equation (2.1.49) with coefficients
a1(z), . . . , an(z) analytic on some punctured disk 0 < |z| < r have regular singularity at
z = 0 iff the singularity is Fuchsian.

Proof: Sufficiency of the Fuchsian condition follows from the reduction of a Fuchsian scalar
differential equation to a Fuchsian system given in Exercise 2.1.20, due to Corollary 2.1.15.
Let us prove necessity.

We begin from a simple lemma about multivalued functions analytic on the punctured
disk.

Lemma 2.1.24 Any linear differential equation (2.1.49) with coefficients analytic on the
punctured disk 0 < |z| < r has a solution of the form y0(z) = g(z)zλ for some complex λ with
a function g(z) analytic on the punctured disk.
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See Lemma 2.2.5 below for the proof.

As all solutions to the equation have regular singularity at z = 0, the function g(z) has
at most a pole at this point,

g(z) =
h(z)
zk

for some k ∈ Z, h(z) is analytic for |z| < r, h(0) 6= 0.

Doing a shift λ 7→ λ− k we obtain the solution in the form

y0(z) = h(z)zλ.

We will now prove the Theorem using induction in n. For n = 1 the statement is obvious:
the coefficient a(z) of a first order linear differential equation

y′ + a(z)y = 0

reads

a(z) = −y
′

y
= −λ

z
− h′(z)
h(z)

.

The second term in this formula is analytic at z = 0.

To do the inductive step let us do a substitution

u =
y

y0

to the equation (2.1.49). We obtain a linear differential equation for the function u that has
a trivial solution u(z) ≡ 1. Thus the coefficient of u vanishes in this new equation:

u(n) + b1(z)u(n−1) + · · ·+ bn−1(z)u′ = 0. (2.1.56)

We arrive at a differential equation of order n − 1 for the function v = u′. Solutions to
this equation have regular singularities at z = 0. From the inductive assumptions it follows
existence of limits

lim
z→0

zi bi(z), i = 1, . . . , n− 1.

Let us compare the coefficients bi(z) with the coefficients of the original system. To this
end we plug y = u y0 into (2.1.49) and collect the coefficients of u(n), u(n−1), . . . , u′. After
division by y0 we obtain a triangular transformation

b1 =
(
n
1

)
y′0
y0

+ a1

b2 =
(
n
2

)
y′′0
y0

+
(
n− 1

1

)
a1
y′0
y0

+ a2

. . . . . . . . . . . . . . . . . .

bn−1 =
(

n
n− 1

)
y

(n−1)
0

y0
+
(
n− 1
n− 2

)
a1
y

(n−2)
0

y0
+ · · ·+ an−1
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where we have used the Leibnitz rule for derivating products

(u v)(k) = u(k)v+
(
k
1

)
u(k−1)v′+

(
k
2

)
u(k−2)v′′+ · · ·+

(
k
1

)
u′ v(k−1) +u v(k). (2.1.57)

Derivating the function y0 = h(z)zλ, h(0) 6= 0 it is easy to see that

y
(k)
0

y0

has a pole of order k at z = 0. Since the functions b1, b2, . . . , bn−1 have poles of the orders
1, 2, . . . , n − 1 due to the inductive hypothesis, we easily conclude the same order of poles
for the functions a1, a2, . . . , an−1 respectively. Finally, from the equation for y0

y
(n)
0

y0
+ a1

y
(n−1)
0

y0
+ · · ·+ an−1

y′0
y0

+ an = 0

we prove that an has a pole of order at most n.

Example. Bessel equation

x2y′′ + x y′ + (x2 − ν2)y = 0, ν ∈ C. (2.1.58)

The solution has a Fuchsian singularity at x = 0. Let us look for a solution in the form

y = xλ(c0 + c1x+ c2x
2 + . . . ).

We have
y′ = xλ−1

[
λ c0 + (λ+ 1) c1x+ (λ+ 2) c2x2 + . . .

]
.

In a similar way
y′′ = xλ−2

∑
k≥0

(λ+ k)(λ+ k − 1) ckxk.

After the substitution and division by xλ we obtain∑
k≥0

[
(λ+ k)(λ+ k − 1) ckxk + (λ+ k) ckxk + (−ν2ck + ck−2)xk

]
= 0.

At k = 0 we have
λ(λ− 1) + λ− ν2 = 0,

so
λ = ±ν2.

Assume that ν 6= 0 (thus no Jordan blocks occur!). Take λ = ν. We obtain[
(ν + 1)2 − ν2

]
c1 = 0 ⇒ c1 = 0,[

(ν + k)2 − ν2
]
ck + ck−2 = 0. (2.1.59)

So
codd = 0
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if 2ν is not a negative integer. Choose

c0 =
1

2νΓ(ν + 1)
.

Then

c2k =
(−1)k

22k+νk!Γ(ν + k + 1)

where we have used the recursion relation for the gamma-function

Γ(x+ 1) = xΓ(x). (2.1.60)

We obtain finally a solution to the Bessel equation in the form

Jν(x) =
∞∑
k=0

(−1)k

22k+νΓ(ν + k + 1)
xν+2k

k!
. (2.1.61)

The series converges for all x. The sum of this series is called the Bessel function (of the first
kind). If ν 6∈ Z then the functions Jν(x) and J−ν(x) give a fundamental system of solutions
to Bessel equation. For ν = 0 one can obtain a second solution to Bessel equation linear
independent with J0(x) taking

K0(x) :=
d

dν
Jν(x)|ν=0. (2.1.62)

Exercise 2.1.25 Prove the following recursions for Bessel functions

d

dx
[xνJν(x)] = xνJν−1(x) (2.1.63)

d

dx

[
x−νJν(x)

]
= −x−νJν+1(x). (2.1.64)

