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1 KdV equation and Schrodinger operator

1.1 Integrability of Korteweg — de Vries equation

Let u := u(z,t) be a function on = € R depending on a time parameter t. We will denote
Uz, Uge etc. the derivatives with respect to x, u; will stand for the time derivative. With
these notations the Korteweg — de Vries (KdV) equation is the following partial differential
equation

U = 6UUL — Uggq- (1.1.1)

Using linear transformations (z — ax, t — [t and u — ~vyu) we can change the coefficients
as we want. Another standard form often used in physics is

Ut + Uy + Uyze = 0.

A deep relationship of the KdV equation to the spectral theory of the Schrédinger oper-
ator
L= -0+ u(x) (1.1.2)

was discovered in 1967 by Gardner, Green, M. Kruskal and R.Miura (we will often write 9,
instead of the derivative operator %). Namely, let the potential u = u(x,t) of L depend on
t according to the KdV equation. The key observation is the following: the spectrum of the



operator remains invariant under time (the so-called isospectrality). To show this invariance,
we use the following remarkable identity.

Theorem 1.1.1. The KdV equation is equivalent to the following operator equation
Ly = [L, A] (1.1.3)
where L is the Schrdodinger operator (1.1.2) and
A =492 — 6ud, — 3u,. (1.1.4)

Here
[L,A]=LA—-AL

is the commutator of the differential operators.
Proof Note that the Schrodinger operator depends on time through its potential u = u(x, t).
So the time derivative in the left hand side of (1.1.3) reduces to

Lt = Ut.-
Therefore to complete the proof of the Theorem it suffices to establish validity of the following

Lemma 1.1.2. The commutator of the differential operators L and A is the operator of
multiplication by a function:
[L, A] = 6uuy, — Uggy. (1.1.5)

Proof We have
[L,A] = [<02 + u,402 — 6ud, — 3u,] =
= 6[0?, udy| + 3[02, uy] + 4[u, 03] — 6[u, ud,]

since 97 and & commutes and u for all i and j and the operators of multiplication by
functions u, u, etc. commute too. Let us compute the commutators applying them to a
sample function f:

(02,40, )f = tae fo + 2ua frn + ifrrm — uferr,
02, U] f = Usaa f + 2Uae fo + Unfrz — Urfza:
[u BN f = ufszz — ufszs — 3o for — s fo — Usanf,
[, udy] f = w(udy f) — ude(uf) = ¥277 — 1207 — uue f = —uu, f;

so we have

[ Oz = Uy Oy + 2uz02,
[u 83

2]
[u, u0y] = —utsy.

*3uz 3ux$az — Ugzxa,



Applying these results we obtain:

= —Uggy + OUUL = Uy;
where the last equality coincides with the KdV equation. O

The operator equation (1.1.3) is called Lax representation of the KdV equation.
Now we are ready to prove isospectrality.

Corollary 1.1.3. Let A be an eigenvalue of the Schriodinger operator L satisfying (1.1.3)
and 1 € L*(—o00,+00) the corresponding eigenfunction,

+o0 9
D=3 )= [ Julde < 4ox.

— 00

Then A = 0.

Here the dot above stands for the time derivative, so
L= L; = 6uuy — Upgy-
Proof. Differentiating the equation L) = A\ in time we obtain
Ly + Lip = M + L.
Replacing L with [L, A] and reorganizing terms, we have
A+ AY) = L(3) + Av) + M.
Taking the inner product by ¢ we obtain
AW, + AY) = (v, L($ + Av)) + A(¥, v)

and using the fact that L is self-adjoint, we move it to the left of the inner product and we
cancel two terms. So we obtain A(¢,¢) =0, i.e. A =0. O

In other words, any eigenvalue of discrete spectrum of L is a first integral of the KdV
equation. When saying this we consider KdV as a dynamical system in a suitable space
of functions u(x) (in this setting the space of smooth functions on the real line rapidly
decreasing at infinity, see next section for the precise description of the functional space).
The integral curve u(x,t) passing through the given point ug(x) of the functional space is
obtained by solving the Cauchy problem

U = 6UUy — Uppy (1.1.6)
u(z,0) = up(x).

