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1 Geometry of Manifolds

1.1 Definition of smooth manifolds

Spaces that locally look like Euclidean spaces are called manifolds. Let us give a definition
of a smooth manifold.

Definition 1.1.1 1) An atlas on a set M is a collection of

e subsets U, C M that cover all M labeled by an at most numerable set of indices I 5 «;



o for any o € I a one-to-one map pq from Uy to an open domain in the Euclidean space
R™ s given
Ya : Ua = a(Ua) CR" (1.1.1)

The pair (U, ¢q) is called a coordinate chart on M. The Euclidean coordinates in R™

(xl, .. 2") € pa(Uy) C R™ (1.1.2)

ar

define coordinates on the subsets U, C M, i.e.,

for P e U, (331 (P),...,2z%(P)) = ¢a(P).

« «

2) For any pair of intersecting sets UyNUpg # O the domains po (Uy N Up) and @5 (Us NUR)
are open in R™ and the one-to-one map

030 05" : 0o (Ua NU) = 05 (Us NUg) (1.1.3)

s smooth.

Since the inverse map

a0 05" 05 (UaNUs) = @o (Ua N Up)

is smooth as well, we conclude that the transition maps (1.1.3) are all diffeomorphisms.

3) A subset V. C M is called open if its intersections with coordinate charts
0o (VNU,) CR"

are open for all o € 1.
This definition provides a structure of topological space on M.

A set M equipped with an atlas of coordinate charts with smooth transition maps is called
a smooth manifold of dimension n if it ¢s a Hausdorff second countable topological space.

Recall that a topological space X is called Hausdorff if, for any pair of distinct points
p, Q € X there exist disjoint open neighborhoods U > P, V > Q, UNV = (. It is called
second countable if one can find a countable collection B of open subsets of X such that any
open U C X is a union of subsets from B.

Counterexamples. To construct a “non-Hausdorff manifold” take two copies Ry of
real line. Denote x4 the standard coordinates on these lines. Identify the negative points
x_ with x4 on these lines. The resulting set M is covered by two coordinate charts. The
points 04 and 0_ are distinct; their arbitrary open neighborhoods intersect. To construct a
“non-second countable manifold” one can take a disjoint union of an uncountable number of
copies of real line.

Example 1.1.2 The n-dimensional Euclidean space itself, or also any open domain in it,
are examples of smooth manifolds.



Figure 1: Transition maps on a smooth manifold

Example 1.1.3 The unit sphere S™ C R is an example of a n-dimensional manifold
covered with two coordinate charts. The maps w+ can be described as stereographic projections
of the sphere from the poles Py = (0,0,...,+1)

ST\ Py —» R

1 n+1 at z" 1 n
m(z,.. ., 2") = Tt T gl =:(x3,...,z7)

(1.1.4)
m_:S"\ P - R"

1 n
x x
77(1131,...,:17”+1):< . ) = (z},...,2")

T4 g7 1 4 gt




TI.(X

-
\ TL(x)
P.

v

Fig. 9. Stereographic projections on the sphere

The transition maps defined for the points of intersection S™ \ (P+ U P_) are smooth:

1 n
_ Tr_ Tr_
7T+O7T1(£L'1_,...,ZL'71):<’$ ’27"‘>|x ‘2)

e P = @)+ ) e £0.

Example 1.1.4 Points of the projective space RP™ are lines passing through the origin in
R™ 1. Any line can be defined by its homogeneous coordinates

(b, ... 2" 2" e R\ 0

considered up to multiplication by a nonzero factor

(2, ..., 2™, 2™ ~ Azt L2 2T, A #£0.
Denote
U, = {(z', ..., 2" e R | 2% £ 0} c RP™ (1.1.5)
k=1,...,n+ 1. The subsets Uy, ..., Upr1 cover all projective space. The coordinates
zl ..., 2?) on Uy are defined as follows:
k k
1 +1 at a™t! 1 k-1 k
oz, ..., 2" ) = <mk;""’$k> = (@, ..y L ag, ..., xp). (1.1.6)
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Let us compute the transition maps. lOn the intersection Uy NU; one has % # 0, ' # 0. Let
us assume that k < 1. Then 332_1 = 7% 7 0 on the intersection, so

-1

xfzm%xk , 1<k
1
L=
L,
zfzm?lajfl, kE<i<l

af =aj ol 1<i<n.
This is a smooth map. It is easy to see that also the inverse map is smooth on the intersection.

Example 1.1.5 Given two manifolds M, N of the dimensions n, m respectively one obtains
a natural structure of a smooth manifold of dimension n+m on the Cartesian product M x N.
Indeed, if (Ua, 0a)act and (Vg,1v5)5es are atlases on these two manifolds then

(Ua X Vg, pa X ¢5>a€1,[3€]
Yo X g Uy x Vg — R x R = R*™
(z,y) = (palz), ¥s(y))-

is an atlas on M x N. For example, the Cartesian product of two circles S* x S is the two-
dimensional torus T?. Representing the circle as the segment [0, 2] with identified endpoints
one arriwes at a model of the torus by a square with identified sides

T? = {(z,y) € R? |0 <z, y<2m (0,y)~2my), (z,0)~ (x,2m)}. (1.1.7)

In a similar way the Cartesian product of n copies of circles is the n-dimensional torus T™.

Example 1.1.6 The space of n x n matrices X = (xé')lgi,jgn can be identified with a Fu-

2. The subset of nondegenerate matrices

GL(n) = {X = («})| det X # 0} (1.1.8)

clidean space of dimension n

is an open domain in R™. So GL(n) is a smooth manifold of the same dimension n?. The
product map

GL(n) x GL(n) — GL(n)
(1.1.9)
(X,)Y)— XY

is a smooth map. Indeed, using matriz entries as coordinates on GL(n) we obtain a repre-
sentation of the map (1.1.9) by polynomials

n
(XY)e = "ajyb, i, j=1,...,n (1.1.10)
k=1

We leave as an exercise for the reader to verify that the inversion map
GL(n) = GL(n), X+ X! (1.1.11)

18 smooth.



Observing that the set of all invertible matrices is a group we arrive at the following
general definition.

Definition 1.1.7 A smooth manifold G is called Lie group if a group structure is defined on
G

GxG—G, (g,h)—gh

(1.1.12)

G — G, gb—)g_l

such that the maps (1.1.12) are smooth.

Thus the general linear group GL(n) is an example of a Lie group. Even simpler examples
are Euclidean spaces R™ considered as additive groups. These Lie groups are commutative.
Also tori

™ =R" /20 Z"
are commutative Lie groups. Observe that these are compact manifolds. The general linear
groups are not commutative for n > 1.

A map
fiM =N (1.1.13)

of smooth manifolds with coordinate charts (Uy,@a)acr on M and (Vg,v¢s)ges on N of
dimensions n and m resp. in local coordinates can be described by m functions of n variables.
Namely, given a point P € U, C M such that f(P) € V3 C N, in a neighborhood of this
point the map is represented by functions

Ypo fo 90;1 : Pa(Ua) = ¥5(V3)

(1.1.14)
yé = fg(xa,...,xg),...,yg = fg(xi,,x;”)
Here (yé,,yg) are coordinates on Vg C N, the n functions fé, ..+, [ of variables

(xl,...,2™) are defined by (1.1.14).

(e'R]

Definition 1.1.8 The map (1.1.13) of smooth manifolds is smooth if all its coordinate
representations (1.1.14) are smooth functions of m variables. In particular, smooth maps
f: M — R are called smooth functions on the manifold M.

It is easy to check correctness of the definition of smooth maps on the intersections of
coordinate charts.

Definition 1.1.9 A smooth one-to-one map
f:M—N
of two manifolds is called diffeomorphism if the inverse map
ff'"N—>M

is smooth. Two smooth manifolds M, N are called diffeomorphic if there exists a diffeomor-
phism f: M — N.



It is easy to see that two diffeomorphic manifolds must have equal dimensions. Indeed,
the m x n and n x m Jacobit matrices

oyt i
95 and 8xg C1<k<m, 1<i<n
ox?, oy

must be mutually inverse, hence m = n.

Definition 1.1.10 Let (Uy, a)acr and (Ué,@/ﬁ)ﬁep be two atlases on the same space M.
They define the same smooth structure on M if the identical map id : M — M is a diffeo-
morphism.

Exercise 1.1.11 We say that an atlas (Vg,13)ses on M is a refinement of another atlas
(Uas pa)act if for any B € J there ewists a(B) € I such that Vg C U,y and the map
g+ Vg — R" is the restriction of the map ¢qp5) @ Uyp)y — R"™ onto Vz. Prove that
any refinement of an atlas (Uy, pa)acs on a smooth manifold M defines the same smooth
structure.

1.2 Tangent space to a manifold

A curve on a manifold M is a smooth map of an interval (a,b) € R to M
v:(a,b) = M (1.2.1)
(a,b) 3t~ ~(t).
In local coordinates the curve is represented by n = dim M smooth functions of one variable

ts (), .., 2" (1)) = x(t).

The velocity vector
i(t) = (#'(),...,2" (1)) (1.2.2)

is tangent to the curve at every point (z'(t),...,2"(t)). Here and below we will use short
notations borrowed from classical mechanics

iy = T

for the t-derivative of a smooth function f(t). Moreover, the parameter ¢ will sometimes be
called ‘time’.

Example 1.2.1 Choosing n arbitrary real numbers a', ..., a” one obtains a curve

'(t)=a't, i=1,...,n (1.2.3)
with a prescribed velocity vector

i(t) = (a',...,a"). (1.2.4)



Let P € M be a point of a n-dimensional manifold M. We want to define the tangent
space TpM consisting of all tangent vectors of curves passing through P.

Definition 1.2.2 1) Two curves v1(t) = (z1(t),...,21(t)) and v2(t) = (z3(t), ..., x5(t)) on
M passing through P € M att = 0 are called equivalent if their velocity vectors at this point
coincide

(£1(0),...,27(0)) = (#5(0),...,35(0)). (1.2.5)

2) Class of equivalence of curves passing through P is called tangent vector to the manifold
at the point P.

3) The set of all tangent vectors at the point P € M is called the tangent space TpM to the
manifold at this point.

We will show now that the tangent space TpM at any point P of an n-dimensional
manifold M is isomorphic to the Euclidean space R™. To this end we first prove

Lemma 1.2.3 The equivalence relation between curves passing through a given point of the
manifold does not depend on the choice of local coordinates.

Proof: After a change of local coordinates
e =2zt 2", i=1,...,n (1.2.6)

the curve (z'(¢),...,2"(t)) will be represented by n smooth functions

The velocity vector of this curve in new coordinates can be computed by applying the chain
rule

-/
-/ ox’

i (t) i'(t), iP=1,...,n (1.2.7)

=—
ox’

(warning: in this formula summation in the repeated index ¢ but not in i’. The indices i

and ¢ are independent.). Thus, for a given pair of two curves z!(¢) and z%(t) with coincid-

ing velocity vectors @} (0) = ...25(0), i = 1,...,n at the point P = (21(0),...,27(0)) =
(x%(O), RN x%(O)) their velocity vectors in new coordinates will also coincide,
] 8xll(P) . 8.%'1/(P) . v .
2 (0) = 2l (0) = S 0) = 4 (0), i=1n,

Using this Lemma, and also in view of Example 1.2.1 one arrives at

Corollary 1.2.4 Any system of local coordinates on a neighborhood of a point P on a n-
dimensional manifold M establishes an isomorphism

TpM ~ R".



Proof: Indeed, in local coordinates near P any tangent vector at the point P is defined by
n numbers (1(0),...,4"(0)) that can take arbitrary values. O

The transformation rule (1.2.7) can be used for an alternative definition of tangent vectors.

Definition 1.2.5 A tangent vector at the point P of an n-dimensional manifold M is a
correspondence that associates an n-tuple of real numbers (vl,...,v?) with any coordinate
chart Uy, C M containing P. In another coordinate chart Ug C M containing P the same
vector is described by another n-tuple (vé, . ,Ug). It is required that the two n-tuples are

related by the transformation law

v, i=1,...,n. (1.2.8)

Using matrix notations one can rewrite the transformation rule (1.2.8) as the result of
multiplication by the Jacobi matrix

vh dzy/ oxl ... 81:% [0z} vl
: = : . : I (1.2.9)
vg o/ ozl ... Oxg/0xg |, \ va

Recall that the Jacobi matrix of the transition functions must not degenerate at the point

PelU,N Ug
830%(13)
det Py #0. (1.2.10)

Loy

Example 1.2.6 For M = R" the tangent space can be naturally identified with the space R™
itself. Same for manifolds realized as open domains in R™.

Given a manifold M one can construct the set of all tangent vectors

TM = {(z,v) |z € M, ve T, M}. (1.2.11)

Exercise 1.2.7 Introduce on TM a structure of 2n-dimensional smooth manifold, where
n=dimM.

The manifold T'M is called the total space of tangent bundle on M.

Exercise 1.2.8 Prove that the total space of tangent bundle to the circle M = S' is diffeo-
morphic to the cylinder S* x R.

Let f : M — N be a smooth map of manifolds of dimensions n and m respectively. It
maps smooth curves z(t) passing through a point P € M to smooth curves f(x(t)) passing
through the point f(P) € N.
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Definition 1.2.9 The induced map of tangent spaces
f* :TpM — Tf(p)N (1.2.12)

is defined by
TpM 5 #(0) — f.((0)) = %f(x(t))tzo € Ty(pN. (1.2.13)

Lemma 1.2.10 Let (U, (z',...,2")) be a coordinate chart near the point P € M and (V, (y', ...

be a coordinate chart near the point f(P) € N. Let the smooth map in the local coordinates
have the form

r=(zh ..., 2") = f(z) = (' (2),...,y"(x)). (1.2.14)

In these coordinates the induced map fi : TpM — TypyN is a linear map defined by the
m X n Jacobi matriz

Ay’ (P) ;
— (21 n —
v=(v,...,0") = fi(v) = ( B v]> (1.2.15)
or, in an equivalent matriz form
vt oyt/ozt ... oyt/ox" vt
Do e felv) = : : C - (1.2.16)
" oy™/oxt ... Oy™/0z" p \ V"

Proof: Applying the chain rule to the computation of the velocity vector of the curve f(z(t))
one obtains

d ; Oyt dal(t)

%y’(a:( ) = 5wl dr T 1,...,n.
Ul
Example 1.2.11 For a smooth function
f:M—->R
on a manifold M the induced map is a linear function on the tangent space at any point
fe:TpM — R
v:(vl,...,v”)Hf*(v):%vl+~--+%v”. (1.2.17)

This linear map coincides with the differential of the function f

i.e., with the principal linear part of the increment of the function in the direction of the
vector:

f(z+tv) — f(x) = tf.(v) + O(). (1.2.18)

11
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Also in general the induced map of linear spaces is often called the differential of the map
f:M—N
df () : TuM — Tpz)N. (1.2.19)

We will now define a dual object: the so-called cotangent space T5M to a n-dimensional
manifold at a given point P € M. Elements of this space are called covectors; in local
coordinates they are described by values of gradients of smooth functions at this point:

(2000 010y,

e 1.2.2

Similarly to Definition 1.2.2 one can give

Definition 1.2.12 Two smooth functions f, g on M are called equivalent at the point P €
M if their differentials coincide at the point P. A class of equivalence of smooth function at
a point P € M is called a covector at this point. The set THpM of all covectors at a given
point P € M s called the cotangent space at this point.

In local coordinates covectors can be described by n-tuples of real numbers (w1, . ..,wy,).
However, the transformation law of covectors is different from the one for vectors: namely, if
(we,...,wy) and (wlﬁ, - ,wﬁ) are components of the same covector at a point P € U, NUpg
in two coordinate charts U, and Ug respectively then
o 81:Jﬁ(P)

w;, = -
? %
ox?,

B
wi, i=1,...,n (1.2.21)
Indeed, this formula can be easily derived by applying the chain rule to the partial derivatives

of a function f
W = af(P), Wi = AE) (1.2.22)
ox?, ! dxy

One can actually define covectors at a given point with n-tuples of real numbers for any
coordinate chart near this point; these n-tuples must transform according to the rule (1.2.21)
when passing from one coordinate chart to another one. Observe that the transformation
rule (1.2.22) for covectors is different from the one (1.2.8) for vectors. In order to make the
comparison more clear let us rewrite (1.2.22) in matrix form

8:5%/8:% 8:1)}3/32172
: : (1.2.23)

n

8562/856;[ . Oxpfoxg )

That is, change of components of a vector from a chart U, to Ug is obtained by multiplication
by the Jacobi matrix

while a similar change of components of a covector is given by multiplication by (J *I)T.

Like above one can prove that the cotangent space T5M on a n-dimensional manifold M
is a n-dimensional linear space. The differentials dx}, ..., dz” of local coordinate functions
xl, ..., 27 define a basis in the cotangent space T' '»M at every point P inside the chart Ul,.

12



Lemma 1.2.13 There is a natural duality between tangent and cotangent spaces at the same
point via the following nondegenerate pairing

TiM x TpM — R (1.2.24)

(w,v) = wivi = (wl’ s 7wn)

,U’I’L

Proof:  Let x(t) be a smooth curve such that z(0) = P, £(0) = v; let f(x) be a smooth
function such that df (P) = w. Then

d o1(a(t) ., i
GO = (2 <t>>t0 = i

Since the left hand side of this equation does not depend on the choice of representatives of
the vector v and covector w, the right hand side is well defined and, in particular, it does not
depend on the choice of local coordinates. a

Exercise 1.2.14 Prove directly by using the transformation laws (1.2.8) and (1.2.22) that
the sum w;v® does not depend on the choice of a coordinate chart.

Because of Lemma 1.2.13 the cotangent space TH5M can be naturally identified with the
dual space to the tangent one
TpM = Hom(TpM,R).
In the same way one can identify

TpM = Hom(TpM,R).

Any smooth map of manifolds f : M — M defines a pullback of cotangent spaces

By definition the value of the pullback of a covector w € T }‘( P)N on a vector v € TpM is
equal to the value of w on the vector f,(v)

(f* (W), v) = (w, fu(v)). (1.2.26)

In local coordinates the pullback is written via the same Jacobi matrix by multiplication of
row-vectors

W= (Wi,...,m) > f*(w) = (8%5)%) (1.2.27)
or, equivalently
oyt/oxt ... Oy'/oa"
w=(Wi,...,wn) = ff(w)=(w,...,wm) : : (1.2.28)
oy™/oxt ... Oy™/Oz" P

Like the above construction of the manifold TM of tangent vectors to M we define the
total space of cotangent bundle to M by

T"M = {(z,w) |z e M, we T"M,}. (1.2.29)

13



Exercise 1.2.15 Introduce on T*M a structure of 2n-dimensional smooth manifold, where
n=dimM.

1.3 Vector fields

So far all vectors and covectors were attached to a given point of a manifold. Now we consider
vector and covector fields.

Definition 1.3.1 A smooth vector field on a manifold M is a vector v(x) € T, M at any
point x € M depending smoothly on the point x.

Smooth dependence on the point means that, in a coordinate chart the components v!(x),
.., v"(x) are smooth functions of local coordinates. We leave it as an exercise for the reader
to verify independence of this definition from the choice of local coordinates.

With a smooth vector field v(z) = (v!(z),...,v"(z)) on a manifold M one can associate
a dynamical system on M represented by a system of n = dim M autonomous ordinary
differential equations (ODEs)

= vl(x)
Ty (13
@ = u"(x)

Here and below we will often use the notation for the time derivative & = fl—f borrowed from

classical mechanics. In this way the dynamical system will read

& = v(x).
A solution x(t) = (x'(t),...,2"(t)), t € (a,b) C R to the dynamical system (1.3.1) is a
collection of smooth functions x!(t), ..., 2™(t) satisfying
da' (t :
xdt( ) = (xl(t),...,ac"(t)), i=1,...,n.

It defines an integral curve of the vector field v, i.e., a smooth map
v:(a,b) 3t (2'(t),....2a"t)) =(t) e M (1.3.2)
such that the velocity vector of the curve coincides with the values of the vector field at the

points of the curve.

Remark 1.3.2 A time-dependent system of ODFEs

dzx

i v(t,z), weM (1.3.3)

can be interpreted as a dynamical system on R x M > (t,z)

d
# =1

(1.3.4)
dr = y(t, ).



According to the theory of ordinary differential equations for any point zg € M there
exists an integral curve z(t) defined for sufficiently small |¢| passing through this point:

z(t = 0) = xp.

The curve is uniquely determined by the initial condition. Another useful result is the rec-

tification theorem. It says that, near a point xg € M such that v(zg) # 0 there exists a

system of local coordinates (z!,...,2") such that the vector field in these coordinates has

the following form
v(z) = (1,0,...,0). (1.3.5)

In these coordinates the integral curves of the vector field are obtained by translations along
the first coordinate
z(t) = (z§ +t,25, ..., 27) .

For vector fields on compact manifolds the following important statement holds true.

Theorem 1.3.3 Any integral curve x(t) of a smooth vector field defined on a smooth compact
manifold can be extended to all values of the parameter t € R.

Using the theorem about smooth dependence of solutions on the initial data one can easily
prove that the map

g M — M
gt(xo) = x(t) where & =wv(z), xz(0)=xg (1.3.6)
for every t € R is a diffeomorphism. In the particular case ¢t = 0 the diffeomorphism (1.3.6)

is the identity map.

Exercise 1.3.4 Prove that the diffeomorphisms g: generated by an arbitrary smooth vector
field on a compact manifold M form a one-parameter group, i.e.,

9s © gt = gs+t Vs, teR (1.3.7)
go = id
g =gt

Example 1.3.5 For a linear vector field on the n-dimensional Fuclidean space
v(z) = Az (1.3.8)

defined by a constant n xn matrix A the solution to the associated system of linear differential
equations
= Ax (1.3.9)

with the initial datum
z(0) = xo

15



can be expressed via matrix exponential function

z(t) = et g (1.3.10)
tA  t2A2

tA _ .

e = ld + T + T +

In this particular case the equations (1.3.9) from the definition of a one-parameter group of
diffeomorphisms follow from the well known property of the matrix exponential function

eMB = el if the matrices commute, BA = AB. (1.3.11)

In a more general case of a smooth vector field v(z) on a non-compact manifold M defines
a one-parameter group g; of local diffeomorphisms. That means that, for any point xg € M
there exists an open neighborhood U > xg and a number € > 0 such that the integral curve
x(t) of the vector field with the initial data x(0) = x¢ exists on U for |t| < e. The map
gt : U — U on any sufficiently small open subset U C M is defined for sufficiently small |¢| in
the same way as in (1.3.6). It satisfies (1.3.7) if |t| < ¢, |s| < ¢, |s+t| < e where € is as above.
Exercise 1.3.6 Prove that the matriz €' is orthogonal if A is an antisymmetric matriz.
Derive that the linear vector field (1.3.8) is tangent to the spheres |z|> = R? if the matriz A
18 antisymmetric.

To a vector field v(x) one can associate a differential operator on smooth functions

v:C(M)—-C*(M), frof

v flz) = vi(z) agg(;)' (1.3.12)
Due to the formula
flz+to(x)) — f(z) =tv f(z) + Ot?) (1.3.13)

the operator (1.3.12) coincides with the derivative of the function f along the vector v(z).

Theorem 1.3.7 For any smooth vector field v(x) the operator (1.3.12) posseses the following
properties:

e linearity v (af+fg) =avf+ pvg, f,geC®(M), a, fER
(1.3.14)
e Leibnitz identity v (fg) = (vf) g+ fvg.

Conversely, any operator satisfying these two properties coincides with the derivative along a
smooth vector field.

Proof: The first part of the theorem follows from an easy computation. Let us now prove the
converse statement. We will begin with the case M = R"™. Let f — Af be a linear operator
on the space C*°(R") satisfying Leibnitz identity. Define functions

vi(z) = Ax', i=1,...,n (1.3.15)



and consider the linear differential operator

A =(z) a?ci'
By construction }
Af =Af (1.3.16)

for any linear function '
f(x) =ax" +0b.

Applying Leibnitz identity one proves (1.3.16) for any polynomial function f(z). Since any
smooth function can be approximated by polynomials the equallity (1.3.16) holds true for
any smooth function f.

Example 1.3.8 Given a system of local coordinates (zt,...,x™) on an open domain U C M,
one defines n = dim M smooth vector fields on U

0 0

@7..-’@ (1-3.17)

given by unit tangent vectors of the coordinate lines. Clearly these vector fields form a basis
in T, M at every point x € U. Any vector field v(x) is represented as a linear combination of
the basic vector fields

v(x) = vl(a:)ail +-F v”(a:)égn (1.3.18)

The basis does depend on the choice of local coordinates.

Exercise 1.3.9 A function f € C*°(M) is called first integral of a vector field v if
vf =0. (1.3.19)

Prove that any first integral takes constant values on integral curves of the vector field. Prove
that the vector field v is tangent to the level surface of any first integral of this vector field.

The identification between vector fields and first order linear differential operators allows
us to introduce an important operation of Lie bracket of two vector fields. The definition is
based on the following

Lemma 1.3.10 The commutator [A, B] := AB — B A of two first order linear differential
operators

0 0
oxt’ oxI
is again a first order linear differential operator given by the formula

wk (x ; o (x
[A,B] = (vl(a:)aax(l) - wl(az)a&; )> aik

A =i(x)

B = w/(x)

(1.3.20)
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Proof: For an arbitrary smooth function f = f(z) one has

, . x ; w’ (z x ’ ’ “fle
ABf = vz(ﬂﬂ)% <w] (x)%) B Uz(x)(aajx(’ﬂ)ag;c]) (@’ (:E)gx{(;xg

Since the second derivative 92 f /0x'0x7 of a smooth function f is symmetric in 4, j, one has

20 (s _ , 27 (0
o' (z)w! (z) gx{(‘g:cz = w'(z)v! (x) gajﬁ(xz .

Thus , .
owl (x) oVl (z)\ Of(x)

4,817 = (o) 25 1 - i) 250 ) 2715,

O

Definition 1.3.11 The Lie bracket! of two vector fields v and w is the vector field [v,w]
with the components

. k=1,...,n. (1.3.21)

Independence of the above definition from the choice of local coordinates easily follows
from Theorem 1.3.7 and Lemma 1.3.10.

Example 1.3.12 The basic vector fields (1.3.17) commute pairwise

9 90
ozt Oxd

]:Q i,j=1,...,n.

Example 1.3.13 The commutator of two linear vector fields

on a Euclidean space R™, where A, B € Mat(n,R) is again a linear vector field
[v,w|(z) = —[A, Blz. (1.3.22)

Here
[A,B] = AB — BA

is the matrixz commutator.

The commutator of vector fields is a bilinear antisymmetric operation

[au + Bo, w] = afu, w] + Blv,w],  [u,av+ Bw] = alu,v] + Blu, w]
[v,u] = —[u,v] (1.3.23)
u, v, w € Vect(M), «,€R.

! Also often called commutator

18



Lemma 1.3.14 For any three vector fields u, v, w the Jacobi identity holds true

[[w, v], w] + [[w, u],v] + [[v, w],u] = 0. (1.3.24)

Proof: By definition the action of the double commutator on a smooth function f is equal
to

[[u, o], w]f = [u, v](wf) = w([u, v]f) = ulv(wf)) = v(u(wf)) = wlu(f)) + wlv(wf)).

Adding to this expression two more terms

w(u(vf))—u(w(vf))—v(w(uf))+to(u(wf)) and v(w(uf))-w(uf))-u(o(wf))+u(w(vf))

obtained by cyclic permutations of u, v, w one arrives at the proof of the Jacobi identity.
UJ

Definition 1.3.15 A linear space equipped with an antisymmetric bilinear operation satisfy-
ing Jacobi identity (1.3.24) is called Lie algebra.

We obtain a structure of Lie algebra on the space of smooth vector fields Vect(M).

Exercise 1.3.16 Let M be a submanifold in a manifold N. Prove that vector fields on N
tangent to M form a Lie subalgebra in Vect(N).

Exercise 1.3.17 Prove that linear vector fields va(x) = Ax (see (1.3.8)) form a Lie subal-
gebra in Vect(R™). Prove that the map

UAH—A

establishes an isomorphism of this Lie subalgebra with the Lie algebra of matrices with respect
to the matriz commutator [A, B] = AB — BA.

We will now show that pairwise commuting vector fields on a manifold define an action
of an abelian group.

Lemma 1.3.18 Given two vector fields v, w on a manifold M, consider two systems of

ODEs
dx dx

a = ’U(I‘), E =
The common solution x(t, s) to these two systems with an arbitrary initial data x(0,0) = z¢ €
M exists for sufficiently small |t|, |s| iff the vector fields commute,

w(z). (1.3.25)

[v,w] = 0.
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Proof: By definition the common solution must satisfy

ox(t,s) ox(t,s)
Tan v(x(t,s)), 55 w (z(t, s)) .

Computing the mixed derivative in two different ways one obtains

O?ak(t,s) gamk(t, s)  OvF(a(t,s)) _ ovF (z(t,s)) 0x'(t, s) _ ok (z(t, s))

otds ot os ot GI% En oY (x(t,s))
and 2 k( ) k( ) k( (t,5))
0°x"(t,s) 0 0x"(t,s) B M i
st os o T gw V@)

Due to the symmetry of mixed derivatives in ¢ <> s one has

vF(x(t, s 4 wF(z(t.s)) .
wwqx(u 5)) - wv%(x(t, $)) = 0.

Setting t = s = 0 one concludes that
[v, w]|z, = 0.

Since the point zg € M is arbitrary it follows vanishing of the Lie bracket [v, w].

Let us prove the converse statement. First, if the initial point x( is a stationary point for
both of the vector field, i.e., v(zg) = w(zp) = 0 then the common solution to (1.3.25) has the
form x(t,s) = xg. Consider now the case where, say, the vector field w does not vanish at
xo. In that case one can do a local change of coordinates on a neighborhood of xy such that
the vector field w becomes a shift along one of coordinates. Let us use the same notations
for the new system of coordinates, such that

0

w(z) = FE

Vanishing of the Lie bracket [v,w] = 0 then implies that the vector field v does not depend
on z'

v:v(:vz,...,ac”).
For sufficiently small |¢t| denote Z(t) the solution to the system dz/dt = v(Z) with the initial
data (0) = zg. Define vector valued function z(t,s) = (z'(t,s),...,z"(t,s)) by the formula

zi(t,s) =zt (t) +s, z'(t,s)=z'(t) for i>2.

The function satisfies the first equation

0 0

5%t 5) = 5.a() = v (2(1)) = v ((t,))

as the right hand side does not depend on the first coordinate. It does obviously satisfy also
the second equation '
0z'(t, s)
0s
It satisfies the initial condition x(0,0) = . |

=46] =w'".
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Exercise 1.3.19 Let v, w be two vector fields on a manifold M. Denote
g:M—->M, hs:M—>M

the one-parameter group of diffeomorphisms generated by these vector fields. Prove that the
diffeomorphisms g; and hs commute for all sufficiently small t, s € R iff the vector fields
commute:

gtohs =hgog < [v,w] =0.

Exercise 1.3.20 Prove the following version of Lemma 1.3.18 for systems of non-autonomous
ODEs: two systems of the form

0 0

8—? =(t, s, x), a—z =w(t,s,x), zeM (1.3.26)
admit, for sufficiently small |t|, |s| a (unique) common solution x = x(t,s) with an arbitrary
initial data x(0,0) = xg € M iff the (t, s)-dependent vector fields v, w satisfy

ov Ow

5~ B = [, w]. (1.3.27)

Exercise 1.3.21 For the particular case of a pair of systems of linear ODFEs

Ox Ox

Z_ A i 1.3.2
5 T, 5 x (1.3.28)
A= A(t,s), B=B(t,s) aresmooth functions with values in GL(n,R)

the conditions of compatibility read

0A OB
5s ~ o TABI=0 (1.3.29)

(the so-called zero curvature equations).

Let us now consider the covector fields on smooth manifolds, i.e., a covector w(z) € Ty M
defined at any point x € M smoothly depending on the point. At the points of any coordinate
chart (U, (x!,...,2™)) on M one has n covectors

dat, da?,...  da" € T/M, zeUcCM (1.3.30)

defined as differentials of the coordinate functions. The values of these covectors on the basic
vectors can be easily computed from the definition of differential:

<dmi, a‘;) =l (1.3.31)
So, at every point x € U the covectors dx', dz?,...,dx"™ define a basis in T M dual to the
basis

o 0 0

Oz’ 9z’ Oam
in the tangent space T, M. If (wi(x),...,wy(z)) are the components of the covector w(z) in
the coordinates (x!,...,2™) then the decomposition of the covector with respect to the basis
(1.3.30) reads

w = wy(z)dzt + wo(z)dz? + - - - 4 wp(z)dz" = wi(x)dz’. (1.3.32)

Such expressions are called differential 1-forms.
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Example 1.3.22 A 1-form on the line is an expression w = f(x)dx. It can be integrated

over any segment of the line
b b
/ w= / f(z)dz. (1.3.33)

More generally for any smooth curve in the manifold M

x=ux(t), a<t<b

1.4 Smooth functions on manifolds, partitions of unity.

One of the main structures associated with a smooth manifold M is the space C*(M) of
smooth functions on M. This is a linear space with respect to obvious operations of sum of
functions and multiplication of functions by real constants. Moreover, it is an algebra, i.e.,
the product of functions satisfies the properties

f(gh) = (fg)h Y f, g, h € C®(M) (associativity)
(af+pBglh=afh+pBgh, Vf g heC*M), Va, BeR.
Clearly this algebra is commutative
9f =Tfg
and has a unity f = 1.

Example 1.4.1 For M = R" the algebra C*°(R™) coincides with the algebra of smooth func-
tions of n variables. For the case M = D C R™ of an open domain in Fuclidean space the
space C*(R™) coincides with the algebra of smooth functions of n variables defined on D.

Example 1.4.2 The space of smooth 2m-periodic functions

f(x +2m) = f(x)

can be identified with functions on the circle C*°(S'). In a similar way smooth functions on
the n-dimensional torus T™ = S' x --- x S1 (n factors) can be realized by smooth functions
of n variables 2m-periodic in each variable

flxy + 2mmy, x0 4+ 2wma, ..., Xy + 27my,) = f(x1,22,...,Ty), M1, M2, ..., my, € Z".

Example 1.4.3 Smooth functions on the projective space RP™ can be identified with smooth
homogeneous functions on R 1\ 0

fhx) = f(z) VAFO.

One can also define a structure of a topological space on the space of smooth functions.
Roughly speaking the convergence of a sequence of smooth functions in C*°(M) is defined
as the uniform convergence on compact subsets in M of the functions together with their
partial derivatives of all orders. The operations defined above give continuous maps of the

topological vector spaces
C®(M) x C>*(M) — C™(M).

22



We will not enter into details of these constructions here (they require to use a Riemannian
metric on M that will be defined later).

A smooth map of manifolds f: M — N induces the pullback homomorphism of algebras
of smooth functions
ff:C®(N) — C™®(M) (1.4.1)
C*®(N)>grrgofelC™®(M).

In particular for every coordinate chart (U, ) on M the pullback induced by the inclusion
U < M together with the ¢! map induces a restriction homomorphism

Co(M) — C®(p(U)). (1.4.2)

Restricting a smooth function from an n-dimensional manifold M to a coordinate chart
one obtains a smooth function of n variables. An important point of the theory of smooth
manifolds is the possibility to extend to the entire manifold the functions defined locally. To
this end one has to construct a sufficiently rich list of C*°-smooth functions.

Let us give a list of useful examples of such C*°-smooth functions.

1) The function

q(z) = { 6_0{2’ izg (1.4.3)
10y o ———
0.6;
0.4;
0.2;
2 2 4 6 8 10

Fig. 10. Graph of the function (1.4.3)

is C*-smooth. All its derivatives vanish at the origin.

2) The C*°-smooth function

1
e == x| <1
r(z) = ’ 1.4.4
(@) { R (1.44)
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Fig. 11. Graph of the function (1.4.4)

is positive on (—1,1) and vanishes outside this interval. All its derivatives vanish at
r = *£1.

3) The C*°-smooth monotone function
(1.4.5)

is equal to 0 for x < —1, to 1 for z > 1, and smoothly interpolates between 0 and 1 in the

interval (—1,1).
10}

08}
06/
04l

/o2t

Fig. 12. Graph of the function (1.4.5)

(:L’l + x9 — 21:)
b
Tro — 1

for arbitrary x; < x2 is equal to 1 for x < 1, to 0 for x > x2 and smoothly interpolates
between 1 and 0 on the interval (z1,x2).

The function
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4) For two positive numbers 0 < r < R the function

Pm(””(W)’ v=(a "), ol =V@ED2 @) (146)

is a C*°-smooth function of n variables satisfying

Pon(e) =0, |o] 2 R
Por(z)=1, |z|<r (1.4.7)
0< P pr(x)<l, r<|z|]<R.

Fig. 13. The function (1.4.7) forn=2,r=1, R=2

Using the above constructions we can easily prove the possibility of extension of locally
defined smooth functions onto entire manifold.

Theorem 1.4.4 Let (U, ) be a coordinate chart on a smooth manifold M. Then, for an
arbitrary smooth function f € C*°(U) defined on the chart U and an arbitrary point xo € U
there exists a smooth function f € C>(M) such that

~

e f=f on some neighborhood of the point z

~

e f=0 on M\U.

Proof: There exists a positive number e such that the open ball
Be(zo) ={z € U||x — x| < €}
of the radius € centered at zy belongs to U. The C*°-function

A f@Py.a—0), @€ Buao)
fla) =

0, x € M\ Be(z)
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coincides with f(z) on the ball Bg(zo); it is equal to zero on the complement to the ball
BE(.%'()). (|

Many properties of smooth functions and smooth maps of manifolds can be established
with the help of a gadget called partition of unity.

Let M be a smooth manifold with an atlas of charts (Uy, ¢a)acr that is locally finite, i.e.,
it is such that any point x € M possesses an open neighborhood intersecting with only finite
number of charts. For example, on any compact manifold one can choose an atlas with a
finite number of charts.

Definition 1.4.5 A partition of unity on the manifold M with a locally finite atlas is a set
of smooth functions (po())acr on M such that

o pu(x)=0 for ze M\U,
o 0<pyu(x) <1 Vael

. Zpa(az) =1. (1.4.8)

acl

Note that the sum in (1.4.8) is finite for any x € M.

Theorem 1.4.6 Let M be a compact manifold with an atlas (Uy, pa)acr- Then there exists
a refinement of this atlas and a partition of unity associated with this refinement.

Proof: For any point x € U, C M there exists a positive number € such that the open ball
Be(z) belongs to U,. In this way one obtains a covering of M with open subsets. The open

balls of radius p = § still cover M. Due to compactness one can choose a finite subcovering
of M by open balls B, (zx), k = 1,2,..., K. Here we denote z1, ..., zx the centres of the
balls. By construction every ball By, (21) is a subset of a chart U, (k) for some a(k). So the
balls By, (21), ..., Bap, (2K) give a refinement of the original atlas. Define functions
Py 204 (r — 21), z € By, (2k)
pr(x) = (1.4.9)
0, x € M\ Bap, (1)
and put
pk(x):pki(w) k=1,...,K.

K ~ 9y
> k=1 Dk(7)
These functions provide us with a partition of unity associated with the atlas B, (21), ...,
B 2pK (ZK ) 0

Exercise 1.4.7 Develop a similar construction replacing balls with cubes.

Remark 1.4.8 The assumption of compactness of the manifold can be relaxed. Namely, it
suffices to assume paracompactness of M. By definition the manifold M is paracompact if
for any covering of M with open subsets there exists a locally finite refinement.
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Exercise 1.4.9 Prove existence of a partition of unity for any paracompact manifold.

Let us now consider the case of an arbitrary paracompact manifold. Without loss of
generality one may assume existence of a partition of unity p,(z) associated with the atlas
(U, 9a)aci- Every local coordinate x!, can be smoothly extended onto M by using the
construction of the Theorem 1.4.4. Define a vector field

; 0
va(x) = vy ( )8—%, x € Uy,
vi(z) = Az', i=1,...,n

)

vo(x) =0 for z€ M\ U,.

As above one proves that the actions of the vector field and the operator A on smooth
vanishing outside U, coincide. Put

V= Zpa(x)va(a:)

This vector field coincides with the operator A everywhere on M. O

1.5 Immersions and submersions

Using the constructions developed in the proof of Theorem 1.4.6 one can prove that any
compact manifold can be realized as a multidimensional surface in a Euclidean space of
sufficiently large dimension. Before doing this let us recall some elementary constructions
from linear algebra. Let A : V — W be a linear map of finite dimensional vector spaces.
There are two natural subspaces: the kernel of A

{reV]Az =0} =KerACV

and the image of A
ImA:=AV)CW.

Dimension of the image is called the rank of the linear map
rk A = dim Im A. (1.5.1)

Choosing bases in the spaces V and W one can represent A by a matrix. Then the rank is
equal to the number of linearly independent columns of the matrix, or, equivalently, to the
number of linearly independent rows. The dimension of the kernel can be computed by the
formula

dim Ker A = dim V —rk A. (1.5.2)

The linear map is called injective if Ker A = 0 and surjective if InA = W. A necessary
condition for injectivity is the inequality dim V' < dim W while for surjectivity it is necessary
to have dimV > dim W.

Exercise 1.5.1 Define the cokernel of the linear map as the quotient

Coker A = W/Im A.
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The index of a linear map is defined as the difference
ind A = dim Ker A — dim Coker A. (1.5.3)
Prove that the index does not depend on A and is given by the formula

indA =dimV — dim W.
We will now formulate the following

Definition 1.5.2 A smooth map f : M — N of two manifolds is called immersion if the
differential
f* : TxM — Tf(x)N (1.5.4)

is an injective linear map at any point x € M. An immersion is called embedding if f(x1) #
f(z2) for any pair of distinct points x1, xo € M.

If the manifolds M and N have dimensions m and n respectively, and the smooth map f
in local coordinates is represented in the form (1.2.14), then the map f is an immersion iff
the rank of the Jacobi matrix (1.2.16) of the map is equal to m at every point x € M. In
particular for m = 1 and m = 2 one reproduces the definitions of regularity of a curve or a
surface in a Euclidean space. In general one must necessarily have m < n for an immersion.

The images of embeddings of smooth manifolds define submanifolds>. They generalize
the curves and surfaces in a parametric representation studied in the first half of the course.
As it follows from the Theorem 1.6.10 any compact manifold can be realized as a smooth
submanifold in the Euclidean space of a sufficiently large dimension.

Example 1.5.3 A smooth map v : R — R" is a vector function
y(t) = (2 (1), ..., 2" (1)) .
Such a map is an immersion iff the velocity vector

y(t) = (#(t),...,a"(t)) # 0.

Example 1.5.4 Consider a map of a domain D in R? to the three-dimensional Euclidean
space. It is represented by a vector function of two variables

r:D =R r(u,v) = (z(u,v),y(u,v), 2(u,v)). (1.5.5)

Such a map is an immersion iff the rank of the Jacobi matriz

Ty Ty
Yu Yo
Zu  Rv

20ne has to add more assumptions if the embedded manifold is non compact. Namely, one says that a
smooth map f : M — N is proper of the preimage f~*(K) of any compact subset X C N is a compact subset
in M. By definition the image f(M) of an embedding is called a submanifold in N if the map f is proper.
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equals two (here and below the subscripts stand for partial derivatives). Equivalently, consider
the vectors
ry, Ty.

The above condition about the rank of the Jacobi matrix means that these two vectors are
linearly independent at every point of the surface. Clearly they are tangent to the surface,
so they span the tangent plane T, ,yM at every point (u,v) of the two-dimensional manifold
M =r(D) (here we add an assumption that the map (1.5.5) is an embedding). Observe that
the vector

N=r,Xxr,#0 (1.5.6)

at every point of the surface. This vector is orthogonal to the surface (i.e., it is orthogonal
to the tangent plane T(, ,)M at every point (u,v) € M ).

In the particular case of a graph of a smooth function

Z:f(x7y)

the vector function can be written in the form

r=(z,y, f(z,y)).

So the basis of tangent vectors reads

rz:(laoaf:v)v ry:(oal»fy)

and the normal vector (1.5.6) has the form
N= (_fl": _fyv 1) .

Exercise 1.5.5 Let r(u,v) be an embedding of a domain D C R? into the three-dimensional
Euclidean space. Denote M C R® the image of this embedding. Assume that the third
component of the normal vector (1.5.6) does not vanish at the point (ug,vy). Prove that M
locally, near the point (ug,vo), can be represented as a graph of a smooth function z = f(x,y).

Submanifolds can also be defined by systems of equations. To be more precise let us first
give the following important auxiliary definitions and statements about smooth maps.

Definition 1.5.6 1) We say that a point x € M is a regular point of a smooth map f if the
differential
df(l’) oM — Tf(x)N

is surjective. In the opposite case the point x € M is critical for the smooth map.

2) A point y € N is called a regular value if every point in the preimage f~'(y) is a
regular one. In the opposite case the point y € N s called a critical value

Remark 1.5.7 In case a smooth map f: M — N is reqular at every point © € M they say
that f is a submersion.
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Example 1.5.8 A point xg is critical for a smooth function f : M — R iff the differential
df wvanishes at the point. In other words, all partial derivatives vanish at x = xg

8f(ﬂﬂo)_o Of(wo)
ozt 7T Qgm

In particular the points of mazximum or minimum are critical points of the function.

More generally, if the manifolds M and N have dimensions m and n respectively, and the
smooth map f in local coordinates is represented in the form (1.2.14), then the point zg € M
is regular for the map f iff the rank of the Jacobi matrix (1.2.16) of the map is equal to n
at the point zg. Recall that this can happen only if m > n.

Example 1.5.9 Let T M be the total space of the tangent bundle of a n-dimensional manifold
M. The points of TM are pairs (x,v) where x € M and v € T, M. This is a smooth manifold
of dimension 2n. The map TM — M given by projection

(x,v) > x

18 a submersion.

Example 1.5.10 The map S™ — RP"™ assigning to a point x of the unit sphere a pair £x
of opposite points is an immersion and submersion.

Theorem 1.5.11 Let f : M — N be a smooth map having a regular value yo € f(M). Then
the preimage

Fi= " yo) = {z € M| f(x) = p} (15.7)

is a smooth submanifold in M of the dimension

dim F' = dim M — dim N. (1.5.8)

They also say that the submanifold F' has codimension =dim N,

codim F' := dim M — dim F. (1.5.9)

Proof: At every coordinate chart (U, (z!,...,2™)) on M the points of the preimage F have
to be determined from a system of m equations with n unknowns

yt(zt,.. 2" = g
......... B (1.5.10)
y™(xl, a2 = oy
Here y, ..., yo* are coordinates of the point yo in a coordinate chart (V, (y!,...,4™)) on N.

We want to apply the implicit function theorem to this system.