2.2 Monodromy of solutions to linear differential equations, local theory

Recall (see Section 1.2 above) that monodromy describes permutations of branches of mul-
tivalued analytic functions. In this Section we will study monodromy of functions defined
on a punctured disk 0 < |z| < r for a sufficiently small r (that is, analytic functions on the
universal covering of this punctured disk). We begin with the following simple

Example. Consider analytic function zλ, λ ∈ C. From the definition

zλ := eλ(log |z|+i arg z+2π i n), n ∈ Z

it follows that branches of this function are labeled by integers. In order to determine the
result of analytic continuation of this function let us consider a closed loop

z(t) = z e2π i t, 0 ≤ t ≤ 1

58



oriented counter-clockwise. We have

[z(t)]λ = eλ(log |z|+i arg z+2π i t+2π i n). (2.2.1)

At t = 1 we obtain the result of analytic continuation

[z(1)]λ = eλ(log |z|+i arg z+2π i (n+1)) = [z(0)]λe2π i λ.

More generally we will adopt the following notations: the result of analytic continuation
of a multivalued function f(z) analytic on the punctured disk we will denote

f
(
z e2π i

)
.

For example, for f(z) =
√
z

f
(
z e2π i

)
= −f(z);

for f(z) = log z
f
(
z e2π i

)
= f(z) + 2π i.

Let us study the monodromy of solutions to a system of n linear differential equations

y′ = A(z)y (2.2.2)

with the matrix of coefficients A(z) analytic on the punctured disk 0 < |z| < r. The following
simple statement is the starting point for subsequent considerations.

Lemma 2.2.1 Given a solution y(z) to the system (2.2.2), then the result y
(
z e2π i

)
of an-

alytic continuation of the solution along the loop (2.2.1) is again a solution to the same
system.

Proof: After the substitution z̃ = z e2π i we obtain for the function ỹ := y(z̃) the system

dỹ

dz̃
= A(z̃)ỹ.

Because of analyticity of A we have A(z̃) = A(z).

Definition 2.2.2 The operator of analytic continuation

y(z) 7→ y
(
z e2π i

)
(2.2.3)

acting on the space of solutions to the system of linear differential equations (2.2.2) is called
the monodromy operator of (2.2.2)

As the space of solutions to the system of n linear differential equations is n-dimensional,
the monodromy operator is represented by a n×n matrix M in any basis of solutions. Putting
the basic solutions in the columns of a fundamental matrix Y (z) one spells out the definition
of the monodromy matrix in the form

Y
(
z e2π i

)
= Y (z)M (2.2.4)
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Because of nondegeneracy of the fundamental matrix the monodromy matrix does not de-
generate.

Example. The monodromy of the fundamental matrix (2.1.36) around a Fuchsian sin-
gularity is a diagonal matrix

Y (z) = G(z) zΛ 7→ Y
(
z e2π i

)
= Y (z)M, M = e2π iΛ = diag

(
e2π i λ1 , . . . , e2π i λn

)
. (2.2.5)

Exercise 2.2.3 Prove that the monodromy of the fundamental matrix (2.1.44) is described
by the matrix

M = e2π iΛe2π iR. (2.2.6)

Hint: Check that the matrices e2π iΛ and e2π iR commute.

Observe that the matrix e2π iR is upper triangular; all its diagonal entries are equal to 1.

Exercise 2.2.4 Given a non-degenerate complex n×n matrix M , prove existence of a matrix
L such that

M = e2π iL. (2.2.7)

The following statement is often useful in the study of local properties of solutions to
linear differential equations near a singular point.

Lemma 2.2.5 There always exists a solution to the linear system (2.2.2) near an isolated
singularity z = 0 that can be represented in the form

y(z) = g(z)zλ (2.2.8)

for some λ ∈ C where the vector valued function g(z) is analytic on the punctured disk
0 < |z| < r. If the solution y(z) grows at most polynomially at z → 0 then the vector valued
function g(z) has at most a pole at z = 0.

Proof: Let y(z) be an eigenvector of the monodromy operator with an eigenvalue µ. Because
of nondegeneracy of the monodromy matrix µ 6= 0. Put

λ =
1

2π i
logµ

for some choice of a branch of the logarithm. The product

g(z) := y(z)z−λ

is a single-valued analytic function on the punctured disk. It remains to recall that the mon-
odromy operator on the finite dimensional space of solutions always possess an eigenvector.

In order to prove the second part of Lemma it suffices to observe that the function g(z)
grows at most polynomially at z → 0 if the function y(z) does so. Since g(z) is analytic on
the punctured disk it must have a pole at z = 0.
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Exercise 2.2.6 Prove that a system of the form (2.2.2) with an isolated singularity at the
origin possesses a fundamental matrix of the form

Y (z) = G(z) zL (2.2.9)

for some constant matrix L and a matrix valued function G(z) analytic and nondegenerate
on the punctured disk 0 < |z| < r. Prove that in the case of regular singularity the entries of
the matrix G(z) have at most poles at the origin. Deduce that coefficient matrix A(z) must
have at most a pole at the origin if the singularity is regular.

2.3 Monodromy of Fuchsian systems and Fuchsian differential equations

We now proceed to the global study of monodromy of differential equations with rational
coefficients.

A system of n first order linear differential equations with rational coefficients

y′ = A(z) y (2.3.1)

is said to be Fuchsian if it can be represented in the form

(z − z0) y′ =
[
A0 +A1(z − z0) +A2(z − z0)2 + . . .

]
y (2.3.2)

near any singular point z0 ∈ C̄.