One can easily derive isospectrality also for periodic functions (see Section 1.6 below).



1.2 Elements of scattering theory for the Schrodinger operator
Informally speaking the scattering describes the result of passing of plane waves 1) ~ e
through the field of the potential u(z), from x = —o0 to © = 4+00. The simplest way to

define the scattering is the case of a compact support potential,
u(z) =0 for |x|> N.
In this case we have a pair of linearly independent solutions
Loio(z, k) = k2¢10(x, k), ¢z, k) =eF*® for <N

and
Ly o(w, k) = K21 2(7, k), 12(x,k) =T for >N

for any real k # 0. The scattering matriz is the transition matrix

gbl (:ZE, k) = all(k)l/}l (.’,E, k) =+ agl(k)ﬂ}g(I, ]{1)
p2(@, k) = ar2 (k)1 (2, k) + aza (k)2 (z, k)

between these two bases in the space of solutions of the second order ordinary linear differ-
ential equation

—¢" +u(2)y = k*y.

As the space and the bases depend on k, the transition matrix depends on k either. It is
easy to see that this matrix is unimodular and satisfies

agg(k) = &11(](1)7 agl(k) = C_ng(k)7 keR

(bar stands for the complex conjugation), see below for the details.

Let us now explain how to extend this definition for the case of non-localized potentials
decaying at || — oo.

Let u(x) be a smooth real function on the real line x € (—oo, +00) (for the moment not
depending on t) such that |u(z)| — 0 for || — +o00. Moreover we assume that

+oo
/ (14 |z))|u(z)|dz < 4o0.

— 00
Under these assumptions the discrete spectrum of the operator

d2
L=——s
dxz + U(x)

consists of a finite number of negative eigenvalues

AL <o <A <0

Lps = Astps with 1, € £2(7OO, +OO)
+oo
that is, Y2 (z)dr < +00).



The continous spectrum of the operator L coincides with the positive real line. The so-
called Jost solutions' are defined in the following way. Let A be a positive real number; let
us choose a basis in the two-dimensional space of solutions of Li) = A\ip. Introduce k£ € R
such that k2 = X and fix two solutions for every k (to one A corresponds two k, positive and
negative). The solutions 91 (z, k) and s (z, k) are chosen to satisfy

Y1(x, k) ~ e * £ o(1) for x— +oo and (x, k) ~ e 4 0(1) for z — 4oo0.
(1.2.1)

Lemma 1.2.1. For every k € R, there exist exactly two solutions with the chosen asymp-
totical behaviour (1.2.1). Moreover, the solution 1y extends analytically to the upper half
plane (Sk > 0) and

. 1
Yo, k)™ =140 (k) for  [k[ — +o0

Proof. We use the Picard’s method reducing the differential equation

V' kY =uy (1.2.2)
plus the asymptotic conditions of the form (1.2.1) to an integral equation.
1. Solve the homogeneus equation 9" + k21 = 0: ¢ = a1e’*® + age™ =,

2. Use variation of constants to solve the inhomogeneous equation v” + k%) = f with
f=wu1: let a; = aj(x), these functions have to be determined from the linear system

1 ikx ! —itkr 1
a1e’™ — ase = 4f
alleik:w + aée—ikx = 0
The solution reads a} = 5ze~™** f and a} = — 5z’ f. So

ar(z) = a? —|— / f(y)e*vdy

az(i’? 2 2zk/ f Zkydl/

1 1

b(z) = 5 / "Dy (y)dy — — [ “M—%(mw( )dy + afe’* + ade= e,

2ik 2ik

3. We fix the basepoint 2o = +00 and set the integration constants as a =1, a3 = 0, to
have the desired behaviour at infinity

¢ ~ eikm

IThey are also the generalized eigenfunctions of the continuous spectrum of L




We arrive at the following integral equation for the function (x) := o (z, k):

o0 sink(z —
wle) = e — [T )ay, (123)

The solution to (1.2.3) is represented by the sum of a uniformly convergent series

Y=1ho+ U+ o+ ..., thy = e

T gink(z —
i) = = [ D) ) ay

+oo
)] < U@ where Ula)s= 1 [ lu(w)ld.