At every point z € F of the preimage at least one of the m X m minors of the Jacobi
matrix

oyt ozt ... Oy'/ox"
oy™/oxt ... Oy™/Ox™
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does not vanish. For every m-tuple of indices 1 < j; < ja < -+ < jm < n denote

Ujrjo..im = {2 €UNF | Jj jy_j (x) # 0}
(1.5.11)
oyt /oxr ... Oyt/oxIm
Jjrjo.jm (@) = det .
oy™ /oIt ... Oy™/OxIm
Every set Uj,j,...j, is an open domain in F’; the collection of all these domains covers F'. Let

us construct a coordinate chart on a neighborhood of a point zg € Uj,j,...;,,- Represent the
set of indices {1,2,...,n} as a disjoint union of two subsets

{1, 2,... ,n} = {jl,jg, ce ,jm} (] {k‘l, ko, ... ,kn,m}. (1512)
According to the implicit function theorem there exists an open neighborhood of the point
20 € Ujija..jm (%0) C Ujijo..cjim

where the solutions to the system (1.5.10) admit a representation by smooth functions

i = gh (:L'kl, ces ,xk“*m)
......... (1.5.13)
pim = gim (xkl, e ,xk”*m)
such that
g’ (3:’51, . ,mlg"’m> = :cgs, s=1,....,m (1.5.14)
(the coordinates of the point xg). The functions g’t, ..., g/m are determined by the sys-

tem (1.5.10) and the normalization condition (1.5.14) uniquely; their partial derivatives are

determined from the linear system
Loyt Agls Oy

— OzJs Ozh Ok

=0, i=1,....,m, t=1,....,n—m. (1.5.15)

The determinant of the coefficient matrix of this linear system coincides with Jj, j,. j,. (),
z € Uj jo...im (20) C Ujjo..jm- S0 this determinant does not vanish. Therefore the variables

xk .,xkn—m) define coordinates on the chart Uj j, ;.. (z0). We leave as an exercise to
verify that the transition functions from the chart Uj,j,...j,, (z0) to another one Uy (%)
and back are smooth on the intersection of charts. O

Example 1.5.12 The level surface of a smooth function f : M — R is a submanifold F :=
{reM|f(x) =0} C M of codimension 1 iff

n

D

i=1

2

of (z) £0 VYzeF (1.5.16)

orl

of (z)
ox™

2
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Exercise 1.5.13 Let 0 be a regular value of a smooth function f(x,y, z) defined on a domain
B C R3. Denote

M ={(z,y,2) € B| f(z,y,2) = 0}

the zero level surface of this function. According to Theorem 1.5.11 M 1is a two-dimensional
submanifold in R3 (i.e., a surface). Prove that the tangent plane to the surface at a point
(z0, Y0, 20) € M is determined by the linear equation

T(xo,yo,zo)M = {(X7 Ya Z) € Rg | fx($0a Yo, ZO)X + fy(an Yo, ZO)Y + fz(:EanOa ZO)Z = O}

That is, the gradient of f is orthogonal to the level surface f = 0.

Exercise 1.5.14 Prove that the special linear group

SL(n) C GL(n)

SL(TL) = {X = (x;)lgi’jgn‘ det X = 1} (1.5.17)
is a smooth submanifold of dimension n?>—1. Prove that the tangent space to this submanifold
at the point X = 1 (the identity matriz) can be identified with the linear space of all n X n

matrices of trace zero
ThWSL(n) ={Y € Mat(n,R)|trY = 0}. (1.5.18)

Prove that SL(n) is a Lie group in the sense of the Definition 1.1.7.

Exercise 1.5.15 Prove that orthogonal group

O(n) C GL(n)

O(n) = {X = (2%)1<i,j<nl XTX =1} (1.5.19)
n(n—1)

is a smooth submanifold of dimension ——=—. Prove that the tangent space to this submanifold
at the point X = 1 can be identified with the linear space of all antisymmetric matrices

T10(n) = {Y € Mat(n,R) | YT +Y =0}. (1.5.20)

Prove that this is a Lie group in the sense of the Definition 1.1.7. Prove similar statements
for the subgroup
SO(n) = O(n) N SL(n).

1.6 Sard theorem. Embeddings of compact manifolds into Euclidean spaces.
Transversality.

The following deep result is used quite often in differential topology.

Theorem 1.6.1 (Sard Theorem) The set f(C) C N of critical values of a smooth map
f: M — N of two manifolds is a subset of measure zero in N.
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By definition a subset A of a n-dimensional euclidean space R™ has measure zero if, for
any positive € there exists an at most countable set of n-dimensional cubes covering A of the
total volume less than e. The subset B of an n-dimensional manifold N has measure zero if,
for any chart U C N, ¢ : U — R"™ the image ¢ (BN U) C R™ has measure zero in R™.

Exercise 1.6.2 Proof that the definition of a subset of measure zero does not depend on the
choice of an atlas on a smooth manifold.

In the proof of Sard theorem we will use the following statement that can be derived from
Fubini theorem.

Proposition 1.6.3 Let A be a subset in R® = R x R"! such that, for any t € R the
intersection Ay of A with the (n — 1)-dimensional hyperplane {t} x R*~! has measure zero in
R""1. Then A has measure zero in R™.

Proof of the Sard theorem. It suffices to prove the local statement: for a given smooth
map f : U — R™ of an open subset U C R" the measure of the subset of critical values
f(C) C R™ is zero. Let us use induction in m. For m = 0, n = 0 there is nothing to prove.
So, let us assume that both dimensions m and n are positive. Introduce subsets C,, C U as
follows

Cp = {x € U | all partial derivatives of f of order < p vanish at the point x}.

Clearly
C,cC.

Moreover, one has a filtration
.CcCycCicC (1.6.1)

The first step will be in proving
Lemma 1.6.4 The measure of f(C\ C1) C R™ is equal to zero.

Proof: Observe that, for n = 1 the filtration is trivial, C; = C. So, let us assume n > 2. Let
xg € C'\ Cy. Thus, at least one of the first order partial derivatives of the map

f(x) = (fl(x),...,f"(w)) , T = (:Ul,...,:vm) (1.6.2)

is different from zero at the point xy while the rank of the m x n Jacobi matrix

ox? 1<k<n, 1<i<m

is less than n. Without loss of generality we may assume that

df! (o)

G 0. (1.6.3)
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Define a map h : U — R™ by the formula

Due to assumption (1.6.3) it is a local diffeomorphism of some neighborhood V' (z¢) onto an
open neighborhood V} of the point h(zp). Consider the map

g=foh l:Vj =R
The set Cy of critical points of this map coincides with h (V(z¢) N C). Clearly

gt B

1
gl 1 ag
T

T Oxt

=0 for i>2. (1.6.4)

Let us fix the restriction g; of the map g onto the (m — 1)-dimensional hyperplane
zl =t
for a given constant ¢ close to x(l],
g ({t} xRNy = R

Due to (1.6.4) the Jacobi matrix of the map ¢ has the form

dg* 1 0

- == k .

oxJ * %
So, z = (t,2?,...,2™) is a critical point of g iff the point {t} x (x2,...,2™) is a critical
point of g;. By induction the measure of the set of critical values of g; has measure zero.

Applying Proposition 1.6.3 we conclude that the set of critical values of g has measure zero.
The lemma is proved. a

At the next step we deal with the complement C), \ Cp4; for p > 1.
Lemma 1.6.5 For p > 1 the measure of the set f (Cp\ Cpy1) C R™ is zero.

Proof: Let xg € Cp \ Cpr1. That is, all partial derivatives of the functions f*(z) (see eq.
(1.6.2)) of order < ¢ vanish at this point but, for some indices k, i1, ..., ip4+1 the partial
derivative ok
P
,;("TQ) 7§ 0
ozx™ ... Jxtr+l

Without loss of generality we may assume that i; = 1. Denote

o ()
w(z) = Ozt ... Oxir+1’
One has Du(zy)
w(zg) =0, 1:;;0 # 0.
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Like in the proof of Lemma 1.6.4 let us consider the map h : U — R™
h(z) = (w(:c),azZ, Sa™).

It is a diffeomorphism of a neighborhood V(xg) C U of the point 9 € Cp \ Cpy1 onto an
open domain Vj C R™. Recall that, at the points in C), the function w(x) vanishes. So, the
image h (Cp, NV (z0)) belongs to the hyperplane {0} x R™~L.

Like in the proof of Lemma 1.6.4 consider the superposition
g=foh l:Vy—R"
Denote g the restriction of g onto the hyperplane,
g: ({0} xR™ )Ny = R

Any point of the set h(Cp, N V(zg) is critical for §g. By induction the measure of image
of the set of critical points of g belonging to Vj is zero. Thus, the measure of the set
goh(Cp,nVy) = f(CpnVy) C R™is zero. Covering C), \ Cpy1 with a countable set of such
domains Vy we complete the proof of Lemma. O

The last step in the proof of the Sard theorem is given by
Lemma 1.6.6 For sufficiently large p the measure of f(Cp) € R™ is zero.

Proof: Let us cover the set C), with a countable set of cubes of the size § (so, the volume
of every cube equals ™). Let I™ be any of such cubes. Let us prove that the measure of
f(CpNI™) is zero. For any point z € C, N I™ and any vector Az such that x + Ax € I,,, we
have

flz+ Az) = f(z) + R(z, Az)

where the truncation error satisfies the estimate

|R(z, Az)|| < a||Az|PT? (1.6.5)

as it readily follows from the Taylor formula. Here « is a constant depending on f and on
the cube I"™. Let us divide the cube I into 7™ smaller cubes of size §/r, r € Z~(. Denote
I§" a cube containing the point z. Every point in Ij® has the form = + Az where the norm
of the vector Ax satisfies inequality

5
[Az]| < v/m o
Using the estimate (1.6.5) we conclude that the image f(/7") belongs to a cube of size %

where
c =2 (\/ﬁé)pﬂ.

Hence the image f(C, N I™) belongs to the union of " cubes of the total volume less or
equal than

m c " cnrmfn(erl)
) T :
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If p is such that
m
p+1>—
n

than the total volume tends to zero when r — oco. This completes the proof of the Lemma
and also of the Sard theorem. O

Corollary 1.6.7 There always exists a reqular value y € N of a smooth map f: M — N.
A particular case of this corollary is used often:

Corollary 1.6.8 Let f : M — N be a smooth map of manifolds of dimensions m and n
respectively. If m < n then there exists a point y € N that does not belong to the image

f(M).

Proof: For m < n the differential df(z) cannot be surjective at any point x € M. So any
point in f(M) is a critical value. Therefore the image has measure zero and thus cannot
cover the entire V. O

Another corollary from Sard theorem says that

Corollary 1.6.9 Given a point yo € N, then the set of smooth maps M — N having yo as
a reqular value is dense in the space of all smooth maps C*°(M,N).

Proof: 'We have to prove that, for any smooth map f : M — N there exists a deformed map
f such that yo € N is a regular value for f Moreover, the deformed map f can be chosen
arbitrarily close to f. Indeed, if yg is a critical value of f then, due to Sard theorem, for an
arbitrary neighborhood U, yg € U C N there exists a point gg € U being a regular value
for f. Without loss of generality one may assume that U is diffeomorphic to the standard
n-dimensional ball B". Denote ¢ : U — B" the diffeomorphism. Put zo = ¢ (y0), 20 = ¢(%0)-
It is easy to construct a diffeomorphism h : B™ — B" identical near the boundary 9 B"
moving Zy to zp and, moreover, satisfying the inequality

|h(z) — z|| < e=|lz0 — Z0|| for any =€ B". (1.6.6)

Denote H = ¢~ ! o h o ¢ the corresponding diffeomorphism of U to itself. Extend H to a
diffeomorphism N — N by the identity map outside U. Then for the smooth map

f=Hof

the point yo will be regular as the preimage f ~1(yo) coincides with f~!(7p). The map fis
close to f because of (1.6.6). O

Clearly the set of smooth maps from M to N having a given point yp € N as a regular
value is open. The Corollary says that this subset is dense in the space of all smooth maps
C>®(M,N).

They often represent this idea saying that for a generic smooth map f: M — N a given
point yg € N is a regular value.

We will now use Sard theorem in the proof of the following
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Theorem 1.6.10 (Whitney) Given a compact n-dimensional manifold M there exists an
mmersion

M — R*"

and an embedding
[ M — R

Proof: Let us first construct an embedding of M into a Euclidean space of sufficiently large
dimension N. Consider a covering of the manifold M by open balls By, (21), ... By (2K)
constructed in the proof of Theorem 1.4.6. For every k£ = 1,..., K we have constructed a
smooth function pg(z) on M such that

pr(z) =1 for x € B, (2)

pr(z) =0 for xe€ M\ Bap, (21)
0< ﬁk(.T) <1 for z¢€ BQPk (Zk) \Bpk (Zk)

(see eq. (1.4.9)). Let n be the dimension of the manifold M. Define a smooth map

fr: M — RV
fr(@) = (2ppe(), . .., afpr(x), Pr(x)) .

Here (z},...,z}) are the local coordinates near the point z. This map is smooth; it vanishes
outside the ball By, (z). Restricting this map onto the ball B,, (z;) one obtains

fr(z) = (:c,lf, coxp, 1), (1.6.7)

Hence the map fj, is an embedding when restricted onto the ball B,, (z).

Consider now the map

fiM—ROTDE
fla) = (fi(@),- - [ (@) (1.6.8)

Due to (1.6.7) the k-th component of this map is an embedding on B,, (z;). Hence the entire
map (1.6.8) is an immersion. Let us prove that this map is also an embedding. Indeed, if a,
b are two distinct points in B, (2;) then fi(a) # fir(b). If a € B,, (21) and b & B, (1) then
the last component of the vector fi(a) is equal to pg(a) = 1 and the last component of the
vector fi(b) is equal to pi(b) < 1. Therefore fi(a) # fi(b).

Let us now construct an immersion into R?®. We may assume, due to the first part of
the proof, that M is a submanifold in R for some large N. Or goal is to reduce N. Let us
apply an orthogonal projection 7, onto the hypeplane RV~1 orthogonal to a line /. Which
tangent vectors to M go to zero under the induced map dny? They are those tangent vectors
v € T, M at some x € M that are parallel to £ in RY.

Call ¢ a bad direction of the 1st kind if there exists a pair (z,v), z € M, 0 # v € T, M
such that v || £. Such bad directions can be identified in the following way. Let us introduce
the manifold P(T'M) as the set of classes of equivalence

P(TM)={(x,v) € TM, v#0|v~Av forsome \#0} (1.6.9)
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(the so-called projectivization of the tangent bundle. (We leave as an exercise to prove that
P(TM) is a smooth manifold of dimension 2n — 1.) Consider the map

P(TM) — RPN (z,0) — v (1.6.10)

The bad directions of the first kind are those ¢ in the projective space RPV~! that belong
to the image of this map. According to Corollary 1.6.8, if 2n — 1 < N — 1 then the image of
the map (1.6.10) does not cover the entire projective space RPY~!. That means that there
exists a direction ¢ such that none of the tangent vectors to M is parallel to it. Choosing
such ¢ one obtains the projection m, with never vanishing differential, i.e., an immersion. In
this way, after a finite number of steps one arrives at an immersion of M into R?".

Let us now clarify when the projection 7y is an embedding. One has to exclude the bad
directions of the 1st kind and also of the second kind to be defined as follows. The line £ is
a bad direction of the second kind if there exists a pair of distinct points z, y € M such that
the bisecant T3 is parallel to ¢. Like above consider the map

M x M\ diag — RPN (z,9) — Z7. (1.6.11)

Bad directions of the second kind are in the image of this map. If 2n < N — 1 then the map
(1.6.11) does not cover the entire projective space. Choosing a line ¢ not belonging to the
images of the maps (1.6.9), (1.6.11) one obtains an embedding into R¥~1. The last time it

can be done when N = 2n + 2. Applying the projection one arrives at an embedding into
R2n+1_ 0

Let us now introduce a generalization of the notion of regularity. Let us consider a smooth
map f: M — N and a submanifold P C N.

Definition 1.6.11 We say that the map f : M — N is transversally regular to the sub-
manifold P C N at the point yy € P if, for any x € M such that f(x) = yo the through
map

ToM L5 Ty ()N = Tyy N/ Ty P

is surjective. If the above condition holds true at any point yo € P then the map f is called
transversally regular along P.

We will often use the short form t-regular in order to save space.

For the case of P= one point P = yg € N the notion of t-regularity along P of a map
f: M — N coincides with the assumption that yg is a regular value.

Example 1.6.12 Given a smooth function f(x) of one real variable consider the graph map
F:R—R? F(z)=(z f(z)).

Take the x-axis {y = 0} as the submanifold N C R?. The intersections F(R)N N correspond
to zeroes of the function f(x). Transversal regularity in this case means that all zeroes are
simple

f(xo) =0, f'(zo) #0.
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A generalization of Theorem 1.5.11 is straighforward:

Exercise 1.6.13 Prove the following generalization of the implicit function theorem: given
a smooth map f : M — N transversally regular along P C N, then the full preimage f~1(P)
is a smooth submanifold of M of codimension

codim f~1(P) = codim P.

Clearly the set of all smooth maps f : M — N being t-regular along P C N is open in
C®(M,N). The following statement says that it is dense in the space of all smooth maps (cf.
Corollary 1.6.9).

Theorem 1.6.14 Given a smooth map f: M — N and a submanifold P C N, then there
exists a smooth map g : M — N arbitrarily close to f and t-regular along P.

Proof: Tt suffices to prove the following local version of the theorem assuming that M = U
and N = V are open domains in Euclidean spaces R™ and R™ respectively and P is a
p-dimensional subspace in R"™ of the form

P={(y'....y",0,...,0)}.

The map f is nothing but a n-component vector function of m variables

T = (a:l,...,a:m) — (fl(a;),...,fp(:c),fp“(x),...,f”(x)) )

Transversal regularity of f along P means that for the map from R™ to R"~P

e (P (2),..., fM(2)) (1.6.12)

the point 0 is a regular value. According to Corollary 1.6.9 there exists a map
z (PTH(2),...,9"(2)) (1.6.13)
arbitrarily close to (1.6.12) for which 0 is a regular value. Therefore the map f locally defined
by
zer (fH (@), (@), g7 (@), g (1) (1.6.14)
is t-regular along P.
Let us now explain how to extend globally the deformation (1.6.14) of the map (1.6.12).

Choose a compact K C V construct a smooth function

0 on OV
Y= , 0<p<I.
1 on K

Put B B
F=pf+0-p)f=f+olf—f)

This map coincides with f inside K and with f outside V. So it is regular everywhere as the
difference f — f is small together with its first derivatives. O

39



Example 1.6.15 Let f: M — N is a smooth map transversally reqular along the submani-
fold P C N such that
dim M + dim P < dim N. (1.6.15)

Then
f(M)nP=1.

Indeed, under the assumption (1.6.15) the dimension of T, M is less than the dimension
of the quotient dim 7, N/T, P = dim N — dim P, y € P C N. So the through map

fx
oM — Tf(x)N — Tf(m)N/Tf(x)P

cannot be surjective.

From these arguments along with the Theorem 1.6.14 it readily follows

Corollary 1.6.16 Given a smooth map f: M — N and a submanifold P C N satisfying
the dimension condition (1.6.15). Then there exists a smooth map f : M — N arbitrarily
close to f such that

f(M)nP=0.

In other words, a generic smooth map from M to N is t-regular along a given submanifold
P CN.

Let us consider a particular situation of a pair of submanifolds M, N C @ in an ambient
manifold Q.

Definition 1.6.17 We say that the submanifolds M, N C @) are in general position if, at
any point x € M NN one has
.M+ T,N =T,Q. (1.6.16)

The notation M M N is often used to state that the submanifolds M and N are in general
position.

Observe that the submanifolds are in general position if the embedding map
i M= Q
is t-regular along N or, equivalently, the embedding map
j:N<=Q

is t-regular along M.

Theorem 1.6.18 If the submanifolds M, N C @ are compact then there exist deformed
submanifolds M and N arbitrarily close to M and N respectively such that M and N being
in general position.
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Proof: If the embedding map
i M= Q

is t-regular along N then the submanifolds are in general position. Otherwise there exists
an arbitrarily small deformation ¢ of the embedding map being t-regular along N. If 7 is
sufficiently close to i then i : M — @ is also an embedding. O

Corollary 1.6.19 If the submanifolds are compact and their dimensions satisfy the inequality

dim M + dim N < dim @ (1.6.17)

then there exist submanifolds M and N arbitrarily close to M and N respectively such that
MAN =90.

Proof: The submanifolds in general position of dimensions satisfying (1.6.17) do not intersect.
U

Exercise 1.6.20 Given two compact submanifolds in general position M, N C Q. Prove
that the intersection M N N is a smooth submanifold in M and in N.

Let us consider two other illustrations of the notion of transversal regularity.

Example 1.6.21 A given smooth vector field v(z) on a manifold M can be considered as a
section of the tangent bundle, i.e., as a map

M —TM, zw— (z,v(z)). (1.6.18)

Denote
M,cTM

the image of this map. By My denote the zero section. Intersections M, N My correspond to
the stationary points of the vector field

v(xg) = 0.

Transversality M, h My at a point xg means that the stationary point is nondegenerate

o(z0) =0, det <5“;§j°>) £0. (1.6.19)

Importance of nondegenerate stationary points of a vector field v in the theory of differential
equations is due to the following fact: solutions to a system of differential equations

& =v(x)

near a nondegenerate stationary point can be approximated by solutions to a linear system.
On a compact manifold M a vector field can have only finite number of stationary points
provided all of them are nondegenerate. Number of these stationary points counted with
suitably defined multiplicities is a topological invariant of the manifold (see below).
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Example 1.6.22 To a given smooth function f on a manifold M we associate a section of
the cotangent bundle defined by the differential df

M —T'M, xw— (z,df(x)). (1.6.20)
In natural local coordinates (xl, cex™ P, .. ,pn) € T*M the map (1.6.20) reads
(xl,...,w") — (xl,...,a;", aafx(gf),..., aggg?) .

Denote Ly C T*M the image of the map (1.6.20). Like above denote Ly C T*M the zero
section of the cotangent bundle. The intersection points of Ly with the zero section Lg
correspond to the critical points xog of the function f

0f(z0) _ o 9f(z0) _,
ozl T Qan
Transversality means that xg is a Morse critical point
df (o) _ df(zo) _ & f (o)
o = O e =0, det ( Fo ) #0. (1.6.21)

Thus, transversality Ly M Lo means that f is a Morse function, i.e., the one having only
Morse critical points. On a compact manifold M o Morse function can have only finite number
of critical points. Number of these critical points counted with suitably defined multiplicities
is a topological invariant of the manifold (see below).

Remark 1.6.23 One cannot apply the theorem 1.6.14 in order to prove existence of a Morse
function f arbitrarily close to a given function f € C>®(M). The problem is with a nontrivial
geometrical restriction valid for the image Ly of the map (1.6.20). Namely, for any smooth
function Ly C T*M s a Lagrangian submanifold. That means that the natural symplectic
2-form

n

Q= dp; A da'
i=1

being restricted onto Ly vanishes identically:

Ql, = Zd(
i=1

of L i_
8a:i> A dx —igl 8xi8xjdx ANdx' =0

since o f o
_ J LS J
r0n] — Baioa da? Ndx' = —dx' N\dx’.
Clearly not any n-dimensional submanifold in the total space of the cotangent bundle is
Lagrangian: for example, take the following 2-dimensional submanifold in T*R? = R* =

{(x7y7p7Q) |$, Y, p, qc R}

L={(z,y,p=-y,q=2x)|z, y e R}
Restricting the symplectic form Q = dp A dx 4+ dg A\ dy onto L yields

Q| = —dyANdx+dx ANdy = 2dx Ndy # 0.
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In order to prove density of Morse functions in the space C*°(M) one can use the following
construction that we will explain for the particular case M = R™ leaving the general case as
an ezercise. Let xg € R™ be a critical point of a function f € C°R™ such that

0%f(xz0)\ _

Consider the function

falz) = f(x) — Zaixi
i=1

depending on n parameters ai, ..., a,. Critical points of f, are solutions to the system
Of(x) _ Of(x) _
= A1y -y = Ap.
Oxt oxn

Such a critical point is a Morse one if a is a reqular value of the gradient map R™ — R™

. <3f(w) ﬁf(xo))'

oxl 77 Oz

Applying Sard theorem choose a regular value a (it can be chose arbitrarily close to a = 0).
Then the deformed function f, will be a Morse function.

2 First examples of topological invariants

2.1 Orientation. Topological degree of a smooth map

Definition 2.1.1 An orientation on a smooth manifold M is an atlas (Uy, (zL,...,2%))act
such that the Jacobians of all transition maps are positive

0z
det <w> >0, VYPeU,nUs. (2.1.1)
Oz ) p

Two orientations (Uy, (xL, ..., 2%))aer and (Va, (yé, . ,yg))ﬁej are called equivalent if they

define equivalent smooth structures on M and the Jacobians det (%‘Tg) are all positive on the

intersections Uy N V3.

If an orientation on M exists then the manifold is called orientable. In the opposite case
the manifold M is called non-orientable.

Example 2.1.2 The manifold R"™ has the orientation corresponding to an ordering of the
Euclidean coordinates ', ..., ™. A permutation of the coordinates z°Y), ..., 2 o€ S,
defines an equivalent orientation if o is an even substitution and an opposite orientation if
the substitution o is odd. More generally, given a frame of n linearly independent vectors f1,
ooy fn in R™ one can introduce another chart on R™ considering the coordinates with respect
to the new basis. This chart will define the same orientation on R™ iff the determinant of the
transition matriz

n
A= (aij)lgi,jgn’ fr = Z Aik€;
=1
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18 positive

det A > 0.

In this case one says that the frames ey, ..., e, and f1, ..., fn have coherent orientations.

More generally, on an oriented manifold M one can choose a class of frames in the tangent
space T, M at any point x € M. Namely, we say that a frame ey, ..., ey, is positively oriented
if, for any chart U 3 2 with local coordinates z!, ..., 2™ the orientations of the frames %,

cey ax% and ey, ..., ey, are coherent. Clearly such a definition does not depend on the
choice of the chart. Conversely, an orientation on the manifold can be defined by choosing
an equivalence class of frames in the tangent spaces T, M at any x depending continuously
on the point z.

Example 2.1.3 Let M C R" be the level surface M = {x € R"| f(z) = 0} of a smooth
function f:R™ — R such that

grad f(x) #0 Yz e M.

Choosing an atlas of coordinate charts

(Um(l'zl77x?71))’ <8£§f)>meUl 7&0

one obtains a structure of a (n — 1)-dimensional smooth manifold on M, as in the Theorem

1.5.11. Recall that one can choose (x',... 2%, ..., 2") as the local coordinates (z},... ,x?fl).
Let us reorder the local coordinates in such a way that the frame of n vectors
0 0 0
— —5,..., ——, grad f(x 2.1.2
ozl Ox? Oz~ grad f(z) ( )

is positively oriented with respect to the standard orientation of R™ at every point x € U;. In
this way one obtains an orientation on the level surface M.

Let us prove this statement in the simple case of a two-dimensional surface M in R?
defined by one equation

M = {(z,y,2) € R®| f(z,y,2) = 0}.
Recall that 0 € R is a regular value if the gradient

_ (9f 9f of
grad f = (M’@J’&Z)M#O

The surface M is covered by three charts

Up ={(z,y,2) € M| W # 0}, the coordinates (y, z)

Uy ={(z,y,2) € M | ('if(agy,z) # 0}, the coordinates (z,z)
Yy

U. ={(z,y,2) € M| 8]‘(3{:9;34,@ # 0}, the coordinates (z,y).
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According to the above definition the orientation on these charts is defined by the following
order of coordinates

Uz : (y,2) if Of(:g,y,z) >0 and (z,y) otherwise
x

Uy:(z,z) if af(gyy’z) >0 and (z,2z) otherwise

U, : (z,y) if W(:g,y,z) >0 and (y,z) otherwise.
z

Let us compute, for example, the jacobian of the transition functions from U, to U, on the
intersection of these domains assuming that the partial derivatives are positive

= of = of
j@._.ay > 0, j@._.az > 0.

We have

D(z,z) % g—; 0z fy
D(:c,y)_det< L0 = 8y—fz>0.

Exercise 2.1.4 Develop a similar construction of an orientation of submanifolds M C RN
of any codimension k defined as preimages in an oriented manifold N of a point in R with
respect to a submersion f : N — RF.

Let f : M — N be a smooth map of two compact oriented manifolds of the same dimension
n. We want to define an important characteristic of f called topological degree deg f that
depends only on the homotopy class of f.

Let y € N be a regular value for this map. All the points z1, ..., xx € M of the preimage

Yy ={z1}U{z}U.. {zg} C M

are regular. Let (y',...,%™) be a positively oriented chart on N near the point y. Denote
™) a positively oriented chart on M near the point z;. Due to the assumption of

regularity the Jacobian
0 oyP
det ( y> :=det <yq)
O 02 / 1<p, q<n

[t}
does not vanish at the point x;

Iy
. 2.1.
det <8x1> #0 (2.1.3)
Denote
. dy
deg, f := sign det D (2.1.4)
and put
deg f|y == Z deg, f. (2.1.5)
zi€f71(y)
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Theorem 2.1.5 1) The degree of the map f : M — N of two compact connected oriented
manifolds of the same dimension does not depend on the choice of a regular value yg € N.

Such a degree is called simply the degree of the smooth map.

2) If two smooth maps fo, fi : M — N are homotopic then their degrees coincide:
deg fo = deg f1.

Proof: Let yo and y1 € N be two regular values of f. Choose a smooth curve v : [0,1] — N,
~ connecting these points in such a way that the map f is transversally regular along ~.
According to the statement of Exercise 1.6.13 the full preimage f~!(7) is a one-dimensional
smooth submanifold in M. It consists of a finite number of closed curves diffeomorphic to the
circle S! and segments (a one-dimensional connected manifold with a boundary consisting
of a pair of points) diffeomorphic to a segment on the real line. We have no interest in the
closed curves. Let us concentrate on the geometry of one of the segments ¥ : [a,b] — M,
f(¥) C . Denote xg = 4(a), 1 = 4(b). Clearly the images f(z¢) and f(z1) must be among
the endpoints yg, y1 of v. Without loss of generality we may assume that f(zg) = yo. Let us
prove that, if deg, f = deg, f then f(x1) = y1. In the opposite case deg,, f = —deg, f
we will prove that f(x1) = f(xo) = yo.

We can assume that the points yo and y; are sufficiently close to each other, that is, they
belong to the same coordinate chart. Moreover, one can choose local coordinates (y', ..., y")
in such a way that the curve v has the form

Y= {yl(t) =0,... 7yn71(t) = 07yn(t) = t} '

where the map f in the local coordinates is given by n functions of n variables

T = (xl, .. ,x") = fx) = (yl(x), .. ,y”(x)) .
The velocity vector of the curve 4 satisfies a system of (n — 1) linear homogeneous equations

oyP dxt

31“1 dS 07 p I ,

So a parameterization = z(s) on such a component can be chosen in such a way that

ds

where M® = (—1)"*?x the i-th minor of the matrix

oyt oy’

ozl T o™
ol oyt

ozt T o™
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obtained by deleting of the i-th column. Transversal regularity of f along ~ means exactly
that this vector never vanishes at the points of f~!(y). The map f of a component to y can
be described by a function ¢t = t(s) defined by

t(s) = y" ('(s),...,2"(s)). (2.1.6)

Expanding the determinant of the Jacobi matrix with respect to the last row one easily

deduces that J 5 5 D
t Yo y" Y

— =M oo L M"™ =det | = .

ds Ozl Tt Ox™ © <5$q)1gp,qsn

So, the function t(s) is monotone at the points of 4 where the Jacobian

p
Jac(s) := det <qu>
TS a=4(s)

does not vanish. If the Jacobian Jac(s) changes sign at some s = sy then the function #(s)
has local maximum or minimum.

Let 4 be one of segments in the full preimage. Consider the Jacobian Jac(s) as a function
on the curve 4 = 4(s), s € [a,b]. By assumption of regularity of the endpoints Jac(s) does
not vanish at zo = ¥(a) and 1 = §(b). If deg, f = deg,, f then the number of sign changes
of the Jacobian is even. So the function ¢(s) is monotone increasing or monotone decreasing
both near s = a and near s = b. This can happen only if f(5(a)) and f(%(b)) are two
different endpoints of the curve v. In the opposite case deg, f = —deg,, f the number of
sign changes of the Jacobian is odd, so the function t(s) is monotone increasing/decreasing
near s = a but it is monotone decreasing/increasing near s = b. Thus the points §(a) and
4(b) go to the same endpoint of ~.

We have proved that connected components of the full preimagef~!(7) can be subdivided

into two types
1 ~even ~odd
= UAS U A49dd )
=) (ZEI% >l I(;eﬂf )

For the segments 45" of the first type the signs of the Jacobian at the endpoints coincide and,

moreover, the images of the two endpoints of the segment go to two different endpoints yg or

y1 of «. For the segments ﬁf;’dd of the second type the signs of the Jacobian at the endpoints

are opposite; the images of the two endpoints of the segment go to the same endpoint of ~.
For any segment 45V°" : [a;, b;] — M of the first type, ¢ € I denote
g; = deg,yieven(ai) f

Observe that
Uz = deg,y?ven(bi) f (217)

From above considerations it follows that

deg fly, = ZUz‘ = deg fly, -

el

In order to prove invariance with respect to homotopies one has to choose a regular value
yo € N for the smooth homotopy map F : M x [0,1] — N. In particular yg is a regular value
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for both fo = F|pyrxqoy and fi = F|prxq1y- The preimage

—1 _ even odd o
F~H(yo) = <}éﬂz ) U (jgﬂ] ) U (kgKvk) .

is a collection of smooth closed curves ~; or segments V" or 'y;dd with end-points in the

boundary of the cylinder M x [0,1]. Denote v = ~(s) = (z'(s),...,2"(s),t(s)) one of
segments in the preimage. The parameter s € [a, b] for some a, b can be chosen in such a way

that ) By (2.1
dZEZ . dt yp x, t
dS :Mi, Z—l,...,n, dsjacdet<a$q>
where
Ay (x,t) oyl (zt)  Byl(zyt)
, - . . . el T am ot
M" = (=1)""""1 x the i-th minor of the Jacobi matrix . . . e
Y™ (x,t) oy (z,t) Oy (z,t)
Ozt e oxm ot

of the map F(z,t) = (y'(z,t),...,y"(z,t)) obtained by deleting thei-th column.

We are interested only in the components v of F~!(yg) that are segments. Such a component
is called even if the number of sign changes of the Jacobian Jac is even; otherwise it is called
odd. Like above it is easy to see that an even component starts at one of the pieces M x {0}
or M x {1} of the boundary of the cilinder and, moreover, the degrees at the end points
xo € M x {0}, 1 € M x {1} coincide

deg,, fo = signJac(t = 0) = sign Jac(t = 1) = deg,, fi1.

The endpoints of an odd component of F~!(yg) belong to the same piece of the boundary of
the cilinder, i.e., either to M x {0} or to M x {1}. The degree of the map fy or fi respectively
at these endpoints are opposite. Therefore

deg f()‘yo = deg fl’l/o-
(|
Exercise 2.1.6 Prove that any polynomial of odd degree with real coefficients has a real root.
Remark 2.1.7 For a smooth map f : M — N of compact not necessarily oriented manifolds
of the same dimension one can define in a similar way the number deg f modulo 2 by just
counting the parity of the number of points in the preimage of a regular value y € M. Like

above, it is easy to prove that deg f mod 2 does not depend on the choice of a regular value.

Exercise 2.1.8 Consider a smooth map f : St — S* of the circle represented as S* = {x €
R}/(x ~ x + 2m). Derive the following formula for the degree of such a map

27
deg f = % ; f'(z) dx. (2.1.8)

Prove that any such map is homotopic to

r—kx, k=degf.
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Remark 2.1.9 More generally, for a smooth map f : M — N of compact oriented n-
dimensional manifolds the following formula holds true

/M Q0 = degf/NQ (2.1.9)

where £ is an arbitrary n-form on N. A proof of this formula will be given in Section 3.4
below.

Example 2.1.10 Let f(2) = 2" +a12" "' +---+a, be a polynomial with complex coefficients.
It defines a smooth map of the Riemann sphere

5% = CU {00}

to itself. By definition f(oco) = co. Let us compute the degree of this map.

First, in the real coordinates

z=x+1y, WwW=u-+1w

the map
w = f(z) (2.1.10)
satisfies
Ju  OJu
det %2 % | =|f(=)P >0 (2.111)
T

if the derivative f'(z) does not vanish at the point z. (The same is true for any holomorphic
map of complex manifolds of the same dimension.) Hence the critical points of the map
(2.1.10) are at the roots of the derivative. Because of positivity of the Jacobians (2.1.11)
we conclude that the degree of a holomorphic map is equal to the number of points in the
preimage of a reqular value. For the example of a polynomal

fo(z) = 2"

the number of points in the preimage of the value w = 1 is equal to n. Indeed, these are the
roots zg, z1, - .., 2n—1 Of the equation

Any other polynomial is homotopic to fo(z). The homotopy is given by the formula
Fz,t) = 2"+ t(a12" 1+ +an).

Because of invariance of degree of the map with respect to homotopies we derive the Main
Theorem of algebra of polynomals: every polynomial with complex coefficients has n complex
roots. If the value wy is not reqular then the equation f(z) = wy may have multiple roots. In
this case one must count the roots with their multiplicities.
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2.2 Intersection index

Let P, Q C M be two compact oriented submanifolds in an oriented manifold M satisfying
the condition
dim P + dim Q = dim M (2.2.1)

for their dimensions. To any such pair of submanifolds we will assign an integer number
PoQ called intersection index of the submanifolds. Let us first assume that the submanifolds
intersect transversally. Then the submanifolds intersect in a finite number of points. The
intersection index P o () is the algebraic number of intersection points with signs defined in
the following way. Let y € P N Q. The transversality together with (2.2.1) implies that

T,M = T,P & T,Q.

Denote 7p and 7g two frames in the tangent spaces T, P and Ty() respectively oriented
accordingly to the orientation of these submanifolds. Also choose a positively oriented frame
Ty in Ty M. Define

signy := sign det (7p & 79 = Tim) - (2.2.2)

Definition 2.2.1 The number
PoQ = Z signy (2.2.3)

yePNQ

is called the intersection index of the submanifolds P and Q).

Observe that the intersection index depends on the order:

Qo P =(—1)dmPdm@p, g (2.2.4)

Indeed, the sign of the permutation
(L,...,p;p+1,....n) = (p+1,....n,1,...,p)

is equal to (—1)P9, g =n — p.
Remark 2.2.2 For any point y € P one can introduce a natural orientation on the quotient
space TyM /T, P in the following way. Let Tp be a positively oriented frame in T,P C Ty M.
Complement tp with a system of dim M — dim P linearly independent vectors T}% in TyM

such that (TP,TIJ;‘) is a positively oriented frame in TyM. Projecting TI% onto the quotient
space defines the needed orientation on T,M /T, P.

Observe that the sign (2.2.2) assigned to an intersection point y € PN Q of transversally
intersecting manifolds of complementary dimensions can be defined in the following equivalent
way. Let i :Q — M be the embedding map. Consider the linear map

A:T,Q 5 T,M — T,M/T,P.

Due to t-reqularity and the dimension condition it has the rank dim M —dim P = dim Q). The
sign of the determinant of the matriz of this map computed in the properly oriented bases of
vectors in TyQ and TyM /T, P coincides with the sign signy defined in (2.2.2).
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Let us prove that the intersection index does not depend on deformations of the subman-
ifolds. It suffices to prove independence from deformations of (). The precise statement is
given by

Theorem 2.2.3 Letig: Q — M, i1 : Q — M be two homotopic embeddings of a compact
oriented manifold @Q into M. Denote Qo = io(Q) C M, Q1 = i1(Q) C M their images.
Assume they intersect P C M transversally and, moreover, that the dimension condition
(2.2.1) holds true. Then

PoQ1=PoQs. (2.2.5)

Proof: Denote F' : Q x I — M the homotopy between the embeddings ig = F’QX{O} and
i1 = F|gxq1y- Without loss of generality we may assume that the map F' is t-regular along
the submanifold P € M. Thus the full preimage F~1(P) is a one-dimensional submanifold in
Q. Tts boundary must belong to the boundary of the cylinder @ x I. Let v(s) = (z(s),t(s)) C
F~Y(P), s € [a,b], be a connected component in the preimage that is homeomorphic to a
segment connecting two points g = y(a) and z; = y(b) on the boundary of the cylinder.

Let us begin with considering the case xg € Q x {0}, 1 € @ x {1}. Denote
Yo = F(zo) =io(x0) € PN Qo, y1=F(x1) =1i1(z1) € PN Q1.

At these points the rank of the linear maps
A T Q™5 T, M — T, M/T, P, k=0,1

is equal to dim M —dim P = dim @) due to t-regularity of ig and ¢;. The sign of the determinant
of these maps coincides with the signs at the intersection points yg € PN Qo and y; € PN Q1
respectively

sign det Ayg = signyg, sign det A; = signy;

(cf. an alternative definition of these signs given in Remark 2.2.2).

Denote F; : Q — M the restriction
Fy = Floxqy-
For s € [a, b] consider the linear map

F*
A(s) : Ty @ L

We have A(a) = Ao, A(b) = A;. Like in the proof of Theorem 2.1.5 we can choose the
parameterization of the curve 7(s) in such a way that

Ty(S)M — Ty(s)M/Ty(S)P, t= t(S), y(s) = F(’Y(S))

dt

— =det A(s).

T ()

Thus, in the case under consideration ¢(a) = 0, t(b) = 1, so the number of changes of the sign
must be even (like above without loss of generality we may assume that all zeroes of % are
simple). Hence, in this case, sign det Ay = sign det A;. Such a component « in the preimage
F~1(P) will be called even.
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In a similar way assuming that the end points v(a) and 7(b) both belong to @ x {0} or
to @ x {1} we prove that the number of changes of sign of dt/ds = det A(s) is odd. So the
signs signyp and signy; at the intersection points o € PN Qg and y; € PN Q1 are opposite.
Such a component « in the preimage F'~!(P) will be called odd.

From the above considerations it follows that, computing the intersection indices P o Qg
and P o ()1 it suffices to take into consideration only those points in the intersection P N Qg
and P N Q1 that are images of endpoints of even components of F~!(P). The algebraic
numbers of these intersection points coincide. Hence P o Qg = P o Q. a

Remark 2.2.4 If the submanifolds P, Q C M are not oriented then the intersection index
P o @ is defined modulo 2 (cf. Remark 2.1.7 above). The homotopy invariance of P o Q
mod 2 can be proved in a similar way.

The arguments similar to those used in the proof of the Theorem can be applied to the
following slightly more general situation.

Exercise 2.2.5 Let
F:W-—>M

be a smooth map of an oriented compact manifold of dimension (q + 1) with an oriented
boundary OW = Q1U(—Qo) into an oriented manifold M. Assume that the restrictions F|q,
and F|g, are embeddings of these q-dimensional manifolds and, moreover, their images inter-
sect transversally a compact oriented submanifold P C M of the complementary dimension
dim P = dim M — q. Prove that P o F(Qq) = P o F(Q1).

We are now in a position to define the intersection index for any pair of compact oriented
submanifolds P, Q C M of complementary dimensions dim P+dim ) = dim M in an oriented
manifold M. According to Theorem 1.6.18 there exist small deformations of P and ) such
that the deformed submanifolds P and @ intersect transversally. Define

PoQ:=PoQ.
The deformed embeddings P, @ are homotopic® to the original embeddings P, Q. So, due

to the Theorem, this definition does not depend on the choice of deformations.

Let us derive few useful corollaries from the Theorem.

Corollary 2.2.6 Let P, Q be two oriented compact submanifolds of complementary dimen-
sions in R™. Then Po @ = 0.

Proof: Shifting @ along a sufficiently long vector one obtains another submanifold @’ that
does not intersect P. The new embedding is homotopic to the old one. Hence P o Q =
PoQ@Q =0. O

As an application of the above considerations we will prove that a compact submanifold
of codimension one in Euclidean space is necessarily orientable.

3This will be proved in Section 4.3 below.
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Lemma 2.2.7 Let M C R" be a compact (n — 1)-dimensional submanifold. Then the com-
plement R™ \ M 1is disconnected.

Proof: Choose an arbitrary point zyp € M. Denote n the unit vector orthogonal to T,,M.
For sufficiently small € > 0 the points z+ = 29 £ en do not belong to M. If R™\ M is
connected then there exists a curve 7 : [—1,1] — R™\ M such that y(+1) = 1. Adding the
segment [x_, x| one obtains a closed curve 4 in R™ intersecting the submanifold M in one
point xg. Hence M o4 = £1 (in the nonoriented case the intersection index modulo 2 is well
defined). This contradicts Corollary 2.2.6. O

Corollary 2.2.8 A connected compact submanifold of codimension 1 in Euclidean space is
orientable.

Proof: At any point © € M of the submanifold choose a normal vector n(z) of a sufficiently
small length € > 0 “looking” towards one of the two components of the complement (we leave
as an easy exercise to the reader to prove that, for a connected submanifold the complement
cannot consist of more than two components). By definition a frame of tangent vectors ey,

.., eén—1 at x is positively oriented in T, M if the frame ey, ..., e,—1, n(z) is positively
oriented in R™. 0

2.3 Index of a vector field on a manifold

Let v(xz) be a smooth vector field on a compact oriented manifold M. Assume that all
stationary points of the vector field are nondegenerate. That means that the graph M, =
{(z,v(x)) |z € M} C TM is t-regular along the zero section My = {x,0} C T'M (see Example
1.6.21 above). Observe that dim My + dim M,, = dim T'M. Define

indv := My o M,,. (2.3.1)

This definition can be extended to an arbitrary smooth vector field as any vector field can
be slightly deformed to obtain another one with all nondegenerate stationary points.

Proposition 2.3.1 The index (2.3.1) does not depend on the choice of a vector field.

Proof: The submanifolds M, and My can be considered as two embeddings of M into T'M.
They are homotopic. Indeed, the homotopy is obtained by rescaling v — tv, t € [0,1].
Therefore for any two vector fields v; and ve the embeddings M,, and M,, are homotopic.
Hence ind vy = ind vs. a

An alternative definition of index of a vector field can be given by the following construc-
tion. Let zp be a nondegenerate stationary point of a vector field v(x) on an n-dimensional
oriented manifold M. We know that, for a sufficiently small € > 0 the vector field does not
vanish at the points of the sphere S" !(z¢) = {x ||z — 29| = €} C M of radius € with the
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center at the point xy. Define a map?

9o : SV Nwg) — S C T, M
v(x)

St (xg) > x> . (2.3.2)
‘ [v()|
Define the index of the stationary point ind zy as the degree of this map
indzg := deg gy. (2.3.3)

Proposition 2.3.2 The total index index indv of a vector field v with nondegenerate sta-
tionary points is equal to the sum of indices of stationary points

indv = Z ind x. (2.3.4)
v(z)=0

Proof: Without loss of generality we can assume that zg = 0 in the chosen local coordinates.
Denote 4
a (3
A= (2@ .
oxl ) .

va(z) = Awx.

Introduce linear vector field

Let us prove that the vector fields v(x) and v4(z) are homotopic in the class of vector fields
with isolated stationary point at the origin. Indeed, consider the Taylor expansion of the
vector valued function v(x)

v(z) = Az + O (|z]?).
The homotopy vi(z) is defined by the following formula

vt(x)zv(ix):f‘mro(t), vi() = v(x),  wo(x) =va().

Due to homotopy invariance of degree it remains to compute the degree of the map (4.9.36)
for v = v4. The linear map = — A x is one-to-one on the sphere |z| = e. Moreover, all points
of the sphere are regular points. Hence the degree is equal to + = sign det A. O

Exercise 2.3.3 Let v(x) be a vector field on an oriented manifold M with isolated, but not
necessarily nondegenerate stationary points. In this case one can define the index of every
stationary point as the degree of the spherical map (4.9.36). Prove that the sum of indices of
all stationary points coincide with the Euler characteristic of M.

Exercise 2.3.4 Prove that the index of a nonzero vector field v(t) = (P(t), Q(t)) defined on
a closed curve y(t), 0 < t < 27 on the plane with an isolated stationary point inside the curve
is given by the formula
1 ["PQ-QP
o 0 P2+ Q2
“In these formulae the lengths of vectors are computed in local coordinates, i.e., |t — xo| =

V@ = al)? o @ =)’ o] = /@) e (00

dt. (2.3.5)
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Exercise 2.3.5 Prove that the index of a vector field v(s,t) (P(s,t),Q(s,t), R(s,t)) defined
on a closed surface ¥ = r(s,t) in R with an isolated stationary point inside is given by the
formula
1| P QR ds dt
ar P Qs R 2 2 2)3/2°
2| P Q R | (PPHQ+RY

(2.3.6)

The result of Proposition 2.3.1 justifies the following

Definition 2.3.6 Euler characteristic x(M) of a compact oriented manifold M is defined as
the index of an arbitrary smooth vector field on M.