Equivalently, using the simple fraction decomposition of the rational matrix valued func-
tion A(z) one obtains a representation of a Fuchsian system in the form

dy

dz
=
[

A1

z − z1
+ · · ·+ Ak

z − zk

]
y (2.3.3)

where A1, . . . , An are n × n constant matrices and the complex numbers z1, . . . , zk are
pairwise distinct. The singularities of the system (2.3.3) are at these points and, possibly, at
infinity.

Lemma 2.3.1 After the substitution

w =
1
z

the system (2.3.3) rewrites
dy

dw
=
[
A∞
w

+O(1)
]
y (2.3.4)

where
A∞ := −(A1 + · · ·+Ak). (2.3.5)

Proof: After the substitution one obtains

−w2 dy

dw
= w

[
A1

1− z1w
+ · · ·+ Ak

1− zkw

]
y

= w

[
A1 + · · ·+Ak + w

(
z1A1

1− z1w
+ · · ·+ zkAk

1− zkw

)]
y.

(2.3.6)
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So
dy

dw
=
[
A∞
w

−
(

z1A1

1− z1w
+ · · ·+ zkAk

1− zkw

)]
y.

Corollary 2.3.2 The infinite point of the Riemann sphere is a Fuchsian singularity of (2.3.3)
if A∞ 6= 0; the system (2.3.3) has no singularity at infinity iff A∞ = 0.

Exercise 2.3.3 Prove that after an arbitrary fractional linear transformation

w =
a z + b

c z + d
, a d− b c 6= 0

the Fuchsian system (2.3.3) goes to another Fuchsian system with the singularities at

wi =
a zi + b

c zi + d
, i = 1, . . . , k + 1, where zk+1 = ∞

and with the residue matrices A1, . . . , Ak, Ak+1 := A∞.

We are ready to define an important characteristics of a Fuchsian system: the monodromy
representation. Let us fix a nonsingular point

z0 ∈ C̄ \ {z1, . . . , zk, zk+1}.

For any closed loop

γ : [0, 1] → C̄ \ {z1, . . . , zk, zk+1}, γ(0) = γ(1) = z0

denote M̂γ the linear transformation

y 7→ M̂γ(y) (2.3.7)

the result of analytic continuation of a solution to (2.3.3) along the loop γ. According to
Lemma 2.2.1 the result of the analytic continuation defines a linear operator in the space of
solutions to (2.3.3) that does not depend on the deformation of the closed loop keeping the
end points γ(0) = γ(1) = z0 fixed. We obtain a map

γ 7→ M̂γ

of the fundamental group

π1

(
C̄ \ {z1, . . . , zk, zk+1}; z0

)
→ Aut(Cn) (2.3.8)

to the group of automorphisms of the linear space of solutions to the system (2.3.3).

Choosing a basis in the space of solutions one can describe the monodromy (2.3.8) by
matrices. Namely, analytic continuation of a fundamental matrix Y (z) along the loop γ gives
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a new fundamental matrix M̂γ(Y ) of the same system. The latter is related to Y by the right
multiplication by an invertible matrix Mγ :

M̂γ(Y (z)) = Y (z)Mγ . (2.3.9)

Recall that the elements of the fundamental group π1(X; z0) of a topological space X
with respect to the marked point z0 ∈ X are the homotopy classes of the continuous loops

γ : [0, 1] → X, γ(0) = γ(1).

The product γ = γ1γ2 of two elements in the fundamental group is defined by the consecutive
running along the two loops γ1(t) and γ2(t):

γ(t) =


γ1(2 t), 0 ≤ t ≤ 1

2

γ2(2 t− 1), 1
2 ≤ t ≤ 1

(2.3.10)

for 0 ≤ t ≤ 1. The inverse element to γ is defined as the homotopy class of the same loop
passed in the opposite direction

γ−1(t) := γ(1− t). (2.3.11)

The neutral element is the trivial loop

γ(t) ≡ z0 for any 0 ≤ t ≤ 1.

We are ready to prove the main property of the monodromy map (2.3.8).

Lemma 2.3.4 The monodromy map (2.3.8) is an antihomomorphism of the fundamental
group of the punctured Riemann sphere to the group of automorphisms of the space of solutions
to (2.3.3), i.e., for any two loops γ1, γ2 on C̄ \ {z1, . . . , zk, zk+1} one has

M̂γ1γ2 = M̂γ2M̂γ1 . (2.3.12)

Moreover, for any loop γ
M̂γ−1 = M̂−1

γ . (2.3.13)

To the homotopy class of the trivial loop it corresponds the identity map of the space of
solutions.

Proof: It suffices to prove validity of (2.3.12). Let us do it using the matrix realization
(2.3.9) of the monodromy map with respect to a choice of the fundamental matrix Y (z). The
analytic continuation of Y (z) along the loop γ1 transforms Y (z) to Y (z)Mγ1 . The subsequent
analytic continuation of the latter matrix along γ2 gives

(Y (z)Mγ2) Mγ1 = Y (z)Mγ2Mγ1 .

This proves that
Mγ1γ2 = Mγ2Mγ1 .
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Definition 2.3.5 Let Y (z) be a fundamental matrix of the system (2.3.3). The antihomo-
morphism

π1

(
C̄ \ {z1, . . . , zk, zk+1}; z0

)
→ GL(n; C)

(2.3.14)
γ 7→Mγ

(2.3.15)

mapping the homotopy class of aloop γ to the monodromy matrix Mγ is called the monodromy
representation of the system associated with the chosen fundamental matrix.

Exercise 2.3.6 Prove that a change of the fundamental matrix

Y (z) 7→ Ỹ (z) = Y (z)C

changes the monodromy representation to the conjugate one:

M̃γ = C−1Mγ C. (2.3.16)

Scalar case. Fuchsian differential equations of order n can be described according to the
following statement.