Tt is easy to see that the solution v (z) satisfies the differential equation (1.2.2) and
l(z) —e*?| < V™) —1] -0 for z — 4oo.

Observe that 1, := 15. So the above considerations also prove existence and uniqueness of
the solution 1 (z).

We will now prove analyticity of ¢o(z, k) for Sk > 0. Replace ¢ (z) with e
prove analyticity of x(x) satisfying:

ikx

x(z) and

too L Lsink(z — .
X(x)=1—/ oike K@ —y) y)u(y)ekyxdy

k
+o00 1— eZik(y—x)
=1 — - - du:
/x s uWx(y) dy;
and now |e2*#(=2)| = £2Sk(@=v) — ( for |k| — oo, Sk > 0 since z —y < 0. Solving the above

integral equation by iteration we easily prove the needed analyticity in k£ of the solution
X- O

We found that for every k there is a unique solution of Lt = k?1), with the prescribed
asymptotic behaviour as * — +o0o. Similarly we can prove existence and uniqueness of two
solutions ¢1(x, k), ¢a(x, k) with the following behaviour at x — —oo:

¢)1 ~ efik:w and ¢2 ~ eikz.
Using similar arguments we can also prove that ¢; extends analytically to Sk > 0.

Lemma 1.2.2. The functions ¢ = 12 and W, for k # 0, form a basis in the space of
solutions. Similarly for ¢ := ¢1 and ¢.

Proof. We compute the Wronskian of 1) and ), i.e.
W (3, 9) = 9"y — 3.

This does not depend on = so we can compute it for z — +oo: W (1), ) = 2ik # 0. O



In particular we got two bases in the space of solutions, (i,) and (¢, ¢). We can define
the transition matrix between these two bases (expressing ¢ in terms of ):

oz, k) = a(k)(z, k) + b(k)(z, k).
Taking conjugates we obtain ¢(x, k) = b(k)d(x, k) + a(k)y(x, k). This gives the scattering

matrix
a(k) b(k)
b(k) a(k)
o — g (@F) (k)
(¢7¢) - (w,w) (E(k) d(k‘) :
Lemma 1.2.3. The determinant of the scattering matriz is 1 (i.e. the scattering matriz is

unimodular):
la(k)|* — [b(k)|* = 1.
Proof. This follows from the fact that the Wronskians of (¢,v) and (¢, $) are the same,

since W is an invariant skew symmetric bilinear form. O

Lemma 1.2.4. a(k) can be analytically extended to Sk > 0.

Proof. The Wronskian of ¢ and ¢ is a(k)W (1, ¥) + b(k)WHp ) so that a(k) = 51z W (¥, ¢)
and this Wronskian can be analytically extended to Sk > 0. O

Moreover, in the upper half plane, a(k) ~ 1+ O(}) as |k| — co. Therefore, a(k) has at
most a finite number of zeroes in the upper half plane. We will see that these zeroes are
related to the discrete spectrum.

Lemma 1.2.5. We have a(k) = 0 if and only if there exists a solution to L1 = k*i that is
exponentially decaying at infinity (and therefore is in L?(—o0, +00)).

Proof. 1f a(k) = 0, then W (¢, ¢) = 0, so ¢ is proportional to 1. But ¢ ~ e~ as x — —o0
and 1) ~ e*** as & — 4o00. In the upper half plane Ik > 0 we have

le7*e| = ¢Sk® L0 for & — —o0.