2.4 Morse index

Let f be a Morse function on a compact oriented n-dimensional manifold M (see above
Example 1.6.22). Recall that means that the graph of the differential

Ly = {(z,df(2)} C T"M

intersects transversally the zero section Ly = {(x,0)}. Define the index of the Morse function
by
ind f := Loo Ly. (2.4.1)

We will now spell out this definition as the sum of Morse indices of critical points of f. Let
us first recall the following statement from linear algebra.

Proposition 2.4.1 For any symmetric matrix A there exists a nondegenerate matriz M
such that
MTAM =diag(1,1,...,1,—1,...,-1,0,...,0), p4+q+r=n (2.4.2)
~——

-~

p q r

were M7T is the transposed matriz. The numbers p and q do not depend on the choice of the
reducing matrix M. They are called respectively positive and negative inertia indices of the
symmetric matriz A.

Let xo be a Morse critical point of a function f. Consider the matrix A = (A4;;) of the
second derivatives at the critical point

9 f(x0)

—W, ’L,j:1,...,n. (243)

This is a symmetric nondegenerate matrix.

Definition 2.4.2 The negative inertia index of the symmetric matriz (2.4.3) is called the
index of the Morse critical point. It will be denoted ind zg.

Lemma 2.4.3 Index of a Morse critical point does not depend on the choice of local coordi-
nates,
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Proof: In another coordinate system (y',...,y"), y* = y*(2!,..., 2™) the second derivatives
of the function can be computed by the following rule

a2f 82f ayk 8yl af a2yk

0x'dxi — Oykoy! ' Oxd | HyF Oxidxd

At the critical point the second term vanishes. So, the matrices A, and A, of second deriva-
tives of f at the critical point in the coordinates y* and z’ respectively are related by the
equation

dy* (o)
—_gT —
The inertia indices do not change under such transformations. O

Remark 2.4.4 The above considerations show that the second differential of the function f
at a critical point xg

& f (o)

d* =

f(o) Do)

15 a well defined quadratic form on the tangent space T,,M. For a Morse critical point
the negative inertia index is the maximal dimension of a subspace V- C Ty, M such that the
restriction

de'de? (2.4.4)

d* f(zo)lv

is a negative definite quadratic form.

Proposition 2.4.5 The index of a Morse function f on a compact oriented manifold M is
equal to

indf = Y (-1)"7. (2.4.5)
df (x)=0

Proof: At a Morse critical point zq the signs of det (%Zg;%)) and (—1)M4%0 coincide. So the

statement of the Proposition follows from the definition of the intersection index

) 0 f(x
Loo Ly = Z sign det <8x{8(x3> .
df (x)=0

2.5 Lefschetz number. Brouwer theorem

3 Tensors on a manifold. Integration of differential forms.
Cohomology

3.1 Tensors on manifolds

Definition 3.1.1 A tensor of type (p, q) at a point P of a manifold M is described by a table
of n?*4 real numbers o
11...2 . . . .
Ajllmjz;, Wyeeslpy Jly--hJg=1,...,1m
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called components of the tensor in a given coordinate chart (U, (x!,...,2™)) containing the
point P. In another coordinate chart (U', (z",...,a")) containing P the tensor is described
by another table of components

!
p

710

.y .
17...2

A

related with the old one by the following transformation law

y iy . .
z’lz; . orh ox'» Oz oxJa i1.0p

Jieds Ozt Qaiw gt Qgda I

A (3.1.1)

In this equation all partial derivatives have to be evaluated at the point P.

Example 0. A tensor of type (0,0) is described by a real number depending on the point
P but independent from the choice of a coordinate system. Thus, it is just a smooth function
on M.

Example 1. For (p,q) = (1,0) the transformation law (3.1.1) specializes to

~/
-/ 8551

A_E?xiP

7

So the (1,0) tensors are just vectors at the point P.

Example 2. Tensors of type (0,1) can be identified with covectors at the point P since
the transformation law (3.1.1) specializes to

A _é?xj
I i |1 p

Given two tensors A = (A;ilj’;) and B = (B;i;’;) of the same type (p, ¢) at the point P,

their linear combination « A + B

i1.ip i1.ip
aAjl...jq + 5Bj1qu (3.1.2)
is again a tensor of the same type. One obtains a linear space 77 (P) of tensors of a given
type (p,q) at a given point P € M. Clearly the dimension of this space is equal to nP™4
where n = dim M.

The operators of permutation of two upper or two lower indices act on this linear space
if p > 2 or g > 2. Choosing a pair i, ¢; of two upper indices, 1 < k < [ < p define the
permutation operator II* acting as follows

i1 iy i o
HklA) _ Az'l---l'l---lk---lp‘ 313
() (3.13)

In a similar way one can define the operator II;; of permutation of two lower indices 1 < k <
1 <q.

Lemma 3.1.2 The operators II* and I, are well defined linear operators acting on the

space TF (P).
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There are also important tensor operations that change the type of tensors. The first
one is an operation of tensor product of two tensors A = (A;llzj’;) and B = (B;i;’;) of the
types (p,q) and (r, s) respectively. It produces a tensor A ® B of type (p+r,q+ s) with the
components

(A® B)jll...jz;lll.‘.ls = Ajll...jZBhl...ls : (3.1.4)

This operation is linear with respect to every factor:

(@A+BB)®C=aA®C+BB®C, A®(aB+BC)=aA®B+BARC. (3.15)

Remark 3.1.3 Let us remind the operation of tensor product of linear spaces known from
linear algebra. By definition the tensor product of spaces X and Y of linear spaces of dimen-
stons n and m respectively is a linear space X @ Y of dimension nm. The vectors of this
space are finite sums
d Nizi®y, meX g€y, NeER (3.1.6)
7

considered modulo the following equivalence relations

(ax1 +Br) @y~ ar @y+Bra®y, =@ (ayr+py) ~ar@y+Frx@ys  (3.1.7)
«a, B €R.

Ifer, ..., episabasisin X and f1, ..., fm 1s a basis in'Y then the vectors e;® f; make a basis
in X @Y. The decomposition of the tensor product of vectors x = z'e; € X, y = yjfj ey
with respect to this basis reads

r®y=z'y e ® fj. (3.1.8)

A generic vector in X ® Y can be written as
z=2¢;® f; (3.1.9)

where the entries of the n x m matriz 2% can be considered as the coordinates of this vector.

The space TZ (P) of tensors of type (p,q) can be identified with the tensor product of p
copies of the tangent space TpM and g copies of cotangent space THM. A choice of local

coordinates (z',...,2™) on M provides one with a basis
0 0
oxl’ 7 Ozm

in the tangent space and a basis
det, ..., da™

in the cotangent space. In this way one obtains a basis in the tensor product 7¢ (P)

0

e ... J
5o @@ ®dadt @ - @dae. (3.1.10)
A decomposition of a tensor A = (A;llzj’; ) with respect to this basis reads
A=A O g9 0 e o dei (3.1.11)
J1-w-da Hin i : e
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Another important operation is contraction of tensors. It depends on the choice of one
upper and one lower index. Applying this operation to a tensor of type (p,q), p > 1 and
g > 1 one obtains a tensor of type (p — 1,q — 1). If the chosen upper index is i, and chosen
lower index is j; then the contraction Cf with respect to these two indices applied to a tensor

Ajll.,, j’; produces a tensor with the components

(C{“A)“'"Z”_l = Al St (3.1.12)

o =AT e
Fledqet J1edim1 8 Jie-Jg—1

Lemma 3.1.4 For any 1 < k < p, 1 <[ < q the contraction Cf is a well defined linear
operator

CF: TP(P) = TP (P). (3.1.13)

q q—

Example 1. A combination of tensor product of a vector v = (v*) and a (1, 1)-tensor
A= (a}) |
(A, v) — a;-vk

with contraction with respect to the indices k& and j produces a vector
Av = (aévj).
One obtains a realization of (1, 1)-tensors as linear operators on the tangent space
A:TpM — TpM, v+ Av. (3.1.14)
The same (1, 1)-tensor A can also be identified with linear operation on the cotangent space
w (a?wi) =: A*w. (3.1.15)

This is the adjoint linear operator to (3.1.14). Both realizations can be easily obtained from
the natural isomorphisms of the space of (1,1)-tensors 7'(P) ~ Tp ® T} with

Tp @ Tp ~ Hom(Tp,Tp) ~ Hom(TpH, Tp). (3.1.16)

Example 2. A (0,2)-tensor B = (b;j) can be realized as a bilinear form on the tangent
space by means of the operations of tensor product and double contraction

(B, v, w) = bijvFw! = bjviw? =: b(x,y). (3.1.17)
Cf. also the isomorphism
THP) ~ T} @Tp ~ Hom(Tp @ Tp, R). (3.1.18)
The same tensors can also be realized by the operator of lowering the indices
B:Tp —Th, v' bl (3.1.19)
that can also be understood in view of the natural isomorphism

TL(P) ~ T} @ Th ~ Hom(Tp, T}). (3.1.20)
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In particular the tensor b;; is nondegenerate if the operator (3.1.19) is an isomorphism.

Example 3. In a similar way any tensor A = (a;,..4,) of type (0, k) can be realized as a
k-linear form on the tangent space

Az, ... xp) = ail_._ikaz’f ... J:Zf
(3.1.21)
Alaxy + By1, 2, . .., x1) = @A(x1, 22, . .., 1) + BA(Y1, T2, .. ., Tp)

Az, ..o -1, axg + Byg) = aA(2, . 2k, k) + BA(T1, - Te—1, Yk)-
The k-linear form is symmetric/antisymmetric
Az, ... x4, xiy . or) = £A(x, o 2, ., xg, . ,1) V1I<i<ji<k o (3.1.22)

iff the tensor a;, . ;, is invariant/antiinvariant with respect to the operators IL;; of permutation
of indices. Recall that, according to the Lemma 3.1.2 the property of symmetry/antisymmetry
of a tensor does not depend on the choice of local coordinates.

Remark 3.1.5 The permutation group Sy of k symbols acts on the space of (0, k)-tensors by
permuting the indices. A permutation

1 2 k
o= < o) o2) ... olk) ) € Sk (3.1.23)

acts as follows

Qiyig..ig, 7 Qi (1yig(ayio(h) (3.1.24)

Symmetric tensors remain invariant with respect to this action; antisymmetric tensors trans-
form according to the following rule

= sign o ajy4y...4, (3.1.25)

Qi (1) (2) -+ lo (k)

where signo = +1 is the sign of the permutation. To any (0, k)-tensor one can apply the
operator of symmetrization Sym and alternation Alt producing symmetric/antisymmetric
tensors respectively:

1
Sym a‘il...ik = H Z aio.(l)io.(Q).A.Z‘o.(k) (3126)
) €Sk
1 :
Alta;, 4, = 7 Z SIBNLO @iy )i 2y ) - (3.1.27)
’ oESE

Similarly to vector fields and differential forms one can consider tensor fields. A tensor
field of type (p,q) is described by a collection of functions a7 (z) smoothly depending

Ji---Jq
on the point . The functions depend on the choice of local coordinates; a change of local
coordinates (z!,...,2") — (z',...,2") yields a transformation of these functions

a;;’;(ac) —a; " h(x)



according to the tensor law (3.1.1). The decompostion (3.1.11) of a tensor with respect to the
natural basis associated with the coordinate chart does not change the form under changes
of local coordinates

i 0 0 il 0

... Ja — P — @
jl"'jq(x)az“@ ®8mip®dx G- -@dz Aji-"jfz(m)axill(g) ®8xi§a

®dxji Q- -®dxjf/1.
(3.1.28)

3.2 Vector bundles

Informally speaking a vector bundle of rank k over a manifold B is a family of k-dimensional
vector spaces called fibers parameterized by points of B called the base of the vector bundle.
Let us proceed to the precise definition.

Definition 3.2.1 A rank k vector bundle over an n-dimensional manifold B consists of
1) a (n + k)-dimensional manifold E called the total space of the vector bundle;

2) a smooth submersion
m:E— B (3.2.1)

called projection;

3) a collection of open domains (Uy),c; covering the base B and diffeomorphisms
Dy L (U,) = Uy x RE (3.2.2)
called local trivialization of E over U, such that the diagrams

N (Us) %8 Uy x RF
ﬂl lp“ (3.2.3)

v, S U,
are all commutative. Observe that the full preimage of any point P € B is isomorphic to RF
Fp:=7n'(P) ~R"

It is called the fiber over the point P.

4) On the intersection 7~ 1(Uy N Ug) one has transition functions of the form

Ppo0d, ' : (U, NU) x RY — (U, NUs) x RF
(3.2.4)
(P§£a) = (P;éﬂ = Tﬁa(P) Sa)

where P € Uy, NUpg, &a € Rk,
Tga U N U@ — GL(]{:,]R) (3.2.5)

is a smooth map.
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Remark 3.2.2 The collection of smooth matriz valued functions T,z defined on intersections
of domains U, NUg, «, B € I clearly satisfies the following properties

Taa == lde
_ 1
Tho = Ta,B
TopTpyTyo = idge on triple intersection of U,, Ug, and U,. (3.2.6)

Such functions completely determine the structure of the fiber bundle.

Definition 3.2.3 A morphism of vector bundles w1 : B4 — By to my : E5 — Bs is a pair of
smooth maps f : By — By and F : By — FEo such that the diagram

B 5 B
ml lm
B, % B,

18 commutative.

3.3 Integration of differential forms. Cohomology

In this section we will consider the particular case of antisymmetric tensors and tensor fields
of type (0, k). The space of antisymmetric (0, k)-tensors at the point P € M will be denoted
AFTEM C T @ - @ T (k copies of the cotangent space TjM).

Lemma 3.3.1 Denote n the dimension of the manifold M. Then the dimension of the space
AF = AFTEM of (0, k)-antisymmetric tensors is equal to

(). v
dim A* =

0, k>n

(3.3.1)

Proof: Due to antisymmetry the component w;,;,. ;. of the tensor w € A* having a pair of
equal indices is equal to zero. If k > n then there is at least one pair of equal indices among
i1, i2, ..., i. Hence w = 0. For k < n the independent coordinates in the space A* are

Witig...ig 1< il < ig <0 K ik <n. (3.3.2)

The number of these components is equal to the binomial coefficient

(3)=mm
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Combining the operation of tensor products with the alternation one obtains the operation
of exterior product (or wedge product)

AR s AL ARH (3.3.3)
(o, B) = aAp:=Alt(a® ().

An explicit expression for the components of a A 3 is given by the following formula

1 .
(@A B)jicjer = AN Z SIENO Qg .. 5y, Bj"k+1"'j‘7k+l' (3.3.4)

O'ESk_H

Taking the wedge products of basic 1-forms

dz't A - A datt = Z signo dzie®) @ - @ dalo®) (3.3.5)
oc€Sk

one obtains a basis in A¥. A decomposition of an antisymmetric tensor w = (w;,. ;) With
respect to this basis is written as a differential k-form

w= Y Wi A Ada, (3.3.6)
11 <tg<---<ip

Such a form was defined so far at one point of the manifold. Considering the corresponding
tensor fields one obtains differential forms w(z) defined on the manifold M or on some part
of it.

The exterior product is a bilinear associative operation satisfying the following graded
commutativity property

BAha=(—DFanp, aecA® peAl (3.3.7)
The total space of antisymmetric tensors at a given point
AT}M =N A o @A (3.3.8)

acquires a structure of exterior algebra. The dimension of this space is equal to 2. Using
the representation of antisymmetric tensors by differential forms (3.3.6) one can reformulate
the definition of the wedge product in the following simple way:

dr' Adz' =0
de/ Nda' = —dzt ANdad, i

along with the bilinearity and associativity.

Example 3.3.2 The wedge product of two one-forms a = ada’ + aodz® + azdx® and f =
Brdx! + Bodx? + Bsdx® on a three-dimensional manifold is equal to

a A B = (ardz' + agdr® + azdz®) A (Brda’ + fada® 4 Bada®)
= a1 Bodz A dz? + aoBidz® A dat + oy Bsdat A dad + asBida® A dxt + agfBsda’ A dad + asBada® A da?
= (a2f3 — a3,82)d(L'2 A da® + (asfr — a1ﬂ3)dx3 Adzt + (182 — agﬁl)dwl A dz?.
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Exercise 3.3.3 Prove that the product of three one-forms o = aida' + asdx® + asdx?,
B = Brdxt + Padx® 4 Badx® and v = yida' + yodx? + y3dx3 in the three-dimensional space is
given by

a; B m
aANBAy=det| as B2 7o dz' A dz? A daB. (3.3.9)
az B3 73

Let us concentrate our attention on the particular case of n-forms on a n-dimensional
smooth manifold M. In a coordinate chart (U, (x!,...,2™)) such a form is defined by just
one smooth function wia. ()

w= wlg,,,n(:z:)dml Adz? A - A dz". (3.3.10)

This function depends, however, on the choice of the chart. In this particular case the general
tensor law (3.1.1) takes a particularly simple form.

Lemma 3.3.4 Under a change of the local coordinates (x',... z") — (xl/, .. .,ac”l) the co-

efficient of a n-form transforms as follows
0
W19 . .n! (:C/) = det <6;/> wlgmn(x). (3311)

Proof: The tensor law (3.1.1) in the particular case of (0, n)-tensors takes the following form

ox" 0z" oz
W12/ .n/ = ozl oz " Hxn Wiio..in -

In the sum over repeated indices in the right hand side of this equation only the terms with
all pairwise distinct indices will survive. In this case

. 1 2 ... n
Wiyig..ip, = SIGNOWI12.n, 0= | . . . € S
i1 1y ... in
Since ‘ ‘ '
Z ox" Jz*2 ox'™ det ox
SIgN 0 — —=7 . .. - =det | —
S 5rl 92 Oxm oz’
oESy
the formula (3.3.11) readily follows. O

We will use the transformation formula (3.3.11) for introducing the important operation
of integral of differential forms.

Let D C M be an open domain in a n-dimensional manifold such that D is compact. We
want to integrate a differential n-form over this subset. This can be done under an additional
assumption for the manifold that we are going to explain now.

Let us consider first the particular case D C U. Here (U, (z!,...,2")) is a coordinate

chart. Consider the multiple integral

Iy(w, D) :/'--/(D)wlmn(x) dr' .. da". (3.3.12)
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Lemma 3.3.5 If (U, (zV,...,2™)) is another chart containing D then the integrals Ity (w, D)
and Iy (w, D) are equal up to a sign

Iy (w, D) = £Iy(w, D), =+ =sign det <g§/> ) (3.3.13)

Proof: Doing a change of integration variables in the multiple integral (3.3.12) one obtains

// wi..n(x) dz'...dz" = // wi..n(z(2')) |det <8 )‘d Vo da™
z(D) /(D) ox’
Ox / /
= sign det ( ) / / wi._n(z(x')) det ((%; > dzt . da"
= sign det ( ) / / wyr (7)) dz U da"

where we have used the transformation law (3.3.11) in the derivation of the last equality.
U

We are now ready to define integration of differential n-forms over domains in n-dimensional
oriented manifolds. Let us first consider the case of a domain contained inside D C U. In

this case define
/w::/.--/ win(z)dz' ... dz". (3.3.14)
D z(D)

According to the Lemma 3.3.5 such an integral does not change if choosing another chart
covering D from the same atlas. In the general case use a partition of unity p,(x) associated

with the atlas and put
w = Pa(T) W. 3.3.15
1o =% fy 7o 3319

The last step in the justification of such a definition is in
Lemma 3.3.6 The integral (3.3.15) does not depend from the choice of a partition of unity.

Proof: Let qg(z) be another partition of unity associated with an atlas V. Then the products

ras(2) = pa(®)qs(z)

is a partition of unity associated with the atlas U, NVj3. The integral defined by this partition

is equal to
I= Z/ gs(x)w.

amVB

Performing first summation in 8 one obtains

I=%:/apa(w)w%:qﬁ($) =%:/Uapa(x)w-

65



Changing the order of summation results in
1=Y [ a@o Y@ =3 [ w@e
g Vs @ 5 JVs
So the two definitions of the integral yield the same result. O
Remark 3.3.7 An important particular case is the integral of a n-form over an oriented n-

dimensional manifold M. Such an integral always exists if the manifold is compact. Observe
that a change of orientation on M to the opposite one changes the sign of the integral.

Let us now explain the operation of pullback of differential forms. Let
fiN—>M
be a smooth map. Given a k-form

w= > wii )y Ao A dy'
11 < <ip
on M one obtains a k-form f*w on N:
Fro= > wiiy@)dy™ (@) A Ady™(x)
11 <o <tp
where the map f in local coordinates is given by

z=(z',.. . 2" = (Yl (z),...,.y"(x)).

In the rhs there is the exterior product of k£ one-forms

oy

dy'(z) = —==da’.

If the manifold N has dimension k and is oriented then one can consider the integral of the
pullback

/N frw. (3.3.16)

In particular one can integrate a k-form w over a k-dimensional oriented submanifold

i:N<—M, dimN =k, / w ::/ i*w. (3.3.17)
N N

Example 1. The integral of a 1-form in R3
w = P(z,y,2)de + Q(z,y,2) dy + R(z,y,2) dz
over a smooth curve

Vi@ =),y =yt),z = 2(t)) [a <t < b}



is equal to

b
/WZ/ [P(2(t),y(t), 2(1)2(t) + Q(x(t), y(1), 2(1))5(t) + R(z(t),y(t), 2()) 2(t)] dt
= /(X v)ds

where the vector field X is defined by
X =(P,Q,R)

and v is the unit tangent vector to the oriented curve.

Example 2. The integral of a 2-form in R3

w=P(x,y,z)dy Ndz + Q(z,y,z)dz Ndz + R(x,y, z)dz AN dy

over a domain D C R?u vy Oon a parametrized two-dimensional surface

r =r(u,v) = (z(u,v),y(u,v), 2(u,v))

//D<X,n> dA

where the vector field X is composed from the coefficients® of the 2-form

is equal to

X =(P,Q,R),

LTy X Ty,
Ty X 1Ty

is the unit normal vector to the surface and
dA = |ry X ry|dudv

is the area element on the surface (see Exercise 7?7 above).

(3.3.18)

Remark 3.3.8 One can also integrate 0-forms, i.c., just functions f € QV(M) = C®(M)
over zero-dimensional submanifold. By definition an oriented zero-dimensional submanifold
is just a collection of points Py, Ps, ...in M with signs + assigned. The integral is defined

as the algebraic sum of values
+f(P) £ f(P)*....

Let us now proceed with the differential calculus of differential forms. We will now define

an operator calle exterior differential (or also simply differential)

d: Q8 (M) — QFFL(M)

(3.3.19)

5Here and below the Hodge duality has been used for a correspondence between vector fields and two-forms

in R®. This duality will be explained below.
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for any k£ > 0. For k = 0 the operator (3.3.19) coincides with the differential of a function

df = agif)dxi € QL (M). (3.3.20)

For k = n the differential is trivial since Q""1(M) = 0. For any 0 < k < n the differential of
a k-form

i1 < <ip,

can be defined in two equivalent ways. First, as an antisymmetric (k 4 1)-tensor

ktl ow, - . (x)
(dew)jy g = D (—1)H s (3.3.21)
m=1

The hat over the m-th index means that this index j,, has to be omitted. An alternative
form is

dw = Z Wdﬂ AdzIt Ao A dadr (3.3.22)

J1<+<Jk

Theorem 3.3.9 The exterior differential is a well defined linear operator d : QF(M) —
QFHL (M) satisfying

dlanB)=daANB+ (—1)PandB, oeQP(M) (3.3.23)
and

d>=0 where d?:QFM)— QL (M) = QF2(M). (3.3.24)

Example 3.3.10 For a I-form w = Pdx 4+ Qdy + Rdz in a three-dimensional Fuclidean
space one has

_ (9B 94 orP  OR 0Q opP
dw = <8y 82) dy A dz + <82 81‘) dz N\ dx + (0:1: 8y) dx Ndy.  (3.3.25)

This operation is related to the curl of a vector field X = (P, Q, R)

i
curl X = det | & (3.3.26)

= ¥l &

J

0
Jy
Q

I

Example 3.3.11 For a two-form w = Pdy Adz + Qdz A dx + Rdx A dy in R? one has

oP 0@ OR
_ , 3.2
dw <ax+ay+az>d:c/\dy/\dz (3.3.27)
This operation is related to the divergence of the vector field X = (P, @, R)

- 0P 9Q OR
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Thus, the exterior differential generalizes the operations of gradient, curl and divergence
known from multivariable calculus.

For differential of functions one has the following important property usually referred to
as tnwvariance of the differential

af af
af (y()) = (ajdy) - L ay(e)
Yy=y\x
Cor
o am"dx

In the second term of the first line it is understood that

_ oy

= -2 dat
ax"x

dy’ (x)

is the differential of the functions 3/ = y/(x!,...,2"). A generalization of this property is
formulated in the following

Exercise 3.3.12 Prove that the exterior differential commutes with the operation of pullbacks
of differential forms: if
f:M—N

is a smooth map and w a differential form on N then

Frdw = d fw. (3.3.29)

In order to formulate the main result of calculus of differential forms we need to define
manifolds with a boundary.

Definition 3.3.13 A subset M C M in an n-dimensional manjfold M is called a manifold
with boundary if, for any coordinate chart (U, (x!,...,2™)) on M the intersection M NU has
one of the following two types:

or MNU=U
or MNU={xeU]|fu(z)<0}, dfy(z)#0 VYzeU suchthat fy(xr)=0.

Here fy : U — R is a smooth function. It is required that on the intersection of charts U, V
of the second type the domains {fu(x) <0} and {fy(z) <0} coincide.

The subset OM C M defined by
OMNU ={zeU| fu(x) =0}

is called the boundary of M. This is a smooth submanifold in M of dimension (n—1) (see
Theorem 1.5.11 and Example 1.5.12).

Smooth functions on M are defined as restrictions onto M of smooth functions on some
neighborhood of M in M.
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Example 3.3.14 The cylinder
M x[0,1]C M xR (3.3.30)

is a (n + 1)-dimensional manifold with a boundary consisting of two copies of the manifold
M:

0 (M x[0,1]) = (M x0)U (M x 1).
The function f = f(x,t), x € M, t € R specifying the first piece of the boundary is f(x,t) =
—t. For the second piece one can take f(x,t) =1t — 1.

Remark 3.3.15 A compact manifolds without boundary are often called closed manifolds.

Definition 3.3.16 Let (M,0M) be a manifold with boundary in a n-dimensional oriented
manifold M. The induced orientation on the boundary is defined as follows (cf. Ezercise
2.1.8 above). If at some point xo € OM N U the i-th derivative of the function fy(x) does
not vanish then the (n — 1) variables (z?,.. .xAi, ...x™) can be used as local coordinates on
this part of the boundary specified in the chart (U, (x',... 2")) by equation fy(x) = 0. By
definition the order of these coordinates coincides with the orientation on OM if

(—1)n—iafg;f°) <.

in the opposite case one has to change the orientation to the opposite one.

Example 1. The boundary of the cylinder M x [0, 1] for an oriented manifold M consists
of one copy M x {1} of M taken with the same orientation and another copy M x {0} of the
manifold M taken with the opposite orientation:

O(M x[0,1]) = (M x 1)U (=M x 0). (3.3.31)
In the particular case M = [0, 1] the boundary of M consists of two points
d[0,1] = {1} U (—{0}). (3.3.32)

Example 2. In the integral calculus of differential forms we will also consider manifolds
with piecewise smooth boundaries. They become manifolds with boundary after deleting
some subsets of codimension > 2. Such subsets do not contribute into integrals. For example,
the boundary of the n-dimensional unit cube

I"={(z',...,2") eR"0< 2" <1, i=1,...,n} (3.3.33)

obtained by taking Cartesian product of n copies of the unit interval consists of 2n unit cubes

n

=1
where
I’Z?,;l — {(561, o 7:L_i—l’xi — 1,$i+1, o 71,71)} c
(3.3.35)
IZ()_l — {(.171, o ,$i71,$i _ 07$i+1’ o 7a:n)} c I,

For n = 1 one again obtains (3.3.32).

We are now ready to formulate the main result of this section
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Theorem 3.3.17 (Stokes’ formula) For any compact smooth n-dimensional oriented mani-
fold M with a piecewise smooth boundary OM and any differential (n — 1)-form w on M the

following formula holds true
/ w= / dw. (3.3.36)
oM M

Before proving the theorem let us consider the case n =1, M = [0, 1], w = f(z) a smooth
function. Then the left hand side of (3.3.36) is equal to

/ w=F(1) = £(0)
oM

since 0[0,1] = {1} U (—{0}) (see Remark 3.3.8). In the right hand side, applying the Funda-
mental Theorem of calculus, we have

1
/O F(t)dt = F(1) — £(0).

This proves the Stokes’ formula for this particular case.

Proof: Let us begin with the proof of the Stokes’ formula for the case M = I"™ (n-dimensional
cube).

In order to avoid complicated notations we will perform calculations only for the case
n = 2. The one-form w reads

w = wi(z,y)dz" + wa(x, y)dz?.
The oriented boundary of the square I? is the union of four segments
P ={Ly}u(H{)Hu (0,9 u{(=0} 0<zy<l.
(see (3.3.34)). So

1 1 1 1
/ wz/ mu,y)dy/ w1<x,1>daz/ w2<o,y>dy+/ w1 (z,0) dz.
o012 0 0 0 0

In the right hand side of the Stokes’ formula we have a double integral

/dw—// (6‘002_6%) dx dy.
12 0<z,y<1 y

We will apply the Fubini theorem in two different ways to the two parts of the double integral

J[ (G- G) wa= [ [ 22 o [ [P 20,
0<z,y<1

Both double integrals can be easily reduced to single integrals

/ / a( :/Ol[wz(l,y)—w(O,y)]dy
/ /awa( dy :/Ol[wl(xvl)_wl(%())]da:.
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Taking the difference of these two integrals one arrives at the proof of the Stokes’ formula for
the square.

In the general case one can construct an oriented atlas U, on the compact manifold
(M,0M) consisting of open cubes (0,1)" or half-cubes (0,1)""! x (0,1]. Let p,(x) be a
partition of unity associated with such an atlas. Then

| o= Z/U Palz) du = Z/U A(pa(z)w) — Z/U dpa () Aw.

The last integral vanishes since

since

Now we reduce the general proof to the local case

/ el = / dpale)e)

The differential form p, (z)w vanishes on the boundary of the cubes of the first type. For the
half-cubes the last equality follows from the already proven Stokes’ theorem for cube. O

Definition 3.3.18 A differential k-form w is called closed if dw = 0. It is called exact if
w = da for some (k — 1)-form a.

From the Stokes’ formula one derives an important corollary

Corollary 3.3.19 1) The integral of a closed differential form over the boundary OM of a
manifold M is equal to zero:

/ w=0 if dw=0. (3.3.37)
oM
2) The integral of an exact differential form over a closed manifold is equal to zero:

/ do=0 if OM = 0. (3.3.38)
M

Since the square of the exterior differential is equal to zero (see the Theorem 3.3.9 above),
any exact differential form is always closed. The converse statement is false. Let us construct
a counterexample. Let M = R?\ {0},

_ xdy—ydx
T
One has
0 =z o

d = — _—— =
w O 22 + 12 +8yx2+y2
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To prove that this form is not exact let us consider the integral of this 1-form on the unit

circle S!
xr = cost
y = sint

0 <t < 2m. The pullback of the 1-form onto the circle is equal to

costdsint —sintdcost _a
sin®t 4 cos? ¢ -

2m
/ w:/ dt = 2m # 0.
St 0

This contradicts the assumption of exactness of w.

So

Definition 3.3.20 Two closed differential forms w1, ws on a manifold M are called equiv-
alent if their difference is an exact form

we — wq = da.

The linear space of classes of equivalence of closed k-forms on M is called the k-th De Rham
cohomology space of M

H*(M) := Kerdy/Imdy,_;, 0<k<n=dimM (3.3.39)
d, = d : QF(M) — QFFL (M),

It is understood that Im dy_1 is equal to zero for k = 0; for k =n = dim M the kernel Kerd,,
coincides with the entire space Q"(M) of differential n-forms on M.

Example 3.3.21 The cohomology of a point are equal to

k o R, k - 0
H*(pt) = { o k0. (3.3.40)

Example 3.3.22 Let M be a closed connected manifold. Then
H°(M) =R. (3.3.41)

Indeed, a zero-form on M is just a function f € C*°(M). Such a zero-form is closed, df =0
iff the function f(x) is locally constant. Since the manifold is connect the function must
identically constant everywhere. This gives an isomorphism

HO(M) = Kerdy — R.

In a more general case H'(M) = RN where N is the number of connected components of a
closed manifold M.
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Example 3.3.23 Let us compute the cohomologies of the circle S*. Since S is connect
the zero-dimensional cohomology is isomorphic to R (see the previous example). For k > 2
the cohomology H*(S') is trivial. It remains to compute H'(S'). Let ¢ be the 27m-periodic
coordinate on the circle. Every 1-form on S' can be written in the form

w= f(¢)dp, [f(P+2m)= f(9).

Consider a linear map

h:QY(SY) =R
2
Wi hw) = o /S w= o o (3.3.42)

Let us prove that the 1-form w is exact iff h(w) = 0. Indeed, if w = dg, g = g(¢) a 2w-periodic

function, then 2
bw) =5 | 9610 = -laem) — g(0)] =0,
Conversely, let
F(9) = % + i(an cos g -+ by, sin n)

n=1

be the Fourier expansion of the 2m-periodic function f(¢). We have

So, if h(w) = 0 then one can find a periodic primitive for the function f(¢)

(an sinng — by, cosng).

S

f@)=4¢'(9), g(@)=>

n=1

Thus w = dg.

3.4 Homotopy invariance of cohomologies. Degree of a smooth map and
integrals of differential forms

We begin with the following simple statement.

Exercise 3.4.1 Let f: M — N be a smooth map. Prove that the pullback
f*QF(N) = QF (M)
induces a homomorphism of cohomologies that will be denoted by the same symbol
f*: H¥(N) — H*(M) (3.4.1)

forallk=0,1, ...
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Hint: use the result of Exercise 3.3.12.

A very important property of the induced homomorphism (3.4.1) is its invariance with
respect to homotopies. Roughly speaking a homotopy is a deformation of a map f: M — N,
i.e., a family of maps depending on a parameter. More precisely,

Definition 3.4.2 Two maps
f07 fl M — N

are said to be homotopic if there exists a map of a cylinder M x [0,1] = {(z,t) |z € M, 0<
t<1}

F:Mx[0,1— N (3.4.2)
(z,t) — F(x,t)

such that
F(z,0) = fo(z), F(z,1)= fi(z). (3.4.3)

The map F itself is called a homotopy between fo and f1.

We will use notation
fo~ fi

for two homotopic maps.

Remark 3.4.3 Recall that, by default all maps are assumed to be smooth. However, some-
times it is more convenient to work with piecewise smooth homotopies. It is not difficult to
prove that they can be approximated by smooth homotopies.

Example 3.4.4 Let f1 : R™ — R" be the identity map and fo : R™ — R™ the constant map
fo(x) = 0. Let us prove that these two maps are homotopic. The needed homotopy F(x,t)

can be constructed as follows
F(z,t) = zt. (3.4.4)

Theorem 3.4.5 Let fo ~ f1 : M — N be two homotopic maps. Then the induced homo-
morphisms of cohomologies coincide

fo=fi+ H¥N) — H"(M) (3.4.5)
forallk=0,1, ...
Proof: Let us first define a linear map
D : QF(M x [0,1]) — Q¥ 1(M) (3.4.6)

for any k£ > 0 (for kK = 0 we put D = 0) and an arbitrary manifold M. Let n be the
dimension of the manifold M; choosing a chart (U, (z!,...,2™)) one obtains local coordinates
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(z',...,2" t) on M x [0,1]. In these charts any k-form w € Q¥(M x [0, 1]) naturally splits
into two parts w = a + 83,

W= Z iy (@, t) dz AL dat 4 Z Biy i (@, 1) dz AL da™=1 Adt.
1<iy <-<ig<n 1<i1 <-<ig_1<n
Put
1 . .
Dw := > (/ Biyoiny (2,1) dt) dz’t A - A dget (3.4.7)
<n 0

1< < <ip_1 <

Lemma 3.4.6 For any k-form w € QF(M x [0,1]) the following identity holds true

dDw—Ddw = (-1 (w]=1 — w|i—0) - (3.4.8)

Proof: Let us do the calculations for the particular case k = 1; the proof in the general case
is similar. For
w = a;(z, t)dx" + B(x,t)dt

we have

1
Dw:/ Blz, ) dt.
0

_ 18B(£C,t) 7
dDw = </0 O dt> dz’.

Computation of the differential dw yields

B OJaj(z,t)  OJoi(z,t) ; ; 0p(xz,t)  Oay(x,t) ;
“o §< oz’ e )N T or )t

Applying to this 2-form the operator D one obtains

Dde — [/01 <85(x,t) B aai(x,t)> dt] It

O’ ot
! t . ’ |
- </0 358(; ) dt) dz’ — [oi(w, 1)da' — o (x, 0)da’] .
Thus | |
dDw— Ddw = [a;(z,1)da’ — a;(x,0)da’] = w]m1 — wli=o
since

dt|,—1 = dt|;—o = 0.
(|

We are now in a position for completing the proof of the Theorem. Let w be a closed
k-form on N. We have to prove that the difference

flw = fow
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is an exact form. Indeed, put
p = (—1)"'DF*w.

According to the Lemma applied to the k-form F*w on M x [0,1] one has an identity
fiw— fiw=(-1)*'[dDFw—DdF*w
Since the differential commutes with pullbacks one has
dF*w=F"dw=0
due to closedness of the form w. Hence

fiw— fow=dp.
O

Definition 3.4.7 Two manifolds M, N are called homotopicaly equivalent if there exist two
maps
f:M—-N, g:N—-M

such that the superpositions f o g and g o f are homotopic to the identity maps
gofer~idy M —> M
fog~idy: N — N.
We will use notation
M~ N
for homotopicaly equivalent manifolds.

Two diffeomorphic manifolds are homotopicaly equivalent, but not vice versa, as it follows
from

Example 3.4.8 The Euclidean space R™ is homotopically equivalent to a point. Indeed, the
map
f:pt—>R"”

is an embedding, while
g:R" = pt
is the constant map g(x) = pt.

The homotopy between the superposition g o f and idp is trivial; in order to construct a
homotopy between fy:= fog:R" = pt € R"® and f; := idg» one can use the map

F(x,t) = xt.
(cf. (3.4.4) above).

In a similar way one can prove that any star shaped domain D C R™ in the Euclidean
space is homotopicaly equivalent to a point. By definition a domain is called star shaped if
there exists a point Py € D that can be connected to any other point P € D by a segment of
a straight line belonging to D.

From the Theorem 3.4.5 it immediately follows
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Theorem 3.4.9 Homotopicaly equivalent manifolds have isomorphic cohomologies

H*(M)~ H*(N) Yk>0 if M~N. (3.4.9)

Proof: Let
f:M—-N and g:N—->M

be maps establishing the homotopy equivalence. Since
gof~idy
we have, due to the Theorem 3.4.5
frgt=(go )" : H*(M) — H*(M)
is the identity isomorphism for any k£ > 0. In a similar way, from
fog~idy

it follows
g* f = (fog)" =id: H*(N) — H*(N).

So the two induced homorphisms f* and g* are mutually inverse. Hence they are isomor-
phisms. O

Corollary 3.4.10 (Lemma Poincaré) FEvery closed k form on Euclidean space is exact, if
k> 0.

Let f: M — N be a smooth map of compact oriented manifolds of the same dimension
n. Let ) be any n-form on the manifold N. For example, one can take the volume form
(4.1.17) assuming a Riemannian metric has been chosen on N. Then the following formula
holds true

Theorem 3.4.11
/ [ Q=degf / Q. (3.4.10)
M N

Proof: For the particular case of a diffeomorphism the degree is equal to +1. In this case
the formula (3.4.10) readily follows from the theorem about changes of variables in a multiple
integral. In the general case let y € N be a regular value of the map. Denote z1, ..., zx the
points in the preimage f~!(K). There exists a ball B, C N centered at y such that

f(By) =By U---UB,,, CM

and the map f restricted onto every ball B, is a diffeomorphism f : B,, — B,. Applying
the formula of changing variables in a multiple integral one obtains

f*Q:degi-/ Q i=1,...,K.
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Here deg; is the sign (2.1.4) of the Jacobian det (%) at the point x;. Hence

/ ffQ=degf / Q
=1 (By) By

for any regular value y € N. The set of critical values has measure zero, they do not contribute
to the integral over N. Moreover, the pullback f*§2 vanishes at the critical points in M where,
by definition, the Jacobian of the map f is equal to zero. Therefore the of critical points does
not contribute to the integral over M. This completes the proof of the formula. a

4 Riemannian Manifolds

4.1 Riemannian metrics

Definition 4.1.1 A Riemannian metric on a manifold is a symmetric bilinear form

v, we€ TyMw— (v, w) €R (4.1.1)
(a1v1 + azve, w) = ar{v, w) + az(v2,w), (v,a1w1 + agwa) = a1(v, w1) + az(v,ws)
<wav> = <v7w>

defined at every point x € M smoothly depending on x such that

(v,v) >0 for any v #O0. (4.1.2)

Recall that the property (4.1.2) is usually referred to as positive definiteness of the sym-
metric bilinear form.

Denote n the dimension of the manifold M. In a chart one can associate the Gram matrix

to the bilinear form 5 9
gij(x) = <a:ci’ M>- (4.1.3)

It is a symmetric matrix of smooth functions. The condition of positive definiteness is equiv-
alent to positivity of the principal minors of the matrix

g1 >0, det ( g; g;z ) >0, ..., det (gij)lgi,jgn >0 (4.1.4)

(the Sylvester criterion). Such a matrix determines the bilinear form according to the fol-
lowing formula

9
oxt’

w = wj(a?)aij e T, M. (4.1.5)

(v,w) = gij(x)v'w?’ where v =v'(x)

The result does not depend on the choice of local coordinates if, on the intersection of coor-
dinate charts (U, (xt,..., x”)) and (V, (..., y”)) the corresponding Gram matrices

g 0 o 0
350 = (i) ) = (g ) =@
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are related by the transformation law

8yk 8y

This is nothing that the transformation law of a (0, 2)-tensor. So, one can reformulate the
above definition in the following way.

Definition 4.1.2 A Riemannian metric on a manifold is a symmetric (0,2)-tensor g;;(x)
satisfying the Sylvester positivity conditions (4.1.4). A manifold equipped with a Riemannian
metric is called Riemannian manifold.

Length of a curve A ‘
v {2t =2"(t)|a <t <b}

on a Riemannian manifold can be defined in a way familiar from geometry in Euclidean space

or on a surface
b
_ / i (@O (1) (1) (4.1.7)

Lemma 4.1.3 The length does not change under monotone reparametrizations of the curve.

Proof: Let t = t(t') be a monotone change of parameter, t(a’) = a, t(b’) = b. To be more
specific let us consider the monotone decreasing case

dt

@<0, a >b.

Then

xz x] v Xt / I / /
/\/g” . ddt dt = \/’ t/)))d Eltgt))d c(itgt)) <Cclltt> jf'dt
’ dfﬂl(( ) dxi (t(t')) |dt’ / g dz'(t(t')) dzi (t({t')) .,
/ \/ dt’ dt’ dt @dt / \/ dt’ a

:/b/a \/ij($(t(t/)))dxi£;§t/>) da:jc(ligt/)) y

It is convenient to introduce the square length element
ds® = g;j(z)da'da’. (4.1.8)

The formula for the length of the curve can be written as follows

slv] = /ds (4.1.9)

where the restriction of the square length element onto the curve is defined by the usual
procedure

ds?|, = gij(x(t))d" ()37 () dt*.
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Example 4.1.4 Euclidean metric in R™. In the Cartesian coordinates ', ..., x™ the metric
reads )
ds* = (dz')" + -+ (dz™)?.

The length of the curve is given by the well known formula

/ V(@) + (@)% dt.

One can choose another coordinate system and rewrite the metric. E.g., let us consider polar
coordinates v, ¢ on the Fuclidean case with Cartesian coordinates x, y, so that

T =1 cos¢
Yy = 7 sin ¢.
We have
dxr = cospdr —r sin ¢ deo
dy =sin¢dr +r cospdep
S0

ds® = da® + dy? = (cos pdr —r sin¢d¢)2 + (sin g dr +r cos pdp)? = dr? + r2dp?.

Thus, the length of the curve v: r =r(¢), a < ¢ < 5 equals

- ¢ (0,

Relaxing the positive definiteness condition to simply non-degeneratness one arrives at
the definition of a pseudo-Riemannian metric.

Definition 4.1.5 A pseudo-Riemannian metric on a manifold is a symmetric (0,2)-tensor
gij(x) satisfying the condition
det (gij)1§i7j§n # 0. (4.1.10)

A manifold equipped with a pseudo-Riemannian metric is called pseudo-Riemannian mani-
fold.

Example 4.1.6 Given a pair of positive integers p, q satisfying p+q = n, the n-dimensional

pseudo-Euclidean space RP4 = {(x',... 2") |2 € R, i=1,...,n} is a pseudo-Riemannian

manifold with the metric

ds® = (da') + - + (daP)? — (daPt)? — - — (da™)?. (4.1.11)

One can also define volumes of compact domains with a piecewise smooth boundary in a
Riemannian manifold D C M. By definition

Vol(D) := / % (4.1.12)
(D)
dV =+/g(z)dz'...dz", g(x):= det(g;j(z))
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if the domain D is covered by one coordinate chart. Here we denote x(D) the coordinate
representation of the domain.

A change of coordinates (z!,...,2") — (mll, . ,x”/) yields

B ozt dzd
95 = 5 57 0

or, in the matrix form

G'=ATG A (4.1.13)

where G and G’ are the matrices of the metric with respect to the two coordinate systems

G = (gij)v G = (gi’j’)

oz’
4= (w)

det G' = (det A)? det G

and

is the Jacobi matrix. Thus

that is,

ox’

Therefore the definition (4.1.12) of the volume does not depend on the choice of coordinates:

/ \/dell...da:"/:/ Vg |det (g{)‘dxll...dx"l:/ Vodt ... dz"
2/ (D) «' (D) x z(D)

due to the formula of changing variables in the multiple integral.

2
g = [det <8x>} g, ¢ =detG’, g=detG. (4.1.14)

One can pass from local to the global definition of the volume by using a partition of

unity pq(z) associated with a given atlas (Ua, (24, - . . ,a:g))ael

Vol(D) = Z/ Pa(T)\/ga dzl, ... da" (4.1.15)
acl Ta(DNUy)

where g,, is the determinant of the metric tensor in the coordinates (z},...,z%). In particular
if the manifold itself is compact then the volume

Vol(M) = /M dv >0 (4.1.16)

is defined.

Let M be an oriented Riemannian manifold of dimension n. Then one can construct a
volume form Q € Q" (M)

Q=+/g(x)dz" A Adz" (4.1.17)

This formula is invariant with respect to orientation preserving changes of coordinates. Hence
the n-form € is defined globally on an oriented manifold.

For the dimension reason any n-form on an n-dimensional manifold M is closed.
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Theorem 4.1.7 For a compact orientable manifold M the n-form € is not exact.

Proof: The integral
/ Q=Vol(M) > 0.
M

So assumption of exactness of ) contradicts to the second part of the Corollary 3.3.19. O

Corollary 4.1.8 For a compact orientable n-dimensional manifold M the n-th cohomology
s non-trivial

H™(M) # 0.

Actually, one can prove a stronger result that H"(M) = R for a closed connected ori-
entable n-dimensional manifold, but the proof requires some techniques not explained in this
course.

Let us now prove an existence theorem.
Theorem 4.1.9 A Riemannian metric exists on any paracompact manifold M.