Lemma 2.3.7 Any Fuchsian differential equation of order n must have the form

y(n) + a1(z) y(n−1) + · · ·+ an(z) y = 0
(2.3.17)

am(z) =
Qm(z)
[P (z)]m

, m = 1, 2, . . . , n

P (z) = (z − z1)(z − z2) . . . (z − zk), zi 6= zi for i 6= j

Qm(z) is a polynomial of degree m (k − 1), m = 1, 2, . . . , n.

The regular singularities are at the points z1, . . . , zk, zk+1 = ∞.

Denote
λ

(i)
1 , . . . , λ(i)

n

the characteristic exponents of (2.3.17) at the singular point z = zi, i = 1, . . . , k, k + 1.

Exercise 2.3.8 (cf. Exercise 2.3.3). Prove that after a fractional linear transformation

z 7→ z̃ =
a z + b

c z + d
, a d− b c 6= 0

the Fuchsian equation (2.3.17) transforms to another Fuchsian equation with singularities at

z̃i =
a zi + b

c zi + d
, i = 1, . . . , k + 1

with the same characteristic exponents.
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Theorem 2.3.9 (Fuchs relation). The characteristic exponents of a Fuchsian differential
equation (2.3.17) satisfy

k+1∑
i=1

[
λ

(i)
1 + · · ·+ λ(i)

n

]
=
n(n− 1)

2
(k − 1). (2.3.18)

Proof: For any system y1(z), . . . , yn(z) of n functions denote

W (z) = det


y1 y2 . . . yn
y′1 y′2 . . . y′n
y′′1 y′′2 . . . y′′n
. . . . . . . . . . . .

y
(n−1)
1 y

(n−1)
2 . . . y

(n−1)
n

 (2.3.19)

the Wronskian determinant of this system. The following properties of the Wronskian can
be easily established:

• If y1(z), . . . , yn(z) is a basis in the space of solutions to an n-th order linear differential
equation (2.3.17) then the Wronskian W (z) never vanishes for z 6= z1, . . . , zk, zk+1.

• Given two bases y1(z), . . . , yn(z) and ỹ1(z), . . . , ỹn(z), then the two Wronskians W (z)
and W̃ (z) are related by multiplication by a nonzero constant,

W̃ (z) = ρW (z), ρ 6= 0.

• The analytic continuation of solutions y1(z), . . . , yn(z) along a closed loop γ ∈ C̄ \
{z1, . . . , zk, zk+1}, γ(0) = γ(1) = z0 results in multiplication of the Wronskian by a nonzero
constant

W (z0) 7→ µγW (z0)

independent on the choice of the basepoint z0.

• Change of the independent variable z 7→ z̃ = f(z) yields the following transformation
of the Wronskian:

W (z) =
(
dz̃

dz

)n(n−1)
2

W (z̃). (2.3.20)

Indeed, one has

dy

dz
=
dz̃

dz

dy

dz̃

d2y

dz2
=
(
dz̃

dz

)2 d2y

dz̃2
+
d2z̃

dz2

dy

dz̃

etc., and, more generally,

dmy

dzm
=
(
dz̃

dz

)m dmy

dz̃m
+ linear combination of

dy

dz̃
, . . . ,

dm−1y

dz̃m−1
, m = 1, . . . , n− 1.

So, up to adding of a linear combination of the previous rows, the rows of the Wronskian will
be multiplied by 1, dz̃

dz ,
(
dz̃
dz

)2
. . . ,

(
dz̃
dz

)n−1
resp. This gives the transformation law (2.3.20).
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We will now study the behavior of the Wronskian at the singularities. Let us assume for
simplicity that all characteristic exponents are pairwise distinct and nonresonant. Denote

y
(i)
1 = g

(i)
1 (z)(z − zi)λ

(i)
1 , . . . , y(i)

n = g(i)
n (z)(z − zi)λ

(i)
n , i = 1, . . . , k, k + 1 (2.3.21)

the bases in the space of solutions associated with these exponents, i.e., the functions g(i)
1 (z),

. . . , g(i)
n (z) are analytic near z = zi and, moreover, g(i)

m (zi) = 1 for any m = 1, . . . , n. Without
loss of generality we may assume, doing if necessary a fractional linear transformation, that
all the k+1 singular points are away from infinity. Then it is easy to see that the Wronskian,
calculated for the basis y(i)

1 (z), . . . , y(i)
n (z) behaves like

W (z) = ci (z − zi)λ
(i)
1 +···+λ(i)

n −n(n−1)
2 (1 +O(z − zi)) , z → zi. (2.3.22)

where
ci =

∏
p<q

(
λ(i)
p − λ(i)

q

)
6= 0.

At infinity, according to (2.3.20), one has

W (z) = c∞z
n(n−1)

(
1 +O

(
1
z

))
, c∞ 6= 0 (2.3.23)

(do a transformation z̃ = 1/z).

We now consider the logarithmic differential

ω := d logW (z). (2.3.24)

The differential ω is meromorphic on the Riemann sphere. It has poles at the points z1, . . . ,
zk+1 with residues

resz=zi ω = λ
(i)
1 + · · ·+ λ(i)

n − n(n− 1)
2

, i = 1, . . . , k + 1

and infinity,
resz=∞ ω = −n(n− 1).

Applying the residue theorem ∑
P∈C̄

resP ω = 0

one obtains (2.3.18).