A similar exponential decay takes place for |[e?**| = e=S** for 2 — 4-00. O

So zeroes of a(k) correspond to eigenvalues of the discrete spectrum: a(k) = 0 if and
only if A = k2 is a point of the discrete spectrum. Since \ is real negative, so k must be

an imaginary number, with positive imaginary part. Denote these zeroes ik1, ..., ik,, With
K1 > -+ > Kp > 0 for some n > 0 (the discrete spectrum is empty for n = 0). Then
\; := —k? are the eigenvalues of the discrete spectrum of L. The eigenfunctions of the

discrete spectrum are ¢s(x) := ¢(x,irs) and we have

efs? T — —00
¢S($C) = { kT
bse "% 1 — 400
for some by € R. One can show that the signs of the real constants by, ..., b, alternate:

(=) by >0, s=1,...,n.

So, from the original problem we derive these scattering data:



1. the reflection coefficient r(k) := %, for k € R;
P Y
3. b1,...,by,.
Example 1.2.6. Let us consider the Schrodinger operator with delta-potential
L=-02+ad(z), acR.

Here 6(z) is the Dirac delta-function:

/ffuwWszﬂm

for any smooth function f(z) rapidly decreasing at infinity. For two continuous functions
fi(z), fa(z) on R smooth outside = = 0 the following simple identity holds true

| 1h@)Lae - p@LA@) d
= f1(0) [erf2(0) — f2(04) + f3(0—)] — f2(0) [evf1(0) — f1(04) + f1(0-)] -
So the eigenfunctions v of the operator L must satisfy [?]

—"(x) = A(z) for z#0
(1.2.4)

¥'(04) = ¢'(0-) = a9(0).

It is easy to see that for any negative o the operator L has exactly one eigenvalue of the
discrete spectrum

o?
4

A= — Y =e3ll,

For o > 0 the discrete spectrum is empty. The generalized eigenfunctions of the continuous
spectrum can also be constructed explicitly: for any k € R

_ 2k tia —ikx i ik|x|
o(z, k) = TR 57 ¢

_ 2k +ix ikx i ik|x|
Y(x, k) = TR YA

Indeed, these functions satisfy (1.2.4) with A = k? and

This gives




Thus the reflection coefficient of the potential u(z) = ad(z) is equal to

xe’
k)= — .
T
For negative o one has to add the numbers
o
K 5

associated with the discrete spectrum in order to complete the list of scattering data.
We have constructed the scattering map
{potential wu(z)} — {scattering data (r(k),k1,.-.,5Kn,b1,-..,bn)}

It will be later shown that, under certain analytic assumptions about the reflection coeffi-
cients, the scattering map is invertible (see the next section). Let us now describe the time
dependence of the scattering data assuming that the potential u = u(x,t) depends on time
t according to the KdV equation.

We have seen that the KdV equation u; = 6uu, — tge, is equivalent to L= [L, A] where
L=-0?+uand A=493 — 6ud, — 3u,.

The next theorem describes the scattering data.

Theorem 1.2.7. If u:= u(x,t) satisfies the KdV equation, then
1. 7(k) = 8ik3r(k),
2. ks =0,
3. by = 8k3b,,
for s e {l,...,n}. So we have:
1. 7(k) = ro(k)eS*"t,
2. ks = ks(0),
3. by = by(0)eSr2bst,

Proof. In the first lecture using the KdV equation represented in the form L= [L, A] and
differentiating Li) = A\ in time, we derived the following identity

L(3 + Ap) = M) + Ap) + M.
We use these formulas in the following.