Proof: Let (Uy, (x,...,2"))acs be an atlas on M equipped with a partition of unity p,(z).

o
Let us define a metric in every chart by

gi; = 0ij-

Denote ( , ), the inner product of tangent vectors at the points of the chart. Define the inner
product of two vectors v, w € T, M at any point x € M by

(0, w) = pa(®) (v, w)a- (4.1.18)

acl

Such an inner product is bilinear; it depends smoothly from the point x € M. It is positive
definite since positive definite inner products on R” form a convex cone in the space of
symmetric matrices:

Lemma 4.1.10 Given two positive definite symmetric n X n matrices g;; and h;j, their
arbitrary linear combination
Agij +phij, A>0, p>0, MN4u2>0

with nonnegative coefficients is again a positive definite matriz.

Proof: For an arbitrary vector v € R™ the linear combination

Ag(v,v) + ph(v, v)
g(v,v) := giv'v?!,  h(v,v) = hjjv'v!

with nonnegative coefficients vanishes iff A g(v,v) = ph(v,v) = 0. Hence v = 0, O

Let M c RN be a submanifold in the Euclidean space. One can defined the induced
metric on M in the following way. Let v, w € T, M be two tangent vectors. Considering
them as vectors in R we compute their inner product (v, w)pN and put

(v, W) pr = (v, W)RN. (4.1.19)
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Example 4.1.11 The induced metric on a smooth curve

in a Riemannian manifold has the form
ds? = gyt where  g(t) = [#()]2 = gis(w() (£)i7 (1),

Observe that g(t) > 0 for any t since &(t) # 0.

Example 4.1.12 For a two-dimensional surface in R3
r =r(u,v) = (z(u,v),y(u,v), z(u,v)), N:i=r,xr, #0 (4.1.20)
the induced metric is often written as follows

ds®> = E du® 4 2F du dv + G dv* (4.1.21)
E = E(u,v) = (ry,ry), F=F(uv)=(ryr,), G=Gu,v)=/(ry,ry).

It is also called the first fundamental form of the surface. In this case the volume of a domain
defined by the formula (4.1.15) coincides with the area of this domain.

Exercise 4.1.13 Prove that the area of a domain D on the surface (4.1.20) is given by the
following integral

Area(D) = / /D IN| du dv (4.1.22)

where N = r, X r, is the vector normal to the surface.

Exercise 4.1.14 Consider the particular case of the sphere of radius R. Representing it in
the spherical coordinates

= R cos¢ sinf
y = R sin¢ sinf
z= R cosf

one obtains the induced metric in the form
ds*> = R* (d0® + sin® 0 d¢?) . (4.1.23)

The Gram matriz of the metric becomes degenerate at the poles 8 = 0 or § = w since the
coordinate system becomes singular at these points

rg x ry =0 at the poles.

Exercise 4.1.15 Compute the induced metric on the surface represented as a graph of a
smooth function z = f(z,y). Prove that the area of a domain on such a surface is given by

the familiar formula
Area(D) = // 1+ f2 4 f2dxdy.
D
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In certain cases the construction of induced metrics is applicable also to submanifolds in
pseudo-Riemannian manifolds.

Example 4.1.16 In the three-dimensional pseudo-Euclidean space R with the coordinates
(z,u,z) and the metric

ds? = —da® — dy? + dz* (4.1.24)
consider the surface defined by equation
22— 2? —y? = R% (4.1.25)

It is often called pseudosphere due to the similarity with the equation of sphere in Fuclidean
space
(r,r) = R? r=(zy,2) R

Clearly this surface is a hyperboloid of two sheets (see Fig. 2). One can introduce global

Figure 2: Pseudosphere

pseudospherical coordinates on the upper sheet

x = R cos¢ sinh 6
y = R sin¢ sinh 6
z = R cosh#.

In these coordinates the induced metric becomes equal to
ds®> = —R* (d6* + sinh?® 0 d¢?) . (4.1.26)

Such a metric is negative definite; changing the overall sign one arrives at a Riemannian
metric on the two-dimensional surface. We will call it the metric of pseudosphere. As it will
become clear below, this metric is of a fundamental importance for the hyperbolic geometry.
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More generally one can construct in a similar way the induced metric on any submanifold
in a Riemannian manifold. Namely, given an embedding f : M — N to a Riemannian
manifold N equipped with a metric (, )y, define a metric on the manifold M by

(vyw)pr = (fev, frw)N. (4.1.27)

Exercise 4.1.17 Given a smooth curve
v o te (2l(t),...,2™(1), a<t<b

on the manifold M consider its image f(y) on N with respect to an embedding f : M — N.
Prove that the length of the curve v with respect to the induced metric ( , )ar coincides with
the length of the image f(v) with respect to the metric { , )n.

There are some important additions to tensor algebra on Riemannian manifolds. The
metric at the point x € M defines an isomorphism

g:T,M — T:M (4.1.28)
TN gij(a:)vj.

The explicit formula justifies the name lowering of indices for this isomorphism. The inverse
isomorphism is often called raising of indices

g i TEM — T M (4.1.29)
wi = g9 (z)w;.

Here ¢g"(z) are entries of the inverse matrix

(97 (2)) = (g3 ()" (4.1.30)

Exercise 4.1.18 Prove that the inverse matriz (4.1.30) is a (2,0)-tensor on the manifold
M. Prove that the inner product on the cotangent spaces defined by

(o, 8)" = g (x)iBj, o, BET;M (4.1.31)

is positive definite.

In a similar way one can construct isomorphisms between the spaces of tensors
TF o~ Tryy ~ THH (4.1.32)

at any point of the Riemannian manifold.

Finally, since the operations of lowering and raising indices do not require positivity but
only nondegenerateness of the Gram matrix (g;;(x)). So, they can be defined also on a
pseudo-Riemannian manifold.

There is also a useful operator

w0 QF (M) — QVF(M) (4.1.33)
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on an oriented Riemannian n-dimensional manifold called Hodge duality. The construction
uses the volume form (4.1.17). Let us first observe that the components of the antisymmetric
tensor () can be written as follows

Qiyin = V9 €ir.in (4.1.34)
where
1 2 ...
sign ( P zn > , all indices 1,19, ...,1, are distinct
€irig...in = bR (4.1.35)
0, otherwise

To apply this operator to a k-form w = wj, . ;, one first has to raise all indices

118 1L S
L g R W ey

Wiy > W = g
At the second step apply contraction with the tensor (4.1.34)
1

(*W)j1.jy = H\/fjei1mikj1~~jzwilmik’ k+1l=n. (4.1.36)

Exercise 4.1.19 Prove that the square of the Hodge operator is equal to +id
2 = (=P =Riq . oF - QF, (4.1.37)

Essentially the Hodge duality appears in the calculations with differential forms in the
three-dimensional Euclidean space where

xdr =dyNdz, xdy=dzANdzr, xdz=dxAdy
x1 =dx ANdy Ndz.

%2 = id.

We finish this section with an application of Riemannian geometry to the theory of alge-
braic equations. Consider an algebraic equation with real coefficients

P(x) =" +az" '+ +a,=0, ai,...,an €R.

Under what conditions all roots of this equation are real? To this end let us consider the
space P, of all degree n monic polynomials with all real roots. It can be considered as the
n-dimensional Euclidean space using the roots as the Cartesian coordinates

n

P(x) = H(m — i), x1,...,Tp €R.

i=1
Denote A,, another n-dimensional space with coefficients ay, ..., a, as the coordinates (in
these considerations all coordinates will be labelled by lower indices for the sake of simplicity
of explicit expressions). Viete’s formulae

ai:(—l)’ai(fcl,...,mn), izl,...n
where o1 = 01 (1,...,2n), ..., Oy = 0y (21,...,Ty) are elementary symmetric functions
ocr=x1+ - +Tp, Oa=x1X2+T1X3+ " +Tp_1Tn, ..., Opn =T1...Ty (4.1.38)

define a smooth map P, = A,.
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Exercise 4.1.20 Prove the following formula for the Jacobian of the Viete map

det <§‘“) — (1) (@i — ). (4.1.39)

”
J i<j

So, the Viete map is a local diffeomorphism on a sufficiently small neighborhood of any
polynomial with pairwise distinct roots.

Our goal is to describe the image of this map. To this end let us introduce Euclidean
metric on P, and take the inverse matrix defining an inner product on the cotangent bundle
to Py,

<d$z‘, d$j> = (5”

The Viete map o induces a metric on the cotangent spaces to A,,. Namely, by definition

o da; Oa;
ij 1 Udj .
g (a) := (da;,daj) = E 85% 0z, i,j=1,...,n. (4.1.40)
Observe that ¢¥/(a) is a symmetric polynomial in the roots x1, ..., 2,. Thus, according to the

main theorem of the theory of symmetric polynomials it can be represented as a polynomial
in ay, ..., a,. For example,

(day,dai) = n.

Computing other elements of the matrix (gij ) for n = 2 one obtains (recall that in the
concrete examples we write all indices of coordinates as lower)

i\ 2 al
(g”) - < a; a? — 2ap )

- 3 2@1 ao
(97) = | 201 2(af—a2) araz—3as |. (4.1.41)
as aijaz — 3as a% — 2a1a3

and for n =3

Theorem 4.1.21 The polynomial P(x) = 2™ + a12™ ! + -+ + a,, with real coefficients has
all roots real and pairwise distinct iff the Gram matriz (4.1.40) is positive definite.

Applying the Sylvester criterion (4.1.4) one obtains, for n = 2, the well known inequality
—4as > 0.

For n = 3 the Sylvester criterion yields two inequalities

a? —3ay >0, aiad —4ad — 4adasz + 18ara2a3 — 27a3 > 0

that ensure that a cubic polynomial 23 + a122 + a9z + as has all real and distinct roots.

There is another trick from the theory of symmetric functions that helps to derive ex-
pressions for the metric. To this end we choose another system of coordinates on the space
of polynomials. Instead of elementary symmetric functions we will use Newton polynomials

sp(zr,. . xp) =2+ a2k k=12 ...
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They can be easily expressed via the coefficients of the polynomial due to the following simple
identity

n [o.¢]
ar  ao an sk 1
1 <1 I R 7):21 (1_7) E:ff 4.1.42
og +x+x2+ +x” 2 og 2 e ( )

For the example n = 3 one has

2 3
s1 = —al, S9 = —2as +aj, S3= —3a3+3aja2 —aj

s4 = aj —4a2ay + 2a3 + 4ajaz
etc. In this way one obtains a triangular change of coordinates
(a1,...,an) > (S1,.--y8n), Sk =—kag+ 5k (ar,...,a—1), k=1,...,n.

The inverse transform can easily be derived from the identity

‘Eklskkk—1+—+—+ a"+(9<1)

xrn xn+1

(cf. (4.1.42)). For the example n = 3 one has

1 1
ap = —81, Gy = 3 (s% — 32) , asg = 5 (—s:{’ + 35189 — 233) .
Let us now compute the metric (4.1.40) in the coordinates sy, ..., s,. We have
0sy, 0s;
(dsy,d =kl - 4.1.43
(ds., dsi) Z O, O, Sk-+1—2 ( )
where we put
So — n.

Since positive definiteness of the metric does not depend on the choice of coordinates we
arrive at the following

Corollary 4.1.22 (Sturm theorem). All the roots of the polynomial ™ + a1x™ ' + -+ + ayp
are pairwise distinct and real iff the symmetric matrix

n 251 382 ... NSp_1
2s1 4s9 6s3 ... 2ns,
39 6s3 954 ... 3nsp+1

(gkl> - (4.1.44)
nNSp—1 . U L D

is positive definite. In this matriz the polynomials s, = si(a1,...,an), k=1, ..., 2n—2 are
defined from the eq. (4.1.42).
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The above differential-geometric derivation of the Sturm theorem is due to Sylvester. For
n = 3 one obtains the matrix (4.1.44) reads

3 —2ay 3(a? — 2as)
—2a, 4(a? — 2as) 6(—a$ + 3ajas — 3az) | . (4.1.45)
3(a? — 2a3) 6(—a3 + 3ajaz — 3a3) 9(aj — 4a2as + 243 + 4ajaz)

Needless to say that the conditions of positive definiteness of the matrices (4.1.41) and (4.1.45)
coincide.

Exercise 4.1.23 Prove that all the roots of the polynomial z™+a,z" '+ - -+a, are pairwise
distinct and exactly m of them are real iff the matriz (4.1.44) defines a pseudo-Riemannian
metric of signature (m + k, k) (k negative squares), where the number k is defined by the
equation m + 2k = n.

4.2 Riemannian manifolds as metric spaces
On a connected Riemannian manifold one can define distance between two points

p(x,y) = inf{lengths of piecewise smooth curves connecting = and y} (4.2.1)

Before proving that the distance function defines on M a structure of a metric space we
prove the following

Lemma 4.2.1 For a coordinate chart U C M consider a function

Az, v) =1/gij(zx)vivd, €U, veR" (4.2.2)

ol = /(@))% + -+ (om?
the Fuclidean norm of the vector v. Let B™ C U be an n-dimensional ball. Then there exists
a positive constant k such that the following inequalities hold true

Denote

1 _
Z lv]| < Az,v) < klv| for any (x,v) € B" x R". (4.2.3)

Proof: Denote S"~! the unit sphere in the Euclidean space, S"~! = {v € R"|||v|| = 1}. The
restriction of the function A\(x, v) onto the compact B™ x S7=1 attains its minimum A, and
maximum Apay at some points (z1,v1) and (29, v2) in B x ™! respectively. Clearly Amin
is a positive number. The choice

k = max (ALi,, Amax)

min’

implies inequalities

<Xz,v) <k forany xe€B", |v|=1.

=

Normalizing an arbitrary vector v = ||v|| - 0, ||9|| = 1 one completes the proof of Lemma. O
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Theorem 4.2.2 The distance function (4.2.1) satisfies the following properties

p(y,z) = p(z,y)
p(z,2) < p(z,y) + p(y, 2) (4.2.4)
plz,y) 20, plz,y) =0 iff y=u=

Proof: The first two properties of the distance function are obvious from the definition
and from the invariance of the length under a reparameterization ¢t — —t. Let us prove
that p(xo,y0) > 0 for any zop # yo. Let U be a coordinate chart containing xg. Choose a
sufficiently small positive number r such that the ball

B} (w) = {z € Ul ||z — @0l <7}

entirely belongs to U. Without loss of generality we may assume that yo € BJ'(z¢). According
to Lemma 4.2.1 one has inequality

. 1 =
Vos(eyind = Ll Va € Br(wo), YveR

for a suitable positive constant k. Now, let v be any piecewise smooth curve connecting
xo = 7(0) and yo. We will derive the lower bound for its length

s[v] >

> =

It suffices to prove such an inequality for the part of the curve belonging to the ball
7' =N B(x).

Reducing, if necessary, the radius r we can assume that ' is a connected piecewise smooth
curve having it end point x1 = y(¢1) on the boundary of the ball,

lz1 = @ol| =

sly] = /Otl \/ gij(z(t))&iad dt > ]1/0’51 \/(3’:1)2 + -+ (a:”)2 dt.

The integral in the rhs is the Euclidean length of the curve 4/. As it is well known from
Fuclidean geometry its length is greater or equal than the Euclidean distance between the
points 7(0) and 7(¢1). The latter is equal to 7. So s[y'] > r/k. |

We have

Let us consider some particular metrics. We have derived above three important examples
of two-dimensional Riemannian metrics:

ds® = d6* + 6%d¢* Euclidean plane
ds® = d6* + sin? 6 dp?  sphere of radius 1
ds? = d6? 4+ sinh? 0 d¢*> pseudosphere of radius 1

(for the Euclidean plane we have redenoted the radial coordinate r — ). Observe that for
small 6 the above three metrics are approximately equal due to the wellknown formulae

sinf ~ 0, sinhf ~6.
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In order to better understand the difference between these three metrics let us consider the
disks of a given radius on these three Riemannian manifolds. By definition the disk D, of
radius r with the centre at a point x is defined as follows

Dy ={y|[p(z,y) <r}.

Let us choose the point # = 0 as the centre of the disk. On the Euclidean plane the disk is
given by
D, ={(0,9)|0<6<r, 0<¢< 2} (4.2.5)

Let us prove that the disk on the unit sphere has the same form.

Lemma 4.2.3 The distance from the north pole @ = 0 of the unit sphere to the point (8y, ¢o)
for any 8 < m, 0 < ¢g < 27 is equal to 6.

Proof: We have to prove that the length of any piecewise smooth curve from the north pole
to (0o, ¢o) is greater or equal than €y. Without loss of generality we may assume that the
curve is written in the form

The length of such a curve is equal to

90 2 00
[ ¢1+Sm2e<d¢) w> [ a-o,
0 dao 0

O

A similar argument works also for the pseudosphere. So, for all three examples of the
metrics the disks have are defined by the same inequality (4.2.5). Let us now compare the
areas of these disks. For Euclidean space we have, of course,

Area®™ (D,) = w12

For the unit sphere

T 2m

Area™ (D,) = / d@/ sinf d¢ = 27(1 — cosr)
0 0
while for the pseudosphere
T 2m
AreaPseudosph () ) — / d@/ sinh § d¢ = 2m(coshr — 1).
0 0

Using the wellknown asymptotic formulae
I R ; r2 A .
cosrzl—;—i—ﬂ—k(?(r), coshrzl—i—;—i—ﬂ%—(?(r)

we derive that, for sufficiently small radius

4 4
Area™ (D,) = wr? — % +0 (7“6) . AreaPsudosPh (DY — 72 4 % +0 (r6) . (4.2.6)
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The coefficient of 74 can be used to measure the deviation from the Euclidean formula. This
is the starting point for definition of curvature of a Riemannian metric that will be introduced
below.

In order to better understand the properties of this distance one has to study the curves
minimizing the length functional

sy = A & dt = L S (@) dt. (4.2.7)

Since the length functional (4.11.4) is invariant with respect to monotone changes of the
parameter it suffices to minimize the functional on the subspace of curves parameterized by
the arc length.

Lemma 4.2.4 The stationary points of the functional (4.11.4) on the subspace of curves
with the arc length parameterization are determined by the following system of differential
equations

ik 4T (2)i'd =0, k=1,...,n (4.2.8)
where . 5 5 5
Tk = —ghs (22 4 Cdis _ Cdis ) 42,
i = 99 <6w’ * Ox) Oz (42.9)

Proof: One has to derive the Euler-Lagrange equations

ifaﬁ”_jtaaab{”:o’ m=1,...,n (4.2.10)
for the Lagrangian
Uz, &) = y/gij(z)Eiad, (4.2.11)
We have
ov _i Qé _ 1 _ [1 0gi; i i (gmzxz)} —gmz‘i?ii .
Ox™  dt 0™ gij(x)2iad |2 0z™ dt dt \/g;;(x)iidd

The last term in the rhs vanishes since
gij(x(t)):bijcj =1
on the curves parameterized by arc length. The expression in the square brackets yields
10gij 5 d o 1095 o0 Ogmig
= gtq — — (gd?) = - 2o Litd) — i — gt
2 Jx™ dt (gml ) 2 dx™ oxJ Jmi
Since #'47 is symmetric in i, j the second double sum can be written as follows
O9mi yizi L (O9mi \ Omg ) siyj.
oxd 2\ Oxd ozt

So, the m-th equation for the critical points of the functional after changing the sign becomes

A - J ) N _
Gmil +2<8xj Ori Ee ')/ =0, m=1,...,n.

Multiplying the last equation by the entries ¢*™ of the inverse matrix and taking the sum in
m one completes the proof of the Lemma. a
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Definition 4.2.5 The solutions x = x(t) of the Euler—Lagrange equations (4.2.8) are called
geodesics.

Example 4.2.6 In the FEuclidean space

S0

The geodesics are straight lines
x(t) = vot + xo.

Applying to the system (4.2.8) the existence and uniqueness theorem of solutions to ODEs
one arrives at

Theorem 4.2.7 Given a point o € M on a Riemannian manifold M and a tangent vector
vo € Ty M, there exists a positive number € > 0 and a geodesic y(t) defined for |t| < € such
that v(0) = g and ¥(0) = vo.

Exercise 4.2.8 Prove that the parameter on any geodesic is proportional to the arc length,
i. e., given a solution (z'(t),...,a"(t)) to the system (4.2.8), prove that

2% = gij (x(t)) 237 = const.
Alternatively one can consider the action functional
1 1 o
Shl = / Sladt = / = gij(x)i'a? dt (4.2.12)
v 2 v 2

that can be considered as an analogue of the kinetic energy for the free motion on the manifold
of a point particle of mass 1. Deriving the Euler-Lagrange equations for the new Lagrangian

1 .
L(x, &) = igij(x)abzab] (4.2.13)
one obtains the same equations of motion (4.2.8).

Exercise 4.2.9 Derive the statement of FExercise 4.2.8 using the property of conservation of
energy on solutions to Euler—Lagrange equations with a Lagrangian L = L(x, %) that does not
depend explicitly on time
OL(z,z) d OL(x,%)
ozx™ dt o™

d
=0, m=1,....n = %E(m,afc):o

where 5L '
Bz, i) = xg”) — L(z, ). (4.2.14)
X

Example 4.2.10 The geodesics on the sphere
o = B2

in the Euclidean space are arcs of the so-called great circles obtained as sections of the sphere
by hyperplanes passing through the origin. From this example it is clear that, in general the
geodesics minimize the length only locally.
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4.3 Approximation theorems

Any smooth manifold is a topological manifold. The definition of a topological manifold is
similar to that of a smooth manifold with just one modification: the transition functions
between charts are homeomorphisms. Moreover, any smooth map f : M — N of smooth
manifolds is continuous. In particular, any diffeomorphism between smooth manifolds is also
a homeomorphism (but not vice versa!). One of the most striking examples (S.Donaldson) is
an infinite set of smooth manifolds homeomorphic but not diffeomorphic to R*. There is still
an open problem of classification, up to a diffeomorphism, of smooth manifolds homeomorphic
to the 4-dimensional sphere.

Approximation theorems give a justification of working in the theory of smooth manifolds
with only smooth maps, smooth homotopies etc. For simplicity we will formulate few simple
statements of this kind for approximation of smooth functions and smooth maps of compact
connected manifolds. It will also be convenient to assume that the manifolds carry a Rie-
mannian structure. Indeed, denote C(M, N) the space of continuous maps between compact
connected Riemannian manifolds M and N. One can equip this infinite dimensional space
with a structure of a metric space defining the distance between two functions f, g € C(M, N)
by

p(f,9) = max p (f(2),9(x)). (4.3.1)

In the right hand side of this formula we use the distance function on the Riemannian manifold
N defined in the previous section. It is easy to prove that the distance function (4.3.1) satisfies
all axioms of a metric space.

Our first statement says that C*°(M, N) C C(M,N) is a dense subset. More precisely,
the following statement holds true.

Theorem 4.3.1 Let M, N be compact connected Riemannian manifolds. Then for any
f€C(M,N) and an arbitrary e > 0 there exists g € C>°(M, N) such that

p(f,9) <e

Proof: is based on the following

Lemma 4.3.2 Let U C R" be an arbitrary bounded open domain and f a continuous function
f:U —= R. Then for an arbitrary e > 0 and an arbitrary open V such that V. C U there
exists a function g : U — R smooth on V' such that

9|U\v = f|U\v

and

max |f(z) — g(z)| < e
zeV

Moreover, g is smooth also at all the points of smoothness of f.

Recall that two continuous maps fo, f1 : M — N are homotopic if there exists a contin-
uous map
F:Mx|[0,1] - N
such that
Flyxioy = fo,  Fluxpy = fi-
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Theorem 4.3.3 Let M, N be compact connected Riemannian manifolds. Then there exists
€ > 0 such that, any two continuous maps fo, f1 : M — N satisfying

p(f,g) <e

are homotopic.
From these two theorems the following statement readily follows.

Corollary 4.3.4 Let f : M — N be a continuous map of compact connected Riemannian
manifolds. Then there exists a smooth map g : M — N homotopic to f.

Finally, the following statement says that, working with smooth maps it suffices to deal
with smooth homotopies only.

Theorem 4.3.5 Given two homotopic smooth maps fo ~ f1: M — N of compact connected
Riemannian manifolds, then there exists a smooth homotopy F : M x [0,1] — N between
them.

4.4 Isometries of Riemannian manifolds
Let (M,{, Ym), (N,{, )n) be two Riemannian manifolds.

Definition 4.4.1 A diffeomorphism f: M — N is called isometry if
(fev, frw)n = (v,w)pr Yov,we T, M, YzelM. (4.4.1)

A local version of this definition gives local isometries. In this case f is a local diffeomor-
phism.

Exercise 4.4.2 Let M, N be two Riemannian manifolds. Denote ppr, pn the corresponding
distance functions. Let f : M — N be an isometry. Prove that, for any two points x, y € M

pm(z,y) = pn (f(2), f(y)) -

One of the main problems of Riemannian geometry is to classify Riemannian manifolds
up to an isometry.

Example 4.4.3 For n =1 a Riemannian metric has the form
ds®> = g(t)dt*, g(t) > 0.

Introducing the arc length parameter

t
s(t) :/0 V(t)dt
reduces the metric to the Euclidean form
ds® = g(t)dt* = (ds(t))>.

So, any one-dimensional Riemannian manifold is locally isometric to the one-dimensional
FEuclidean space.

96



For n > 1 in general there is no local isometry between a Riemannian manifold (M, ds?)
and Fuclidean space. Below we define the obstacle for existence of such a local isometry. It
will be defined in terms of the curvature of the Riemannian manifold.

Another important geometrical object come from the study of isometries of a Riemannian
manifold (M, ds?) to itself.

Exercise 4.4.4 Prove that the set of all isometries of a Riemannian manifold to itself is a
group.

In this way we obtain the group of isometries of the Riemannian manifolds.

Example 4.4.5 For M = R™ with the Euclidean metric ds*> = (al:nl)2 + oo+ (dz™)? any
map M — M of the form

x— Ax+b, Ae€O(n), beR" (4.4.2)

is an isometry. Clearly such maps form a subgroup in the group of all isometries. Later we
will show that this group coincides with the group of all isometries R™ to itself.

Example 4.4.6 For the standard sphere {2% + 3> + 22 = R?} = 5% C R? equipped with the
induced metric the transformations

x x
y |—=Al y |, AeO(3)
2 2

are isometries. We obtain a three-dimensional group of isometries of the sphere S?. Also in
this case, as it will be shown below, the full group of isometries coincides with O(3).

Similar considerations can be applied to the standard sphere S”~! ¢ R™. The orthogonal
group O(n) acts by isometries on the sphere of an arbitrary radius.

Let us now show that the pseudosphere also possesses a three-dimensional group of isome-
tries.

Let us first observe that the definition (4.4.1) of isometries makes sense also for pseudo-
Riemannian manifolds.

Exercise 4.4.7 1) Prove that the linear map

x x
y | —A| vy |, AecMat(3,R)
z z
is an isometry of the three-dimensional Minkowski space R>! with the metric ds®> = —da? —

dy? + dz? iff the matriz A = (a;;) satisfies

—1

00
ATGA=G, G= -1 0 |. (4.4.3)
0 1

0
0
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2) Prove that matrices satisfying (4.4.3) form a three-dimensional Lie group.

3) Prove that the ass entry of such a matriz A never vanishes.

Denote O(2,1) the group of transformations (4.4.3). It is often called Lorentz group. Ob-
serve that transformations of this group leave invariant the pseudosphere z? +y? — 22 = —R?
of any radius R. By O4(2,1) C O(2,1) denote the subgroup consisting of transformations
satisfying ass > 0. Such a subgroup acts on the upper sheet z > 0 of the pseudosphere.

Exercise 4.4.8 Prove that the transformation of the form

T T
Y = A Yy ) A€O+(271)
z z

defines an isometry of the pseudosphere as a Riemannian manifold with the metric
ds* = R*(d6? + sinh? 0 d¢?). (4.4.4)

Also in this case it will be shown that the group of isometries of the Riemannian manifold
(4.4.4) coincides with O4(2,1).

4.5 Affine connections

In this section M is an arbitrary smooth manifold of dimension n. Let us first recall the
definition of the derivative dx f of a smooth function f € C>°(M) along a vector field X =

X'(2) g

Oy f = Xi(x)agg(cf). (4.5.1)

Consider the integral curves z(t) of the vector field X, i.e., solutions to the dynamical system

it =X%z), i=1,...,n.

Then the derivative (4.5.1) measures how fast the function f changes along the integral curves

) = 0% F@) ot (452)

In particular, the functions satisfying dx f = 0 take constant values along the integral curves.
They are called first integrals of the dynamical system.

We want now to define the derivative of one vector field along another one. This requires
an introduction of an additional structure on the manifold.

Definition 4.5.1 An affine connection on M is an operation that assigns to any pair of
smooth vector fields X, Y € Vect(M) a new smooth vector field VxY € Vect(M) called
covariant derivative of Y along X. The operation must depend linearly on X and Y, i.e.,

Varxita:x,Y = a1Vx, Y +a2Vx,Y, Vx(a1Y1 +a2Y2) = a1VxY14+a2VxYs Vai, az €R
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and also satisfy the following properties

VixY = fVxY (4.5.3)
Vx(fY)=fVxY+0xf Y (4.5.4)

for any f € C>(M).
In a system of local coordinates (IL‘l, e ,x") define a collection of smooth functions Ffj (z)

called Christoffel coefficients of the affine connection by taking covariant derivatives of one
basic field along another one

) LD

These coefficients locally completely determine the affine connection due to

Lemma 4.5.2 For arbitrary smooth vector fields

9 9
X — Xli. Y — in.
ox?’ O’
the following formula takes place
- (OYE N\ 0
Y = X° 4 Thyd) 4.5,
Vx <axz+ b ) - (45.6)
Proof: Because of (4.5.3) '
Vx =XV s

Because of (4.5.4)

Y/ — =+

Y = . | L9 _yirk .
Vo, Vo, OxJ 2.7 Oxd Ozt Oxd Yoxk  oxt  Ozk

oz ozt

j k
< a):w‘v@a oyl 9 .9 ayk 9

(in the last term we have changed the notation for the summation index from j to k). From
the above two equations one easily derives formula (4.5.6). |

Notation: we will denote V;X7 the coordinates of the vector field V /021X with respect

to the basis %, ey agn )
— V. X7

Vo X = VX oo (4.5.7)

Explicitly
. 9XI _—
ViX7 = oo 4 T xR (4.5.8)

In these notations the formula (4.5.6) reads

VY = xivyi o (4.5.9)

Lemma 4.5.3 For any vector field Y the functions V;Y7 are components of a (1,1)-tensor.
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Proof: The corresponding linear operator on tangent spaces reads
X — VyxY.

O

Corollary 4.5.4 Let y = (yl, . ,y") be another system of coordinates on a neighborhood
of a given point x = (xl, e ,$"), y = y(x). Denote I‘Z(:p) the Christoffel coefficients of
an affine connection in the coordinates x and 'y (y) the Christoffel coefficients of the same
affine connection in the coordinates y. Then the following transformation law holds true

oy ozt 027 . oy" 0%zk

I’ = —TI% . 4.5.1
pa() oxk oyp oy Y (z) Oxk Oyroya (4.5.10)
Proof: We have ' .
o oo 9 _owo
oyp  Oyp Oxt’ Oy Oyl Oxd’
So
bl g, O (o 9 oo 9 or o (o0 0
pi ) g T Y e gt ayp  am \9yd 913 ) OyP Oyl o Oad | OyP Ot \ 9yd ) Dad

In the last term we can use the chain rule
ox' 0 % B 9%
Oyp 0zt \ Oyd ) OyrPOy?’

We arrive at the equation
0 _owiowy 0 0 0
oy Oyp Oyd YV 9xk T Oyroyd Oxd”

The last step is to change the notation j — k for the summation index in the last term and
to use

L)

0 ot o
oy Oy’ Oxk’

a

Remark 4.5.5 An alternative definition of affine connection can be formulated as follows:
an affine connection is a collection of smooth functions Ffj (v) assigned to any chart (z!,... ")
such that, on the intersection of charts the transformation law (4.5.10) holds true.

Example 4.5.6 M = R". The Fuclidean connection is defined by trivial Christoffel coeffi-
cients in the Fuclidean coordinates

I =0, 4,4, k=1...n

Observe that the Christoffel coefficients of the Euclidean connection vanish also in any system
of affine coordinates on R"™. In a system of curvilinear coordinates y = y(x) the Christoffel
coefficients in general do not vanish:

oy ok
— Ozk oyroye’

[ (y)
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Exercise 4.5.7 1) Given an affine connection Ffj, prove that
TS =T} - T% (4.5.11)

is a (1,2)-tensor. It is called the torsion tensor of the connection.

2) Prove that the value of the torsion tensor on any pair of smooth vector fields X, Y is
given by the formula

k0

T(X)Y):=X"YI/T} 5F = VXY = Vy X — [X,Y]. (4.5.12)
i
Here oy axk 5
S Y S X
X Y] = <X drs Y (9333) dak

is the commutator of vector fields.

3) Prove that the torsion of the Euclidean connection identically vanishes.
Definition 4.5.8 An affine connection with vanishing torsion is called symmetric.

For a symmetric connection the Christoffel coefficients Ffj are symmetric in ¢ and j. Such
a symmetry does not depend on the choice of a coordinate system.

Given an affine connection on a manifold M and a vector field X one can define a differ-
ential operator

Vx : TP(M) — TP(M) (4.5.13)
Ty e VT = XV T

on tensors of the type (p, q), i.e., on sections of the vector bundle

TM®- - QTMT*M®---T*M.

-~
p times q times

Here T' € T} (M) is defined by its components

0
Ozh

T =T"" () ®da’ @ - @ dale

Jlqu ®®

Ox'»

in a given coordinate system. The general formula for the operators (4.5.13) can be derived
from the following requirements:

of
o for p=¢q¢g=0 me:ax—m
e for p=1,¢=0 V;X’ isgiven by the formula(4.5.8)

e Leibnitzrule V(T'®S)=VI®S+T® VS.

One has to also take into account that, due to linearity the covariant derivative commutes
with contractions.
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Theorem 4.5.9 The above conditions uniquely determine the operation (4.5.13) on a man-
ifold equipped with an affine connection. Namely, components of the covariant derivative of

a (p,q)-tensor T]l1 j” is a (p,q + 1)-tensor Vle ] given by the formula

i1

i1..0p J1---Jq i1 S 2. zp 01...0p—15 o i1...0p TS i1...0p
\ TJl Ja T Yok FkSTJl Jq -t stle -Jq Fk]lTsjz Ja ijqul-ujq—l s
(4.5.14)

Proof: Let us first derive that, for a (0, 1)-tensor w = (w;) (a 1-form) the covariant derivative

is a (0, 2)-tensor given by
Ow;

Viw; = Dl I‘Z] k- (4.5.15)

Indeed, for any vector field X = X? 8?:1 ;X" is a smooth function on M.
Therefore 5 5 8 .
. . w; X'
iX') = — (w X" . X+ ‘ .
Vie (@) = G (@iX') = X' +wigr

On another side, using the Leibnitz rule for the covariant derivative we obtain

. . . , 0X'
Vi (win) = Viw; X'+ w; Vi X' = Viw; X' + wj; <a A +F X > .
A comparison of the two expressions yields
~ Ow; ~
Viw X' = ( ok~ w) X

(we have interchanged the notations for the summation indices i <+ s in one of the terms of
the formula). Since X is an arbitrary vector field, the formula (4.5.15) is proved.

Let us now proceed to tensors of higher rank. The idea of the proof will be explained for
tensors of the type (1,1). Let us first consider the case where the tensor T]Z is equal to the
tensor product of a (1,0)-tensor X and a (0, 1)-tensor w,

= X'wj. (4.5.16)
Then, using Leibnitz rule one obtains

. . . oX* . Ow;
Vil = ViX'wj + X' Vyw; = <a =+ T XS> wj+ X' <a:; - zjws)
7

7 % s s 7 aTj? % s s i

0
= 5k (

So, for factorizable (1,1)-tensors (4.5.16) the formula (4.5.14) is proved. Since any (1,1)-
tensor can be represented as a linear combination of factorizable tensors, the formula is proved
also for an arbitrary (1,1)-tensor. The derivation of the formula (4.5.14) in the general case
is completely similar and it will be omitted. O

The particular formula for covariant derivatives of a (0, 2)-tensor g;; will be often used in
sequel
09ij
ox™m

Vindij = 2 = DiniGmi — D Gin- (4.5.17)
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Exercise 4.5.10 Consider a (1,1)-tensor T with components sz = 5; Prove that
VT =0

for an arbitrary affine connection.

4.6 Parallel transport. Curvature of an affine connection

Let v(t) = (2'(t),...,2"(t)) be a smooth curve on a manifold equipped with an affine
connection.

Definition 4.6.1 The velocity of a vector field X € Vect(M) along the curve «y is the vector
field V5 X.

Here
7= (@), ..., i"(t))
is the velocity vector of the curve. Explicitly,
9
oxk

So, the components of the vector field V5 X at the points of the curve are equal to

i%”ygm+%wgwﬂzwa$m+ﬂmwm@y

Vi X =i'V; X"

Observe that the rhs depends only on the values of the vector field at the points of the curve
7. Such an observations motivates the following

Definition 4.6.2 A vector field X = X(t) on the curve 7y is called parallel along v if

ViX = 0.

From the above calculation we derive a system of n linear ODEs for a parallel vector field
X(t)
dX*

4@5+ﬁﬂﬁﬁdﬂﬂﬁza k=1,...,n. (4.6.1)

Theorem 4.6.3 Given a smooth curve v : [0,1] — M, v(0) = o9, v1 = =1, and a vector
Xo € Ty, M, then there exists a unique parallel along v vector field X (t) on the curve,
0<t <.

Proof: Solving the system of linear differential equations (4.6.1) with the initial data X (0) =
X we obtain a unique solution X (¢) defined on the entire domain of smoothness of coefficients
of the linear system. O

Definition 4.6.4 For a given vector Xy € TyyM and a given smooth curve v : [0,1] - M

starting at xo and ending at x1 the value Xy := X (1) € Ty, M of the parallel along v vector
field X (t) is called the parallel transport of Xy along ~.
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Exercise 4.6.5 Prove that parallel transport of vectors along a curve vy from xy = v(0) to
x1 = (1) defines a linear map of tangent spaces

TypoM — Ty M.

Moreover, prove that this linear map is an isomorphism.

Example 4.6.6 In Euclidean space R™ with the Euclidean connection the vector field X (t) =
(Xl(t), . ,X”(t)) is parallel along v iff X*(t) = X}, k=1,

So, the result of parallel transport in Euclidean space does not depend on the choice of
the curve. We will use this observation in order to develop the theory of curvature of an
affine connection. Intuitively, curvature measures the dependence of the parallel transport
from the curve. An analytic approach to the curvature is based on the following statement.

Theorem-Definition 4.6.7 Let M be a manifold equipped with an affine connection. Then
there exists a (1,3)-tensor Rfjl called curvature tensor of the connection such that, for an

arbitrary vector field X = X' a?gi the following formula holds true

k k k
ViV X* - v,V x* = R, X - T5V, X (4.6.2)

Z]l

Here Ts = FS - Fjl are components of the torsion tensor.

Proof: We know that V;X* is a (1,1)-tensor. Applying the formula (4.5.14) we obtain
0

Vi (Vix") = == (V5XF) + DLV, X - T3 v, XF

ozt
o (ox* ; . [0X® N
= on (83:3 —i—T X) + I <8 5 +FSZX -5V X
Xk 0T e 0X L 0K l "
= 8;vi8:r1 5o X'+ 17 o FZSW + Tk GXT =TV XE.
Similarly,
o*xk ork oX! o0X°®
V; (V X’“) oian T 8xZJle+FZ(‘3 -+ T, o T LA v O S AV ¢
Subtracting we obtain
ViV X* - V; VX" = —Rly X - TV, XF
where k
ork  ory
Rl]l = 8:631 axz F]s il T FZSFJI (463)

Since the lhs V,;V,;X* — V;V, X" is a (1,2)-tensor and also ﬂ?Vst is a (1,2)-tensor we
derive that RfﬂX is a (1,2)-tensor for any vector field X. It depends linearly on X. Since
the space of linear maps from T, M to T, M @ Ty M @ T; M (i.e., to the space of (1,2)-tensors
at the point © € M) is isomorphic to the space T,M @ TXM @ T M ® T} M, we conclude
that Rkl is a (1, 3)-tensor. O

The formula (4.6.3) derived in the proof of the Theorem gives an explicit expression for
the curvature tensor in terms of Christoffel coefficients and their derivatives.
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Exercise 4.6.8 For a 1-form w = wdz® prove the following formula

Viijk - Vjviwk == Réjkwl - Tfjvswk. (4.6.4)

For a Euclidean connection all Christoffel coefficients vanish in the afline coordinates. We
will now prove the converse statement.

Definition 4.6.9 An affine connection on a manifold M is called locally Euclidean if, for
any point xo € M there exists a neighborhood U, and a system of coordinates (yl, e ,y”)
on it such that in these coordinates all Christoffel coefficients vanish.

Theorem 4.6.10 An affine connection on M is locally Fuclidean iff its torsion and curvature
tensors identically vanish.

Proof: Tt has already been explained that the conditions TZ’; =0 and Rfjl = 0 are necessary
for existence of a system of locally Euclidean coordinates. Let us prove that these conditions
are also sufficient. Denote Ffj (x) the Christoffel coefficients of the connection in a coordinate
system (xl, e ,:1;”). We are looking for new coordinates y® = y*(z) such that, in new

coordinates all Christoffel coefficients I'; (y) vanish. Using the transformation law (4.5.10)

_ Ozt oyP oy, (¥) ozt %y
Oy Oxt Oxd P1 4 Oy Oxt0xI

Iy (x)

we arrive at equations for the functions y(x):

Fk ( ) ark 82yr

w(x) = =

*J Oy OxtOxI

Multiplying by the inverse Jacobi matrix g%z rewrite the system of equations in the form
82ys B ays

Our goal is to find n independent functions y*(z), s = 1, ..., n satisfying equations (4.6.5)

foralli, j=1, ..., n.

Let us fix a particular value of the index s. We will rewrite a system (4.6.5) as a first
order system. To this end denote

oy’

f:ys’ F_]:ax]7

j=1...,n.

The system (4.6.5) for a given s takes the form

af
= F,
ox’

(4.6.6)
OF,
oxt

= I}, Fy..
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We are looking for a solution to this system satisfying the following initial data at a given
point zg = (33(1), . ,x(’}) eM

f(zo) =0, Fj(xo) =05, j=1,....,n

The problem is that the system (4.6.6) is overdetermined, i.e., there are n equations for one
vector-valued function
f

F
X = ' (4.6.7)
Fy
Our main goal is to establish a criterion for existence of a common solution for equations
(4.6.6) with arbitrary initial data.

Let us rewrite the system (4.6.6) in matrix notations

0X
ort

where the (n + 1) x (n + 1) matrices M; have the form

=MX, i=1,...,n (4.6.8)

o 0 ... 1 ... 0
0Ty ... ... ... Iy
0 Ik ... ... ... TI%

My=1 . ... ... .. ... (4.6.9)
0T ... ... .. T
n n

(the only non-zero element in the first row is at the (i + 1)-th position).

Lemma 4.6.11 Let the coefficient matrices of the system (4.6.8) be smooth functions on a
cube ' ‘

Iy ={|z' —xy| <a, i=1,...,n}
for some positive a. A common solution X = X(x), v € I} to the equations of the system

with an arbitrary initial data
X (z0) = Xo

exists iff the matrices M; satisfy the following system of equations

oM, M,
oy ozt

+[M;, Mj] =0, i, j=1,...,n (4.6.10)

Here
[M;, Mj] = M;M; — M;M,;

1s matrix commutator.
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Needless to say that the solution, if exists, is unique.

Proof: The common solution X (z), if exists, must satisfy the identities

’X X
Oridrt  Oxidxi

(4.6.11)

for any pair of indices i, j. From (4.6.8) it follows

0?X 0 OM; 0X OM;
dxidx’ — dxi (MiX) = Oz X+ M, oxi (8:cj * MZMJ) X

Therefore the required symmetry (4.6.11) implies

OM; oM
ozl ozt

+ [MZ-,M]-]> X =0.

This equation must hold true for an arbitrary vector X, as the initial data X(z¢) is an
arbitrary vector. Thus we have proved necessity of the conditions (4.6.10) for existence of a
common solution to the system (4.6.8).

In order to prove sufficiency of the conditions (4.6.10) let us first consider the case of a
system of two overdetermined linear equations

0X 0X
5= M,X, a0 = M,X (4.6.12)

for one vector-valued function X = X (u,v). The coefficient matrices M, = M, (u,v), M, =
M, (u,v) are smooth functions of variables u, v satisfying

oM, B oM,
ov ou

+ [M,, M,] = 0.
We want to construct a solution satisfying given initial data
X (ug, vo) = Xo.

Let us first construct a solution ¥ = Y (u) to the following Cauchy problem

Y
v M, (u,v9)Y, Y (up) = Xo.

Such a solution exists and is unique. Next, consider another Cauchy problem depending on
u as on a parameter

X
%71} = My(u,v)X, X(u,v0) =Y (u).

Such a solution X = X (u,v) also exists and is unique for all u. Moreover it depends smoothly
on the parameter u. Let us prove that X also satisfies the first equation of the system (4.6.12).

Denote 5X
X =" M,X.
ou
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Let us prove that X satisfies the second equation of (4.6.12). Indeed,

0X - 92X 9M, 0X 0X
3 M = puae e ¢ Mgy M (au‘MuX>
2
= 0°X — % - MM, + MM, | X — M,M,X — Mva—X + M,M,X
Oudv ou ou
X oM, 0X 0 [(0X
= Jude  ou ”8u_6u<8v_M”X> =0
For v = vy one has
~ 0 0
X(u,v9) = %X(u,vo) — My (u,v9) X (u,v9) = %Y(u) — My (u,v9)Y (u) = 0.

Hence X = 0. The Lemma is proved for n = 2. For n > 2 the proof can be easily completed
by induction. 0

In order to finish the proof of the Theorem it remains to check the compatibility conditions
of the equations (4.6.10) for the matrices (4.6.9)

&2 f 2 f O°F,  0%Fy

Oridrd  Qxidxt’  Oridxi  Oxidxt’

It is easy to see that these conditions are equivalent to vanishing of the torsion and the
curvature of the affine connection; we leave this calculation as an exercise for the reader.
U

Remark 4.6.12 The linear differential equations (4.6.6) can be rewritten in the form

M;X=0, i=1,...,n (4.6.13)

where 5
= — — M; 4.6.14
M ox’ ( )

is a linear differential operator with matriz coefficients. The compatibility conditions (4.6.10)
is nothing but the commutativity of the operators

oOM;  OM;
oxd O’

(M, M;] =0 + [M;, M;] =0 (4.6.15)

as it follows from the following statement.

Exercise 4.6.13 Given a smooth function f = f(x) of one variable z, prove that the com-
mutator of the operator % and of the operator of multiplication by the function f is the
operator of multiplication by the derivative f’:

LZC, f} _ (4.6.16)
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We recommend to the reader to prove again the Lemma 4.6.11 using the operator nota-
tions.

We will now outline an alternative approach to the definition of the curvature tensor.

Exercise 4.6.14 Given two smooth vector fields X, Y on M, consider a linear operator
R(X,Y):Vect(M) — Vect(M)
R(X,Y) =[Vx,Vy] = Vixy] (4.6.17)
1) Prove that for an arbitrary vector field Z and arbitrary smooth function f one has
R(fX,Y)Z=R(X,fY)Z=R(X,Y)(fZ)=fR(X,Y)Z. (4.6.18)

2) Derive from this property that, for any point x € M the value of the vector field R(X,Y)Z
at x depends only on the values of the vector fields X, Y, Z at the same point.

3) For a vectors X = X'- 2. YV =YI. 2 7 = Zka%k prove that

oz’ OzI’

R(X,Y)Z = _jokXinzk%. (4.6.19)

Let us now explain in what sense the curvature tensor “measures” the dependence of the
parallel transport from the curve.