Exercise 2.3.10 Assume as above zk+1 = ∞. Prove that the substitution

y = (z − z1)α1(z − z2)α2 . . . (z − zk)αk ỹ

transforms the Fuchsian equation (2.3.17) into another Fuchsian equation for ỹ = ỹ(z) with
the same singularities and with the characteristic exponents

λ̃(i)
m = λ(i)

m − αi, m = 1, . . . , n, i = 1, . . . , k.
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Let us consider in details the case of second order Fuchsian equations with three singu-
larities at z = z1, z = z2, z = z3. The solutions y = y(z) to this equation are conveniently
denoted using the so-called Riemann scheme

y = P

 z1 z2 z3

λ
(1)
1 λ

(2)
1 λ

(3)
1 ; z

λ
(1)
2 λ

(2)
2 λ

(3)
2

 (2.3.25)

where we keep the same notations as above for the characteristic exponents. To motivate
this notation we will show that the equation is uniquely determined by the characteristic
exponents. So the symbol (2.3.25) denotes a two-dimensional space of solutions to the asso-
ciated differential equation. Recall that, due to Fuchs relation the characteristic exponents
are constrained by the equation

λ
(1)
1 + λ

(1)
2 + λ

(2)
1 + λ

(2)
2 + λ

(3)
1 + λ

(3)
2 = 1. (2.3.26)

Theorem 2.3.11 (Riemann).The coefficients of the second order Fuchsian equation with
three regular singularities are uniquely determined by the position of singularities and by the
characteristic exponents.

Proof: The equation must have the form

y′′ + p(z) y′ + q(z) y = 0. (2.3.27)

p(z) =
a1

z − z1
+

a2

z − z2
+

a3

z − z3

q(z) =
1

(z − z1)(z − z2)z − z3)

(
b1

z − z1
+

b2
z − z2

+
b3

z − z3

)
ai = 1− (λ(i)

1 + λ
(i)
2 )

bi = λ
(i)
1 λ

(i)
2 (zi − zj)(zi − zk), i = 1, 2, 3.

Exercise 2.3.12 Prove that a second order Fuchsian differential equation with singularities
at z1, . . . , zk, zk+1 = ∞ with the prescribed characteristic exponents λ(i)

1 , λ(i)
2 , i = 1, . . . , k+1
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must have the form

y′′ + p(z) y′ + q(z) y = 0 (2.3.28)

p(z) =
k∑
i=1

1− (λ(i)
1 + λ

(i)
2 )

z − zi

q(z) =
1

P (z)

[
k∑
i=1

λ
(i)
1 λ

(i)
2

z − zi
P ′(zi) + λ

(∞)
1 λ

(∞)
2 zk−2 + c1z

k−3 + · · ·+ ck−2

]

where P (z) =
k∏
i=1

(z − zi).

Generalize to the case of Fuchsian equations of higher orders.

For k > 2 the coefficients c1, . . . , ck−2 are not determined by the poles and the exponents.
They are called accessory parameters of the Fuchsian equation.

2.4 Gauss equation and hypergeometric function

x(1− x) y′′ + [γ − (α+ β + 1)x] y′ − αβ y = 0. (2.4.1)

Riemann scheme for the Gauss equation:

y = P

 0 1 ∞
0 0 α ; x

1− γ γ − α− β β

 . (2.4.2)

Let
γ 6= 0, −1, −2, . . . .

Denote
(α)n :=

Γ(α+ n)
Γ(α)

, (2.4.3)

i.e.
(α)0 = 1, (α)n = α(α+ 1) . . . (α+ n− 1), n = 1, 2, . . . .

Define the hypergeometric series by

2F1(α, β; γ;x) :=
∞∑
n=0

(α)n(β)n
(γ)n

xn

n!
(2.4.4)

Lemma 2.4.1 The series (2.4.4) converges for |x| < 1. It gives the unique solution to Gauss
equation (2.4.1) analytic at x = 0.
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The resulting function 2F1(α, β; γ;x) analytic for |x| < 1 here will be also denoted
F (α, β; γ;x) for brevity.

The hypergeometric function can be analytically continued to the entire complex plane
with a branch cut from x = 1 to x = ∞. This gives a possibility to construct a basis of
solutions to the hypergeometric equation near x = 1 and x = ∞.

The substitution
y = x1−γu

yields a Gauss equation for u of the form

x(1− x)u′′ + [2− γ + (α+ β − 2γ + 3)x]u′ − (α− γ + 1)(β − γ + 1)u = 0. (2.4.5)

So the function
y = x1−γF (α− γ + 1, β − γ + 1; 2− γ; x), γ 6∈ Z (2.4.6)

gives another solution to (2.4.1) corresponding to the characteristic exponent 1− γ.

In a similar way at x = 1 one obtains the following two solutions

y = C1F (α, β;α+β−γ+1; 1−x)+C2(1−x)γ−α−βF (γ−α, γ−β; γ−α−β+1; 1−x). (2.4.7)

At infinity:

y = C1x
−αF (α, 1− γ + α; 1− β + α; x−1) + C2x

−βF (β, 1− γ + β; 1− α+ β; x−1) (2.4.8)

Exercise 2.4.2 Derive the following particular cases of the hypergeometric function:

F (−n, β;β;−x) = (1 + x)n, n ∈ Z (2.4.9)

F (1, 1; 2;−x) =
log(1 + x)

x
. (2.4.10)

Exercise 2.4.3 Prove that

d

dx
F (α, β; γ;x) =

αβ

γ
F (α+ 1, β + 1; γ + 1;x). (2.4.11)

Exercise 2.4.4 For the case γ = 1 prove that the second solution of Gauss equation linearly
independent from F (α, β; 1;x) reads

y = lim
γ→1

(γ − 1)−1
[
x1−γF (α− γ + 1, β − γ + 1; 2− γ;x)− F (α, β; γ;x)

]
(2.4.12)

= F (α, β; 1;x) log x+
∞∑
n=1

(α)n(β)n
(n!)2

xn
n∑
k=1

(
1

α+ k − 1
+

1
β + k − 1

− 2
k

)
.