We take A := k? so that k € R is fixed; by definition, A =0, so ¢ + At is again an
eigenfunction for A and must be a linear combination of ¢ and :

P+ A = anp + By,

10



with o := a(k) and 8 := B(k). The behaviour of this new solution at z — oo is —4ik3e’*;
the behaviour of the right side is ae™"? 4 Be*** so we must have a = 0 and 3 = —4ik®. In
the same way we get these results:

b+ A = —dikPep, O+ A = 4ik3,
¢+ Agp = 4ik>¢, b+ Ad = —4ik3.

We consider ¢ = a1) + bp and take time derivative: ¢> =ap + bw + cmZ + bip. So
b+ Ag = it + b + a(t) + A) + b(v) + AY)

and substituting what we found before, we have 4ik?(at)+ b)) = ayp + b+ dikPar) — 4ik3bip.
Elaborating this we get differential equation for a and b, obtaining @ = 0 and b = 8ik3b,
from which we get 7(k). .

For the last statement, we do the same trick with ¢s + Ags = 4k3¢s. O

1.3 Inverse scattering

The direct scattering problem is to compute the scattering data from the given u(x);
so the inverse scattering is the problem to reconstructing w(z) from the scattering data
(r(k)y K1y ..., Knyb1,...,b,). Let us discuss the properties of the scattering data.

Starting from the reflection coefficient r(k):

L. it is a function defined on the real line satisfying the symmetry r(—k) = rj?c) Indeed,
the substitution k — —k exchanges the roles of i) with ¢, and ¢ with ¢; moreover,
r(k) ~ O(%) for |k| — +oo;

2. |r(k)|] < 1, for every k € R\ {0}, since the scattering matrix is unimodular;

3. the Fourier transform
1 [T

7(z) = — r(k‘)eikmdk‘;

T omi )
satisfies fjﬁ:(l + |z])|F(z)| dx < +o0.

For the discrete spectrum kq, ..., k, and the by,...,b, we do not have many costraints:
K1 > -+ > Ky, > 0 are real, by,...,b, are real and non zero and we will see that signbs; =

(_1>571.
The first question now is how to reconstruct the functions a(k) and b(k) from the scat-

tering data. We have
1

=P

so we must find the argument of a(k). We define

[I(k +iks)
[1(k —iks)’

la(k)| =

a(k) := a(k)

11



this is again analytic in the upper half plane (since zeroes of the denominator cancel with
zeroes of a(k)); for k € R, the modulus of a(k) is equal to the modulus of a(k), since the
rational function ‘

[1(k + iks)

[1(k — iks)
is unimodular for £ € R. Moreover, a(k) has no zeroes in the upper half plane and still

behaves like 1 + O(3). We can reconstruct now the argument of a(k) using the Cauchy
integral applied to loga(k):

N 1 o Jog |a(k’
arga(k) = ——V.p. / %dk

—00

and then

1 k—iks 1 % Jog |a(k’
arga(k) = H Zlog Kk p /_Oo %k)‘dk’.

The next will be:

1. define

where a'(k) := La(k);
2. solve the Gelfand-Levitan-Marchenko integral equation for the function K = K(z,y):

+oo
K(z,y) + F(z+y) + K(z,2)F(z +y)dz = 0;

— 00

3. prove that u(z) = —2%- K (z, ).

This procedure comes from the theory of the so-called transformation operators: as an
example, start from Ly := —9? and go to —9? + u(x); from the basis of solution of Ly,
(e'¥®), g We can go to the basis (¢(z,k)), g of solutions for L. Remarkably the matrix of
the transformation operator is (upper) triangular! The following general statement from the
theory of Fourier integrals is useful for establishing the triangularity.

Lemma 1.3.1. If f(k) is analytic in the lower half plane and behaves like O(7) for |k| —
400, then the Fourier transform

A +OO .
for =5 [ fwetar

is zero for x < 0, and viceversa.