First, we extend the notion of parallel transport to piecewise smooth curves. It is easy:
if 0 <t] <tg<--+ <ty <1 are the points of discontinuity of the derivative 4 of the curve
v :10,1] = M from zp = v(0) to x; = (1) then we first perform a parallel transport of the
initial vector Xy € Ty, M from xg to y(t1), then the resulting vector from ~y(¢1) to y(t2) etc.

Given a point xg € M, choose a pair of indices ¢ < j and consider a small rectangle
vy <ol <ah+ Ay, a)<al <zt Ay, aF=af for k#£i,j (4.6.20)

where

AlNE, AQNE

for a sufficiently small positive €. Denote 1, x2, yg the remaining vertices of the rectangle

T = (:UO, I s aAS PR mé, ceey o T0)
To = (:v(l), ceey Th, e xé + Ay, .., D) (4.6.21)
Yo = (:v(l), R A PRI S SA U SR )

Let 1 be the part of the boundary of the rectangle from xq to yy passing via x1. In a similar
way 7o is another part of the boundary going from xg to yg via x. Let us compare the results
Yo,1 and Y2 of parallel transport of an arbitrary vector Xo € T, M to the vertex yo of the
rectangle along its boundary in two possible ways. The result of such comparison is given by

Theorem 4.6.15 The difference between the results Yo 1 and Yy 2 of two parallel transports
of a vector Xo € Ty, M from zy to yo along the curves 1 and 2 respectively admits the
following expansion at € — 0

Yy — Yo = RE o (20) X§5A105 + O (¢%) . (4.6.22)
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Proof: Let us first compute the result of parallel transport along v, from zg to z; (i.e., along
the z’-axis). To this end we have to find the solution X (¢) to the Cauchy problem

oXFk
Oxt

+TEX* =0, X(0)=X,. (4.6.23)

Expanding the solution in Taylor series for small ¢ = z° — x},

9X(0) . 19%X(0)

X)) =X —_—
(t) 0 + 8xz 2 8q;i2

t*+ 0 (t%)
and using equations (4.6.23) we obtain

1 /[ Orf(z
Xt = x4 (0= A) = X Th0) X5 A (-2 T )T o)) X5A740 (1)

In a similar way, the parallel transport Yy 1 of the vector X; from x1 to yo along the x7-axis
reads

L[ ok (1)
= xt - rhex s ) (<7

8F§S (x0)
ozt

= X§ — T} (20) X§ A1 — (Ffs(%) + A1> (XS — T3 (w0) X} Al) Ay
- ork (o)

1 _ 61“?8 (ZL‘O)
ozt

*3 ozt

1
: +Th )T o)) X303+ 5 <

+ F;‘?T(xo)F;s(xo)> XiA2 40 (63)

ork
= XE—TF (20) X5 A, — rg?s(xo)Xg Ay + (—“(“) + F?,(xo)rﬁs(xo)> X§A10,

oxt
1 < Or¥ (z0)

, . 1 [ Tk (z)
(-2t +r§,«<zo>ris<xo>)XoA%+<éxi

2 + Fﬁ«(xo)F’;s(mo)) X503+ 0 ().

A similar computation yields the followng expression for the vector Yo obtained from Xj
via parallel transport along - from xg to yg

% (o)
Yify = X§ — T (20)X§ Ay — T, (20) X Ao + <—js

(%j + FZ(xg)Fés(:z:g)> XgAlAQ
1 _0F§S($0)
2

2 oxJ

k r SA2 1 8Ffs(x0) k r S A2 3
S T Ui (@o)ls(wo) | XgAT + 5 { ——5 5= + i (20)ls(w0) | X543+ O (¢7)

Subtracting one obtains the needed formula. O
4.7 The Levi-Civita connection and curvature of Riemannian manifolds
In this section we will construct a particular affine connection on a Riemannian manifold.

Theorem-Definition 4.7.1 An affine connection on a Riemannian manifold (M, dsg) 18
called compatible with the metric if it satisfies one of the following equivalent properties.
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1) The covariant derivatives of the metric tensor vanish

vkglj = 07 /[:7 j’ k = 17 A "n' (4.7.1)

2) For arbitrary vector fields X, Y, Z € Vect(M)
Vz(X,Y)=(VzX,)Y)+(X,VzY). (4.7.2)
3) Parallel transport along any curve v : [0,1] — M is an orthogonal transformation

TooM — Ty M, o = ~v(0), x1 = v(1), that is, for any pair of vectors Xy, Yy € Tuy M their
parallel transports X1, Y1 € Ty, M satisfy

(X1, Y1) = (X0, Y0) - (4.7.3)
Observe that the covariant derivative in the lhs of eq. (4.7.2) coincides with the partial

one

Vz(X,Y) =08, (X,Y).

Proof: 1) = 2). It suffices to check validity of (4.7.2) for X =
this case eq. (4.7.2) becomes

o 0 0 L0 0 o . 0N\ _ . \
s (o) = a9 = (e ) + (g Vv ) = Vo + T

On another side, using formula (4.5.17) for the covariant derivatives of a (0, 2)-tensor we find
that

o _ 0 _ 0
gz Y = ga £ = ggr- In

8 ..
95— T894 + T3 916 (4.7.4)

ngij =0 < Dk =

This proves (4.7.2).

2) = 3). Let the vector fields X (t), Y (¢) be parallel alone the curve v, i.e., V53X (t) =0,
V5Y(t) = 0. Using (4.7.2) we obtain

d

7 (X0, Y1) = V5 (X(1), Y(2)) = (V5X(1), Y (?)) +{X(2), V5Y(2)) = 0.

Hence

q.e.d.
3) = 1). Choosing, as above, vector fields X (), Y (¢) parallel along v one must have

d o oG L .y
0= 7 (9i(x ()X ()Y (1)) = $k07x’zX Y9 4 g XY 4+ g XY

Using equations of parallel transport
X4 X5 =0, Y4t Y =0
recast the above expression into the form

d i j . 6gz~ s s i
0= — (g (=) X' ()Y (1)) = 2" (8x’z T35 — ijgw) Xiyi — 0.

Since X and Y are arbitrary vectors and also the velocity vector 4 can be arbitrary we
conclude that the expression in the parenthesis is equal to zero. a
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Definition 4.7.2 An affine connection on Riemannian manifold is called Levi-Civita con-
nection if it is symmetric and compatible with the metric.

Theorem 4.7.3 On an arbitrary Riemannian manifold there exists a unique Levi-Civita
connection.

Proof: Let us derive expressions for the Christoffel coefficients of the Levi-Civita connection
using egs. (4.7.4) along with the symmetry condition I‘;?i =T fj Adding to (4.7.4) equations
obtained by cyclic permutations of indices i, j, k arrive at a system

8:;; = I%i9s5 + Tk;9is
Ok
81‘; = ijgsz + szgks
9Gjk
a{; = Pfjgsk + F?kgj&

Adding the second and the third equations and subtracting the first one we obtain

agjk Og 891’]’
2059k = ozt + oxi  Oxk”

Multiplying by the inverse matrix ¢* and taking summation over k we come at the needed

formula . 9 3 3
Tk — —ghs (Dsd | 99is 9905 ) 47,
= 99 < Ozt * oz Ox* (47.5)

In this way we have proved uniqueness of the Levi-Civita connection. In order to prove
existence it remains to check that the Christoffel coefficients defined for any coordinate system
by the formulae (4.7.5) satisfy the transformation law (4.5.10). We leave this computation
as an exercise for the reader. d

The formulae (4.7.5) for the Levi-Civita connection are called Christoffel formulae.

Example 4.7.4 The Levi-Civita connection on the Fuclidean space equipped with the Fu-
clidean metric coincides with the Fuclidean connection.

Exercise 4.7.5 Prove the following identities for contractions of Christoffel coefficients of
the Levi-Civita connection

0
k=1 4.7.
ik = B 0g\9g (4.7.6)
.. 1 0
upk = - — sk 4.7.7
b= 5 (VI9”) (4.7.7)
In these formulae
g = det (gij) -

Exercise 4.7.6 Prove that the covariant divergence V; X' of a vector field X' with respect
to the Levi-Civita connection can be written in the following form

\}gaii (Vg X"). (4.7.8)
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Exercise 4.7.7 For a vector field X' consider the 1-form
w = de:Ez, )(Z = gi]’Xj.

Prove that the Hodge-dual (n — 1)-form *xw (see definition in (4.1.36)) reads

sw=Y X'\/gde' AL dai - Ada” (4.7.9)
=1

Here a hat over dx' means that this factor is omitted from the product.

Exercise 4.7.8 Let X* be a vector field on a compact n-dimensional oriented Riemannian
manifold M with a boundary OM equipped with the induced orientation. Prove that

/ ST X' gdat AL dat - N da” = / ViXi/gdz' A A da (4.7.10)
oM M

Definition 4.7.9 The curvature tensor Réjk of the Levi-Clivita connection of a Riemannian

manifold is called the Riemann curvature of the Riemannian manifold.

Theorem 4.7.10 A Riemannian manifold is locally isometric to Fuclidean space iff it has
zero curvature
R =0, 4,4, kl=1...,n (4.7.11)

)

Proof: For Euclidean space I’fj =0= lek = 0. Conversely, due to Theorem 4.6.10 on

7
a manifold with a symmetric connection with vanishing curvature there exists a system of

local coordinates (yl, o ,y”) such that ') (y) = 0. In these coordinates the Gram matrix
gpq 1s constant. Doing if necessary a linear transformation of the coordinates y one reduces
the Gram matrix to the standard form g, = 0p,- O

Remark 4.7.11 The definition of Levi-Civita connection as well as the proofs of Theorems
4.7.8 and 4.7.10 remain valid also for pseudo-Riemannian manifolds.

One may ask how many independent equations (4.7.11) one has to analyze in order to
check if a given Riemannian manifold is locally isometric to Euclidean space. The naive
answer n* does not work as there are some universal relations between various components of
the Riemann curvature tensor. For example, due to the definition the tensor is antisymmetric
in 4, j

Ré’z‘k = _Réjk' (4.7.12)
In order to analyze other symmetries of the Riemann curvature tensor it is convenient to
lower the index [, i.e., to work with the (0, 4)-tensor with components

Rijui = gisRjp.- (4.7.13)
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Theorem 4.7.12 The Riemann curvature tensor of a Riemannian manifold satisfies the
following constraints

Rjiki = —Rijwi (4.7.14)
Rijki + Ryiji + R = 0 (4.7.15)
Rijik = —Rijri (4.7.16)
Ryij = Rijh- (4.7.17)

Proof:  The first equation readily follows from (4.7.12). The identity (4.7.15) follows from
the symmetry of the connection

0 0 8 0 0 0
VN]-W - V,V; Ok +ViVi— B -V Vka +V; Vk8 Vij%
0 0 0 0 0 0
= Vi (Vjaxk Vb J> TV (V’“a i Vigy k) Vi <Vi8xj _vfaggi> =0

Proof of antisymmetry (4.7.16) follows from compatibility of the connection with the metric.
Namely, for arbitrary vector fields Y, Z using (4.7.2) one obtains

0? 0
— (Y, 7)) = — Y, Z Y, ViZ
8$Z6$J < 9 > 8:67' (<V] 9 >+< 7v] >)

= <VZVJK Z> + <VjY, ViZ> + <ViY, VjZ> + O/, ViVjZ> .

The same expression can be computed in a different way

0? 0
Y, Z) = — ((V;Y, Z) + (Y, V.2
oo (Y, 2) = 5 ((ViY, 2) + (Y, Vi2))

= <VJVZY, Z> + <ViY, VjZ> + <VJY, V¢Z> + <Y, VjViZ) .

Subtracting one obtains
(Vi, V5lY, Z) + (Y, [V4, V;]Z) = 0.

This proves (4.7.15).

The last identity (4.7.17) follows from the previous three. To see this let us consider eq.
(4.7.15) together with three other eqgs. obtained by cyclic permutations of indices i, j, k, {

Rijii + Riiji + Rjka = 0
Riiji + Rjik + Rijie =0
Rygij + Rigj + Ry = 0
Rjki; + Ryjgi + Rigji = 0.

Adding the first and fourth equations and subtracting the second and third one obtains, with
the help of (4.7.14) and (4.7.16)

2R;jki — 2Rk = 0.
O

For n = 1 all components of the curvature tensor vanish, as it should be. Indeed, any
one-dimensional Riemann manifold is locally isometric to Euclidean space. For n = 2 there is
only one non-zero component Rjs12. All other components are or equal to £Rj212 or vanish.
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Exercise 4.7.13 Prove that the dimension of the space of tables Ry, i, j, k, [ =1, ..., n,

. . . . 2( 2_1)
satisfying constraints (4.7.14)~(4.7.17) is equal to “—5—.

Hint: prove that one can use the following components as independent coordinates in the
space of tensors R;ji; satisfying (4.7.14)—(4.7.17)

Rijpy for i<j<k<l or k<i<j<lLl

Other two quantities are often considered in the study of curvature of Riemannian man-
ifolds. The first one is Ricci tensor obtained from the Riemann curvature tensor by a con-
traction

Ri; = g" Ripji. (4.7.18)
It is a symmetric tensor of rank 2
Rj; = R;;. (4.7.19)
The contraction of Ricci tensor -
R = g" Ry; (4.7.20)

is called scalar curvature. Its value at a given point does not depend on the choice of a system
of coordinates, i.e., the scalar curvature is just a smooth function on the manifold.

Exercise 4.7.14 For n = 2 prove that

1 gk Gil >
R = =R det t v .
ik < 9ik  Gji

and
R;j = R g;j.

Derive that any two-dimensional Riemannian manifold with vanishing scalar curvature is
locally isometric to Fuclidean plane.

For n = 3 the Riemann curvature tensor has 6 independent components Ri212, Ri213,
R1993 Ri313, R1323, Ra2323. The Ricci tensor has the same number of independent components
Ri1, Rio, Ri13, Ros, Ro3, R33. Such a coincidence suggests that the Riemann curvature of a
three-dimensional manifold is completely determined by the Ricci curvature. Indeed, this is
the case, as it follows from the following

Exercise 4.7.15 For n = 3 prove the following formula

. . . . 1 . .
Riji = det( i Fa ) — det < Bj & ) — —R det ( Jike It ) :
9jk  9jl gik  Gil 2 Jjk  9ji
Definition 4.7.16 A Riemannian manifold is called Ricci flat if R;; = 0,4, j =1, ..., n.
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From the results of the last two exercises it follows that any Ricci flat Riemannian manifold
of dimension < 3 is locally isometric to Euclidean space. For n > 4 this is not true any more.
For example, for n = 4 the dimension of the space of Ricci tensors is equal to 10 while the
space of Riemann curvature tensors has dimension 20.

Importance of Ricci flat manifolds is mainly due to the Einstein’s general relativity. Ac-
cording to this theory the space-time in absence of matter is a Ricci flat pseudo-Riemannian
manifold of signature (1,3) (needless to say that the above definitions of curvature makes
sense also for pseudo-Riemannian manifolds; also all its properties remain valid).

4.8 Gaussian connection on surfaces. Curvature of curves and surfaces

Let M C RY be a n-dimensional submanifold in Euclidean space. The Euclidean metric on
RY induces a Riemannian metric ds® on M. In this section we give an explicit realization of
the Levi-Civita connection on (M , dsQ).

Denote r(u) = (xl(u), .. ,xN(u)) € RY the embedding map, v = (ul, .. ,u") are local
coordinates on a chart on M. Recall that the vectors
or .
r;, = Jui’ 1=1,....n

span the tangent space T, M C R™. The Gram matrix of the induced metric reads
gij(u) = (ri, rj).

Given a point u € M and a vector X € RY, there exists a unique decomposition of the form
X =pr,X + X+ (4.8.1)

where the vector X is orthogonal to T, M. The first part pr, X is called orthogonal projection
of X onto T,,M.

We are now ready to define the main construction of this section. Let X, Y be two vector
fields in RY tangent to M. Define another vector field tangent to M by

VxY|, =pr, (0xY) forany wue M. (4.8.2)

Lemma 4.8.1 The vector field VxY depends only on the restrictions X|pr, Y|a of the
vector fields on M C RV,

Proof: For any smooth function f € C*® ( ) one has

N ooy
Za auz: Oei -

In particular the restriction of dy, f onto M vanishes if f|p; = 0. Clearly, for a vector field
X=X aﬁa vanishing on M the restriction of Ox f onto M vanishes. Therefore, for a vector
field X tangent to M one has

Ox ) E:XZ 5 (fla)  where X]M:ZXi(u)rl
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So, the above definition yields the following expression for the covariant derivative

0

o (Y7 (u)r;) . (4.8.3)

n
VxY =pr, Z X (u)

1, j=1
where, like above

Y‘M = Z Yj(u)rj.
j=1

Clearly this expression depends only on the restrictions X (u) and Y (u) of the vector fields
on the submanifold. a

Definition 4.8.2 The connection (4.8.2) defined on a submanifold M in a Euclidean space
RY s called Gaussian connection on the submanifold.

Theorem 4.8.3 The Levi-Civita connection for the induced metric on the submanifold M
i a Fuclidean space coincides with the Gaussian connection.

Proof: From the formula (4.8.3) it follows that

V o — =npr,7r;:.
Buiau] pulj

Symmetry of the second derivatives r;; = r;; implies symmetry of the Gaussian connection.
Next, we have
07X =VzX +(0zX)F, 0,V =VzY +(9,Y)4.

Here the vector fields X, Y, Z are assumed to be tangent to M. Using
0z(X,Y) =(02X,Y) + (X,02Y)
and orthogonality <(82X)L ,Y> =0 and <X, (8ZY)L> = 0 we arrive at
0z(X,Y)=(VzX,Y)+(X,VzY).

Hence the Gaussian connection is compatible with the induced metric. O

Let us consider a particular case of hypersurfaces M C R™*!. In this case the orthogonal
complement to the tangent space T, M at a given point u € M is one-dimensional. Locally
one can choose an orthogonal unit vector n = n(u) smoothly depending on the point of the
submanifold.

n(u) LT,M, (n,n)=1.

Define a bilinear form on Vect(M) by the formula
b(X,Y) = (0xY,n). (4.8.4)

It is understood, like above, that X, Y € Vect (R”+1) tangent to M.
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Lemma 4.8.4 The formula (4.8.4) is a well defined symmetric bilinear form on T,,M at any
point u € M.

Proof: In order to check that the value of the bilinear form b(X,Y") at a given point u € M
depends only on the values of the vector fields at this point it suffices to prove that

b(f X,Y) =0b(X,[Y)=fbX,Y)
for any function f. The only non-obvious part is the last equality:
b(X, fY) = (0x(fY),n) = (OxfY,n) + (fOxY,m).

The first term in the rhs vanishes since Y 1 n.

For proving symmetry of the bilinear form we use that the vector field
oxY — oy X = [X,Y]

is tangent to M for any pair of vector fields tangent to M (see Exercise 1.3.16). d

Definition 4.8.5 The bilinear form (4.8.4) is called the second fundamental form of the
hypersurface M.

The definition of Gaussian connection for hypersurfaces can be rewritten in the form
OxY =VxY +b(X,Y)n. (4.8.5)
Equivalently, in local coordinates
r;j = Fi.“jrk +bijn (4.8.6)

where Ffj are Christoffel coefficients of the Gaussian connection and

o 0
by =0 (s g ) = () (48.7)

is the matrix of the second fundamental form in the standard basis rq, ..., r, in T, M.

We will now prove the main result of this section.

Theorem 4.8.6 The Riemann curvature tensor of the Gaussian connection on a hypersur-
face can be written in terms of the second fundamental form in the following way

_ bt bi
Rijj = det ( b b ) . (4.8.8)
Moreover, the second fundamental form satisfies the following equations

Ob;;  Ob; o
: L =Thby —Dba, i g, k=1,...,n. (4.8.9)

ouk o
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The formula (4.8.8) is due to Gauss (for n = 2). It plays a crucial role in the proof of
Gauss Teorema Egregium (see below). The equation (4.8.9) was rediscovered many times;
for n = 2 it is due to Peterson, Mainardi and CodazziS.

Proof: We first prove the following

Lemma 4.8.7 The following equations hold true

on
ou?

= —bgrj where bg = ¢7%b;s. (4.8.10)

Proof: Differentiating the identity (n,n) = 1 obtain

0 On

That is, the vector 3; is orthogonal to n. Therefore

on ;
= QQI'

ou? i

for some matrix al = a(u). Using

; On 0
5 = (. 515 ) = o) = (rem) = b

we complete the proof of Lemma. O

Putting together eqs. (4.8.2) and (4.8.10) we obtain an overdetermined system of equa-
tions (sometimes called Weingarten formulae)

or; s
8uji =T§rs + byn (4.8.11)
on

- — _br,. 4.8.12
o = Ui (48.12)

In order to complete the proof of the Theorem one has to analyze the compatibility conditions
of this system. Differentiating (4.8.11) in u* we obtain

831' arfj t 8bw
duiduiouk  ouk ' ® + 15 (Tors +bsgm) + auk " bigbirs
The rhs must be symmetric in i, k. Collecting the coefficients of ry, ..., r, one obtains
(4.8.8) while the symmetry in i, k of the coefficient of n yields (4.8.9). O

Exercise 4.8.8 Prove that compatibility of eqs. (4.8.12) follows from (4.8.9).

The following Bonnet theorem says that the system of eqs. (4.8.8), (4.8.9) suffices for
local reconstruction of a hypersurface.

5Tn the chronological order.
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Theorem 4.8.9 Let the symmetric matriz valued function b;j(u) and a symmetric positive
definite matriz valued function g;;(u) satisfy the Gauss and Peterson—Mainardi-Codazzi equa-
tions (4.8.8), (4.8.9) where the functions Ffj = Ffj(u) are defined by the Christoffel formulae
(4.7.5). Then there exists a sufficiently small piece of a hypersurface in the (n+1)-dimensional
Euclidean space with the given first and second fundamental forms g;; and b;;. Moreover, such
an embedding is determined uniquely up to an isometry of the ambient space R™"TT.

Proof:  Existence of an embedding follows from Lemma 4.6.11 due to the compatibility
(4.8.8) and (4.8.9). Let us prove uniqueness. Let ¥(u) be another embedding. Choose a
point ug = (u[l),...,ug). Consider two bases ri(ug), ..., rn(ug), n(up) and 71(up), ...,
T, (uo), (ug) in R**1. The Gram matrices of the Euclidean inner product for these two
bases coincide

j(uo)) = (i(uo), T (ug)) =
(ri(uo), n(uo)) = (¥i(uo), n(ug
(n(uo), n(uo)) = (n(up), n(uo)

Therefore there exists a non-degenerate matrix A € Mat(n + 1,R) satisfying orthogonal
transformation A € O(n + 1) transforming one basis to another one

—~
=
N
—
£
=
N
=
—~
|
)
N
<
—
g
=)
~

(F1(ug), .-, Tn(ug),n(ug)) = (ri(ug), ..., rn(ug),n(ug)) A.

Applying uniqueness theorem for solutions of the system (4.8.11), (4.8.12) we obtain identity

(T1(u),...,Tp(u),n(u)) = (ri(u),...,ry(u),n(u)) A.

a

For n = 2 the formula (4.8.8) together with the result of Exercise 4.7.14 imply the following
expresson for the scalar curvature of a two-dimensional surface in R?

R—odtB B:<b11 612)7 G:<9“ 912). (4.8.13)

det G’ ba1  bao 921 go2

In the next section we will explain the geometric meaning of this formula in terms of Gaussian
curvature of a surface.

4.9 Curvature of surfaces in R?

The curvature of surfaces can be characterized by the curvature of certain curves on the
surface. Let us introduce the tools useful for computing these curvatures.

Let
r =r(u,v) (4.9.1)
be a regular smooth two-dimensional surface in the three-dimensional Euclidean space. Define

the unit normal vector at the point r(u,v)

r, X Iy
= — 4.9.2
[Ty X 1y ( )
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The vector n is orthogonal to r, and r, and, hence, it is orthogonal to the tangent plane
Ty, to the surface.

Introduce functions

bn(u, 1)) = <I‘uu, n>
bia(u,v) = (ryy, n) (4.9.3)

bQQ(u, ’U) = <I‘m,, Il>.
Definition 4.9.1 The quadratic form

b1 (u, v)du® + 2by2(u, v)du dv + baa(u, v)dv? (4.9.4)

is called the second fundamental form of the surface (4.9.1).

A geometric meaning of the value of the second fundamental form on tangent vectors to
the surface becomes clear from the following statement.

Lemma 4.9.2 Let (u(t),v(t)) be a smooth curve on the surface. The normal component of
the acceleration vector ¥ at a point (u = u(t),v = v(t)) is equal to the value of the second
fundamental form on the velocity vector (u,v) at this point

(#,n) = by (u, v)0? + 2byo(u, v)0 0 + bog(u, v)0% (4.9.5)

Proof: In the expression
¥ = 0?4 2000 + Ty 0 + Tyl + 1y 0
the last two terms are orthogonal to n. Hence

(,n) = (ryy, n)0? + 2(ryy, )0 + (Tyy, n)o2.

Denote v the principal normal to the curve

r(u(t), v(t))

on the surface.

Theorem 4.9.3 The curvature of a smooth curve on the surface (4.9.1) multiplied by the
cosine of the angle between the principal normal to the curve and the normal to the surface
is equal to the ratio of values of the second and first fundamental forms on the velocity vector
of the curve

k(vn) = b1y (u, v)u? + 2b1a(u, v)Ud + bao(u, v)0? . (4.9.6)

911 (u, v) 02 + 2g12(u, V)00 + goa(u, v)?
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Proof: Recall that the principal normal to the curve is the normalized vecor of acceleration

d?r
@:kl/, k>0, ‘V‘:l
Applying the Lemma one obtains
du\ 2 du dv dv\ 2
— - ) == bkl I
k{v,n) = b11(u,v) (ds) + 2b12(u, v) Ts ds + bao(u, v) <ds>

This proves the formula (4.9.6) for the curves parametrized by length since, in that case,
the denominator in (4.9.6) is equal to 1. Since both sides of (4.9.6) do not depend on the
parametrization of the curve, the formula holds trues also for an arbitrary parametrization.

Ul

Let us consider the curve obtained by intersecting the surface by the plane passing through
the normal n. It is called the normal section. It is a plane curve; its principal normal vector
v is collinear with n. Denote 7 a unit tangent vector to the surface belonging to the normal
plane. It coincides with the velocity vector of the normal section passing through n and 7.
We obtain

Corollary 4.9.4 The absolute value of the second fundamental form on a unit tangent vector
T to the surface is equal to the curvature of the normal section passing through T and n.

Let us slightly modify the definition of the curvature for the case of a plane section of an
oriented surface: it will coincide with the old one if the direction of the principal normal to
the curve coincides, ¥ = n, with the direction of the normal to the surface; in the opposite
case, ¥ = —n, the new curvature will be equal to the negative old one. With such a definition
the result of the Corollary for the curvature k = k(1) of a plane section passing through the
unit tangent vector 7 = (71, 72) at a point (u,v) can be represented in the following form:

k(7) = bi1(u, v)(71)? + 2b12(u, )77 + baa(u, v)(72)? (4.9.7)

g11(w, 0)(T1)? 4 2912 (u, )T 7 + gaa(u, v)(77)% = 1. (4.9.8)

Example. On the sphere of radius R all normal sections are circles of the same radius
R. The curvature of these circles is equal to 1/R. With the choice of the orientation on
the surface by ordering the spherical coordinates u = ¢, v = 0 the curvature of any normal
section is equal to —1/R. Hence the second fundamental form of the sphere in the spherical
coordinates reads

—R(d6? + cos? 0 d¢p?).

In order to get more clear idea about dependence of the curvature of a normal section on
the direction 7 at a given point of the surface let us study the minima and maxima of the
function k(7). This problem is tantamount to finding the maxima/minima of the function
(4.9.7) of two variables 7!, 72 constrained by the equation (4.9.8). In order to simplify
notations let us redenote



We will also omit writing explicitly the dependence of the coefficients of the first and second
fundamental forms on » and v.

We arrive at the following constraint maximum /minimum problem:

b11$2 + 2b1oxy + b22y2 — max/min (4.9.9)
g2 + 2g10xy + gooy® = 1. (4.9.10)

To resolve this problem let us consider the following auxiliary function
F = bya® + 2b1ozy + baoy® — A (g112° + 29122y + ga2y® — 1) . (4.9.11)

One has to find the stationary points of F' = F(x,y, A) from the system

oF _, o _
or Oy

OF

0, —=—=0.
oA

The last equation is nothing but the constraint (4.9.10). The first two, after division by 2
yield a linear homogeneous system

biiz + b2y = Agu1z + g12y)
biox + b2y = A(g122 + g22y)

or, in the matrix form,

BX =AGX (4.9.12)

B:<b11 512>7 G:<911 912)7 X:(£B>' (4.9.13)
ba1  b22 921 922 Yy

Recall that the matrices B and G are both symmetric and, moreover, the matrix G is positive
definite.

where

We arrive at the theory of invariants of pairs of quadratic forms with the Gram matrices
B and G. Let us briefly explain the main points of this theory in a linear space of an arbitrary
dimension n

b(z,y) = by,  g(z,y) = gia'y’.

Definition 4.9.5 A nonzero vector X satisfying the linear homogeneous system (4.9.12) is
called an eigenvector of a pair of quadratic forms with the eigenvalue A.

Lemma 4.9.6 The eigenvalues of a pair of quadratic forms satisfy the characteristic equa-
tion

det(B — AG) = 0. (4.9.14)

Proof: The linear homogeneous system (4.9.12) has a nonzero solution iff its determinant
vanishes. 0

Lemma 4.9.7 The eigenvalues of a pair of quadratic forms do not depend on the choice of
the basis in the space.
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Proof: Changing the basis transforms the Gram matrices of the quadratic forms to
B'=TTBT, G =T'GT.
So the new characteristic equation
det(B' = A\G') = det [TT(B — AG) T| = (det T)*det(B — A\G) (4.9.15)
is proportional to the old one. O
In order to complete the theory of normal forms of a pair of bilinear forms we will use

the connection between self-adjoint operators and symmetric bilinear forms in a Euclidean
space. Recall that a linear operator

A: X - X (4.9.16)
on a Euclidean space (X, (, )) is called self-adjoint if it satisfies
(Az,y) = (z,Ay) Va,y. (4.9.17)
The bilinear form
b(z,y) == (z, Ay) (4.9.18)

is symmetric iff the operator A is self-adjoint. Given the matrix (a?) of the operator in a
basis eq, ..., €,

Aej=ale;, j=1,....n (4.9.19)
and the Gram matrix of the inner product in the same basis
(eisej) =gij, 4, j=1,...,n (4.9.20)
one can can compute the Gram matrix of the bilinear form b(x, y):
bij = blei,ej) = gwak, i, j=1,... (4.9.21)
or, in the matrix form
B =GA. (4.9.22)
Inverting one reconstructs the operator A by
A=G'B (4.9.23)
or, in the index notations
at = g%*by, i, j=1,...,n (4.9.24)

where g*/ are the entries of the matrix inverse to G = (g;;)
G=(g;j), G '=(g"). (4.9.25)

They say that the matrix of the bilinear form b(z,y) is obtained from the matrix of the
operator A by lowering the indez (see (4.9.21)) while the inverse procedure (4.9.24) of recon-
structing the operator from the bilinear form is called raising of indices.

Let us return to the eigenvalues and eigenvectors of a pair of quadratic forms. They
coincide with the eigenvalues and eigenvectors of the self-adjoint linear operator A. At this
point it is crucial that the quadratic form g defining the inner product in the space is positive
definite. Under this assumption the following theorem is fundamental in the theory of self-
adjoint operators.
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Theorem 4.9.8 Let

A X—>X
be a self-adjoint operator in a n-dimensional Euclidean space (X, (, )). Then there exists an
orthonormal basis e1, ..., e, in X consisting of eigenvectors of the operator A

Ae; = Neg, i=1,....n

<6Z', 6j> = 5”
Applying this theorem to the self-adjoint operator (4.9.23) we arrive at the following

Corollary 4.9.9 Let B and G be two symmetric n X n matrices, and the matriz G is positive
definite. Then

1) the characteristic equation (4.9.14) has n real roots A1, ..., Ay.

2) There exists a system of coordinates in the linear space such that the quadratic forms
b and g take the following diagonal form

b(ZL‘,ZL‘) = )\1(g;1)2 4+ .4 )\n(l‘n)Q

(4.9.26)
glaz,x) = (') + -+ («")%.
Exercise 4.9.10 Prove that det B
e
AMA2.. A, = . 4.9.27
172 det G ( )

Let us come back to the curvature of normal sections of a surface in R3. We have proved
that the characteristic equation (4.9.14) has two real roots A; and Ay depending on the point
of the surface and, moreover, at a given point there exist two tangent vectors e1, es such that

b(el, 61) = )\1, b(eg, 62) = )\2, b(el, 62) = b(ez, 61) =0 (4.9.28)

gler,e1) = glez,e2) =1, gler,e2) = g(ea,e1) = 0. (4.9.29)

The second line means that the tangent vectors e; and ey are orthogonal as vectors in the
three-dimensional Euclidean space and, moreover, they have unit length.

Definition 4.9.11 The linear operator A = G~ B is called the shape operator of the surface.
The numbers k1 = A1 and ko = Ao are called the principal curvatures of the surface at a given
point. The directions of the vectors e; and es are called the principal directions at the same
point.

We will now see that the principal curvatures give the maximal and minimal values of
curvatures normal sections we were looking after.

Theorem 4.9.12 (Euler formula) Let ¢ be the angle between a unit tangent vector T and e;.
Then the curvature k of the normal section of the surface passing through T and the normal
n is equal to

k = k% cos® p + kg sin? . (4.9.30)
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Proof: In the basis e, es the first and the second fundamental forms become equal to

b(r,7) = k1 (r")” + ka(7%)?

T = 7'161 + T262.
In this basis the vector 7 reads
T = cos p e +sinpes.
For the curvature of normal section passing through 7 one obtains

k1(m1)? + ko(72)?

k= (t1)2 1 (72)2

= k1 cos® p+ ko sinh? ®.

Corollary 4.9.13 Let the principal curvatures at a given point of the surface satisfy
ko < k1.
Then the curvature k of an arbitrary normal section passing through the same point satisfies

ko <k < k.

Definition 4.9.14 The product of principal curvatures
K = kiko (4.9.31)
is called the Gaussian curvature of the surface at a given point. The mean value

k1 + ko
2

H = (4.9.32)

s called the mean curvature at the point.

From the result of Exercise 4.9.10 it follows that the Gaussian curvature is equal to the
ration of the determinants of the second and the first fundamental forms

_detB
 det G’

(4.9.33)

Comparing with the result of Exercise 4.7.14 along with the formula (4.8.13) one arrives to
the following

Theorem 4.9.15 The component Ri212 of the Riemann curvature tensor and the scalar
curvature R of the induced metric on a two-dimensional surface in R3 are given by the

following formulae
R1212 =K det(gij), R =2K. (4.9.34)

126



Example 1. For the sphere of radius R with the standard orientation the Gaussian
curvature is equal to K = 1/R? and the mean curvature is H = —1/R.

Example 2. Let the surface in the Euclidean space be represented as a graph of a

function

2 = f(z.).
The tangent vectors have the already familiar form
rx:(]-aoafz)a ry:(oa]-afy)'
Computing their cross-product we obtain the unit normal vector

form by D) (4.9.35)

n—=— .
L+ 2+ 3

:

So the coefficients of the second fundamental form are equal to

b1 = <rzx)n> =

&‘b
8

L+ f2+ f3
Jay

L+ f2+ f3
fyy

L+ f2+ £}

big = (rgy,n) =

:

boo = (ryyv n) =

:

Computing the determinant
det B = by1bgy — b3,

and dividing by the determinant of the first fundamental form (?7)
detG =1+ f2+ f2

(see (?7)) one obtains
2
foafyy — Tay (4.9.36)

K=trperpe

One observes that, at a stationary point

the Gaussian curvature is positive near a point of a maximum/minimum where the graph is
convex but it is negative near a saddle point where the Hessian f, fyy — fg?y is negative.

Let us now compute the mean curvature of the graph surface. Inverting the matrix G

-1 1 1+f2 *fa:f
G —daa(—ni Hﬁ%)
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and computing the trace of the matrix of the shape operator G~'B one obtains

1 1
H=3trG 'B= (det G372 (L4 fD) faw = 2fafyfey + (L+ £2) fyy]
U feat fyy  folfatoe + fyfoy)  fy(fafoy + fyfyy]
2 | (det G)1/2 (det G)3/2 (det G)3/2
[ feat Sy fe(detG)e  fy(det G)y]
2 [(detG)Y/2  2(det G)3/2  2(det G)3/2

1. grad f

0 f:c 9 fy
— + = = —div—2rt
02 v W] 2 14848

Let us now consider the important particular case of minimal surfaces having zero mean
curvature. Clearly, the Gaussian curvature of such a surface must be negative since the
principal curvatures k; and ke have opposite signs.

N | =

Assuming that the minimal surface is represented as a graph of function z = f(z,y) one
obtains the following PDE for the function f = f(x,y)

grad f

div———————=0 (4.9.37)
or, equivalently

This equation describes the shape of soap films that, in the absence of external forces tend
to minimize their area. Indeed, let us consider the area of a small piece of the surface

Alf] —//ﬂ,/1+f§+fgdxdy (4.9.39)

as a functional of the shape function f. Here () is a sufficiently small domain on the (z,y)-
plane. A necessary condition to minimize the value of the functional is that, under an
arbitrary small variation of the function f,

f(x,y) = fz,y) +0f(x,y)

the variation of the functional must satisfy
ALf +6f1 = Alf] = O £11%)- (4.9.40)

Here the function J f(x,y) must vanish together with its derivatives on the boundary of the
domain 2; the definition of the norm ||df|| will be clear from subsequent calculations. In
other words, the equation (4.9.40) says that f is a “stationary point” of the “function” A[f]
on the infinite-dimensional space of functions f = f(x,y).

Let us prove that stationary point condition (4.9.40) reduces to equation (4.9.39). The
left hand side of this condition can be written in the following way

Al +of) - Al = ([ |0 G amr+ (6 on) - 15 2+ 7| doay
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The part of the increment linear in § f can be obtained by expanding the above expression in
Taylor series

Alf +0f]— A §fs+ dz dy + O(||5f]1%).

[f]=// SN — N R Y
o Jrefzefz Jirszesz

Thus the stationarity condition (4.9.40) can be recast into the form

Ofz + dxdy =0 (4.9.41)

// fl’ fy 6fy
RN RN RN
for an arbitrary function 0 f(x,y) vanishing on the boundary of the domain 2. Applying in
two different ways the Fubini theorem

//Q dxdy:/dx/ dy:/dy/ dx

to the two parts of the double integral and integrating by parts one reduces the equation
(4.9.41) to

fz f
/], o g

(4.9.42)

:_// ;fx +aafy 5 dady = 0.

Q|9 I+ 240 NI+ RS

Since ¢ f(x,y) is an arbitrary function one obtains the equation for the stationary points of
the area functional A[f] written in the form

H=0

where H is the mean curvature of the surface.

4.10 Differential geometry versus topology: Gauss—Bonnet formula

One of the main problem in the theory of smooth manifolds is the problem of classification.
An approach to this problem is based on constructing invariants of smooth manifolds, i.e.,
numerical characteristics taking the same values for diffeomorphic manifolds. In particular,
one may look for a construction of such topological invariants in terms of differential geometric
structures on the manifolds. One of the simplest example of such invariant is given by the
following

Theorem 4.10.1 (Gauss-Bonnet) Let M be a compact connected oriented two-dimensional
Riemannian manifold. Denote dA the area element on the manifold and R = R(x) the scalar
curvature of the manifold at the point x € M. Then
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1) the quantity

(M) = i /MRdA (4.10.1)

does not depend on the Riemannian metric on M ;

2) If M admits an embedding” in R> then x (M) is an integer.

Proof: Our first step will be to prove that the quantity (4.10.1) does not depend on the
metric. Consider a more general setting of a n-dimensional compact connected oriented
Riemannian manifold. Denote

AV = \/gdz' A--- ANdz", g = det(gij)

the volume form on M and R, as above, the scalar curvature of the Riemannian metric. For
a given manifold M the integral

S[gij] = /M R\/§ dn{E (4.10.2)

can be considered as a functional of the metric on the manifold. (Here and below we use short
notation d"x = dx' A--- Adz™.) Our goal is to investigate the dependence of this functional
on the metric. To this end let us compute the principal linear part of the increment

08 = Slgij + 0gi;] — S[gi;] (modulo légij|2) (4.10.3)

called first variation of the functional S. Instead of the variation dg;; it is convenient to use
the variation of the inverse matrix g% related to dgi; by the obvious formula

5q'7 = — g gy g (4.10.4)
(cf. the formula
d dA
— A =4 g
dx dx

for the derivative of the inverse of a matrix-valued function A = A(z)).

Lemma 4.10.2 (Hilbert) The first variation of the functional (4.10.2) is given by the fol-
lowing formula

1 ..
M

Here R;j is the Ricci tensor of the metric.

Proof: Recall that the scalar curvature is the contraction

R = g"Ry;

"Actually, any smooth compact oriented two-dimensional manifold does admit an embedding into R®.
Moreover, any compact two-dimensional submanifold in R? is orientable. The proof of these statements goes
beyond the scope of this course.
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of the Ricci tensor

ork.  ork.
R Rk k rk rk
ij = ikj—azlj_ai]‘i' ks fj—is Zj

where

ek — lgks 9g9sj | 0gis  0gij
1) 2 axl 8.1’-7 ams .

The variation §.5 can be written as a sum of three terms
g g g 5
5/ Rijg”\/gdnm = / g”éRij + Rl-jcig” + R %9 Vod'z. (4.10.6)
M M 29
Let us begin with the third term in this expression. Denote G = (g;5), so g = det G. Therefore

g = det[G + 0G] — det G = det [G (1 + G7'6G)] — det G

=det G - det [1 4+ G~ 10G] — det G

=detG - tr (GT10G) + O (|6G|?) = —det G - tr (G G) + O (|6G|?) = —g - gi;09".
In this caluclation we have used the following formula for determinant of a square matrix

close to identity
det(1+A) =1+1trA+ O (|A])

and also the formula for the derivatives of the inverse function
G 1.6G=-6G"' G

We see that the contributions of the second and third terms in eq. (4.12.7) give exactly the
right hand side of the needed formula (4.10.5). So, it remains to prove that the first term

/ g70R;;\/gd"x (4.10.7)
M

.. 0 0
— /M g' (Warfj - %H’,@j + 0Ty 5, + T 615, — 6TF, = rjr;ar@) Vod'z

vanishes.
The strategy is to apply to the above expression the Stokes formula written in the form

(4.7.10). The crucial observation is that, the variation (H‘fj of the Christoffel coefficients is a

tensor of type (1,2). Indeed, from (4.5.10) it readily follows that the difference ff] = Ffj of
two affine connections under a change of coordinates transforms according to the tensor law
(the terms with the second derivatives cancel).

For covariant derivatives of the tensor 6Ffj we have the standard formula

d
VidT}; = W&rﬁ; +T,0T5; — ThoTy; — Tj,0T%.

Moreover, the contraction 51“,’% is a tensor of type (0,1). The covariant derivative of this
tensor reads 5

VioTy; = @m’gj — T5;0T%,.
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So, the expression (4.10.7) can be recast into the form

/ GIS R\ /g d"s = / gl (vkarﬁ; —v,-ar’,gj) Jodz.

M M

The last step is to observe that

GIVTE, =V, (gijérfj) . ¢IVOTE =V, (gijar’,gj)
since -

Vg” =0

for the Levi-Civita connection. Introduce two vector fields

XF =gY6Ty, Y =gYeTy;.

Then the expression (4.10.7) takes the following form

/ GI6 R\ /g d"r = / (Vex* - viv') ygda = / S (XY gda A dai - Ada™ = 0
M M oM =5
since the boundary of the manifold M is empty. O

Remark 4.10.3 The first variation formula (4.10.5) remains true also for noncompact man-
ifolds provided the variation of the metric vanishes together with its two derivatives outside
a compact domain.

Remark 4.10.4 The formula (4.10.5) makes sense also for pseudo-Riemannian manifolds;
it suffices just to replace \/g with \/|g|. In particular an analogue of the least action principle
for the Finstein equations in vacuum

1

readily follows from the Hilbert formula applied to a pseudo-Riemannian manifold of signature

(1,3).

Let us return to the theorem. We know that, for two-dimensional Riemannian manifolds
R;; = %Rgij. Therefore 65 = 0. It is now easy to derive independence from the metric of
the integral

S[gij] = /M2 R\/§ d2x.

Indeed, according to Lemma 4.1.10 the space of positive definite quadratic forms on a linear
space is a convex cone. That is, given two Riemannian metrics g;;(x) and g;;(z) on M the
linear combination

gij(x;t) = (1 —1t) gij(x) + t gij(x), te€]0,1] (4.10.9)

is a Riemannian metric. Consider the value of the functional S[g;;] on the metric (4.10.9).
Differentiation with respect to the parameter ¢ yields

% [ Rygaa - - /M <Rij - %R gij> G (2, )G () — gre(@)]g" (3 £)1/det (g (@, ) d"a
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due to the Hilbert formula. For a two-dimensional manifold the right hand side vanishes.

We will now assume that the two-dimensional manifold can be embedded into R3. Ac-
cording to the above arguments it suffices to compute the value of the functional (4.10.1) for
the induced metric on M. Consider the Gauss map

n:M— S? (4.10.10)
x +— n(x)

that assigns to a point € M a unit normal vector n(x) at this point. Denote dAgphere the
standard area element on the unit sphere S?. Applying the Theorem 3.4.11 one obtains

/ n*dAsphere = 47 degn
M
since the total area of the unit sphere is equal to 4.

Lemma 4.10.5 The pullback of the area element of the unit sphere with respect to the Gauss
map s equal to
n*dAsphere = K dA (4.10.11)

where dA is the area element and K is the Gaussian curvature of the surface.

Proof: Without loss of generality one can assume that the surface is represented as a graph
of function z = f(x,y). The area element of the surface is given by the wellknown formula

dA = \/1+4 f2 4 fidx N dy

(see Exercise 4.1.15 above). Then the unit normal vector is given by the formula
(_f T _f Y 1)

,h+ﬁ+ﬁ'

W4t +w?=1

Also the unit sphere

near the north pole will be written as a graph

2 2

w=vV1—u—wv-
The area element of the sphere in these coordinates reads
du Ndv — du/Ndv

Vi-w2—02 w

In these coordinates the Gauss map reads

dAsphere =

Ja

w@,y) = - —————
VAR R

Jy
U(I‘7y) = - .
1+ 2+ 12
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Also observe a formula for the third coordinate on the sphere

1

d d
n*dAsphere = u(z,y) A dv(z,y) =J 1+ f2+ f2deNdy = JdA

w(z,y)
where J is the Jacobian of the Gauss map (4.10.10)

szet(um uy>.
vy Uy

A simple computation of the Jacobian gives

So

J= fzxfyy - x2y
A+ 2+ 1D
This formula coincides with the expression (4.9.36) for the Gaussian curvature. O

We obtained that the integer number y (M) is equal to twice the degree of the Gauss map.
The Theorem is proved. O

It can be computed for a particular embedding of a sphere with g handles shown at the
picture. In this case the north pole has g + 1 preimages. At the upper point of the surface
the Gaussian curvature is positive, so the local degree is equal to +1. At other g points the
Gaussian curvature is negative, so the local degrees at all these points are equal to —1. Thus
the degree of the Gauss map for such an embedding is equal to (1 — g). We arrive at the
following final form of the Gauss—Bonnet formula for spheres with g handles

1
— | KdA=2-2g. (4.10.12)
2T M

The number in the right hand side is called the Fuler characteristic of the surface M. It
is one of the simplest topological invariants of smooth manifolds. The formula (4.10.12)
represents the simplest issue of a relationship between differential geometric and topological
characteristics of smooth manifolds. There are many other examples of this deep connection.
However, the discussion of these examples goes beyond the scope of this course.