69



Monodromy of Gauss equation, “brute force” method: look for three matrices M0, M1,
M∞ with the eigenvalues (1, ν−1), (1, ν λ−1µ−1) and (λ, µ) respectively satisfying

M∞M1M0 = Id. (2.4.13)

Here
λ = e2π i α, µ = e2π i β, ν = e2π i γ . (2.4.14)

The nonresonancy will be assumed:

λ 6= µ, ν 6= 1, ν 6= λµ.

Without loss of generality we may assume M∞ to be diagonal,

M∞ =
(
λ 0
0 µ

)
.

Denoting

M0 =
(
a0 b0
c0 d0

)
, M1 =

(
a1 b1
c1 d1

)
one obtains a system of equations

λ (a0a1 + b1c0) = 1
µ (b0c1 + d0d1) = 1
a1b0 + b1d0 = 0
a0c1 + c0d1 = 0.
a0 + b0 = 1 + ν−1, a0d0 − b0c0 = ν−1

a1 + b1 = 1 + ν λ−1µ−1, a1d1 − b1c1 = ν λ−1µ−1.

After some calculations one obtains

M0 =
1

λ− µ


µ
ν (λ− ν − 1) + 1 λ

ν (µ− λ)

(λ−1)(µ−1)(λ−ν)(µ−ν)
λ ν(λ−µ)

λ
ν (ν − µ+ 1)− 1

 (2.4.15)

M1 =
1

λ− µ

 ν − µ− ν
λ + 1 λ− µ

(λ−1)(µ−1)(ν−µ)(λ−ν)
λµ(λ−µ) λ− ν + ν

µ − 1

 (2.4.16)

Observe that the monodromy matrices M0, M∞ are determined non uniquely: there remains
an ambiguity doing simultaneous conjugations by a diagonal matrix D:

(M0,M1) 7→
(
D−1M0D,D

−1M1D
)
, D = diag(d1, d2).

Such a conjugation does not change the diagonal matrix M∞.

Second method: using Barnes integral representation of hypergeometric functions.

Consider the following integral

f(α, β; γ; z) :=
1

2π i

∫ i∞

−i∞

Γ(α+ s)Γ(β + s)
Γ(γ + s)

Γ(−s) (−z)s ds. (2.4.17)
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It is assumed that
| arg(−z)| < π;

the integration path is chosen in such a way that the poles of the function Γ(α+ s)Γ(β + s)
are on the left from the integration path and poles of the function Γ(−s) are on the right
from the integration path. Recall that the function

Γ(x) =
∫ ∞

0
e−ttx−1 dt, Rex > 0

can be analytically continued to a meromorphic function on the complex plane by using the
functional equation

Γ(x) Γ(1− x) =
π

sinπx
. (2.4.18)

It has poles at the non positive integer points

x = 0, −1, −2, . . .

with the residues
resx=−n Γ(x) =

(−1)n

n!
. (2.4.19)

For large |x| the asymptotic behaviour of gamma-function is described by the Stirling formula

log Γ(x+ a) =
(
x+ a− 1

2

)
log x− x+

1
2

log 2π + o(1)

(2.4.20)
for |x| → ∞, | arg(x+ a)| ≤ π − ε and | arg x| ≤ π − ε

for any small positive ε.

From the Stirling formula it follows that, for large |s| on the integration contour the
integrand behaves like

O
[
|s|α+β−γ−1 exp{− arg(−z) · Im s− π |Ims|}

]
.

Therefore the integral converges and, moreover it defines a function analytic in z on the
domain | arg z| ≤ π − ε.

Let us prove that the function f = f(α, β; γ; z) satisfies the Gauss equation in z. Using
the identity

xΓ(x) = Γ(x+ 1)

we find for the derivatives of the function f the following expressions

f ′ =
1

2π i

∫ i∞

−i∞

Γ(α+ s)Γ(β + s)
Γ(γ + s)

Γ(1− s) (−z)s−1 ds

f ′′ =
1

2π i

∫ i∞

−i∞

Γ(α+ s)Γ(β + s)
Γ(γ + s)

Γ(2− s) (−z)s−2 ds.
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After the substitution into the Gauss equation one obtains

z(1− z) f ′′ + [γ − (α+ β + 1) z] f ′ − αβ f

(2.4.21)

=
1

2π i

∫ i∞

−i∞

Γ(α+ s)Γ(β + s)
Γ(γ + s)

(γ + s− 1)Γ(1− s)(−z)s−1 ds

− 1
2π i

∫ i∞

−i∞

Γ(α+ s)Γ(β + s)
Γ(γ + s)

(s+ α)(s+ β)Γ(−s)(−z)s ds.

In the first integral do the substitution

s = 1 + t.

The new integrand reads

Γ(α+ s)Γ(β + s)
Γ(γ + s)

(γ + s− 1)Γ(1− s)(−z)s−1 =

=
Γ(α+ t+ 1)Γ(β + t+ 1)

Γ(γ + t+ 1)
(γ + t)Γ(−t)(−z)t = (α+ t)(β + t)

Γ(α+ t)Γ(β + t)
Γ(γ + t)

Γ(t)(−z)t.

So the two integrals in (2.4.21) cancel.

We now want to prove that the Barnes integral is equal to the hypergeometric function
(2.4.4), up to a constant factor.