Proof. The shift k +— k —ia with a > 0 changes the exponential from e’** to e’***47_ Such
a shift does not change the integral. Therefore the modulus |f(z)| for negative x admits an
upper estimate as small as we want. O

12



Let us denote ¢_ := 1. It admits an analytic continuation into the lower half plane
Sk < 0. Moreover the product

X—(z, k) == _(z, k)e*®

admits an asymptotic expansion of the form
1
X—(z, k) ~1+ O(E)’ |k| — 00, Sk <O.

Denote
L[t
Az, y) := —/ e (x_(x, k) —1)dk

21 J_ o

the Fourier transform of x_(z, k) — 1 with respect to k. Due to Lemma
A(z,y) =0 for y<O0.

Now taking the inverse transform we get

+oo )
X—(z, k) =1+ Az, y)e~*dy,
0

where the integral starts from 0 thanks to the lemma. Finally,
voa k) = [T Ay ey -
0
. +Oo . ~
= et 4 / Az, — x)e_““ydg],
x

changing variable (¢ := y + x). Denoting K(z,y) := A(z,y — x), we get

“+o0
V_(x, k) = e * 4 K(z,y)e "™ dy.

x

Applying complex conjugation and k — —k to this formula, the only thing that changes is
the conjugation of the kernel K (x,y); therefore it must be real for y > x.

Let us derive the GLM equation. From ¢(x, k) = a(k)y(z, k) + b(k)y(z, k), muliplying
by 2(—2; and integrating with respect to k, we obtain

i Meiky — e T r " eiky
/_OO ) dk—/_oo (—(z, k) + r(k)Y(z, k))e™ ¥ dk.

Since these integrals will be not well defined, we subtract something:

[ (e o= [tk it e

13



In the left hand side we have the fraction which has a finite number of simple poles (not yet

proved, but will be); after the subtraction we have the desired behaviour at infinity (O(3))

and so we can express the left hand side as a sum of residues for k € {ikq1,..., ik, }:
) Pz, iks) oy
271 Z me .
Now, ¢(x,iks) ~ bse=® for & — +00; but ¢(z,iks) = bsb_(x, —ikg) and
+oo
Y_(x,—iks) = ™% + K(z,y)e "*dz.

xT

Finally, the left hand side is

n
bsefnsa: +oo bsefms(z+y)
2 —— +2m K(z,z —dz.
2wy T K@D s
From property of the Fourier transform on the right hand side, we justify the additional
terms in the GLM formula.
From the integral equation for x_(z, k) we see that

I 1
x-(z,k) =1+ 2k J, u(xz)dz + O(ﬁ)
Comparing with
—+o0
X—(z,k) =1+ Az, y)e” M dy
0

What we would like to prove is that %f;oo u(x)dx = K(z,x).

1.4 Dressing operator

We recall briefly some properties of the Fourier transform of an integrable function f(x)
with z € (—00, +00). The Fourier transform of f is

~ +OO .
f(k) 1/ f(@)eeda,

:ﬂ .

where the coefficient is a normalization one that can be changed if needed. The inverse
Fourier transform is

“+oo
f(z) = / f(k)e %= dk;

— 00

1 +o00 +o0 i +oo 1 +o0 el
=g [ an [ awe e sy = [y [ et
— 00

—0o0 —0Q0 — 00

and % fjoooo e~k @Y dy =: §(x — y).

14



We study now the decay at oo. If f € CU™(R), then f(k) ~ O(]k|=™). Indeed, by
integration by parts:

~ +oo . . + +oo .

We define now the transformation (or dressing) operator. We have 9 (z,k) = e** +
f;oo K(z,y)e?*dy and ¢_ (v, k) = e~ + f;oo K(z,y)e”*¥dy. What is behaviour of v
for |k] — +00? We can repeat the same argument as before:

) 1 ) +oo 1 +oo )
U(a k) =™+ | - K(x,y)e™| - — Ky (z,y)e™dy
ik N ik J,
but now the first term do not vanish since the lower limit is . Iterating these arguments

we can expand asymptotically ¢ (z, k) (obviously if K is infinitely differentiable in y). So we

have
_ §i(z) | (=) pika
'lz](l‘, k) - <1+ 7/](; + (Zk)Q +...> .