4.11 Geodesics on a Riemannian manifold

Geodesics on Riemannian manifolds are analogues of straight lines. Let us give a precise
definition.

Let v = (z!(¢),...,2"(t)) be a smooth curve on a Riemannian manifold M. As above
the symbol V will denote the Levi-Civita connection for M.

Definition 4.11.1 The curve 7y is called geodesic if its velocity vector v is parallel along ~y

Vi = 0.
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Using eq. (4.6.1) one arrives at a system of the second order ODEs for geodesics
iF + T ()i =0, k=1,...,n. (4.11.1)

We have already derived this system in the analysis of the Euler-Lagrange equations for the

length functional
shl = / gij(x)didd dt. (4.11.2)
[ Vaiis

More precisely, it was shown that the critical points of the length functional on the subset of
curves parameterized by the arc length are solutions to the differential equations (4.11.1). An
alternative variational formulation of the theory of geodesics is given by the action functional

1 o
Sy = / §gij(a:)x'zm'3 dt. (4.11.3)
¥
Lemma 4.11.2 The FEuler—-Lagrange equations
oL d OL
— = ———=0, k=1,...
ook~ dtoik el
for the Lagrangian
1 o
are equivalent to egs. (4.11.1).
Proof: is similar to the proof of Lemma 4.2.4. O

We emphasize that, for the Lagrangian (4.11.4) one does not need to assume that the
parameter on the curve is equal to the arc length. Moreover, the following statement holds
true

Lemma 4.11.3 For a geodesic |¥(t)| = const.

In other words, the parameter ¢ along the geodesic is proportional to the arc length.

Proof: We have
d . . . .
7 N =i (1.9 =2(Vs9, %) = 0.

a

Applying to the system of ODEs (4.11.1) the Cauchy theorem along with the standard
results about smooth dependence of solutions on the initial data one obtains

Theorem 4.11.4 Given a point xo € M of a Riemannian manifold and a vector vy € Ty, M
there exists a neighborhood W = W (xg,v0) C TM and a positive number € such that for any
(x1,v1) € W there exists a unique geodesic 7y : (—e, €) — M such that

7(0) =21, §(0) = v1. (4.11.5)

The map
W x (—e,e) = M, (x1,v1,t) — y(t) (4.11.6)

18 smooth.
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Example 4.11.5 In a Fuclidean space the equations of geodesics, written in Euclidean co-
ordinates, become

Thus geodesics are straight lines
2*(t) = abt 4 v*.

The following simple statement is helpful in the study of geodesics.

Theorem 4.11.6 Given an isometry f : M — N of Riemannian manifolds and a geodesic
~v on M. Then f(v) is a geodesic on N.

Example 4.11.7 Let us prove that geodesics on the standard sphere S*> C R3 are big circles.
Indeed, let a geodesic v for t =0 passes through xo = v(0) and has a (nonzero) initial vector
vg = ¥(0) € Ty,S%. Consider the two-dimensional plane P passing through the origin, the
point xg and parallel to the vector vy. The reflection with respect to P is an isometry of the
sphere. Denote v, the image of v with respect to the reflection. Due to the Theorem it is
again a geodesic. Since vy, satisfies the same initial data

/}/7’(0) = X0, ’YT’(O) = o,

it coincides with . Therefore v = S?> N P.

Similar arguments allow to find geodesics on the pseudosphere
24— 2= _R?

in the Minkowski space R:2. They are sections of the pseudosphere by planes passing through
the origin x =y =2 = 0.

Euler-Lagrange equations (4.2.10), (4.2.11) give a necessary condition for finding curves
minimizing the value of the length functional (4.11.2). Our next goal is to prove that, locally,
geodesics minimize the length. We will first introduce an analogue of polar coordinates on a
sufficiently small neighborhood of any Riemannian manifold. To this end let us modify the
statement of the theorem of existence and uniqueness 4.11.4.

Theorem 4.11.8 Given a point xg € M of a Riemannian manifold, there exists a neighbor-
hood U = U(xg) and a positive number € such that, for an arbitrary point x1 € U and an
arbitrary vector vy € Ty, M there exists a unique geodesics v : (—2,2) — M satisfying initial
conditions

7(0) =21, ¥(0) = v

Proof: We will use invariance of equations of geodesics with respect to rescalings of inde-
pendent variable

Y(t) = y(ct)
So, choosing the neighborhood W = W(xg,0) of the Theorem 4.11.4 in the form

(xl,vl)EW & r el ‘?)1’<5
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for some U C M and some 6 > 0 we obtain a geodesic v : (—2€1,2¢;) — M with initial
conditions
7(0) =1, Y(0) =01 for (z1,v1) €W

2e1 2¢

for some €; > 0. The geodesic 7(t) := 7(ct) will be defined on the interval (—2,2%) and
satisfy the initial conditions
'70(0) = I1, 'yc(o) = CUy.

Choosing ¢ in such a way that
O0<c<e

we obtain a geodesic 7. defined on the interval (—2,2) (or bigger). The length of the initial
vector cvy will be less than €16 =: e. a

Corollary 4.11.9 Let U C M and ¢ > 0 be such that for any x € U and any v € T, M
satisfying |v| < € there exists a geodesic vy : (—2,2) — M with the initial condition vy(0) = z,
4(0) = v. Then the map

exp: {(z,v) eTM |z €U, |v|<e}—=M, (x,v)—exp,(v):=~y(1) (4.11.7)

is well defined and smooth.
Definition 4.11.10 The map (4.11.7) is called exponential map.

Observe that the geodesics itself can be represented in the form

v(t) = exp,(tv), xze€U, |v]<e (4.11.8)
v(0) ==, $(0)=v.
Its length between the points v(0) and (1) is equal to |v] < e.
Fix a point g € M and consider the exponential map
exp,, : TogM — M
defined for a sufficiently small neighborhood of 0 € T,,, M. From the equation of geodesics
one obtains the following Taylor expansion
2

2 (t) = F(0) + ta*(0) + &

. 12 ;o
5 i*(0) 4+ 0O (%) = ak +tok — —Ffj(xo)v v+ O (¢ (4.11.9)

2
of the geodesic y(t) = (z'(t),...,2™(t)) with the initial data
7(0) =z, ¥(0) =v.

Therefore the exponential map for small |v| can be represented by the following series expan-
sion ]
k . .
2*(v) = [exp,, (v)]" = ak ok — §Ffj(a§0)vlvﬂ +0 (\v|3) . (4.11.10)

The following statement readily follows:
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Proposition 4.11.11 The map exp,,, : Too M — M is a local diffeomorphism.

Proof: From (4.11.10) the following expression for the Jacobi matrix 92" /9v’ readily follows

oxk
Ovt

= 6F — % (z0)v’ + O (Jv]?). (4.11.11)

At the origin v = 0 one obtains the identity matrix

ok
Gt lv=0 =1
Ul
Due to the previous statement one can use the components (vl, e ,v”) of the tangent
vector v € Ty, M with sufficiently small |v| as coordinates on a neighborhood of the point .
Denote 5 g
the Gram matrix of the Riemannian metric in the coordinates (vl, . ,U"). The following
statement is often used in various calculations in Riemannian geometry.
Proposition 4.11.12 All first derivatives of the Riemannian metric in the coordinates (vl, e
vanish at the origin v = 0.
Proof: From (4.11.11) obtain
0 i o 0 ! ; 0 9
hzj(v) = <axz — Fis(mo)vsw, % — th(l'())v @ + @) (’U| )
= gij (@(v) — [T (20)gk; (@(v)) + T (20)gi ((v))] v* + O (jo]?)
dgi: (o
= i) + 22810 [k (a)gus (o) + Ty (oo (20)] o + O (of?).
Ohi;(v) 0gi; (o)
#lmo = gTU — T (20)grj (0) + Ths(20)gri (o) = Vsgij(xo) = 0.
Ul

Corollary 4.11.13 For any point o on a Riemannian manifold there exists a system of
local coordinates such that all Christoffel coefficients of the Levi-Civita connection vanish at
the point x.

We will now extend the previous constructions allowing also the initial point of the ex-
ponential map to vary. Let U and € be same as before. Denote W C T'M the subset of the
form

W ={(z,v) eTM |z €U, |v| <e€}.
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One can define a map

Exp: W M x M
Exp(z,v) = (z,exp,(v)) . (4.11.13)

Observe that on the zero section U x {0} C W one has Exp(z,0) = (z, z).

Exercise 4.11.14 Prove that the differential Exp, of the map (4.11.13) at the points of zero
section has the matrix

11
EXp*|(x70) = ( 0 1 ) . (41114)

Here 1 denotes n X n identity matriz.

Corollary 4.11.15 The map Exp establishes a diffeomorphism of a domain

W' ={(z,v) e TM |z €U, |v] <€}
for some U' C U, 0 < € <€ toadomain W C M x M containing points of the form (x,z),
zel.

In sequel we will omit primes of U’ and €.

Corollary 4.11.16 1) For any x, y € U there exists a unique geodesic v : [0,1] — U
connecting x = y(0) with y = (1) of length s[y] < e.

2) The geodesic v depends smoothly on the endpoints x, y.

3) For any x € U the map exp,, is a diffeomorphism of the open e-ball in T, M onto an open
domain U, C U.

Let us use the exponential map to construct a system of “polar coordinates” on a neigh-
borhood of a given point zg in a Riemannian manifold M. Consider the unit sphere

Sit = {v € Ty M | |v] = 1}
in the tangent space at the point xg. Let the positive number € be such as above. For every
pair (r,v), 0 < r <€ v € S consider the point exp, (rv) € M. The pair (r,v) can

be considered as coordinates of this point. Recall that the curve v : [0,€¢] — M defined by
v(r) = exp,, (rv) is a geodesic. We call it radial geodesic.

We will now prove the following statement, due to Gauss.

Lemma 4.11.17 For a given 0 < r < € the surface
Sy = {z = exp,, (rv)|ve S} (4.11.15)

is orthogonal to radial geodesics.
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Proof: Choose a curve v = v(t) on the sphere S7-. Consider the surface

x(r,t) = exp,, (ro(t)). (4.11.16)

oo oe\
or’ot/

We have to prove that

To this end introduce operators

Using the equation of geodesics

obtain 0 /ox O ox 0 0 0 0 0
X X X X X X X X
ar <6(‘3t> = <v88t> * <8v(‘3t> = <8v8t>

Using symmetry of the connection

rewrite the last expression in the form
ox Ox ox Oz 10 /0x Ox
<6V6t> = <ava> =2 <a a> =0

@% = const
A T

on a geodesic. O

since

We are now ready to prove the main result of this section.

Theorem 4.11.18 Let U C M and € > 0 be the same as in Corollary 4.11.16. For a given
pair of points x, y € U denote v : [0,1] — M the geodesic of length less than e connecting
these two points. Then any other piecewise smooth curve connecting x and y has the length
greater or equal than the length of .

Proof is based on the following

Lemma 4.11.19 Represent a sufficiently small piecewise smooth curve v : [a,b] — M not
passing through xq in the polar coordinates

Y(t) = exp,, (r(t)v(t)), 0<r(t)<e |v)] =1 (4.11.17)

Then

spy] = [r(b) —r(a)l;
the equality takes place only for a monotone function r(t) and constant v(t) = vy for some
Vo € Sgo_l
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In other words the shortest curve connecting two spheres centered at x(p is a radial
geodesic.

Proof: Consider a two-dimensional surface

x(r,t) = exp,, (ro(t)).

We have
T T
‘We know that 5 5 5
i T T
=1, =1
or T Or ot

So )
ox
<12 .12 .2
il |7 ‘m 2T

The equality takes place iff % = 0. Therefore

b b
st = [ Wlde = [ il = 1) - (@)

a

O

End of the proof of the Theorem. Consider any path w from z to 2’ = exp,(rv), 0 < r < €,
|v| = 1. For any 0 > 0 the path w must contain a segment connecting the sphere of radius
0 with the sphere of radius r. Length of this segment is greater or equal than r» — J, In the
limit 6 — 0 we conclude that sw] > r, and equality takes place only when w is a geodesic.

(|

Corollary 4.11.20 Let «y : [0,l]] — M be a curve from ~(0) to v(I) parameterized by arc
length shorter than any other. Then v is a geodesic.

Recall that we defined the distance function on a connected Riemannian manifold by

p(x,y) = igfsh]v v [07 1] — M, 7(0) =T, 7(1) =Y.

Corollary 4.11.21 For any compact subset K C M there exists § > 0 such that, for arbitrary
x, y € K satisfying p(x,y) < d there exists a unique geodesic between x and y of length less
than 6. It is minimal and depends smoothly on the end points.

Let us now describe global properties of geodesics.

Definition 4.11.22 A Riemannian manifold M is called geodesically complete if any geodesic
~(t) can be extended for all values of t € R.

The following important result is due to Hopf and Rinow.
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Theorem 4.11.23 Arbitrary points x, y of a geodesically complete Riemannian manifold M
can be connected by a geodesic of length p(z,vy).

Proof: Denote R = p(x,y). Let U, C M be a neighborhood of = described in Corollary
4.11.16. Choose € > 0 from the same Corollary. For a positive § < e denote a sphere S;(9)
of radius § centered at . Due to compactness there exists a point on the sphere

20 = exp,(6v), |v] =1

minimizing the distance to y. Our goal is to prove that, continuing the geodesic exp,(tv) we
will hit the point y, i.e.,
exp, (Rv) =y.

We will begin with proving that, going along the geodesic v(t) = exp,(tv) we are ap-
proaching y. Namely, we will prove that

p(y(t),y) =R—t for te]loR] (4.11.18)

Let us first check validity of (4.11.18) for ¢ = 6. We have

R = p(z,y) = zéf‘gi?(s) [p(x, 2) + p(z,9)] = d + p(20,¥)-

Hence p(zp,y) = R — ¢. This proves (4.11.18) for t = § as zo = v(9).

Let ty € [d, R] be the supremum of values of the parameter ¢ for which eq. (4.11.18)
holds true. Due to continuity this equation is valid also for t = ¢y. It remains to prove that
to = R. In the opposite case ty < R consider a small sphere S,/(d") of radius ¢’ > 0 centered
at 2’ := y(tp). Choose a point z{, € S,/(0’) closest to y. Then

/ — . /’ , — 6/ /’ .
pla’sy) = min [p(a', 2) + p(z,9)] = 0"+ p(25,)

Hence
p(z6,y) = (R —to) — &' (4.11.19)

The claim is that 2, = y(to+0’). Indeed, from the triangle inequality along with eq. (4.11.19)
we obtain

p(z, 20) > plx,y) — p(2f,y) =to + 6. (4.11.20)

It remains to observe that a curve from x to z{ of exactly same length can be obtained by
going along ~ from z to 2’ = 7(tp) and then along the minimal geodesic from 2’ to z{. Due
to (4.11.20) such a piecewise smooth path is minimal. Hence it must be a geodesic clearly
coinciding with ~y.

We proved that v(tg + ¢') = z{. So, eq. (4.11.19) takes the form

p(v(to+0"),y) = R— (to+ ).

That is, eq. (4.11.18) remains valid for ¢t = ¢y + ¢’ > t9. Such a contradiction proves that
to = R. O
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Corollary 4.11.24 The closure of any bounded subset in a geodesically complete Riemannian
manifold M is compact.

Proof: Let the distance between points of a subset X C M be bounded from above by d.
Then, for any point x € M the exponential map exp, maps a ball of radius d in T, M into a
compact subset of M. Due to Hopf—Rinow theorem such a subset contains X. Therefore the
closure X is compact. O

The following immediate consequence of Corollary 4.11.24 is also often called Hopf-Rinow
theorem.

Corollary 4.11.25 A geodesically complete Riemannian manifold is complete as a metric
space.

Recall that complete metric spaces are those for which any fundamental sequence con-
verges.

One can also prove the converse statement to the Corollary.

At the end of this long section we will apply the theory of geodesics to the study of the
group of isometries of a Riemannian manifold. The group of isometries of a Riemannian
manifold is a Lie group. We will not prove this statement. However we will describe the Lie
algebra of this group. It corresponds to the infinitesimal isometries, i.e., to vector fields X
such that

LieXgij =0. (4.11.21)

Here the Lie derivatives of the metric tensor is defined by the formula

dgi;  OXF ox*

Liexgij = Xk
Vector fields X satisfying (4.14.16) are called Killing vector fields.

Exercise 4.11.26 Prove that the equations (4.14.16) for the Killing vector fields can be recast

into the form
ViX;+V;X; =0, 4,57=1,...,n (4.11.23)
Here
Xi = gis X"

One can derive an upper estimate for the dimension of the group of isometries studying
the space of solutions to the system (4.14.18). We explain another approach based on the
theory of geodesics.

Proposition 4.11.27 The dimension of the group of isometries of a n-dimensional geodesi-
cally complete connected Riemannian manifold M is less or equal than %
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Proof: Denote G the group of isometries of M. The stabilizer
Guy = {9 € G|g(z0) = 20} (4.11.24)

of a given point xg € M is a subgroup in G. For g € G, denote g, : T,y M — T, M the
induced map. It is an orthogonal transformation of the tangent space. In this way we obtain
a homomorphism

Gy = O (Tu M, (,)). (4.11.25)

Let us prove that (4.11.25) is injective. Indeed, let g € Gy, satisfy g, = id. Connect an
arbitrary point © € M with xg by a geodesic v : [0,1] — M. The geodesic g(vy) passes
through the same point xyp = 7(0) and has the same initial vector g.7(0) = +(0). Hence

g(v) = . In particular g(z) = g (y(1)) =v(1) = z. As

n(n —1)

dimO (Ty M, (, )) = 5

we conclude that
n(n —1)

dim G, < 5

The coset space G/G,, can be identified with the orbit
Gzo ={g(z0)|ge G} C M

of the point xg. Therefore
dim G/Gg, < dim M = n.

So
dim @ = dim Gy, + dim G /Gy < 1 + ”(”2_ D _ ”(”; b,

4.12 Second variation in the theory of geodesics

In this section we will address the problem of minimality of a given geodesic. To this end we
will derive a formula for the second variation of the action functional (4.11.3).

Let us first explain the idea for smooth functions on a finite dimensional case. Let f = f(z)
be a function on RY. To find a (local) minimum of this function one has to

e find critical points of this function solving equations

OF@) _ o i1 N
81'1' b bR | b

e for a given critical point xy check that the matrix of second derivatives

02 f (x0)
0zt 0zI

(4.12.1)

is positive definite.
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In order to reformulate these two sufficient conditions of a local minimum in a coordinate-
free way one can rewrite a definition of a critical point in the form

—f(zo + 7v)7=0 = 0 for any vector wv.

dr
The symmetric bilinear form associated with the matrix (4.12.1) can be represented as follows
2 0
d f(l‘o)(vl, 7)2) = mf(xo + mv + 7'27)2)7-1:7-2:0. (4122)

The following expression for the Taylor expansion of the function f(z¢ 4+ 7v) at the critical
point o will be useful

fzo+7v) = f(zo) + T2d> f(x0) (v, v) + O (73) ) (4.12.3)

The Hessian is degenerate if there exists a vector v; # 0 such that
d?f(z0)(vi,v2) =0 for any vector wvs. (4.12.4)

In this case the first differential of the function f vanishes along the direction of the vector
v1, up to corrections of a higher order

df (v +7v1) = O (77). (4.12.5)

The formula (4.12.5) can be interpreted as an “infinitesimal deformation” of the critical point.
In the opposite case of non-degenerateness of the second differential the critical point xg is
isolated. It is a minimum iff the quadratic form associated with (4.12.2) is positive definite

d*f(xo)(v,v) >0 for any v # 0. (4.12.6)

We will now consider an infinite dimensional analogue of the above considerations. For a
given pair of points zg, 1 in a Riemannian manifold M consider the space of smooth curves
v : la,b] — M such that y(a) = xg, 7(b) = 1. The action functional

b
Shi =3 [ G

can be considered as a “function” on the infinite-dimensional space of curves with fixed
endpoints. Tangent vectors to this space can be realized as smooth vector fields v = v(t) at
the points () vanishing at the endpoints

v(a) = v(b) =0. (4.12.7)
With any such a vector field one associates a small deformation 7, () of the curve of the form
Yr(t) == expypy (To(t), |7[ <e (4.12.8)

for some positive € (see the previous section for details about exponential map). To simplify
notations we will redenote v + 7v the curve (4.12.8).

The formula for the first variation (an analogue of the first differential of a function) of
the previous section (see Lemma 4.11.2) says that

b
5S[l(v) = %sh b ol = — / (V4 0) dt. (4.12.9)
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Exercise 4.12.1 Prove the following formula generalizing (4.12.9) for piecewise smooth curves
b
3Shl(w) = = [ (T30 de = 3 A (v (4.12.10)
@ k

In this formula A; stands for the jump of a piecewise continuous function at the point ¢,
i.e.,

Af = f(t+0) — f(t—0). (4.12.11)
The summation is taken over all points ¢ of discontinuity of ().

From the first variation formula it follows, as we already know, that the “critical points”
of the action functional are geodesics. We will now show that minimal geodesics provide
minima for the action functional.

Lemma 4.12.2 Let v : [0,1] — M be a minimal geodesic between the points o = v(0) and
x1 = y(1). Then, for any piecewise smooth curve 7 : [0,1] — M connecting xo with x1 one
has

Sh] < S,
the equality takes place iff 5 is a minimal geodesic of the same length s[7] = s[y].

Proof: We will use the Schwarz inequality

(/01 f(t)g(t) dt>2 < /01 F2(t) dt'/olgz(t) dt

valid for arbitrary piecewise continuous functions f(¢), ¢g(t), 0 < ¢ < 1. The equality takes
place iff f(t) = cg(t) for some constant c. Applying this inequality to the case f(t) = |¥(t)],
g(t) =1 one obtains

(slv)? < 281, (4.12.12)

the equality takes place iff the parameter along the curve - is proportional to the arc length.
Let (t) be a minimal geodesic from x to 1 that is, for an arbitrary piecewise smooth curve
4 connecting the same points one has s[y] < s[7]. Using (4.12.12) we obtain

O

Let us proceed with analyzing minimality of geodesics as critical points of the action
functional. We will now derive a formula for the second variation of the action functional
2 0
0°Sv(vy,v9) i= =———8 TV + T2V r =10 4.12.13
[v](v1, v2) O [v + T1v1 + T2v2)r =r=0 ( )
for a geodesic v and a pair of vector fields v; = v1(t), va = v2(t) vanishing at the endpoints
of ~.
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Theorem 4.12.3 The second variation of the action functional on a geodesic v : [a,b] — M
is given by the following formula

b
528 [y](v1, v2) = —/ (Jui,ve) dt (4.12.14)

where the operator J acting on vector fields along the geodesic is given by the following formula

Juv = Viv+ R(¥,v)5. (4.12.15)

In the formula (4.12.15) R(X,Y) : T, M — T, M is the curvature operator defined for any
pair of vectors at a given point « € M. The second order linear differential operator (4.12.15)
is called Jacobi operator.

Proof: Using formula (4.12.10) for the first variation obtain

2 b
87?8725[7 + 7101 + Tavalry—0 = —887_1 j <Vﬂ;’~%v2> dt, where 7§ =+ 1101,
So
0? b
871872S[7 + T1V1 + ToU2) 7 =y =0 = —/a Vo (Vi7,v9) dt

. / (Var Vs v2) + (T4, Vonvn)] dt = / (Vi) dt
since V4 = 0 on a geodesic. Using the definition of the curvature tensor we obtain
Vu Vs = ViV = R(Y,01).
So )
P8l == [ (93505 + R0
Using symmetry of the Levi-Civita connection we have
Vo, ¥ = Vior.

We arrive at the needed formula. O

Remark 4.12.4 Using the symmetry (4.7.17) of the Riemann curvature tensor it is easy to
check the symmetry of the Jacobi operator

b b
/ (Jui,v9) dt:/ (v1, Jug) dt.

Exercise 4.12.5 Prove the following generalization of the second variation formula valid for
piecewise smooth vector fields on the geodesic ~y

b
52S[](v1,v2) = —/ (Jui,v2) dt — Z Ay, (Viv1,09) . (4.12.16)

The summation is taken over all discontinuities t = t;, of the derivative of the vector field
V1 (t)
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Definition 4.12.6 1) A Jacobi vector field v on a geodesic v : [a,b] — M is a solution to
the Jacobi equation

Juv=20 (4.12.17)
vanishing at the endpoints
V@) = vy = 0-
2) The points © = vy(a) and y = y(b) are conjugate along the geodesics 7y : [a,b] — M if there
exists a nonzero Jacobi field on ~y.
3) The dimension of the space of Jacobi vector fields on vy is called the multiplicity of the con-

Jugate points y(a) and y(b). It will be denoted mult,(y(a),~(b)). We put mult,(y(a),v(b)) =
0 if the points vy(a), v(b) are notconjugate along ~y.

From the Theorem 4.12.3 we obtain

Corollary 4.12.7 For a geodesic 7y : [a,b] — M the bilinear form 62S[v](v1,v2) degenerates
iff the endpoints v(a), v(b) are conjugate along ~y.

Proof: If v1 # 0 is a Jacobi vector field along ~ then, using the second variation formula, we
obtain

b
52 (v1, vs) = —/ (Jvt, vs) dt = 0 (4.12.18)

for any vector field vy. Conversely, assume that, for some v; # 0, (4.12.18) holds true for any
vector field ve. Choose va(t) = A(t)Jv1(t) where A(¢) > 0 is a smooth function vanishing at
t = a and t = b but different from identical zero. Then

b
528 ) (01, v2) = / AE) (Jon, Jur) dt > 0,
it vanishes only if Jv; = 0. -

The Jacobi equation (4.12.17) can be considered as a system of n = dim M second order
linear differential equations for a vector-valued function v(t) defined on a geodesic (t). It can
be rewritten as a system of 2n first order linear differential equations for the vector-valued
functions v(t) and ©(t) := Vsv(t)

Viv = D
(4.12.19)
Vo = —R(Y,0)¥

A solution to this system is uniquely determined by initial conditions

v(ia) =
@(a) = ’l')()

for a given pair of n-dimensional vectors vy, ¥9. Thus the space of solutions to the Jacobi
equation has dimension 2n.
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Proposition 4.12.8 For (b — a) sufficiently small any Jacobi vector field along a geodesic
v ¢ [a,b] = M identically vanishes.

Proof: Choose a system of local coordinates near the point y(a) such that all Christoffel
coefficients vanish at this point (see Corollary 4.11.13 above). In these coordinates

do(a)
dt

i
=100, ViUlt=a = difa) = —R(Y0,v0)70

Vitliza = dt

where o := ¥|4—q. Expanding the vector-valued function v(t) = (v*(t)) in Taylor series near
t = a one obtains

OO got] 1 0 (1 o).

V(1) = vy + (t = a)d — 5(t = a)* | (R(ho, v)d0)" + —5 7T 70

For the choice of initial data vg = 0 the above expansion specifies to
v(t) = (t —a)io + O ((t — a)3) :

For vy # 0 such a vector-function does not vanish for sufficiently small |t — a]. O

Corollary 4.12.9 For a geodesic v : [a,b] — M consider a linear map of the space of
solutions v = v(t) to the Jacobi equation (4.12.17) to the space of boundary values

v (v(a),v(b)) € R*™.

For sufficiently small |b — a| this map is an isomorphism of linear spaces.
As a sufficiently small piece of any geodesic is minimal we arrive at

Proposition 4.12.10 For any point xo € M there exists € > 0 such that, for any geodesic
v : [0,1] — M starting at o = v(0) of length less than € the second variation defines a
positive definite quadratic form, i.e.,

62S[v](v,v) > 0 (4.12.20)

for any nonzero piecewise smooth vector field v = v(t) along v vanishing at the endpoints

Proof: Since the geodesic between the points v(0) and (1) of distance < € for a sufficiently
small € is unique and minimal we have

Sy + 7] > S[]

for sufficiently small 7, see Lemma 4.12.2 above. The equality takes place only for v(¢) = 0.
Using the expansion

Sly +7v] = Sy + 7262 S[y](v,v) + O (%) (4.12.21)
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(cf. (4.12.3)) we derive 62S[y](v,v) > 0. Due to Corollary 4.12.9 the inequality is strict for a
non-zero vector field. O

Let us consider in more details solutions to Jacobi equation on two-dimensional Rieman-
nian manifolds. Let 7 : [0,1] — M? be a geodesic parameterized by arc length, i.e., |§| = 1.
On the two-dimensional manifold M? one can construct an orthogonal vector field 4 of unit
length along the geodesic. So, at every point «y(¢) one has an orthonormal frame ("y(t), At (t))
smoothly depending on ¢t € [0,[]. Represent a solution v = v(t) to the Jacobi equation Jv = 0
as a linear combination of these vectors

v(t) = () A(t) + () 7 (1) (4.12.22)
for some smooth functions (), ¥(t).

Proposition 4.12.11 The Jacobi equation for the vector field (4.12.22) is equivalent to the
following system of linear differential equations

$=0 (4.12.23)
U+ K(y(t)y =0 (4.12.24)

where K(v(t)) is the Gaussian curvature of the manifold at the point y(t).

Proof: We have V5% = 0. It is easy to show that also Vy'yL = 0. Thus
Viv= @4 +95t, Vie=gg+dit.
Substituting into the Jacobi equation one obtains
PY+PIT = —R( 07 +¥70)7 = U RT3

since R(¥,%) = 0 due to antisymmetry Rjjx = —R;ji; of the Riemann curvature tensor. It
remains to prove that

R34 )7 = K4
Decompose the vector field R(¥,4")% as a linear combination of the basic vector fields
R(3.41)7 = afg + B5™.
We have
o = (R(3,4)3,4) =0
due to antisymmetry R, = —R;ji. Next,
8= (RG7I.54).
1

Choose a system of coordinates (z!,72) near the point 7(¢) such that, in these coordinates

oo O L
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In these coordinates

R(5(t), 7 (£)4(t) = Rizia(v(t) = K (y(t))

(see eq. (4.9.34) above). |

We see that the theory of Jacobi vector fields in two dimensions reduces to the study of
the Dirichlet boundary value problem for the Sturm—Liouville equation (4.12.24) with the
Gaussian curvature as the potential. We will return to this study at the end of the next
section. Here we consider two simple examples.

Example 4.12.12 We already know that the Gaussian curvature of the sphere S C R? of
radius R is equal to ﬁ. So, the Jacobi equations (4.12.23), (4.12.24) take the form

s = 0
Y+ ;Y = 0.
Solutions to this system of ODFEs vanishing at t = 0 have the form

¢ = at
— in t
Y = bsing

for arbitrary constants a, b. The choice a = 0, b # 0 yields a Jacobi vector field vanishing
att =0 and t = 7w R. Clearly this pair of conjugate points correspond to the pair of opposite
poles on the sphere. Furthemore all points of the form t = mk R for any positive integer k
will be conjugate with the initial point t = 0.

Example 4.12.13 In a similar way solutions to the Jacobi equations on the pseudosphere
of radius R
@ =0

b—he = 0

vanishing at the initial point t = 0 read
t, 1 =bsinh f
=at, = b sinh —.
4 R

Such a vector field for b # 0 has no other zeroes except for t = 0. So, any geodesic on the
pseudosphere contains no conjugate points.

A somewhat more intuitive realization of Jacobi vector fields can be obtained in terms of
geodesic variations. By definition a geodesic variation of a geodesic (t), t € [0, 1] is a family
~(t, s) of geodesics smoothly depending on the parameter s € (—¢,¢€) for sufficiently small
€ > 0 such that

v(t,0) = ~(t) (the given geodesic) (4.12.25)

and
~7(0,8) =~(0), ~(1,s) =~(1). (4.12.26)
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Proposition 4.12.14 Given a geodesic variation y(t,s), the vector field

v(t) == %’y(t, $)s=0

is a Jacobi vector field along the geodesic ~y(t).

Proof: By definition (4.12.25), (4.12.26) the vector field along the geodesic (t) vanishes
at the endpoints. Let us prove that it satisfies Jacobi equation. Denote § = %’y(t, s) the
velocity vector of the geodesic (¢, s) for a given value of s. We have

d
VAY&'y(t, s) =0 forany s.

Differentiating this equation in s and using the definition of the Riemann curvature tensor
yields

. : . : 0 . .
0= VoV = ViVui + R(17)7 = V3T + R(3, 7).
Setting s = 0 one arrives at the Jacobi equation for the vector field v = ~4(¢,0). O

For the example of two-dimensional sphere one can construct a geodesic variation of the
big circle geodesic connecting the pair of opposite points rotating the sphere around the line
passing through these points. In this way one obtains the Jacobi vector field constructed in
the Example 4.12.12.

In a similar way one obtains a (n — 1)-dimensional space of Jacobi vector fields connecting
the pair of opposite points on the standard n-dimensional sphere. Thus the multiplicity of
such a pair of conjugate points is greater or equal than (n — 1).

Exercise 4.12.15 Prove that any Jacobi vector field along a geodesic y(t) can be realized by
the construction of Proposition 4.12.14 from a geodesic variation of .

4.13 Index theorem

We begin this section with recalling some basic definitions from the theory of quadratic form.
Given a quadratic form Q(x), x € RY, one can always find a basis such that @ reduces to
the diagonal form

1
Q(x) = 5 (Mzl+- -+ Az2), N #0.

The negative inertia index (or, simply, index) of the quadratic form is defined as the number
of negative squares

ind@ = #{\; < 0}.

A coordinate-free formulation of index of a quadratic form can be given in the following way:
ind @ = maxdim {V C RN such that Qly is negative definite} . (4.13.1)

Index of a critical point z( of a smooth function f(z) is defined as the index of the quadratic
form d? f(zo)
ind ;, f = indd? f(zo). (4.13.2)
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Recall that, if the critical point xg is a (local) minimum of the function f(z) then ind ,, f = 0.
If ind 5, f > 0 then the critical point z is not a local minimum of the function f(x).

Consider now the action functional defined on the infinite-dimensional space Q(M, xq, z1)
of piecewise smooth curves on a Riemannian manifold connecting two points z¢ and x;. Fix
a critical point of this functional, i.e., a geodesic « : [0,1] — M, v(0) = xg, 7(1) = x1. The
“tangent space” T,Q(M, xg, 1) at the point v by definition consists of all piecewise smooth
vector fields v(t) along ~ vanishing at the endpoints, v(0) = v(1) = 0. The second variation
625[7] defines a quadratic form on this space.

Definition 4.13.1 Index of a geodesic v is defined as the index of the second wvariation
quadratic form §%S[y](v,v), v € T,Q(M, o, x1).

Our goal is to compute the index of this quadratic form.

Theorem 4.13.2 (Morse) Index of a given geodesic 7y : [0,1] — M s equal to the number of
pairs of conjugate points (7(0),v(t)) for 0 <t <1 counted with their multiplicities

ind 62S[y] = Z mult., (7(0),7(t)) . (4.13.3)
0<t<1

In particular the theorem implies that index of any geodesic is finite.

Proof: We first split the infinite-dimensional space T, := T, Q(M, z¢, 1) into a direct sum
of two subspaces such that the first subspace is finite-dimensional and restriction of §25[y]
onto the second one is positive. To this end choose a partition 0 =tg < t; < --- < itp =1 of
the segment [0, 1] such that every piece 7|,_, ;) is minimal. Denote

1) T,Q(to, t1, ..., ty) C T, the space of broken Jacobi fields v(t) along v such that v(0) =
v(l) = 0 and Jv = 0 for ¢t € [t;_1,t;] for all ¢ = 1,..., k. Here J is the Jacobi operator
(4.12.15). Due to Corollary 4.12.9 we can assume that the vector field v(¢) is uniquely

determined by the vectors v(tg) =0, v(t1), ..., v(tk—1), v(tx) = 0. Thus T,Q(to, t1,...,tx) is
a finite-dimensional space of dimension n - (k — 1) where n = dim M.
2) Tj-Q C T2 the space of vector fields w(t) along v such that w(t;) =0,7=0,1, ..., k.

Observe that, if a vector field w € T. VlQ satisfies Jacobi equation Jw = 0 then w is identically
equal to zero.

Lemma 4.13.3 The following statements hold true.

1)
T.Q =T, (to,t1,... . tx) & T, Q. (4.13.4)

2) For arbitrary v € T (to, t1,...,tg), w € TWJ-Q one has
62S[v] (v, w) = 0. (4.13.5)

3) The restriction of 62S[y] onto the subspace TWJ-Q s a positive definite quadratic form.
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Proof: For a given vector field X (¢) € T2 denote v(t) the unique vector field in 7% (to, t1, . . .)
such that v(t;) = X(¢;),i =0, ..., k. Define w(t) € TWJ-Q by

w(t) := X(t) — v(t).

This justifies the decomposition (4.13.4).

Using the second variation formula (4.12.16) for v € T,Q(to,t1,...,tk), w € TWJ-Q we
obtain

1 k-1
525 (v, w) = —/ (o,w) dt— 3 Ay, (Vso,w) =0
0 i=1
since Jv = 0 on any interval (t;,_1,¢;) and w(t;) =0 fori =1, ..., k—1. This proves (4.13.5).

Let us prove positivity of the restriction of §25[y] onto T, WJ-Q The action functional can
be represented as a sum

t;
Skl =3 sihl S"M:;/t_ 4 Pt

As the every piece v|j;,_, ;) is minimal we have
Sily+Tw] > Si[v], i=1,...,k

for sufficiently small 7. Hence 62S[y](w,w) > 0. Let us prove that §2S[y](w,w) # 0. In
the opposite case choosing an arbitrary vector field w’ € T. le and a sufficiently small real
parameter c one therefore obtains

0 < 625[](w + cw',w+ cw') = 2¢82S[y)(w, w') + 262S[](w', w').

The right hand side of this expression can be nonnegative for an arbitrary sufficiently small
value of ¢ only if §2S[y](w,w’) = 0. Besides, we already know that §2S[y](w,v) = 0 for any
v € T,Q(to, t1,...,t). Thus the assumption §2S[vy](w,w) = 0 for some nonzero w € Tle
implies degeneracy of the bilinear form §25[4] on 7,9. So Jw = 0 hence w = 0. This
contradiction completes the proof of positivity of the Hessian of action functional on the
subspace TWLQ. a

Corollary 4.13.4 Index of the geodesic v is equal to the index of the restriction of the
quadratic form §2S[y] onto the finite-dimensional subspace Ty (to, t1, ..., t;). Henceind 62S[y] <
00.

Let us consider the restriction v ;) of the geodesic v on a subinterval [0, 7] for 0 < 7 < 1.
Denote
ind (7) = ind 628 [’y[o’ﬂ]

We will now study the dependence of the index on the parameter 7.
Lemma 4.13.5 For sufficiently small T > 0 the index ind () is equal to zero.
Proof: This readily follows from Proposition 4.12.10. O
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Lemma 4.13.6 ind(7) is an increasing function of .

Proof: If T < 7/ then there exists a subspace V,; C Ty, €2 of dimension ind (7) such that
528 [’y[oﬂ] (v,v) <0 for any nonzero v € V;.

A nonzero vector field v € V; can be extended onto the bigger interval [0, 7/] by identical zero
on [r,7']. Denote ¥ € Ty, ., 2 the extended vector field. We have

5°S [vjo.] (0,0) = — /0T<Jv,v> — A, (V40,9).

The first term in the right hand side is negative,

—/ (Ju,v) = 628 [7[0771] (v,v) <O0.
0
The second one vanishes

A7 (V40,0) = = (Vyo(7),0(7)) =0

since v(7) = 0. In this way we obtain an embedding V; C V,/, v — © where the quadratic
form 629 [7[077/1] is negative definite on V.. Therefore dim V; < V,+ hence ind (7) < ind (7).
(|

Lemma 4.13.7 ind(7) is a left-continuous function, i.e.,
ind(7 — €) = ind(7)

for any sufficiently small € > 0.

Proof: Let t; <7 < t;31. Denote T := TV[O’T]Q(tO,tl, ..., t;, 7). This space
T=TyunyM & - & Tya)M

of dimension 77 does not depend on 7 € (¢;,t,11). Denote Q. the restriction of the quadratic
form 425 [7[0,7]] onto T. The index ind (7) is equal to the index of the quadratic form Q.
Let V C T be a subspace of dimension ind (7) such that

QT’V < 0.
Since the quadratic form @, depends continuously on 7 one concludes that also
QT"V <0

for arbitrary 7/ sufficiently close to 7. Therefore ind (7') > ind (7). But for 7/ = 7 — € for a
small positive € one has ind (7 —¢€) < ind (7) due to the previous Lemma. The two inequalities
imply that ind (7 — €) = ind (7). O

We will now describe discontinuity points of ind (7). We will use notations for the space
T and the quadratic form @, introduced in the proof of the previous Lemma.
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Lemma 4.13.8 Denote
v = dim ker @, = mult(v(0),v(7))
Then for sufficiently small € > 0 one has

ind(7 4 €) = ind(7) + v.

Proof: Let us first prove that
ind(7 +¢€) <ind(7) + v. (4.13.6)

As the negative inertia index of the quadratic form ), on the finite-dimensional space T is
equal to ind (7) and dimension of the kernel of the quadratic form is equal to v one concludes
that the positive inertia index of the quadratic form is equal to dim T — ind (7) — v. Thus
there exists a subspace V' C T of this dimension such that the restriction of Q. onto this
subspace is positive definite. By continuity one also have positivity

QT"V >0
for 7/ sufficiently close to 7. So
ind(7') < dimT — dimV < dim T — (dim T — ind (7) — v) = ind (1) + .

Choosing 7/ = 7 4 € one arrives at the inequality (4.13.6).

Let us now prove the opposite inequality
ind(r +¢€) > ind (1) + v. (4.13.7)

Choose ind (7) linearly independent vector fields vy, ..., vjq () along 7o ] vanishing at the
endpoints v(0), 7(7) such that the symmetric matrix

(QT)U = 525 [7[0,7’]] (’Ui,’l)j), iv ] = 17 cety ind (T)

is negative definite. One can also choose v linearly independent Jacobi vector fields Y7, ...Y,
vanishing at the endpoints v(0), (7). Observe that the vectors

ViYi(r), j=1,....,v

are linearly independent due to independency of vector fields Y;. Choose v vector fields X1,
..., X, along 7|9 -1 vanishing at the endpoints (0), v[7 + €] in such a way that their values
at t = 7 satisfy

(V5Y5(7), Xi(7)) = 0j, Jok=1,...,1.

Finally, the vector fields v;, Y; originally defined on [0, 7] extend to the interval [0, 7 + €] by
zero on the part [7,7 + €]. The extended vector fields will be denoted by the same letters v;
and Y;. Using the second variation formula (4.12.16) one can check that

528 [’Y[O,T-‘reﬂ (}/ja Yk) =0
52S [7[0,74’6]] (%ﬁ%) =0
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525 [V[O,TJre]] (Y}, Xi) = djk-
For a sufficiently small ¢ # 0 consider ind (7) + v vector fields
VL, VUind (7)) W —eXy,..., Y, —cX, (4.13.8)
on the geodesic (g r4¢. Consider the matrix of the quadratic form ()4 in this basis. This
matrix has the form
Qr(vi, vj) c Ajj
4.13.9
( CAjZ‘ _5jk + CZBjk ( )
where
Aij = =6%S [Vo.r+q] (vis X;),
Bjk = 625 [7[0,7’+e]] (vaXk)
As the matrix Q- (v;,v;) is negative definite we conclude that the entire matrix (4.13.9) is
negative definite for ¢ = 0. Therefore it remains negative definite also for sufficiently small c.
We have constructed a linear subspace of dimension ind (7) 4+ v in Ty, oS spanned by

the vectors (4.13.8) such that the quadratic form 629 [’Y[O,T+e]] is negative definite on this
space. Hence
ind(r +¢€) > ind (1) + v.

Comparing with (4.13.6) we prove the statement of the Lemma. O

We have proved that the monotone increasing function ind(¢) has a jump equal to
mult, (7(0),v(7)) when the parameter ¢ passes through a conjugate point ¢ = 7; it is continous
in other points. This completes the proof of Index Theorem. O

Corollary 4.13.9 If a geodesic 7 : [a,b] — M contains a pair of conjugate points inside the
interval (a,b) then it is not minimal.

We will now apply this condition of non-minimality to two-dimensional connected Rie-
mannian manifolds. Our goal is to prove the following

Theorem 4.13.10 Let the Gaussian curvature of a two-dimensional Riemannian manifold
M? satisfy the inequality
K(z)>a*>0 VYaec M.

Then the distance between arbitrary points x, y € M? satisfy

p(z,y) <

SR

In particular, if M? is geodesically complete then it is compact.

Proof: It suffices to prove that any geodesic of the length greater than m/a contains a
pair of conjugate points inside. To this and we will study zeroes of solutions to the Jacobi
equation represented as the system (4.12.23), (4.12.24). The first equation can be easily
solved, ¢ = cot + ¢1 for some constants cg, ¢1. To study zeroes of the second equation we will
use the following result from the theory of second order linear differential equations.
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Lemma 4.13.11 (Sturm). Let the potential K(t) of the Sturm-Liouville equation
Y+ K(t)y =0 (4.13.10)

satisfy inequality
K(t) = Ko(t)

for some smooth function Ko(t). Let x(t) be a nontrivial solution to another Sturm-—Liouville
equation
X+ Ko(t)x =0 (4.13.11)

vanishing at the points ty and t1. Then any solution to (4.13.10) must have a zero in the
interval (to,t1).

Under assumptions of the theorem one can take Ko(t) = a?. The equation (4.13.11)
reduces to ¥ + a?y = 0. Its solution x = sinat has zeroes at t = 0 and ¢t = m/a. Take a
nontrivial solution 1 (t) to eq. (4.12.24) vanishing at ¢ = 0. According to Sturm lemma it must
have another zero ¥(t1) = 0, t1 € (07 g) So, if the length [ of the geodesic 7 : [0,1] — M?,
|7| = 1 is greater than 7/a then it contains a pair of conjugate points (0), v(¢1). Hence it is
not minimal. Compactness of a geodesically complete two-dimensional manifold with positive
Gaussian curvature easily follows from boundedness with the help of Corollary 4.11.24. O

In a similar way one can prove the following

Theorem 4.13.12 Let M? be a two-dimensional connected Riemannian manifold of negative
Gaussian curvature K < 0. Then any geodesic contains no conjugate points. If, in addition,
M? is geodesically complete and simply connected then it is diffeomorphic to R2.

We leave the proof of this theorem as an exercise for the reader (cf. also Examples 4.12.12
and 4.12.13 above).

4.14 Lie groups as Riemannian manifolds

We have already considered the class of linear vector fileds (see Example 1.3.13 above).
Namely, for any n x n matrix A the vector field T4 on R™ reads

T)(z) = —Alz"

(note the sign change with respect to Example 1.3.13). The main property of such vector
fields is the following formula
[Ta, Tg] = Tia,p)- (4.14.1)

The dynamical system associated with a linear vector field T4 is a system of linear differential
equations with constant coefficients

it = fAfcxk, i=1,...,n.
Its general solution is given by the matrix exponential

z(t) = e M. (4.14.2)



Example 4.14.1 Tuaking three linear vector fields in R3

0 0 0 0 0 0
Ly=2——-y—, Ly=0— —2—, L,=y— —ax— 4.14.3
* z@y Yo, v = %8, For F T Yor wc‘?y ( )
one obtains a closed Lie algebra
Ly, Lyl = L,, [Ly,L;] =1Ly, [Ls,Ly] =1Ly (4.14.4)

isomorphic to the Lie algebra so(3) of 3 x 3 antisymmetric matrices.