Lemma 2.4.5 For |z| < 1 one has the following identity

f(α, β; γ; z) =
Γ(α) Γ(β)

Γ(γ)
F (α, β; γ; z). (2.4.22)

Proof: Let us consider the integral of the same expression as in (2.4.17) taken along the half
circle C of radius N + 1

2 , N ∈ Z with the center at the origin laying to the right of imaginary
axes. Using the functional equation (2.4.18) we arrive at the following integral

1
2π i

∫
C

π Γ(α+ s)Γ(β + s)
Γ(γ + s)Γ(1 + s) sinπs

(−z)s ds. (2.4.23)

From the Stirling formula we obtain that

π Γ(α+ s)Γ(β + s)
Γ(γ + s)Γ(1 + s) sinπs

(−z)s = O
(
Nα+β−γ−1

) (−z)s

sinπs

uniformly in arg s on the contour C when N →∞. The substitution

s =
(
N +

1
2

)
ei θ
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yields, for |z| < 1,

(−z)s

sinπs
= O

[
exp

{(
N +

1
2

)
cos θ log |z| −

(
N +

1
2

)
sin θ arg(−z)−

(
N +

1
2

)
π | sin θ|

}]

= O
[
exp

{(
N +

1
2

)
cos θ log |z| −

(
N +

1
2

)
ε | sin θ|

}]

=


O
[
exp

{
2−

1
2

(
N + 1

2

)
log |z|

}]
, 0 ≤ |θ| ≤ 1

4π

O
[
exp

{
−2−

1
2 ε
(
N + 1

2

)}]
, 1

4π ≤ |θ| ≤ 1
2π.

So, for log |z| < 0 (i.e., for |z| < 1) the integrand goes to zero rapidly enough on the arc C.
Therefore ∫

C
→ 0 for N →∞.

Let us now consider the following loop integral:∫ i∞

−i∞
−

{∫ −i (N+ 1
2)

−i∞
+
∫
C

+
∫ i∞

i (N+ 1
2)

}
.

By Cauchy theorem it is equal to the sum of residues of the integrand at the poles s =
0, 1, 2, . . . , N . Let N go to infinity. Then the last three integrals will go to zero under
assumption

| arg(−z)| ≤ π − ε and |z| < 1.

It remains to compute the residue

ress=n
Γ(α+ s)Γ(β + s)

Γ(γ + s)
Γ(−s) (−z)s

for any nonnegative integer n. Applying (2.4.19) we obtain

ress=n
Γ(α+ s)Γ(β + s)

Γ(γ + s)
Γ(−s) (−z)s =

Γ(α+ n)Γ(β + n)
Γ(γ + n)

zn

n!
.

Finally we obtain for the Barnes integral the hypergeometric series

f(α, β; γ; z) = lim
N→∞

N∑
n=0

Γ(α+ n)Γ(β + n)
Γ(γ + n)

zn

n!
=

Γ(α) Γ(β)
Γ(γ)

F (α, β; γ; z).

We are now ready to derive the formula expressing the hypergeometric solution F (α, β; γ; z)
with two solutions (2.4.8) defined near z = ∞. Consider the integral

1
2π i

∫
D

Γ(α+ s)Γ(β + s)
Γ(γ + s)

Γ(−s) (−z)s ds (2.4.24)

where D is the half of a circle of the radius R with the centre at the origin lying on the
left from the imaginary axis. Like in the previous calculation one can show that the integral
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(2.4.24) goes to zero when R → ∞ and |z| > 1, assuming that | arg(−z)| < π and the
sequence of radii R is chosen in such a way that the distance from the arc D to the poles of
the integrand is bounded from below by a positive constant. Computing the residues of the
integrand at the poles

s = −α− n and s = −β − n, n ∈ Z

and applying Cauchy theorem one finds

1
2π i

∫ i∞

−i∞

Γ(α+ s)Γ(β + s)
Γ(γ + s)

Γ(−s) (−z)s ds

=
∞∑
n=0

Γ(α+ n)Γ(1− γ + α+ n)
Γ(1 + n)Γ(1− β + α+ n)

sinπ(γ − α− n)
cosπn sinπ(β − α− n)

(−z)−α−n

+
∞∑
n=0

Γ(β + n)Γ(1− γ + β + n)
Γ(1 + n)Γ(1− α+ β + n)

sinπ(γ − β − n)
cosπn sinπ(α− β − n)

(−z)−β−n.

Finally one arrives at the following connection formula expressing one solution to Gauss
equation as alinear combination of two other solutions:

Γ(α) Γ(β)
Γ(γ)

F (α, β; γ; z) =
Γ(α) Γ(α− β)

Γ(α− γ)
(−z)−αF

(
α, 1− γ + α; 1− β + α;

1
z

)
(2.4.25)

+
Γ(β) Γ(β − α)

Γ(β − γ)
(−z)−βF

(
β, 1− γ + β; 1− α+ β;

1
z

)
.

The expression (2.4.25) is valid under the assumption

| arg(−z)| < π.

Exercise 2.4.6 Compute the integral

1
2πi

∫ i∞

−i∞
Γ(α+ s) Γ(−s) (−z)s ds

assuming | arg(−z)| < π.

Exercise 2.4.7 (Gauss formula). Prove that

F (α, β; γ; 1) =
Γ(γ) Γ(γ − α− β)
Γ(γ − α) Γ(γ − β)

. (2.4.26)

for
Re (γ − α− β) > 0

Hint: use Euler integral representation (2.4.37).
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Exercise 2.4.8 (Barnes Lemma). Prove that

1
2π i

∫ i∞

−i∞
Γ(α+ s)Γ(β + s) Γ(γ − s) Γ(δ − s) ds

(2.4.27)

=
Γ(α+ γ) Γ(α+ δ) Γ(β + γ) Γ(β + δ)

Γ(α+ β + γ + δ)

The integration contour is chosen in such a way that poles of Γ(γ− s) Γ(δ− s) are on the left
and poles of Γ(α + s)Γ(β + s) are on the right of it. (It is also assumed that the nmbers α,
β, γ, δ are such that neither of the poles of the first function coincides with any pole of the
second function.

Exercise 2.4.9 Using Barnes Lemma prove validity of the following connection formula

Γ(γ − α) Γ(γ − β) Γ(α) Γ(β)F (α, β; γ; z) =
(2.4.28)

= Γ(γ) Γ(α) Γ(β) Γ(γ − α− β)F (α, β;α+ β − γ + 1; 1− z) +

+Γ(γ) Γ(γ − α) Γ(γ − β) Γ(α+ β − γ) (1− z)γ−α−βF (γ − α, γ − β; γ − α− β + 1; 1− z)

assuming that
| arg(1− z)| < π and |1− z| < 1.

Hint:

We finally arrive at the following result. Assume that none of the numbers 1−γ, γ−α−β,
α − β is an integer. Then we can construct three bases in the space of solutions to Gauss
equation as it was explained above (see formulae (2.4.6) - (2.4.8)). We will write the three
pairs of basic vectors as three row matrices

Y0(x) :=
(
F (α, β; γ;x), x1−γF (α− γ + 1, β − γ + 1; 2− γ;x)

)
(2.4.29)

Y1(x) :=
(
F (α, β;α+ β − γ + 1; 1− x), (1− x)γ−α−βF (γ − α, γ − β; γ − α− β + 1; 1− x)

)
(2.4.30)

Y∞(x) =
(
x−αF (α, 1− γ + α; 1− β + α;x−1), x−βF (β, 1− γ + β; 1− α+ β;x−1)

)
(2.4.31)

In these formula we assume that x belongs to the upper half plane Imx > 0. Then in the
definition of fractional powers of x and 1−x we choose the principal branch of the arguments

0 < arg x < π, 0 < arg(1− x) < π.
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Theorem 2.4.10 Under the above assumptions the following connection formulae hold true
for Imx > 0

Y0(x) = Y1(x)


Γ(γ) Γ(γ−α−β)
Γ(γ−α) Γ(γ−β)

Γ(2−γ) Γ(γ−α−β)
Γ(1−α) Γ(1−β)

Γ(γ) Γ(α+β−γ)
Γ(α) Γ(β)

Γ(2−γ) Γ(α+β−γ)
Γ(α−γ+1)Γ(β−γ+1)

 (2.4.32)

Y0(x) = Y∞(x)

 e−i π α Γ(γ) Γ(β−α)
Γ(γ−α) Γ(β) e−i π (α−γ+1) Γ(2−γ) Γ(β−α)

Γ(β−γ+1)Γ(1−α)

e−i π β Γ(γ) Γ(α−β)
Γ(γ−β) Γ(α) e−i π (β−γ+1) Γ(2−γ) Γ(α−β)

Γ(α−γ+1)Γ(1−β)

 . (2.4.33)

The formula (2.4.32) remains valid for | arg(−x)| < π; the formula (2.4.33) is valid for
| arg(1− x)| < π.

These connection formulae yield the following expressions for the monodromy matrices in
the basis Y∞:

M0 =
e−2iπγ

e2iπα − e2iπβ
×

(2.4.34) e2iπ(β+α) − e2iπ(β+γ) − e2iπβ + e2iπγ − 4π2eiπ(2β +γ)Γ(β−α)
Γ(β)Γ(1−α)Γ(α −β)Γ(β−γ+1)Γ(γ−α)

4π2eiπ(2α+γ)Γ(α−β)
Γ(α)Γ(1−β)Γ(β−α)Γ(α−γ+1)Γ(γ−β) e2iπ(α+γ) − e2iπ(α+β) + e2iπα − e2iπγ



M1 =
1

e2iπα − e2iπβ
×

(2.4.35) e−2iπα
(
e2iπ(α+γ) − e2iπ(α+β) + e2iπα − e2iπγ

) 4π2eiπγΓ(β−α)
Γ(β)Γ(1−α)Γ(α−β)Γ(β−γ+1)Γ(γ−α)

− 4π2eiπγΓ(α−β)
Γ(α)Γ(1−β)Γ(β−α)Γ(α−γ+1) Γ(γ−β) e−2iπβ

(
e2iπ(β+α) − e2iπ(β+γ) − e2iπβ + e2iπγ

)


M∞ =

 e2iπα 0

0 e2iπβ

 . (2.4.36)

The third method of computation of the monodromy of Gauss equation is based on the
Euler integral representation of the hypergeometric functions:

F (α, β; γ;x) =
Γ(γ)

Γ(β) Γ(γ − β)

∫ 1

0
tβ−1(1−t)γ−β−1(1−t x)−α dt, Re γ > Reβ > 0, |x| < 1.

(2.4.37)

Exercise 2.4.11 Prove (2.4.37).
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Hint: expand (1− t x)−α in geometric series and use Euler formula

B(x, y) =
Γ(x) Γ(y)
Γ(x+ y

.

for beta-integrals

B(x, y) :=
∫ 1

0
tx−1(1− t)y−1 dt, Rex > 0, Re y > 0.

We will consider here only a very particular case of this representation.

Exercise 2.4.12 Consider the complete elliptic integrals

K =
∫ 1

0

ds√
(1− s2)(1− k2s2)

(2.4.38)

iK′ =
∫ 1/k

1

ds√
(1− s2)(1− k2s2)

(2.4.39)

as functions of the complex variable

x = k2, x 6= 0, 1, ∞.

Prove that the functions y1 = K(x), y2 = K′(x) are two linearly independent solutions to the
following Gauss equation

x(1− x) y′′ + (1− 2x) y′ − 1
4
y = 0. (2.4.40)

Prove that in the basis y1, y2 the monodromy matrices have the following form:

M0 =
(

1 0
2 1

)
, M1 =

(
1 2
0 1

)
. (2.4.41)

Derive the formula
K =

π

2
F (1/2, 1/2; 1; k2). (2.4.42)
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The following books were useful for preparing the present lecture notes.
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