Let us now consider linear vector fields on the space R ~ Mat(n,R) of n x n square
matrices. Namely, for any X € Mat(n,R) define

Lx(A)=AX, A€ Mat(n,R). (4.14.5)
Lemma 4.14.2 The linear vector fields (4.14.5) satisfy
[Lx, Ly] = Lixy]. (4.14.6)

We leave the proof as an exercise for the reader.

Linear vector fields (4.14.5) satisfy an important property of left invariance. Namely, for
a given matrix g € Mat(n,R) consider the left shift map Mat(n,R) — Mat(n,R)

Ars g A. (4.14.7)

Due to linearity the differential of this map coincides with the map itself. The action of the
differential on the field Lx maps the field to itself

gLx(A) = Lx(gA). (4.14.8)

Remark 4.14.3 One can define in a similar way right-invariant vector fields
Rx(A) = -XA. (4.14.9)
Like above one derives a formula for the commutator
[Rx.Ry] = Rixy)- (4.14.10)
These vector fields satisfy the right invariance property

Rx(A)g=Rx(Ag) for any g€ Mat(n,R). (4.14.11)

Let us now consider a Lie group G C Mat(n,R). Denote g := T.G the tangent space at
the unity of the group.

Lemma 4.14.4 For any X € g the left-invariant vector field Lx is tangent to G.
Applying the result of Exercise 1.3.16 one obtains
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Corollary 4.14.5 There is a natural Lie algebra structure on the tangent space g :=1.G to
a Lie group G C Mat(n,R) at unity.

For X € g the exponential g(t) = !X € G is a one-parameter subgroup, i.e.,

g(s+1)=g(s)g(t), g(0)=e, g(—t)=g(t)"". (4.14.12)

A connected Lie group is generated by its one-parameter subgroups.

Example 4.14.6 For the Lie group O(n) of n x n orthogonal matrices the Lie algebra coin-
cides with the space of n x n antisymmetric matrices. This space is usually denoted so(n).

For g € G the left shift (4.14.7) is a diffeomorphism. Its differential maps isomorphically
the tangent space T.G = g to T,G. Therefore the left-invariant vector fields Lx for X € g
exhaust the tangent space at any point of the Lie group, i.e.,

TyG~g forany geG (4.14.13)

as linear spaces.

Due to the isomorphism (4.14.13) any positive definite symmetric bilinear form (, )4 on
g defines a Riemannian metric on the Lie group G by the following rule

(Lx,Ly)|g=(X,Y)y forany g€ G and arbitrary X,Y €g. (4.14.14)

Such a metric is called left-invariant metric on G. Alternatively the same bilinear form ( , )4
on g defines a right-invariant Riemannian metric on G by the formula

(Rx,Ry)|g =(X,Y); forany ge& G andarbitrary X,Y €g. (4.14.15)

In general the metrics (4.14.14) and (4.14.15) are different.

Definition 4.14.7 A Riemannian metric on a Lie group G is called biinvariant if it is
imvariant with respect to both left and right shifts.

Exercise 4.14.8 Prove that inner automorphisms Ad : G — G
Adgh — ghg™

are isometries of a bitnvariant metric on a Lie group.

Proposition 4.14.9 The metric (4.14.15) on a connected Lie group is biinvariant iff the
bilinear form (, )q on g satisfies

(X.Y],2), = —(X,[Y,Z)), forall X,Y,Zeg. (4.14.16)
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Proof: We have to check that the two metrics (4.14.14) and (4.14.15) coincide, i.e.,
(9X,9Y)=(Xg,Yg) forany g€ G and arbitrary X,Y € g.

It suffices to verify validity of this identity for g = ¢4, Z € g. Differentiating it in ¢ at t = 0
one obtains

(ZX, Y)Y+ (X, Z2Y) = (X,YZ)+ (X Z,Y).

In this equation X, Y, Z are considered as tangent vectors to G at the point e. This gives
(4.14.16). Conversely, from (4.14.16) it is easy to derive validity of

(g(t) X, g(t)Y) = (X g(t),Y g(t))

in all orders in t. O

Definition 4.14.10 A symmetric bilinear form on a Lie algebra g is called invariant if it
satisfies (4.14.16).

Exercise 4.14.11 Let g = span (e1,...,ey,) be a finite-dimensional Lie algebra. Recall that
the structure constants ij of the Lie algebra are defined as coordinates of the commutators
lei, ;] of the basic vectors with respect to the same basis

lei €] = cfjen, i, j=1,...,n. (4.14.17)

Denote
Gij = (€i,ej)g (4.14.18)

the Gram matriz of a symmetric bilinear form and put
Cijk = CijGsk- (4.14.19)

Prove that the bilinear form ( , )q is invariant iff the tensor c;j, is antisymmetric with respect
to arbitrary permutation of indices.

Let us construct an example of a biinvariant metric on the Lie group O(n) of orthogonal
n X n matrices. Let us first observe that a Euclidean inner product on the space R =
Mat(n,R) can be written in the form

n
(X, V)=uxy"=>" X/, X=(X}), Y=(Y)). (4.14.20)
i,j=1
Here Y7 is the transposed matrix. Observe that for orthogonal matrices X € O(n) one has

(X, X) =trl =n.

Thus, the orthogonal group O(n) C Mat(n,R) belongs to the sphere 57 =1 of radius Vn.

Proposition 4.14.12 The restriction of the Fuclidean metric (4.14.20) onto the orthogonal
group O(n) is an invariant Riemannian metric.
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Proof: 1t suffices to prove that, restricting the bilinear form (4.14.20) onto the space so(n)
of antisymmetric matrices is an invariant symmetric positive definite bilinear form on the Lie
algebra so(n). Indeed, for antisymmetric matrices

(X,)Y) = —trXY.
Using invariance of trace with respect to permutations
trAB =trBA
one obtains

(X,Y],2) = —eXYZ +trYXZ = —trY ZX + 1Y X Z = trY[X, Z] = —(V, [X, Z)).

(|
Exercise 4.14.13 Prove that the restriction of the Euclidean metric
n
(X,Y) =RuXY* =R > X}V, X=(X}),Y=(Y]) € Mat(n,C) (4.14.21)

i,j=1
in R2 = M at(n,C) onto the unitary group U(n) defines a biinvariant Riemannian metric

on U(n).

Remark 4.14.14 For any finite-dimensional Lie algebra g there is a natural invariant sym-
metric bilinear form
(X,Y)=tr(ad X -adY) (4.14.22)

called Killing form. Here the adjoint endomorphism
adX:g—g

is a linear map defined by
ad X(Y) = [X,Y].

Its invariance is an easy exercise. According to E.Cartan criterion the Killing form does not
degenerate iff the Lie algebra g is semisimple. The Killing form of a semisimple Lie algebra
is negative definite iff g is the Lie algerbra of a compact Lie group.

Exercise 4.14.15 Prove that the Gram matriz of the Killing form in a basis e1, ..., ey 18
expressed via the structure constants of the Lie algebra (see Exercise 4.14.11 above) as follows

Ik
(eir€5) = CikCji1-

Exercise 4.14.16 Prove the following formulae for the Killing forms of some classical Lie
algebras

glin): (X,)Y)=2ntr XY —2tr X trY
slin): (X,Y)=2ntr XY

so(n): (X,)Y)=(Mn-2)tr XY

su(n): (X,Y) =2ntr XV.



We define a connection on a Lie group G by the formula

1
VLXLY = §[LX,Ly]. (41423)

Theorem 4.14.17 The connection (4.14.23) on a Lie group equipped with a biinvariant Rie-
mannian metric coincides with the Levi-Civita connection on G.

Proof: With the help of the formula (4.5.12) for the torsion tensor we easily prove that the
connection (4.14.23) is symmetric:

1
VixLy —=Vi,Lx —[Lx,Ly] = i[LXvLY] [Ly,Lx] — [Lx,Ly] = 0.

1

2
To prove compatibility with the metric it suffices to check that

OL,(Lx,Ly) =(Vi,Lx,Ly) + (Lx,VL,Ly)

for arbitrary X, Y, Z € g. Indeed, the left hand side is equal to zero since the inner product
(Lx,Ly) is constant. Also the right hand side vanishes, indeed

1 1
(Vi,Lx,Ly)+(Lx,V,Ly)= §<[LZ7LX]7LY> + §<LX, Lz, Ly])
1

HZ,X] V) + (X, 12,V ])g =0

due to invariance of the bilinear form ( , ). |

Corollary 4.14.18 The curvature tensor of a biinvariant metric on a Lie group G is given
by one of the following two equivalent formulae

1
R(Lx, Ly)Lz = =1 Lixy] 2
1

(R(Lx,Ly)Lgz,Lw) = 1

<[Xa Y]? [Za W]>g
We end this section with description of geodesics of a biinvariant metric.

Theorem 4.14.19 One-parameter subgroups g(t) = e'X, X € g are geodesics of a biinvari-
ant metric on G.

Proof: The velocity vector (t) of the one-parameter subgroup coincides with the vector field
LX. So

. 1
Lyg=ViyLx = §L[X,X] =0.

a

The statement of the Theorem is a motivation for the name “exponential map” used in
section 4.11.
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4.15 Differential geometry of complex manifolds

Let us begin with reminding some basics of complex linear algebra. A n-dimensional complex
vector space V can be naturally identified with a real space Vg of dimension 2n. If 2!, ...,
2" are complex coordinates in V then their real and imaginary parts 2% = R 2%, ¢* = J2¢
are coordinates in Vg. Alternatively it is sometimes convenient to use the combinations

F=ab ik, =ik, k=1,....n (4.15.1)

as complez-valued coordinates in Vg. (Here and below i = v/—1.) Clearly such a change of

coordinates is invertible N N N N
r 2tz E 2 —Z
= = . 4.15.2
o g Y 2 (4.15.2)

Any linear operator A € End¢ (V) will automatically be a linear operator in Endg (V).
The linear operator of multiplication by 4

J:V oV, JE=i (4.15.3)

1 n

n ,1
7"'7a:. 7y 7"'7y

J = ( (1) _é > (4.15.4)

(we will often identify the operator J with its matrix).

is of particular importance. The matrix of this operator in the coordinates x
is equal to

Definition 4.15.1 A R-bilinear form (, ) on Vg is called Hermitian if it satisfies the fol-
lowing properties

Az, y) = ANz,y), (z, y) =Na,y) Vo, y,€V, ¥YreC (4.15.5)

(y,2) = (z,y), Va,yeV. (4.15.6)

A Hermitian form is called positive definite if it also satisfies

(x,z) >0 forany x#0. (4.15.7)
In a basis eq, ..., e, an analogue of the Gram matrix is defined
hkl_: (ek,el). (4.15.8)

The value of the Hermitian form on a pair of vectors z = zFei, w = wle; can be computed
by the following formula

(z,w) = hypz*wt, (4.15.9)
The matrix
hQi e hQﬁ
H =
hni han

satisfies the property of Hermitian symmetry

HT = 1. (4.15.10)
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Remark 4.15.2 The following notation
A* = AT (4.15.11)

is used for Hermitian conjugation of a matriz. Thus, the Hermitian symmetry property
(4.15.10) can be written as H* = H.

Any complex Hermitian symmetric matrix H defines a Hermitian form on C™. Such a
Hermitian form is positive definite iff all principal minors of H are positive (observe that the
principal minors of a Hermitian symmetric matrix are all real).

With a Hermitian form (x,y) one can associate two real bilinear forms taking real and
imaginary parts R(z,y) and (z,y). Clearly R(z,y) is a symmetric bilinear form while
S(x, y) is an antisymmetric bilinear form

éR(i%x) = §R(£7y)’ C\}(y’gj) = —%(az,y).

One of this forms determines another one, in particular,

Lemma 4.15.3 The real and imaginary parts of a Hermitean form satisfy

R(z,y) = S(J z,1). (4.15.12)

Here J is the operator of multiplication by 4.
Proof: Due to complex linearity with respect to the first argument one has
Ria,y) +iS(iz,y) =i [R(z,y) +i3(z, )]
This implies
§R(¢7y) = %(J‘T’y)a %('T7y) = 7%(‘]l‘7y)
Ul

Corollary 4.15.4 Real and imaginary parts of a positive definite Hermitian forms are a
positive definite symmetric bilinear form R(x,y) and a nondegenerate antisymmetric bilinear
form (z,y).

Proof: The first part of the statement is obvious. To prove the second one one has to check
that, if (z,y) = 0 for any y then = = 0. Indeed, if I(z,y) = 0 then R(J z,y) = 0. Choosing
y = J x one obtains R(J z,Jz) =0 hence Jz =0. So x = 0. O

Example 4.15.5 Taking H = 1 one obtains the following Hermitian form

(21,22) = ) _ 2F 25 (4.15.13)
k=1

In the real coordinates 2§ = af + iy, 25 = a2k + iy5 the real and imaginary parts of the
Hermitian form read

n n

R(z1,22) = ) (xlfﬂﬁg + ylfylzg) , S(z,2) =—) (xlfylf - l‘lzcylf) : (4.15.14)
k=1 k=1
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A linear operator A : V — V acting on a complex linear space equipped with a positive
definite Hermitian form (, ) is called unitary if

(Az, Ay) = (z,y) Vz,ye V. (4.15.15)
The matrix of a unitary operator satisfies
A*HA=H. (4.15.16)
In the particular case H = 1 one obtains definition of unitary matrices

A*A=1. (4.15.17)

Example 4.15.6 A unitary matriz of order 1 is just a compler number of modulus one,
a=e'®. Any unitary matriz of order 2 has the form

_olPp
(5 Ger ). et

e'?q
Exercise 4.15.7 For any unitary matriz A prove

|det A| = 1. (4.15.18)

The subspace of complex linear operators Endc (V) C Endg(V) can be identified with
the centralizer of J. In the simplest case of dimension 1 matrices of complex linear operators
have the form

a —b
A= ( b a ) , a,beR. (4.15.19)
In the coordinates z, Z the matrix becomes diagonal
A— < 3 S\)’ A=a+1b. (4.15.20)

A smooth complex valued function f(z,y) = u(x,y)+iv(z,y) can be considered as a map
C — C. The function is called holomorphic® if its differential

df = fodx + fydy = updz + uydy + i (vpdx + vydy)

is a complex linear map. In other words, the Jacobi matrix

( Yoty ) (4.15.21)

Vg Uy
of the map R? — R? must have the form (4.15.19), that is, the Cauchy-Riemann equations

Up = Vy, Vg = —Uy (4.15.22)

80ne of the first result of complex analysis says that holomorphic functions can be represented as sums of
convergent power series. Because of this they are often called complex analytic functions.
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hold true. Representing the differential in complex coordinates

_ 1 , 1 .
Af = fodz+ fodz,  foi= 5 (Fo—ify), foim 5 (fo+ify) (4.15.23)
one rewrites the Cauchy—Riemann equations for the function f in the form
fz=0. (4.15.24)

One can say that holomorphic functions f are those that do not depend on z. They are
usually written as f = f(2).

Exercise 4.15.8 Prove that the determinant of the Jacobi matriz (4.15.21) of a holomorphic
function f(z) is given by the formula

det( U Uy ) =
Vg Uy

In a similar way a smooth function f : C™ — C is holomorphic if it satisfies a system of
Cauchy-Riemann equations with respect to every coordinate z* = z*¥ + iy*

2

of

0z

(4.15.25)

of
— = =1,....n. 4.15.2
o =0 k=1...n (4.15.26)
Here the operators 9/9z% and 9/0z" are defined like in (4.15.23)
0 1/ 0 e, 0 1/ 0 e,
w—xwfmng—xwﬁ@Q' (4.15.27)

Finally, a smooth map f: U — C™ of a domain U C C" is holomorphic if, for its coordinate
representation

z= (4.2 = (w'(2),...,0w"(2))
the Cauchy—Riemann equations hold true for every component

ow’

ﬁ:07 k:]‘""7n7 j:17)m

We are ready to define a class of complex analytic manifolds.

Definition 4.15.9 A complex analytic manifold of complex dimension n is a smooth 2n-
dimensional manifold M equipped with an atlas (Un, Pa)qcrs

Ya Uy = 0a(Uy) C C* = R?"

such that, on the intersections U,NUg # 0 the transition functions pgopyt are holomorphic.

We will denote z}, ..., 27 complex coordinates on the chart U,. On the intersections
U, NUg one has holomorphic transition functions zé (zé, e zg),
J
Oz _

L2 =0, jk=1,....,n
ozk J "
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Observe that the Jacobian of the transition functions is always positive

920 Jza 0z
det( ggi gz > = |det <8zg>

% 825
(cf. Exercise 4.15.8). So, any complex manifold has a natural orientation.

2
>0 (4.15.28)

The real and imaginary parts of z¥ = 2* + iy* will be used as local coordinates on M
considered as a real manifold Mg. It will also be convenient to use complex combinations

=gk iyt =k — ik

as coordinates on Mg. In this way, instead of using the vector fields

9 9 9 9
Bl an ayl T oy

as a basis in the tangent space to M one can use their complex combinations (4.15.27). Any
tangent vector & € TpM at a point P € M can be decomposed as

0 o 10 i o 0
=l = 4. n_- 1% 4 ... n_ Y _ ¢k E 9
E=8gqt T+ gt + o =87 + 8 (4.15.29)

The complex coordinates &, §E satisfy
¢k k=1, n (4.15.30)

Forgetting about the constraint (4.15.30) one obtains a vector £ in the complexified tangent
space £ € CTpM. It is a complex vector space of complex dimension 2n. It is naturally
decomposed into a sum of two complex n-dimensional subspaces

0 0 0
1,0 0,1 1,047 0 1ar
(CTPM:TP M@TP M, TP M—Span{azl,...,azn}, TP M—Span ﬁ’.”7@
(4.15.31)
The decomposition (4.15.31) is invariant with respect to changes of local coordinates.
A complex antilinear map
o0 :CTpM — CTpM, o (X&) = Ao (€) (4.15.32)
defined by
0 0 0 0
— | = = — ==, k=1,... 4.15.33
U(azk) 9k "(azk) 92k’ AL ( )

permutes the subspaces 7MY and T%!. Clearly ¢ is an involution, 0> = id. The subspace of
o-invariant vectors, o(&) = &, coincides with the (real) 2n-dimensional tangent space TpM.

Example 4.15.10 Complex vector space C™ is an example of a n-dimensional complex man-
ifold. It is covered with one chart with complex coordinates z', ..., 2™. Same is true for any
domain in C".
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Example 4.15.11 Complex projective space CP™ is defined as a quotient of C*T1\ {0} over
complex rescalings

cPr={z=(2°2"...,2") e C"\{0}} /{Z ~XZ, A e C\ {0}}. (4.15.34)
It can be covered by (n+ 1) charts Uy, Uy, ..., Uy,
Uy, = {Z =(2°,7",...,2") e C" | ZF 2 o} . (4.15.35)

The local coordinates on the chart Uy are defined as follows

70 Zk Z”>

1
(zkz,z):<ZkaZk (4.15.36)

(the k-th term g—: = 1 is omitted). On the intersection Uy N U; one has

YA
-y :i(z,i,...,z,?).

It is easy to express the ratio Z* /Z' of two non-zero homogeneous coordinates as a holomor-
phic function of local coordinates. For example, for k <1 one has
k
Z k+1

1
7l A R
k

In the simplest example n = 1 one has two charts Uy and U; on CP'. Any of these two
coincides with the complex plane C. Denote z the local coordinate on Uy and w the local
coordinate on Uy. On the intersection z # 0, w # 0 the transition function reads

Actually, there is only one point in CP! not belonging to the chart Uy, namely, the point
w =0 in U;. When w tends to 0 the coordinate z tends to infinity. So, CP' can be identified
with the complex plane with one infinite point added

CP!' = CU {0} (4.15.37)

Topologically it is a two-dimensional sphere S%. Because of this the complex projective line
CP! is often called Riemann sphere.

Let M be a complex analytic manifold of complex dimension n. We will consider a
particular subclass of Riemannian metrics on such a manifold considered as a smooth 2n-
dimensional real manifold Mg.

Definition 4.15.12 We say that a Riemannian metric on M is compatible with the complex
structure on M if the operator J of multiplication by i is orthogonal,

(J&1, J&2) = (€1,&2) V&1, & € TpMp (4.15.38)

for any point P in the manifold.
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Definition 4.15.13 A Hermitian metric on M is a C-bilinear pairing
TOM x To'M — C, &, (&) (4.15.39)

smoothly depending on the point P € M such that

(&1,0(&)) = (&,0(&)) V&, &eTp'M (4.15.40)

and
(§,§) >0 forany 0#¢€TpM (4.15.41)

Hermitian form on the tangent space TpM at every point

5 Symplectic manifolds

5.1 Basic definitions. Poisson brackets

Definition 5.1.1 A symplectic structure on a manifold M is a nondegenerate closed differ-
ential 2-form

dw =0, det(w;j(z))#0 VzelM. (5.1.1)

Clearly the dimension of M must be even; in this section it will usualy be denoted 2n. The
(0,2)-tensor wyj(x) defines an antisymmetric bilinear form on the tangent spaces

(X,Y) = wij(x)XYI, i, j€TuM (5.1.2)
(Y, X) — (X,Y).
Nondegenerateness of w means that
if (X,Y)=0 VY e€T,M then X =0.

Recall that the condition of closedness of the 2-form reads as follows

Owij ~ Owy Wik 0 forall i, j,k=1,....2n. (5.1.3)

dw =0 4
v <~ oxk Ox7 Ozt

Example 5.1.2 Consider Euclidean space R*" with the coordinates (¢',...,q" p1,...,Pn)
equipped with the 2-form

n
w = Z dp; N dq'.
=1

The constant matriz of this 2-form has consists of four 2 x 2 blocks
0 -1
(0 1) o 514
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This is the standard phase space of classical mechanics. We will often use short notations
a=(¢"---.q"), p=(p1,---,pn),

dp N\ dq = dei A dgt.
i=1

More generally, one can consider a 2n-dimensional linear space W equipped with a non-
degenerate antisymmetric bilinear form w(X,Y). We will call (W,w) a symplectic space. As
it is well known from linear algebra for an arbitrary nondegenerate antisymmetric bilinear
form there exists a basis e1, ..., en, fY, ..., f™ in the space W such that

w(e;, ej) = w(fi,fj) =0, w(e, f‘j) = —55-

In this basis the matriz of the bilinear form has the standard form (5.1.4).

Example 5.1.3 Let Q" be a smooth manifold. Consider the total space of cotangent bundle

This is a smooth manifold of the dimension 2n with local coordinates q*, ..., ¢, p1, ..., Pn.
Here ¢*, ..., q" are local coordinates on the base Q,, while the coordinates pi, ..., pn on the

fiber TYQ over a point ¢ € Q™ are defined as follows

pi€) =& if €=&dg" + -+ Endg".
Let us prove that the 1-form
a=pidg + -+ ppdq" (5.1.5)

does not depend on the choice of local coordinates q*, ..., ¢* on Q™. For a given a change
of coordinates

¢—q =q (¢, ...q"
the components of a covector € transform as follows
_oq

§ir = W&

(the (0,1)-tensor law). Thus one has the following linear change of the p-coordinates on T*Q

_ 9
Pir = sz
So,
. aqi aqi’ )
pidq" = Wpiaququ = pidg’.

The differential da of the 1-form is a well-defined 2-form on T*Q),

w=da= dez- A dg'. (5.1.6)
i=1

It defines on T*Q a structure of symplectic manifold.
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We will now define Poisson bracket on a symplectic manifold. Denote (w?(z)) the inverse
matrix to (w;j;(x)). Like in the case of inverse of a Riemannian metric, this is a (2,0)-tensor
on M?" i.e., an antisymmetric bilinear form on the cotangent space T;' M?". Evaluating this
bilinear form on a pair of differentials df, dg, f, g € C°°(M) defines a new function denoted
>y of 0

g o0
U0} = (@) 9L 20 ¢ (), (517)

It is called the Poisson bracket of the functions f and g.

For the symplectic manifold of Example 5.1.2 one arrives at the well known formula for
the Poisson bracket used in classical mechanics

of a9 Of g
{f.q} = Z@q o 9p. e (5.1.8)

Same formula holds true also for the Poisson bracket of functions on the cotangent bundle
T*@ (see Example 5.1.3 above).

Theorem 5.1.4 The pairing
Co(M) x C*(M) = C*(M), f,g—{f.9}

defines on C*°(M) a structure of Lie algebra satisfying the following Leibnitz rule
{fg,h} = flg,h} +9{f;h} V [, g, h€C(M). (5.1.9)

We have to prove that the Posson bracket is an antisymmetric bilinear operation satisfying
Jacobi identity

{{/f.95, 0+ {Hg,n}, f} + {{h. f},9} =0 YV [, g, h € C*(M). (5.1.10)

Bilinearity and antisymmetry, as well as the Leibnitz rule (5.1.9) are obvious. In order
to prove validity of the Jacobi identity we will address the following question: given an
antisymmetric (2,0)-tensor 7/ (x) on a manifold M, under what conditions the formula

(Frg} =7 () L 20 (51.11)

defines on the space of functions C>°(M) a structure of Lie algebra’? Observe that the
brackets of the coordinate function coincide with the components of the bivector

{2%, 27} = 79 (). (5.1.12)

Lemma 5.1.5 Denote

I(f, g, h) == {{f, g}, b} + {{g, h}, £} + {{h, f}, g} € C=(M).
the lhs of the Jacobi identity. Then, in local coordinates the following formula holds true

of 0g Oh

1(f,g,h)(x) = Omlﬁwﬂ( al, ")

“Needless to say that the Leibnitz rule (5.1.9) for the bracket (5.1.11) holds true automatically.
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The proof is by a straightforward computation.

Corollary 5.1.6 The Jacobi identity for the bracket (5.1.11) holds true iff

{{J;7xj}ka}%_{{xk,xi},xj}4_{{14,$k},xi} ::i;::ﬂﬁk4_i;ijﬂﬁj+_2;Zfﬂﬁi::0 (5.1.13)

Vi, j, k=1,...,dim M.

Exercise 5.1.7 1) For a symplectic manifold (M?",w) the bivector ' (z) = w"(x) where
(w(z)) = (wij(x))_l satisfies the equations of Corollary 5.1.6
onii . omM . omik

sj
Owsw + 8xS7T + oxs

=0 Vi, jk=1,...,2n. (5.1.14)

2) Prove that a nondegenerate (2,0)-tensor ' (x) satisfies the Jacobi identity (5.1.13) iff
the 2-formw =3, _, wij(x)dz’ A dz? where (w;j(x)) = (ﬂij(a:))fl is closed.

One can say that, for a nondegenerate antisymmetric matrix of functions 7% (zx) the
inversion map (7% (z)) — (7% (a:))_l linearizes the nonlinear equations (5.1.14) (see egs.
(5.1.3) above).

Motivating by the previous discussion we introduce

Definition 5.1.8 A Poisson structure on a manifold M is a structure of a Lie algebra on
the space of functions C*°(M) satisfying the Leibnitz rule (5.1.9). A manifold M equipped
with a Poisson structure is called Poisson manifold.

Exercise 5.1.9 Prove that a Poisson structure on an arbitrary Poisson manifold has the
form (5.1.11) for some bivector w" (x).

Due to the previous results any symplectic manifold (M n w) is a Poisson manifold. It
satisfies the non-degeneracy condition:

{f,g} =0 VgeC>®(M) = f is (locally) constant. (5.1.15)

Exercise 5.1.10 Prove that any Poisson manifold satisfying the nondegeneracy condition is
a symplectic manifold.

A simple class of examples of Poisson manifolds can be obtained taking an arbitrary
antisymmetric constant matrix 7% in the formula (5.1.11) for the Poisson bracket. We will
now introduce another important class of examples.

Example 5.1.11 Let g be a Lie algebra of dimension n. Denote M = g* the dual space.
Choose a basis €', ..., e™ in g. Commutators of the basic elements can be represented as

linear combinations of themselves o N
e, el] = ¢l e, (5.1.16)
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The coefficients c;cj of the linear combinations are called structure constants of the Lie algebra.

Every vector in g defines a linear function on the dual space g* = M. In this way the
basis in g defines a system of coordinates on the dual space. Denote x', ..., x™ this system
of coordinates. The Poisson bracket on M = g* is defined by the following formula

{2t 27} = czjxk (5.1.17)
Thus, the components of the bivector ' (z) = czj:ﬂk depend linearly on the coordinates.

Exercise 5.1.12 Prove that any Poisson manifold equipped with a Poisson bracket M de-
pending linearly on the coordinates is isomorphic to g* for some finite-dimensional Lie algebra

g.

Hint: observe that linear functions on M form a closed Lie algebra wrt the Poisson
bracket.

Example 5.1.13 Choosing a standard basis in the Lie algebra so(3) one obtains a 3-dimensional
Poisson manifold with coordinates x, y, z with Poisson brackets

{zyy =2, {y,z} =2, {z2}=v. (5.1.18)

We will now introduce an important class of Hamiltonian vector fields on a Poisson
manifold (M, 7) (and, therefore, on any symplectic manifold (M, w)).

Definition 5.1.14 The vector field X g with the components

X (z) = 7 (2) 8215) (5.1.19)

is called the Hamiltonian vector field generated by the Hamiltonian H € C*°(M).

Observe that the dynamical system associated with the Hamiltonian vector field X can
be written in the following form

it ={z', H(z)}, i=1,...,dim M. (5.1.20)

It will be called the Hamiltonian system generated by the Hamiltonian H.

Example 5.1.15 For the standard phase space R*™ of classical mechanics the Hamiltonian
system coincides with the canonical Hamiltonian equations of motion

i OH
T o
(5.1.21)
. OH
pi = — oq

i=1,...,n with the Hamiltonian H = H(q,p).
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Remark 5.1.16 In order to treat Hamiltonian systems with time-dependent Hamiltonians
H = H(q,p,t) it is convenient to introduce extended phase space R?"+2 with the coordinates
(¢,p,t, E) with the symplectic structure

Ww=dpAdqg—dE Ndt. (5.1.22)
Modify the Hamiltonian: )
H=H-F.
Then the Hamiltonian system reads
i OH
I Opi
. OH
pi = — oq
t= 1a
. H
E = T

On the level surface H = 0 invariant wrt the Hamiltonian flow (see below) one obtains the
equations of motion along with the identity

%H(Q(t),p(t),t) _ M{(g;p,t)

well known in classical mechanics.

Example 5.1.17 A Hamiltonian system on the dual space to the Lie algebra so(3) (see
Ezample 5.1.13 above) reads

. OH OH
.f—{.f,H}—Zaiy*yg
oOH oH
y={y, H} T " or
OH OH
z={z,H} Z/%—iaiy

or, in vector form

r=VHxr, r=(zvy,z2).
In the particular case of a quadratic Hamiltonian H one obtains the Fuler equations of free
motion of a rotated rigid body.

We finish this section with the following useful statement about Hamiltonian vector fields
on symplectic manifolds.

Lemma 5.1.18 Let Y be a vector field on a symplectic manifold (M,w). Then for any
function f on M the following formula holds true

Yf=w,X;). (5.1.23)

Proof: We have

of

of
_vkYJS N
Yi=Y T oxs

o = Y0

= kakjszga“i = wijkX; =w(Y, Xy).
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5.2 Poisson symmetries. Hamiltonian flows as symplectomorphisms

Let (My,m1), (M2, m2) be two Poisson manifolds.

Definition 5.2.1 1) A smooth map F : My — My is called a Poisson morphism if the
pull-back F* : C*°(Ms) — C*°(M) is a homomorphism of Lie algebras

{F*faF*g}Ml :{f7g}M2 vf?.gecoo(MQ)

2) A diffeomorphism F : M — M of a Poisson manifold (M, ) to itself that is a Poisson
morphism s called Poisson symmetry.

Consider also the infinitesimal version of Poisson symmetries.

Definition 5.2.2 A wvector field X € Vect(M) on a Poisson manifold (M, ) is called in-
finitesimal symmetry of the Poisson structure if

X{f, g} ={Xf, 9} +{f. Xg} V f geC™(M). (5.2.1)
Proposition 5.2.3 A vector field X* is an infinitesimal symmetry of the Poisson structure
7 on M iff

or  OX' 40X

oz Bzk " T oxy,

Liexw = X* =0 Vi, j=1,...,dimM. (5.2.2)

The proof is straightforward.

Theorem 5.2.4 Any Hamiltonian vector field Xy, H € C*°(M) on a Poisson manifold
(M, ) is an infinitesimal symmetry of the Poisson structure 7.

Proof: From the definition X ’fl = ﬂkt% we derive

wOH O 9 <7r”8H> i s 9 (ﬂjtaH>

Liex,m =

ozt dzk  Oxs Oxt oxs Oxt
_( _0nY _ o't o83 _ s on’* OH it s 0’H _ s it 0’H
N oxk Oz 0xs ) Oxt Ozs Oxt Ozs Oxt’

Interchanging the summation indices s <> ¢ in the last term and taking into account the
antisymmetry /% = —7m% we cancel the two terms with the second derivatives of the Hamil-
tonian H. Applying similar operations to the three terms in the parenthesis we rewrite the
rhs as

o ., omtt . omit )\ OH
:<axk” T e ) a7
due to the Jacobi identity (5.1.13). |

Consider the particular case of Hamiltonian vector fields on a symplectic manifold (M, w).
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Corollary 5.2.5 For any Hamiltonian vector field Xg, H € C*°(M) on a symplectic mani-
fold (M,w) one has
Liex,w = 0. (5.2.3)

Proof:  The identity operator id : T, M — T,.M is constant along any vector field X:
Lie X(S;'- = 0. Differentiating the equation
"
05 = wwg;
along Xy and using Lz‘eXHw”C = 0 one derives that also Liex,wy; = 0. O

We will now consider a symplectic analogue of Poisson symmetries.

Definition 5.2.6 Let F' : My — My be a diffeomorphism of two symplectic manifolds
(My,w1) and (Ma,ws). It is called symplectomorphism if F*wgy = wy.

For a Hamiltonian vector field Xz on (M,w) denote g; : M — M the one-parameter
(local) group of diffeomorphisms generated by Xp. Recall that g; acts by shifts along trajec-
tories of the Hamiltonian system

t={xz,H}

by the time ¢ for sufficiently small |¢|. It will also be called the Hamiltonian flow generated
by the Hamiltonian H.

Theorem 5.2.7 For an arbitrary Hamiltonian H on a symplectic manifold (M,w) the cor-
responding Hamiltonian flow g, defines a (local) one-parameter group of symplectomorphisms

thM—>M,
Jiw = w.

Proof: This immediately follows from Corollary 5.2.5. O
Remarkably, on a symplectic manifold locally also the converse statement holds true.

Theorem 5.2.8 Let g; : M — M be a one-parameter group of symplectomorphisms of the
symplectic manifold (M,w). Denote

d
X = @gt(wﬂt:o

the velocity vector field of g:. Then locally there exists a function H such that X = Xp.

Proof: From the equations

k@wij + anw 4w 8Xk
oxk ozt TR g

0= Liexwij =X

it follows that the 1-form 4
¢ :=&dr' where & = wip X"
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is closed, d¢ = 0. Indeed,

8& afj Owik aij k an an
Ox) Ozt OxJ ox’ Wik Ox) + dzi
where we use the closedness condition (5.1.3) to replace the two terms in the parenthesis

with dw;;/ dz*. So, due to Poincaré Lemma it locally exists a function H such that & = dH.
Raising the index by the inverse matrix w*® one obtains X = Xp. a

kj = Liexwi]’

It is easy to see that the obstruction to the global existence of the Hamiltonian H is in the
cohomology H'(M,R). See more details below in the discussion of the Poisson cohomology.

On a 2n-dimensional symplectic manifold (M, w) there is a natural volume element

1
Volyy = wwAwA -~ Aw (n factors). (5.2.4)
n!

Exercise 5.2.9 On the standard 2n-dimensional symplectic space R*™ with the symplectic
structure w = >_ dpy A dq' the volume element (5.2.4) takes the form

Volgen = dpy Adg' Adpas Adg® A - Adpy, A dg™.
From Theorem 5.2.7 it follows
Corollary 5.2.10 (Liouville theorem) Any Hamiltonian flow is volume preserving.
Proof: Using Leibnitz rule for Lie derivatives one obtains

1 1
Liex,Voly = wLiexuw AwA - Aw+--+ —wAwA--- A Liex,w = 0.
n! n!

O

Remark 5.2.11 For a nondegenerate antisymmetric 2n x 2n matriz (w;j) consider the 2-
form

w= Zwijdmi A da?

1<J
on the space R®™ with coordinates x', ..., x?". The corresponding volume element (5.2.4)
can be represented as follows
1
— WA Aw=Pf(w)dz' A+ A d2z®" (5.2.5)

n!

where Pf(w) is a polynomial in the entries of the matriz w;j. Such a polynomial is called
Pfaffian of the antisymmetric matriz. For example,

0 a
Pf(_a O)—a

0 aj a9 as
—ai 0 bg —bg
—as —b3 0 bl
—as bg —bl 0

Pf = a1b1 + azbs + asbs

(prove it!).
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Exercise 5.2.12 Prove that
[Pf(w)]? = det(w). (5.2.6)
5.3 First integrals of Hamiltonian systems

Recall that a smooth function f € C>°(M) is called first integral of a vector field X € Vect(M)
if Xf =0. The vector field X is tangent to the level surfaces f =const.

Consider a Hamiltonian vector field Xy on a Poisson manifold (M, ).

Lemma 5.3.1 Derivative of a function f along the Hamiltonian vector field X g is equal to
Xuf = {f,H}. (5.3.1)
Proof: Follows immediately from the definitions. O

Corollary 5.3.2 If the function f Poisson commutes with the Hamiltonian H then it is a
first integral of the Hamiltonian vector field Xys.

In particular, the Hamiltonian H itself is a first integral of Xz. This is the conservation
of energy statement on Poisson manifolds. In particular we have another

Corollary 5.3.3 The Hamiltonian vector field X on a Poisson manifold is tangent to the
level surfaces H=const of the Hamiltonian.

The following statement about Hamiltonian vector fields on symplectic manifolds will be
useful in sequel.

Lemma 5.3.4 A Hamiltonian vector field Xy on a symplectic manifold at any point of the
level surface H =const satisfies

w(Y,Xpg) =0 for any vector field Y tangent to the level surface H = const. (5.3.2)

Proof: According to Lemma 5.1.18 we have
w(,Xg) =Y H.

As the function H is constant on the level surface, its derivative along any vector field Y
tangent to the level surface is equal to zero. O

Theorem 5.3.5 First integrals of a Hamiltonian system form a Lie subalgebra in the Lie
algebra of functions on a Poisson manifold (M, ).
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Proof: Let f, g be two first integrals of a Hamiltonian vector field Xpy. From (5.2.1) it
follows that

(|

On a Poisson manifold we have a Lie algebra structure on the space of functions on M
defined by the Poisson bracket. We also have a Lie algebra structure on the space of vector
fields on M given by the commutator. The following statement establishes a connection
between these two structures on a Poisson manifold (M, 7).

Theorem 5.3.6 The map
C®(M) — Vect(M), Hw— Xg
is an (anti)homomorphism of Lie algebras

Proof: For any function f on M one has
Xrf={fF}
Using (5.2.1) we obtain
XuXpf=Xul{f.F} ={Xnf F}+{f, XuF} ={{f.H}, F} +{f.{F. H}}.
Thus

(X, Xr| f=XuXpf - XpXuf =
={ HL F}+{f A H} - {f. F},H} —{[.{H,F}}.

Due to Jacobi identity the first three terms in the rhs give zero. This proves the Theorem.
(|

Corollary 5.3.7 If the Hamiltonians H, F Poisson-commute then the Hamiltonian vector
fields Xy, Xp commute.

Remark 5.3.8 Actually, for commutativity [Xg, Xr| = 0 of Hamiltonian vector fields it
suffices that the Poisson bracket {H, F'} =const.

Exercise 5.3.9 Prove that two Hamiltonian vector fields on a symplectic manifold commute
iff the Poisson bracket among the Hamiltonians is a (locally) constant function.

180



5.4 Darboux Lemma. Poisson cohomology

Darboux lemma claims that, locally all symplectic manifolds of the same dimension are the
same, up to a symplectomorphism.

Theorem 5.4.1 (Darboux lemma) Let (MQ”,w) be a symplectic manifold. Then for any
point xg € M?" there exists a neighborhood U C M?™ and local coordinates ¢*, ..., q", p1,
.., Pn Such that

n
wly = dei Adg'.
=1

Proof: Let p; be an arbitrary smooth function on M such that

p1(x0) =0, dpi(zo) # 0.

Consider the Hamiltonian vector field X, . By assumption it does not vanish at xy and, thus
also on some neighborhood of this point. In a sufficiently small neighborhood U of x¢y choose
a (2n — 1)-dimensional submanifold N transversal to the vector field,

Xp(y) #0 Yy e NNU.

If U is sufficiently small then, for any 1 € U there exists a unique y € N N U such that the
trajectory x(t) of the Hamiltonian system

& ={z,p1}
such that z(0) = y reaches z for some ¢,
x(t) = x.
Denote ¢'(z) := t. By construction
{¢".m}=Xpq1 = %t =1 (5.4.1)

We obtain a pair of functions ¢!, p; on the neighborhood U of g with the canonical Poisson
bracket {q',p1} = 1. If the dimension n = 1 then we are done with the proof. Otherwise we
proceed by induction.

Define M C U by the equations ¢* = 0, p; = 0. It is a smooth submanifold of the
dimension 2n — 2. Denote
w= w\M.

Let us prove that (M ,JJ) is a symplectic manifold. Clearly dw = 0. Let us verify nodegen-

erateness of @. To this end we will show that, the tangent space T, yM at any point y € M
coincides with the orthogonal complement of the two-dimensional span (Xp1 , qu)

YeT,M & w(,Xp)=wl,Xu)=0.
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Take a tangent vector field Y € T, yJ\ZI . Extend it locally to a vector field on M. At the
points of M it satisfies
Yp =0, qu =0.

Due to the Lemma this implies that
w(V,Xp) =0, w(Y,Xp)=0

at the points of M. Vice versa, these two conditions imply that Y is tangent to M.

We have proved that TyM coincides with the orthogonal complement to the 2-dimensional
subspace spanned by X, X,1. The following statement from linear algebra proves that

(M , (D) is a (2n — 2)-dimensional symplectic manifold.
Lemma 5.4.2 Let V be a subspace in the symplectic space (R**,w) such that w|y does not
degenerate. Then the restriction of w on the orthogonal complement

VE={Y eR™ | w(Y,X)=0 VXcV}

does not degenerate either.

By induction on a neighbourhood of the point xg in (M ,d}) there exists a system of

canonical coordinates 2, ..., ¢", P2, ..., pn such that
n .
@=Y dpiAdg.

i=2

To extend these coordinates on a neighbourhood of M in M we will use shifts along the
Hamiltonian flows generated by the functions p; and ¢'. Observe that the Hamiltonian
vector fields X, and X1 are transversal to the submanifold M

aXp, +BXp €eT,M & a=p=0. (5.4.2)

Denote g; and fs the one-parameter local groups of symplectomorphisms of M generated by
Xp, and X1 respectively. Since {q",p1} = 1, these one-parameter groups commute

gio fs = fsog, for arbitrary sufficiently small ¢, s.

Due to transversality (5.4.2) for an arbitrary point € M sufficiently close to xo there exists
a unique point y € M and unique pair of small numbers ¢, s such that

r =g (fs(y)).

Define ‘ '
() :=q"(y), pi(z):=pi(y), i=2,...,n.

We obtain a system of coordinates on a neighbourhood of the point zg € M. Let us prove
that these coordinates are canonical.

182



First, by construction the functions p; and ¢ for i > 2 are invariant with respect to the
Hamiltonian flows g;, f, generated by p; and ¢! respectively. Hence

{pbpi} = {phql} = 07 {q17p1} = {ql’qz} =0 for i > 2. (543)

From vanishing of these Poisson brackets it follows that the Hamiltonian vector fields X,
and X for i > 2 are invariant wrt the flows g¢, fs. So, the values of the two-form w on these

vector fields at the points y € M and z = g, f, (y) € M coincide. Therefore
{pispjte = {pisnity,  {pir @Yo = {pis @}y, {dd'Ye ={d", ¢}y for i, j=2,....n
and = = g¢fs(y).

Since the functions py, ' are first integrals of the vector fields Xpi» Xgiy @ > 2, these vector
fields are tangent to the level surface M. Thus the matrix of the 2-form w in the basis X1,
ooy Xgny Xpyy oo, Xp, decomposes in two blocks of sizes 2 x 2 and (2n —2) x (2n —2) where
the latter coincides with the matrix of @ on M. Therefore the vector fields X, i Xt nrs
1 > 2 are Hamiltonian vector fields on (M ,@) with the Hamiltonians p;, §* respectively. Due
to the inductive construction these are canonical coordinates on M. So

From (5.4.1), (5.4.3), (5.4.4) it follows that ¢', ..., ¢", p1, ..., pn are canonical local coordi-
nates on M. O

Similar arguments can be applied to local classification of Poisson manifolds (M, ) of
constant rank.

Exercise 5.4.3 Let the matriz 7% (z) of the bivector ™ on the Poisson manifold (M, ) have
a constant rank 2n < dim M on a neighbourhood of a point xo € M. Denote k := dim M —2n.

1) Prove that locally near xo there exist k independent functions c*(x), ..., c*(z) such
that
{f,y=-={f, =0 vV fec>m) (5.4.5)
2) Prove local existence of functions q*, ..., q", p1, ..., pn on M with canonical Poisson
brackets ' 4 o
{d,p} =905 {d\¢}y={pipi} =0, i,j=1,...,n. (5.4.6)

3) Prove that the functions q', ..., ¢, p1, ..., pn, ¢ (), ..., F(x) give a system of
local coordinates on M near the point x.

The functions c'(z), ..., ¢*(z) Poisson-commuting with everything are called Casimir
functions or simply Casimirs on the Poisson manifold. From the above statement it follows
that the common level surfaces of the Casimirs

My, :={zeM|cz)=cl,...,c"x) =}

have a natural symplectic structure. In this way one obtains a structure of symplectic foli-
ation of a Poisson manifold of constant rank. The level surfaces of the form M., are called
symplectic leaves of the foliation.

183



Example 5.4.4 The Poisson bracket (5.1.18) on the dual space to the Lie algebra so(3) has
constant rank 2 away from the origin. One can choose the function

c(x,y, 2) = 2% +19° + 22
as the Casimir. The symplectic leaves are two-dimensional spheres.

Remark 5.4.5 An arbitrary foliation M = Uy Mgy, of a codimension m in a Poisson man-
ifold (M, ) represented locally in the form

My, = {z | ¢'(z) = ¢5,...,¢™ () = ¢§'}

will be called cosymplectic if the m x m matriz {¢%, ¢°} does not degenerate on the leaves. In
this situation a new Poisson structure { , }p can be defined on M s.t. the functions ¢®(x)
are Casimirs of { , }p. This is the Dirac bracket given explicitly by the formula

{f.9}p =1{f .9} =D _{f ¢"Ho" 6"} e’ g}. (5.4.7)

a,b

It can be restricted in an obvious way to produce a Poisson structure on every leaf. The
restriction map

(€= (M), {, }) = (€ (M), {5 Ip)

is a homomorphism of Lie algebras.

The last one is the notion of Poisson cohomology of (M, 7}) introduced by Lichnerowicz.
We need to use the Schouten—Nijenhuis bracket. Denote

A* = HO (M, AFT M)
the space of multivectors on M. The Schouten—Nijenhuis bracket is a bilinear pairing a, b —

[a, 0],
Ak % Al s Ak+l—1

uniquely determined by the properties of supersymmetry
[b,a] = (=1)*[a,b], acA*, beAl (5.4.8)
the graded Leibnitz rule
[c,anb] =[c,a] Ab+ (=) g Ale,b], a€ AF, ce A (5.4.9)
and the conditions [f,g] =0, f,g € A = F,

[%f]zviggi, ve A =Vect(M), feA’=F,

[v1,v2] = commutator of vector fields for vy, vy € A!. In particular for a vector field v and a
multivector a
[v,a] = Lieya.
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Exercise 5.4.6 For two bivectors h = (h¥) and f = (f%) their Schouten—Nijenhuis bracket
is the following trivector

3f

hkz sz afjk‘
sJ st
oo T oes f o

Observe that the L.h.s. of the Jacobi identity (5.1.13) reads

[h, f]i9* = fSk — R + A (5.4.10)

{{z", 27}, 2"} + {{a", 2"}, 27} + {{a?, 2"}, 2"} = %[h, h)v*.
The Schouten—Nijenhuis bracket satisfies the graded Jacobi identity
(=D ™([[a,b], c] + (=1)!™[[c, a],b] + (=) [[b,c],a] =0, a e A*, beAl, ce A™. (5.4.11)
It follows that, for a Poisson bivector A the map
d: AF — AL 9a = [h, ] (5.4.12)
is a differential, 3> = 0. The cohomology of the complex (A*, d7). We will denote it
H*(M,7) = ©p>oH (M, ).

In particular, H°(M, ) coincides with the ring of Casimirs of the Poisson bracket, H*(M, )
is the quotient of the Lie algebra of infinitesimal symmetries

veVect(M), Lie,{, } =0

over the subalgebra of Hamiltonian vector fields, H?(M, ) is the quotient of the space of
infinitesimal deformations of the Poisson bracket by those obtained by infinitesimal changes
of coordinates (i.e., by those of the form Lie,{ , } for a vector field v).

On a symplectic manifold (M, ) Poisson cohomology coincides with the de Rham one.
The isomorphism is established by “lowering the indices”: for a cocycle a = (a® %) € A*
the k-form

Z wil_,ikdm’il VANREIVAN dl’ik, Wiq iy = hiljl ... hikjkajl”'jk
i1< e <ip

is closed.

5.5 Lagrangian submanifolds, generating functions and Hamilton—Jacobi
equation

Let V be a linear subspace in the symplectic space (R?",w).

Definition 5.5.1 The subspace V is called isotropic if

wX,Y)=0 VX, Y€V

Lemma 5.5.2 Dimension of an arbitrary isotropic subspace in (R?",w) is less or equal than
n.
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Proof: For a linear k-dimensional subspace V' C R?" consider its orthogonal complement
VE={X eR™|wlX,Y)=0 VY eV}

Nondegeneracy of the bilinear form w implies that dim V+ = 2n — k. The isotropic subspace
belongs to its orthogonal complement, V C V+. Therefore k < 2n — k, = k < n. O

Definition 5.5.3 An n-dimensional isotropic subspace in a 2n-dimensional symplectic space
is called Lagrangian subspace.

Example 5.5.4 In the standard symplectic phase space (R*", dpAdq) the coordinate subspace

P with coordinates (p1,...,pn) is a Lagrangian subspace. Another example is given by the
coordinate subspace Q with coordinates (q',...,q"). More generally, for any subset I C
{1,2,...,n} denote Ly the coordinate subspace with coordinates

(pl.l,__"pimqjl’“_an—k)EL[, ,...,0 €1, jl,...,jn,kE{l,?,...,n}\]. (551)

Clearly it is a Lagrangian subspace in R?".
Consider now the case of an arbitrary symplectic manifold (M?",w).

Definition 5.5.5 A submanifold L C M?" is called isotropic if w|, = 0. An isotropic
submanifold is called Lagrangian if dim L = n.

Clearly the tangent space 1, L to an isotropic submanifold L C M for any « € L is an
isotropic subspace in (T, M, w|r,ar). A similar claim works for tangent spaces to a Lagrangian
submanifold.

The following alternative definition of a Lagrangian submanifold will also be useful. Recall
that the symplectic form w can be locally represented as differential of a 1-form, w = da.

Definition 5.5.6 Let L C M be a n-dimensional submanifold of a 2n-dimensional symplectic
manifold (M,w). It is Lagrangian iff
?{ a=20 (5.5.2)
gl

for an arbitrary sufficiently small closed contour v C L.
Lemma 5.5.7 The definitions 5.5.5 and 5.5.6 are equivalent.

Proof: Let L be a Lagrangian submanifold in the sense of the first definition. Restricting
the equation w = da onto L we obtain

d(alL) = 0.

Due to Stokes theorem integrals of the closed 1-form a|j, over small*’

are all equal to zero.

closed contours v C L

10Tt suffices to consider closed contours homotopic to the trivial one consisting of one point.

186



Conversely, choose a point zg € L and consider a function

S(z) = /x "o (5.5.3)

for x € L sufficiently close to xg. The integral is taken along an arbitrary sufficiently small
path on L connecting xy with z. Because of (5.5.2) this integral does not depend on the
choice of the integration path, so the function S(x) is well defined. One has

alp =dS(x) = wlr=d(a|L)=0.
U

Consider a particular case of Lagrangian submanifolds in the standard phase space (R?", dpA
dq) represented as a graph

L={(¢:p) | pi= fila), i=1,...,n}. (5.5.4)
Equivalently one can say that the projection of the Lagrangian manifold L onto the coordinate
subspace @ = (¢',...,¢") is a local diffeomorphism.

Proposition 5.5.8 For a sufficiently small piece of Lagrangian manifold of the form (5.5.4)
there exists a function S(q) such that

_ 05(q)
oqt

1=1,...,n.

fi(q)

Proof: Put

q

S@= [ (o) (555)

40
for an arbitrary point (¢, f(¢)) € L. Using the second version 5.5.6 of the definition of
Lagrangian submanifold we conclude that the integral does not depend on the choice of
integration path on L. So the function S(q) on L is well defined. Differentiating the integral
wrt the upper limit we conclude that

pl.:agél@, i=1,...n (5.5.6)

O

Definition 5.5.9 The function S(q) in the representation (5.5.6) is called the generating
function of the Lagrangian submanifold L.

Example 5.5.10 Consider a Lagrangian subspace L C R?" in the standard symplectic phase
space (R?",dp A dq). Assume that the projection

L—Q={(d",....a")}

is one-to-one. Then the generating function of L is quadratic

L= {pi = 85;;1) } S(q) = % 14" (5.5.7)

for some symmetric n x n matriz (S;;).
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The following statement will be important in understanding of the geometric origin of the
Hamilton—Jacobi equation.

Theorem 5.5.11 Let H be an arbitrary smooth function on a symplectic manifold (M?",w).
Assume that E € R is a regular value of the function H, so the level surface H=*(E) C M is
a smooth submanifold of the dimension 2n — 1. Consider a Lagrangian submanifold L C M
belonging to the level surface,

H|L =F.

Then any integral curve of the Hamiltonian system
& ={z,H}

that has a common point with L belongs entirely to L.

Proof: According to Corollary 5.3.3 the Hamiltonian vector field X is tangent to the level
surface of the Hamiltonian. Assume that the integral curve of the Hamiltonian system passes
through the point z € L but the tangent vector Xy (z) does not belong to T, L. Choose
a basis Y7, ..., Y, in the tangent space T, L to the Lagrangian submanifold. By definition
w(Y;,Y;) = 0. From Lemma 5.3.4 it follows that w(Y, Xy) = 0 for any vector tangent to the
level surface of the Hamiltonian. Thus w(Y;, Xg) =0, ¢ =1,...,n. In this way we obtain a
(n+ 1)-dimensional isotropic subspace in T, M spanned by the vectors Y1, ..., Y,,, Xg. Such
a contradiction completes the proof of the Theorem. O

Thus a Lagrangian submanifold L belonging to the level surface of the Hamiltonian is
fibered into trajectories of the Hamiltonian system. It can be constructed therefore by choos-
ing a submanifold Ly C L of codimension one transversal to the Hamiltonian vector field
and, then transporting Ly along the trajectories of the Hamiltonian flow.

The following Example explains connection of the setting of the Theorem with the (trun-
cated) Hamilton—Jacobi equation.

Example 5.5.12 Let L be a Lagrangian submanifold in the standard symplectic phase space
(R2" dp Adq) belonging to the non-singular level surface H(q,p) = E. Assume that L has the

formp = %Q(Q) for some function Sy(q). Then the generating function satisfies the truncated

Hamilton—Jacobi equation
950(q)
H =F. 5.5.8

From above considerations it immediately follows

Corollary 5.5.13 Consider a (n — 1)-dimensional isotropic submanifold Lg in the (2n —1)-
dimensional level surface H(q,p) = E. Assume that (1) the projection of Lo to the coordinate
q-space Q = {(q¢,...,q")} is injective, and (2) that the Hamiltonian vector field Xy is
transversal to Ly at the points of Ly. Then the submanifold

L = {(xo,x(t)) | xo € Lo, x(t) is the solution to the Hamiltonian system @ = {x, H} such that z(0) = zo}

spanned with trajectories x(t) of the Hamiltonian vector field for sufficiently small |t| is a
Lagrangian submanifold in (R*", dp A dq) belonging to the level surface of the Hamiltonian.
Every such Lagrangian submanifold can be obtained by this construction.
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Example 5.5.14 Consider now a (n + 1)-dimensional Lagrangian submanifold L in the ex-
tended phase space (R27+2 dp A dq —AdE/\dt) (see Remark 5.1.16 above) belonging to the level
surface H = 0 of the Hamiltonian H = H(q,p) — E. Assume that the projection of L to the

coordinate space (¢',...,q"%t) is a local diffeomorphism. Like in the previous Example we
prove that the Lagrangian submanifold is spanned by trajectories of the Hamiltonian system
._OH(q,p) . _ 0H(q,p) ; _
= ——=" =——" t=1
Ip op

The generating function S(q,t) of such a Lagrangian submanifold satisfies

05(a.t) o _ 951

=g ot
The imposed condition L C {fI = 0} spells out as the Hamilton—Jacobi equation for the

function S = S(q,t)
oS 0S8

Corollary 5.5.15 Let Lo = {q = asan(Q)} be a Lagrangian submanifold in the phase space

(RQ”,dp/\dq). For sufficiently small |t| consider the family Ly of Lagrangian manifolds
obtained by translations of Ly along trajectories of the Hamiltonian system © = {x, H}.
Then

1) the family Ly C R?*™ spans a (n + 1)-dimensional Lagrangian submanifold L C R?"+2
belonging to the level surface H = 0 with the generating function

S(g,t) = Solq) + /0 [pdq — H(q,p)dt] (5.5.10)

where the integration is taken along the integral trajectory (q(t),p(t)) of the Hamiltonian flow
starting from the point xo = (q,050(q)/0q) € Lo to a point in L.

2) Any solution S(q,t) to the Hamilton—Jacobi equation (5.5.9) can be obtained in this
way.

Remark 5.5.16 We have proved that the problem of solving the Hamilton—Jacobi PDEs
(5.5.9) (or the truncated version (5.5.8)) can be reduced to integrating the corresponding
system of Hamiltonian ODFEs. However, the technique based on the Hamilton—Jacobi equation
proved to be very powerful in solving Hamiltonian systems. The main point is the following
statement, due to Jacobi.

Theorem 5.5.17 Let S(q,Q) be a solution to the truncated Hamilton—Jacobi equation de-
pending on n independent parameters Q = (Q',...,Q"),

258(q,Q)\ _
H <q, aq> = E(Q). (5.5.11)

Assume validity of the following nondegeneracy condition

azs(qa Q)
(g ) £
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so that the system of equations

pi = M, i1=1,....,n
aq*
can be locally resolved by smooth functions Q*(q,p), ..., Q™(q,p). Then these functions are

pairwise commuting first integrals of the Hamiltonian system & = {x, H}.

Proof: Introduce functions Py, ..., P, by
05(q, ,
P = —a((éyQ), 1=1,...,n.
From the nondegeneracy condition it follows that Py, ..., P,, Q', ..., Q" is a system of

local coordinates. By definition one has
pdq — PdQ = dS(q,Q) = dpAdg=dP NdQ.

So, the new coordinates are also canonical.

One has a Lagrangian fibration

over the n-dimensional coordinate space Q', ..., Q™. The Hamilton-Jacobi equation (5.5.11)
says that the restriction

Hp,
depends only on @ but not on P. So, after the canonical transformation (q,p) — (Q, P) one
obtains

H(g,p), @ (q,p),....Q"(¢,p) = H(Q), Q',...,Q".
0

The family L, of Lagrangian submanifolds in the phase space obtained by moving Lq along
the trajectories of the Hamiltonian flow & = {z, H} can be defined also for not necessarily
small values of the time parameter . However, it can happen that, after some moment &g
the projection of L; on the coordinate g-space will not be a diffeomorphism. In other words
for t > tg the Lagrangian submanifold L; will not be representable as a graph of the form
pi = fi(q). In order to describe this process in more details we will study below singularities
of projections of Lagrangian submanifolds. This study will also be related to topology of
Lagrangian Grassmannian.

5.6 Symplectic group

Definition 5.6.1 The symplectic group Sp(n) is the group of linear symplectomorphisms
A:R™ 5 R™
of the symplectic phase space (R2n,w =dp A dq), i.e.
w(Az, Ay) = w (z,y) ¥V x,yc R*™ (5.6.1)
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Denote the 2n x 2n matrix of the linear map A by the same letter A. The definition
(5.6.1) can be rewritten in the matrix form

ATJA=1J (5.6.2)

where J is the standard antisymmetric matrix of the 2-form dp A dq (see eq.(5.1.4) above).
Exercise 5.6.2 Prove that the matriz A satisfying (5.6.2) has det A = 1.
Hint: use the Liouville theorem.

Example 5.6.3 Forn =1 the group Sp(1) coincides with the group SL(2) of 2 x 2 matrices
with determinant 1.

Consider the Lie algebra sp(n) of the group Sp(n). By definition it consists of symplectic
transformations close to identity,

A =1+ 5A + higher order terms, JATJ + J6A =0.
The corresponding linear vector field
X(z) =0Ax

must be a symmetry of the symplectic structure. Thus it is a Hamiltonian vector field with
quadratic Hamiltonian

1 o - . g
H(z) = §Qijl'ZZLJ =3 (aijqzq] +2blq'p; + c”pipj) (5.6.3)

where n X n matrices a = (a;;) and ¢ = (¢*/) are symmetric. The 2n x 2n matrix Q = (Qi;)
of the quadratic Hamiltonian reads

The matrix dA € sp(n) is equal to

b ¢
=2 5.

Let 0B be another infinitesimal symplectic transformation generated by a quadratic
Hamiltonian F'(z). From Theorem 5.3.6 it follows that the commutator [0 A, 0B] is a Hamil-
tonian vector field generated by the quadratic Hamiltonian —{H, F'}.

We arrive at the following

Theorem 5.6.4 The Lie algebra sp(n) of the symplectic group is isomorphic to the space of
quadratic Hamiltonians (5.6.3) with the Lie algebra structure given by the Poisson bracket
with negative sign.
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So, the dimension of the Lie algebra sp(n) and, hence, of the group Sp(n) is equal to

dim Sp(n) = n(2n + 1).

We will now obtain another useful realization of the symplectic group. Define a com-
plex structure on R?® = C" by introducing complex coordinates z = g + ip. Observe that
the matrix of the operator of multiplication by i = y/—1 coincides with the matrix J of
the symplectic form. The group GL(n,C) of complex invertible linear transformations con-
sists of those invertible linear maps A : R?® — R?" that commute with the operator J of
multiplication by 1.

Define also a Euclidean inner product on R?" by

ds? = i (alqi2 + dpi2> .

i=1
Linear transformations preserving the Euclidean structure form the group O(2n).

So, we have three structures on R?”: a symplectic form, a complex structure, and a
Euclidean structure.

Lemma 5.6.5 A linear transformation R?*® — R?" preserving two of the above structures
preserves also the third one.

Corollary 5.6.6 One has the following group isomorphisms

O(2n)NGL(n,C) = GL(n,C) N Sp(n) = Sp(n) N O(2n) = U(n). (5.6.4)

Recall that the unitary group U(n) is defined as the subgroup of GL(n,C) consisting of
linear transformations preserving the Hermitean form dzdz. Observe that the real part of
the Hermitean form coincides with the above Euclidean structure while its imaginary part
coincides with the symplectic form.

Example 5.6.7 For n = 1 the symplectic group consists of 2 X 2 unimodular matrices (see
above). Complex linear transformations are multiplications by complex numbers a+1ib. Their

. a —b
matrices are

b «a
cos¢p —sing
sin ¢ cos ¢

). In the intersection of these two families we obtain the matrices

of the form (

complex space given by multiplication by e'®.

). This is a unitary transformation of the one-dimensional

5.7 Lagrangian Grassmannian

Definition 5.7.1 The set A(n) of all Lagrangian subspaces in the symplectic space (R?", dpA
dq) is called the Lagrangian Grassmannian.

Example 5.7.2 For n =1 any line on the plane passing through the origin is Lagrangian.
So A(1) = RP! ~ St
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We will now introduce a structure of a smooth manifold on A(n). We have already seen
that Lagrangian subspaces L C R?" projectable onto the coordinate Lagrangian g-subspace
Q =1{(q',...,¢")} can be represented as

05(q) . 1

L:{pi:Tqi’ i=1,...,n}, S(Q):*ijqiqj-

Thus, one can use coefficients S;; = Sj; of the quadratic generating function as coordinates
on the subset of A(n) of Lagrangian subspaces intersecting transversally the coordinate La-
grangian subspace P = {(p1,...,pn)}. Following this idea we will construct an atlas of 2"
charts on the Lagrangian submanifold using the following geometrical

Lemma 5.7.3 For any Lagrangian subspace L € A(n) there exists a subset I C {1,2,...,n}
such that LN Ly = 0.

Recall (see Example 5.5.4 above) that Ly is a coordinate Lagrangian subspace in R?" with
the coordinates

LIB(qil,...,qi’“,pjl,...,pjn_k), 11y, € 1, jl,...,jn,kEJ::{LQ,...,TL}\[.

Proof: Consider the intersection T'= L N P of L with the coordinate Lagrangian subspace
P. Denote k = dim7T. If k = 0 then we are done: take I = the empty set. Otherwise
choose a coordinate (n— k)-dimensional subspace V' C P with the coordinates (pj,,...,pj, ,)
intersecting transversally T':

TNV =0.

Denote J = {j1,...,jn—k} and take the complement I = {1,2,...,n}\ J. Let us prove that
LNL;=0.

Denote W the k-dimensional subspace with the coordinates (qil, R qik) where {i1,49,... i} =
1. By definition
Li=VaoWw.

Assume that X € L N L;. Then, since X € L we have
w(X,L)=0 hence w(X,T)=0.
Next, since X € L; we have
w(X,L;) =0 hence w(X,V)=0.

By construction P = T' @ V, therefore w(X, P) = 0. Since P is a Lagrangian subspace we
deduce that X € P. Therefore X e PNL=T, X e PNL;=V.ButTNV =0,s0 X =0.
(|

According to the Lemma the Lagrangian Grassmannian can be covered by 2" charts Uj
where I is an arbitrary subset of {1,2,...,n} defined by

Leld; & LNLr=0.
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Equivalently, the projection of L € A(n) onto the coordinate Lagrangian subspace Ly, J =
{1,2,...,n}\ I is an isomorphism of linear spaces. Local coordinates on the chart U; can
be chosen taken coefficients of a quadratic generating function S(x), x € L. We leave as an
exercise to verify that, on the intersections Uy, N Uz, the transition functions are smooth.

As the number of subsets in {1,2,...,n} is equal to 2", we obtain an atlas of 2" charts

on the W—dimensionzﬂ manifold A(n).

We will now give an alternative description of the Lagrangian Grassmannian representing
it as a homogeneous space of the unitary group U(n). Recall that the unitary group consists
of n x n complex matrices satisfying

U'v =1.

Any real symmetric matrix satisfies this condition ff it is orthogonal. We obtain a natural
embedding O(n) C U(n). Also recall that, according to Lemma 5.7.3 the unitary group is a
subgroup in the symplectic group. Therefore it acts on the set of Lagrangian subspaces.

Lemma 5.7.4 A(n) ~U(n)/O(n).

Proof: Fix a Lagrangian subspace Ly € A(n). We want to obtain any other Lagrangian
subspace L by acting on Lo with a unitary transformation A € U(n) C Sp(n). Choose
an orthonormal, with respect to the Euclidean structure on R?", basis 79 in Ly and an
orthonormal basis 7 in L. The pairs (19, JJ79) and (7, J7) give us two orthonormal bases
in R?". Consider the orthogonal transformation A € O(2n) mapping the first basis to the
second one. By construction it commutes with the operator J of multiplication by ¢, that is
A€ GL(n,C). So A€ O(2n)NGL(n,C) =U(n).

We obtain an action of the unitary group on the Lagrangian Grassmannian. Clearly thge
action is transitive. Let us describe the stabilizer of Ly with respect to this action of U(n)
on A(n). If the Lagrangian subspaces L and Lg coincide than 7 and 7y are two orthonormal
bases in the n-dimensional space, so the linear transformation A belongs to O(n). O

Corollary 5.7.5 A(n) is a connected compact manifold.

From Lemma 5.7.4 we obtain a fibration U(n) — A(n) with the fiber O(n). For example,
forn = 1 A(1) = RP! ~ S* U(1) = S, O(1) = {£1}. The fibration U(1) — S! is a
two-sheet covering over the circle.

We will now construct an important fibration of the Lagrangian Grassmannian A(n) over
the circle. It is given by the square of determinant

det? : A(n) = U(n)/O(n) — S*. (5.7.1)

The map is well defined since (1) determinant of a unitary matrix is a complex number with
absolute value 1 and (2) determinant of an orthogonal matrix is equal to 41, so the map
(5.7.1) does not depend on the choice of a representative in the coset € U(n)/O(n).

Let us describe the fiber of the map det? over a given point ¢'¢ € S'. It suffices to
consider the full preimage of the point 1 € S'. Denote this preimage by

SA(n) := {L € A(n) | det*(L) = 1}.
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The subgroup SU(n) C U(n) of unitary matrices with determinant 1 acts transitively on
SA(n); the stabilizer of any point in SA(n) is isomorphic to SO(n). Therefore the fibers of
the det?>-map can be identified with the quotient SU(n)/SO(n). By the way, it implies that
the fibers are connected.

We will now prove that the det? map provides a generator in the cohomology group
H'(A(n), Z).

Lemma 5.7.6 m1(A(n)) = Z.

Proof: Consider a commutative diagram of fibrations

det

SO(n) — O(n) SV = {£1}
SUMn) — Um) 9 st

A

SA(n) — A(m) ¥ g

Applying the long exact sequence of the fibration'! in the first column
< = m(SO(n)) = m(SU(n)) = m1(SA(n)) = mo(SO(n)) — 0

one deduces from 71 (SU(n)) =1, mo(SO(n)) = 1 that SA(n) is simply-connected. From the
exact sequence of the fibration in the last line

S (SA(M)) = T (A(R)) %5 7 (SY) = mo(SA(R)) = 0

we obtain, using 71 (SA(n)) = mo(SA(n)) = 1 and 71(S') = Z that m1(A(n)) = Z. |

The map det? : A(n) — S' defines a 1-cocycle o € H'(A(n),Z). Value of this cocycle on
a closed loop 7 : S' — A(n) is the degree of the through map

ST A(n) %8 g, (5.7.2)

Example 5.7.7 For a given L € A(n) consider the closed curve v(8) = €'9L in A(n), 0 < 6
T (observe that multiplication by —1 belongs to the subgroup O(n)). We have det (¢'? - 1)
e™? so det? (ew . 1) = e¥%  Thus the value of the cocycle a on v equals n.

A

For subsequent considerations it will be useful to construct local sections of the fibration
U(n) — A(n) over every coordinate chart U;. Let us do it for the particular chart with I = ().
That is, the Lagrangian subspaces belonging to this chart are graphs of the form

L={p=Sq} where S=(S;;) isasymmetric nxn matrix.

"Recall that for a fibration p : E — B with the base B, the fiber p~'(pt) =: F and the total space of
fibration E one has a long exact sequence of homotopy groups

o= m(F) = m(E) = mi(B) = mi—1(F) = -+ = mo(E) — 0.
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Define a complex n x n matrix U by

1+1:8
U= . 5.7.3
1—48 ( )
The formula makes sense since 1 — 45 is an invertible matrix.
Lemma 5.7.8 (i) The matriz U satisfies the following properties.
(1) U € U(n).
2)UT =U.
(3) det(U + 1) # 0.
(ii) For any matriz U satisfying the above three conditions define the matriz
1-U
S =i . 5.74
TrU (5.7-4)

It satisfies
(4) It has real entries.
(5) ST =g,

. 2
(6) The matriz VU := \}% s symmetric, unitary and it satisfies (\/ﬁ) =U.

(7) The matriz /U maps the Lagrangian subspace Ly to L = {p = Sq}.

Proof: Applying the Hermitean conjugation U* = U” to the matrix (5.7.3) obtain

., 1—is
v *1+iS*U '

Symmetry of the matrix U is obvious. To prove the third statement we observe that (U +
1)~ = 1(1-1i9).

Proof of the formula (5.7.4) as well as of the properties (4)—(6) is straightforward. In order
to verify the last statement of the Lemma first observe that the real n x n matrix v/1 + 5?2

maps Ly to itself. So, it suffices to check that the matrix 1 + 75 maps Ly to L. Indeed, the
real and imaginary parts of the vector z = (1 +S)q are

Hence z € L. O

Corollary 5.7.9 The value of the det> map at the point L = {p = Sq} in Uy C A(n) is equal
to
1+1:5

2
L) =
det*(L) detl—iS

. (5.7.5)
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5.8 Maslov index

Our next goal is to represent the cocyle a € H'(A(n),Z) by intersection with a cycle of
codimension 1.

For a given integer k > 0 and a given Lagrangian subspace Ly € A(n) consider the subset
A*(n,Lo) = {L € A(n) | dim LN Ly = k}. (5.8.1)

Lemma 5.8.1 A¥(n, Lg) is an open submanifold in A(n) of codimension @

Proof: Consider the set of symmetric n x n matrices of corank k. Let us prove that this set

has codimension @ in the space of all symmetric matrices.

Assume that there exists a nondegenerate principal (n — k) X (n — k) minor

(Sipiq ) 1<p,q<n—k *
Write

5_<BT 0>’ AT =4, CcT=C

where the (n — k) x (n — k) block A has nonzero determinant. Eliminating the B”-block we

obtain
At 0 A B\ _ (1 A™'B
—-BT A-' 1 BT ¢ ) \o0o ¢c-—BTA'B |-

This matr(ix h;ls corank k iff the symmetric k x k matrix C — BT A7! B is equal to zero. This
k(k+1

5— equations on S.

imposes

The above calculation proves the statement of the Lemma for the case Lg is the coordinate
g-subspace. For any other choice the proof is similar. O

The concrete realization of the cycle Al(n) as a subset in the Lagrangian Grassmannian
clearly depends on the choice of the subspace Ly. Choose

Lo={q1="--=¢, =0} (5.8.2)

Exercise 5.8.2 For the choice (5.8.2) prove that Uy N Al(n) = 0.

We will now choose a subset of n charts of the form U covering A'(n). Forany k =1,...,n
denote Lj the coordinate Lagrangian subspace with coordinates
L= {(q1s- k- s i) (5.8.3)

Here and below a hat means that this coordinate is omitted from the list. For the corre-

~

sponding coordinate chart Uy, I = {1,2,...,k,...,n} the short notation
Uy = u{1,2 ..... E,...n}

will be used. Recall that this chart consists of Lagrangian subspaces projectable onto Lj.
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Lemma 5.8.3 Let L(t), |t| < € for a sufficiently small € be a smooth curve in A(n) having a
unique intersection point with A*(n) at t = 0. Then there exists k € {1,2,...,n} such that,
for small |t| the curve belongs to the chart Uy, i.e., it can be represented in the form

J#k
G =qr (q1, -, k- Gns D3 ) = ZRkj(t)Qj + Ry () pr (5.8.4)
J#k

for some smooth functions R;;(t).

Proof: Consider the case of a family of Lagrangian subspaces L(t) belonging to the chart
Ufi 2, ny- They can be represented in the form

q; = Z Sz‘j(t)pj, 1= 1, o, n (585)
j=1

for some symmetric matrix S;;(t) smoothly depending on t. L(ty) belongs to A® for some ¢,
i.e., by definition, dim L(to) N Lo = 1 iff the rank of the matrix S(to) = (Si;(to)) is equal to
n — 1. Then there exists a nonzero vector v = (v1,...,v,) in the kernel of S;;(to),

S(to)’U =0.

The vector v is determined uniquely up to a nonzero factor. We will derive the representation
of the form (5.8.4) under the condition vy # 0. It suffices to consider the particular case
vy, # 0. Then the (n — 1) x (n — 1) minor

Sii(to), d,i=1,...,n—1

A b
= (i 0

b= (b1,...,bn)T, b = Sin(t), ¢ = Spun(t). The matrix A

does not degenerate. Write

where A = (S;;(t))

1<i, j<n—1
does not degenerate. So, eqs. (5.8.5) can be resolved for py, ..., pp—1, ¢n. This yields a
representation of the Lagrangian subspace L(t) as a graph of a (linear) function on L,:
p1 A7t —A q
Pn—1 dn—1
qn A1 c—bTA b Pn

This complete the proof of the Lemma for L(t) belonging to the chart Uy . .. For other
charts the proof is analogous. O

Corollary 5.8.4 Intersection of the curve (5.8.4) with A'(n) is determined by the equation
90 _ (1) = 0. (5.8.6)

The curve ~y(t) is transversal to the cycle Al(n) at the point v(tg) € Al(n) iff t =ty is a
simple zero of Ry (t)
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Proof: Let L(t) be represented in the form (5.8.4). For the points in the intersection L N Lg
we have

pi = Rig()pk, i#k, 0= Rpr(t)pr-
For Ry(t) # 0 the set L(t) N Ly consists of one point 0. This proves the Corollary. O

According to the above statements the intersection points of the curve ~(¢) with the part
of the cycle A!(n) belonging to Uy, are determined by the equation

Oqy, R
— =0 where Qk:Qk(QI7---7Qka~--7Qn7pk)-
Op;

If the intersection is transversal then this derivative changes sign at the intersection point.

Definition 5.8.5 The positive/negative side of the cycle A*(n) is defined by the condition

Oqr Oqx,
— <0/ =—=—>0
Op; / Opy;

respectively.
For a given L € A'(n) consider the curve v(0) = L.
Lemma 5.8.6 The curve v(0) intersects transversally the cycle A*(n).

Proof:  Let us first compute the curve v(0) for L € Uy, L = {p = Sq} = {(1 +i5)q}. We
have

sinf + cosf S

i0r o .y _ o
e’ L = (cos —sinf S)q + i(sin @ + cos 6 S)qg = (cos — sin 6 S) q+l—c059—sin95’q'

So, the curve () for sufficiently small |f| belongs to the chart Uy and the corresponding

symmetric matrix S(¢) reads
_ sinf +cosf S

50) = cosf —sinf S’

The velocity vector of this curve at the initial point

(5.8.7)

d _ 2
255Olo=0=1+5

is a symmetric positive definite matrix.

A similar calculation can be repeated for the Lagrangian subspace L in Al(n) assum-
ing that L is projectable onto one of the coordinate Lagrangian subspaces. Introduce the
canonical coordinates Q1, ..., @Qn, P1, ..., P, dp ANdq = dP A dQ, on the set of Lagrangian
subspaces projectable onto L by

Qi=qi, 17k, Qr=—pi
P=pi, i#k, Py=q.
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In these coordinates the Lagrangian subspace L reads L = {P = SQ} for some symmetric
matrix S. Repeating the above calculation we obtain again that the velocity vector of the
curve v(0) = €L at the point v(0) € Al(n) corresponds to a positive definite symmetric
matrix 1452, According to Lemma 5.8.3 the velocity vector belongs to A'(n) iff its diagonal
entry (1 + 52) w18 equal to zero. But all diagonal entries of a positive definite symmetric
matrix are positive. This contradiction completes the proof of the Lemma. O

Theorem 5.8.7 The oriented cycle A'(n) C A(n) is dual to the cocycle det> € H'(A(n),Z).

Proof: Consider the closed curve v(f) = €L, 0 < # < 7w in A(n). We already know that the
value of the cocycle det® on this curve is equal to n (see Example 5.7.7 above). It remains to
prove that the number of intersection points of this curve with the cycle A'(n) is also equal
to n.

Let the Lagrangian subspace L € A%(n) has the form L = {q+iS¢} for a symmetric matrix
S. Denote U € U(n) the corresponding symmetric unitary matrix satisfying det(1 + U) # 0

such that | _U
S=SU)=i—
) =i

(see Lemma 5.7.8 above). For the rotated subspace e L the corresponding symmetric matrix
S(0) reads

sinf +cosfS 12U
cosf —sinf S 14 e20U
This Lagrangian subspace fails to belong to AY(n) iff

S(6)

det (1 + emU) — 0. (5.8.8)

Let us compute the number of solutions to this equation wrt 6.
Denote €1, ..., " the eigenvalues of the matrix U. By assumption they satisfy
lop| <, k=1,...,n.

Without loss of generality we can assume that all the eigenvalues are distinct. Equation
(5.8.8) reduces to

_ T — Pk
6= 5

mod 7.

There are exactly n solutions to this equation on the interval (0, ).

We have proved that the intersection index of the curve v with the cycle Al(n) is equal
to the value of the basic cocycle

det? € H'(A(n), 7).

This means that the cycle Al(n) is dual to the cocycle det?. |
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5.9 Applications to quasiclassical asymptotics of solutions to Schrodinger
equation

The Schrodinger equation for the wave function ¥ = ¢(x,t; k) is a linear partial differential
equation depending on a small parameter h. It is one of the main object in quantum mechan-
ics. Here we consider the simplest case of the Schrodinger equation for a particle of mass m
in the n-dimensional space with a potential U (x)

N NP
Here . ,
a3
=1 9k

is the Laplace operator. The stationary version of the Schrodinger equation
Hy = Ey (5.9.2)

depending on a parameter E will also be under consideration.

The study of behaviour of solution to Schrédinger equation in the limit 7 — 0 is an
important point in the analysis of correspondence between classical and quantum mechanics.
Locally the asymptotic solutions are supposed to have the form

¥ = erS (5.9.3)
where S admits an asymptotic expansion in positive powers of &
S ~ So(x,t) + hSy(x,t) + h2Sa(2,t) + ... (5.9.4)

For the leading term the Schrodinger equations (5.9.1) and (5.9.2) reduce to the Hamilton—
Jacobi equation

050 0S50
[ — «J.
BN +H<X, 8;1:) 0 (5.9.5)
and the truncated Hamilton—Jacobi equation
050
H — | =F 9.
(x, pe > (5.9.6)

1

respectively. Here the Hamiltonian'? is given by

p?
H (x,p) = am + U(x). (5.9.7)

It is often called classical Hamiltonian while the operator H is obtained by its quantization.

As we already know, solutions to the truncated Hamilton—Jacobi equation are generat-
ing functions of Lagrangian submanifolds in the symplectic space (RQ", dx N\ dp) belonging
to the energy level surface H(x,p) = E. A geometric interpretation of solutions to the

21n this section we will use the notations (z',...,z") = x for the canonical coordinates in the Hamiltonian
formalism.
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full Hamilton—Jacobi equation takes us to the study of families of Lagrangian submanifolds
transported by the Hamiltonian flow

oH . 0H

P= gy PT o

Such a geometric interpretation suggests that the quasiclassical asymptotics (5.9.3), (5.9.4)
work only before arriving at singularities of projections of the Lagrangian submanifolds. It
turns out that the description of the global structure of the quasiclassical solutions involves
Maslov index of the Lagrangian submanifolds.

We will begin with considering the simplest case of quasiclassical asymptotics of stationary
Schrodinger equation for n =1,

2

—%w” Fu(z)y = By (5.9.8)

(we put m = 1). To derive the structure of the asymptotic expansion (5.9.3), (5.9.4) it is
convenient to do the substitution

= 6% fzadx.
For the function ¢ obtain a Riccati equation
—ilio' +0? +2(u—F)=0. (5.9.9)

Look for a solution in the form of a power series in &

J:ao+h01—|—h202+...

This gives
o0 = £V2(F — u)
i i d
__ — "% oo(E —
=y E—u g8 EY

etc. This implies the following structure of the quasiclassical solution
Wi = (B —u(z)) V*exp [i; /x V2(E —u(z))dz| (1+ O (). (5.9.10)
We see that the function Sy from (5.9.3), (5.9.4) in this example has the form
So= [ VEE - ul@) de

So, it satisfies the truncated Hamilton—Jacobi equation

2
H (z,S)(z)) = E, where H(z,p)= % + u(x).

Observe that, on the energy level surface

— +u(zr)=FE (5.9.11)



one has
p==EV2(E — u(x)).
Thus the phase function Sy coincides with the generating function of the Lagrangian curve
H=F .
So = / pdx. (5.9.12)

We will us assume that the potential u(x) is a bounded from below smooth function of
x € R going sufficiently fast to +o0o for  — +oo. The quasiclassical solution (5.9.10) has
different properties in two regions

u(z) < E, oscillatory behaviour

and
u(x) > FE, exponential growth/decay.

A natural question to be addressed now is in matching of the two asymptotic solutions near
a turning point xo such that u(xg) = E. At this point the projection of the Lagrangian curve
(5.9.11) onto the z-axis becomes singular.

Consider the case of a largest turning point xg, i.e., u(x) > E for > xy. Assume that
u(x) — F has a simple zero at x = xy. For = > x( choose the exponentially decaying solution

_ 1 [
Yright = (u(z) — E) /4 exp [_h V2(u(z) — E)] (1+0O(h). (5.9.13)
o
On the left of the turning point we have two oscillatory solutions (5.9.10). We want to find
coefficients Cy such that (5.9.13) and

Viet = Cthy + C_tp (5.9.14)

were the asymptotic expansions of the same solution to the Schréodinger equation (5.9.8) in
the regions x > zg and x < x( respectively.

Proposition 5.9.1 If the asymptotic expansions (5.9.13), (5.9.14) correspond to the same
solution of eq. (5.9.8) then

We will outline the idea of derivation of the above proposition. It is based on calculation
of the asymptotic behaviour of solutions to the Schrodinger equation near the turning point
xo. Write

u(z) — E = ap(x —x0) +a1(z —z0)? +..., ag#0
the Taylor expansion near the turning point. Assume that zq is the right end point of the
interval u(x) < E, so ag > 0. After a change of the independent variable

h2/3

[L’Hi’, .’L'—"I,'():A.f, )\:W

203



the equation (5.9.8) becomes

T a0 ()] w=0

dz? '
This suggests that, modulo small corrections the solutions to the Schrédinger equation near
a turning point can be approximated by solutions to Airy equation

y' —xzy=0. (5.9.15)

Solutions to eq. (5.9.15) are entire functions of the complex variable z € C. They can be
represented by a contour integral

3
y(x) = /eA?»H‘xd/\ (5.9.16)
g

where the integration contour ~ goes to infinity such that
)\3
§R<—3+/\x> -0, x—o00, xTEY

To this end the tails of the contour v must go to infinity in such a way that
R(A%)|y = +oo.

For different choices of the contour we obtain different solutions. They depend on the ho-
mology class of 7 in the relative homology H1(C,{R(A3) >> 0}). In particular, integrating
along the imaginary axis we obtain, after a change of the integration variable A\ = it and
multiplication of (5.9.16) by a suitable constant the solution

I e GO 1 [ 1

Ai(z) = — / e” 3TN = / cos <t3 + :rt) dt (5.9.17)
21 ) oo T Jo 3

called Airy function.

Let us describe the asymptotic behaviour of Airy function for large |z|. They can be
obtained using the method of steepest descent. First, consider the case x — +00. The phase
—%)\3 + 2 A has a critical points at A = ++/x. The direction of the steepest descent goes in
the vertical direction. Move the integration from the imaginary axis to the line R(\) = —/x.
Denote s the parameter along this line,

A= —Vx+is.

After the substitution

)\3 9 - .3
3 + Az = —§x3/2 — Vs + %
one obtains 2 4o
. 1 & _243/2_ [z 2 e 3%
Al(.il?) ~ % /_OO e 3 dS ~ W’ T — +00. (5918)

The case © — —oo can be treated in a similar way. In this case one has two critical points
of the phase
A=1iy/|z|] and A= —i/|z|.
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The steepest descent directions make angle F7 with the real line. Integrate along the broken
line ‘
)\(8):{ \x!—i—se%;, —00<s<0
lz|+se” 1, 0<s<oo

we obtain, after simple calculations

1 cos (%\x|3/2 — %)

VA Jali7

Ai(z) ~ (5.9.19)

Coming back to the problem of matching of asymptotic expansions of solutions to Schrodinger
equation (5.9.8) in the regions x > xg, * ~ xg, * < x recall that the independent variable
in the Airy equation is related to the “physical” coordinate by a shift and rescaling

R2/3

T = (2@0)

So, the asymptotics (5.9.18), (5.9.19) of the Airy solution ¢ (x) = Ai(Z) in the physical
coordinates become

24/2a
exp(—TO(x—azo)3/2
2az—xz0)1/% ) T > Zo
Y~ (5.9.20)
cos [ 2V2%0 V;Lao \xf:p0|3/27%
[z—ao| /4 5 T < g

where
1

C' = (2a9)12hs.

But, for > x( one has

/ﬂ? V2u(z) — E)dx = /l V2a0(x — z0) + ... dx ~ g\/ﬁ(x — 1:0)3/2.

So, the solution ¥yign (see eq. (5.9.13) above) for = near x¢ behaves as

24/2aqg
_1l e 7 3n (z—w0)

wright(x) ~ Qg (x — 1’0)1/4 , T > x.

3/2

ST

In a similar way on the left of xg, z ~ z¢ from (5.9.14) one obtains

. 24/2a
eEi ~n la—wol*/?

Y () ~ ay i

|$7$0|1/4 , T <Xp.

Multiplying the solution ¥ (z) = Ai ((2a0)1/ 3 g;;f;’) by a suitable constant we see that all the

three asymptotic expansions match one another if the coefficients C+

Observe that, a similar calculation at the left turning point z¢ produces the same result,
as in this case, ag < 0, the solution

_ 2y/—2ag ($O—$)3/2

e 3h

(zo — )

PN

Yrege (2) ~ (—ao)™

/1 , T <o
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exponentially decays at x — —oo and the oscillatory solutions have the form

. 2‘/—2(1‘0
P L

S

Yi(z) ~ (—aop)”

‘x—$0‘1/4 , T > X0.

Consider now the global behaviour of the quasiclassical solution

wwie%fpdw_
p

Consider the simplest case of a potential u(z) with one minimum at & = z,;, and monotone
descreasing/increasing on the left/on the right of zp;,. Denote z¢p < x; the two turning
points u(x) = E. The quasiclassical solution exponential decays outside the interval [zg, z1].
Inside the interval it oscillates. From the above computations it follows that

Co 1 [* T
~ — — d——
P \/ﬁcos(h/mopx 4), T > Tg
and

c1 1 [* T
¢~cos(/ pdaz—), T < I
VP B Je, 4

for some constants cp, ¢;. These two asymptotics agree on the interval [zg, z1] iff

1/"’01 T T
CoCOS | — —— = C1 COS —
O\ n ), 4 Y

1 [
2 pde—=mn, e =(-1"a
zo

The last equation can be rewritten in the form of the Bohr—Sommerfeld quantization condition

1 1
o %pdl‘ =h <n + 2) . (5.9.21)

Exercise 5.9.2 Prove that the quasiclassical wave function satisfying (5.9.21) has n zeroes
on the interval (xg,x1).

that implies

The quantity
1
I(E) = — ]{pd:v (5.9.22)
T
is the action variable of the Hamiltonian system
i=p, p=—u(2)

evaluated on the closed Lagrangian curve

% +u(z) =FE.
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The quantization condition (5.9.21) selects as discrete subset E = E,,

1
I(E,) =h (n + 2> (5.9.23)
of the Lagrangian curves tI}at correspond to quasiclassical asymptotics of the eigenvalues of
the Schrodinger operator H. The roots of eq. (5.9.23) provide a good approximation for
actual eigenvalues at the limit £ — oo.

The quantization condition (5.9.21) admits a generalization to the multidimensional case.
Quasiclassical eigenfunctions of the truncated Schédinger equation (5.9.2) are associated with
n-dimensional Lagrangian submanifolds M C R?" belonging to the level surfaces of the
Hamiltonian

H|L =F.

An analogue of the Bohr—Sommerfeld quantization condition imposes a series of restrictions
onto the Lagrangian submanifold M. They have the form

1 1
— ¢ pdr = —-a(C)(modZ) VYV C e H(M,Z). (5.9.24)
2mh C 4

Here a € H'(M,Z) is the pullback, with respect to the analogue of the Gauss map
M — A(n)

of the Maslov class denoted by the same letter o« € A(n). We see that this condition depends
only on the class of o in H'(M,Z/AZ).

In the particular case n = 1 the general quantization condition (5.9.24) reduces to the
classical Bohr-Sommerfeld condition (5.9.21). Indeed, let the cycle C' coincide with the

level curve % + u(z) = E going counterclockwise. Then the full preimage of the Maslov
cycle AY(1) € Ho(A(1) = S*,Z) consists of two points (xg,0) and (x1,0). According to the
orientation introduced above both points are counted with the multiplicity +1. Therefore
a(C) =2, so we arrive at the quantization condition (5.9.21).

Let us now briefly discuss quasiclassical solutions to the time-dependent Schrodinger
equation (5.9.1). The initial data for these solutions consist of

e a Lagrangian submanifold Lo C (R2”, dp N dq);
e a 1/2-density Ay on this submanifold.

We will consider only the particular case of initial Lagrangian submanifolds represented
as graphs of functions of ¢,

oS

In the g-coordinates the 1/2-density is represented by a function Ap(¢q). The semiclassical
initial data for the Schrédinger equation then has the form

Yo(q) ~ Ao(q)en@. (5.9.25)

The solution to the semiclassical Cauchy problem (5.9.1), (5.9.25) will be described in
terms of the family L; of Lagrangian manifolds obtained from Lg by shifting along trajectories

of the Hamiltonian flow
= oH . OH

“ T e

207



Denote g; the one-parameter group of symplectomorphisms

(¢,p) = 9t(q,p)

generated by the Hamiltonian vector field. Denote

Q=g (q, 8?(5(1)) =Q(q)

the restriction of g; onto L.

The shifted Lagrangian submanifold

Ly = gi(Lo)

is not necessarily projectable onto the ¢g-space. Let Q be not a critical value of the projection
of L; onto the g-space. That is, for a given @ there are few points of the form (Q, P;) € L,
and the g-projection is a local diffeomorphism near every point (Q, P;).

Every such point (Q, P;) is the end point of an integral curve v;(f) starting at a point
rj = (q5,pj) € Lo,

7 (0) = (g5, p5), v®#)=(Q,F), Jj=2,...

Assume nonvanishing of the Jacobians

dt<gQ> £0, j=1,2,... (5.9.26)

4j
Under this assumption the g-coordinates near the point (¢;,p;) € Lo can be used as local
coordinates on L; near the point (Q, P)).

The family of Lagrangian submanifolds L; span a (n + 1)-dimensional Lagrangian sub-
manifold in the extended phase space

L= |]J Lyc (R*"*?,dpAdg—dE Ndt).
0<6<t

Denote

73 (0) = (7;(0), 6, H(q(0), p(0))
the lift of the curve v;(#) to the extendend phase space. As we already know the generating
function of the Lagrangian submanifold L; near the point (Q, P;) can be represented by the
integral

S5(@:t) = Solay) + /0 pdq — H(g, p)db (5.9.97)

where the integration is taken along the integral curve 4;(6). Fmally denote y1; the sum of
Maslov indices of all turning points on the curve 4;(6), 0 <6 <

Theorem 5.9.3 (J.Keller; V.Maslov; V.Arnold) Solution to the quasiclassical initil value
problem (5.9.1), (5.9.25) has the form

ZAO QJ

dgq 1/2 .
) |det <0Q> ‘ enSi @) =5ny (5.9.28)
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