We observe that i is the integral of the exponential, so we may write

eik‘a: B ik
=0

so that we have
Y, k) = (14 & (2)0; 1 + & ()0, % + ... )™,

The operator between parenthesis is called the dressing operator P. If 1 is a solution for
the Schrodinger operator L, then ¢ = Pi)g, where 1 is a solution for Ly = —92. Then we
could say that L = PLoP~!.

Now we use the dressing operator to obtain a different way to derive of the GLM equation.
We have

¢(z, k)

a(k) = 1/’—(% k) + T(k)w(x’ k)a

since a(k) ~ 1+ O(%) and ¢(z, k) ~ e~** for |k| — +oo, then, as we did before, we must
subtract e~ *** to both side to obtain an integrable function. Then we can take the integral
in k:

+o0 +oo
/,oo %T) et = [ (k) - e (k) Ry

We multiply both side by ¢**¥ so that the left hand side is the sum of the residues relative
to the kj:

7W —ksy.
(iks) o
but now we can rewrite it using the dressing operator. Substituting ¢(z, iks) with bsi(x, iks)
and 9(z, ik,) with e % 4 [**° K (2, z)e~*+*dz, we obtain this form for the left hand side:

2miy o(z, st)/
a
s=1

n
+oo b6

. & bS —ks(z+ . 5 —ks(z+
zmza’(ik )e s(@+Y) 4 o K(x,z)zme s(24Y) g7
s=1 s z s=1 s
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As for the right hand side,

+o0
(Y (x, k) — e~ F7)eiky = K(z,2)e” kv,

xT

so integrating by k we have 27 f;oo K(z,2)0(z—y)dz = 2nK(x,y). We have to add the last

part of the right hand side, f;oo r(k)y(x, k)e?*¥dk, that we change again with the dressing
operator: it is

+oo ) +oo +oo .
/ r(k)e*Wro)dr = / r(k)dk K(z,2)e*H)ds =

+oo
=2nf(r +y) + 27 K(x,2)f(z +y)dz.

x

Summing up, we can divide all terms by 27, obtaining the equation

lz_; e [ wan X_; g e =
=K(z,y) +7(x+y) + o K(z,2)f(z + y)dz;
after moving ¢ to the denominator, we get
Mo +y)+ 22 m,l();ks) e Felety) 4
+ K(z,y) + o K(z,2) (f(z +y)+ i w,?;k )e—’fs<z+y>> dz = 0.
z s=1 s

The sum of the first two terms is what we called before F(x); after this substitution we have
the GLM equation.

To derive the formula u(z) = —2% K(z,z), we observe that & (z) = —K(z,z), so
substituting v with (1 + &z—(,:) +...)e in " 4 urp = k) gives the formula.

The last thing that was left to prove is that the zeroes of a(k) are simple, i.e. a’(iks) # 0.
Starting from L¢ = k?@, derivating by k we have Lo’ = k?¢’ — 2k¢ so (L + k2)¢' (w, iks) =
—2iks¢(x,iks). Multiplying by ¢(x,iks), integrating in z and denoting ¢ := ¢(z,iks) and
¢ = ¢'(x,iks), we obtain

+oo +o00
/ (L + k2)p¢'dx = —2ik5/ Pde.

—o0 —00
Integrating by parts we have
+oo

(08, — ¢ud|TS = —2ik, P2 da.

— 0o
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We know that ¢? is exponential decaying at oo; as for the left hand side, ¢ has the same

property and
o zeks® T — —00
a'(iks)ebs™ + ... x— +oo

where the omitted terms are exponentially decaying. After working on the previous identity,
we finally get

+oo
ia' (iks)bs = / ¢*(z,iks)dr € RT.
— 00

With this last statement we also proved that the sign of by are alternating.

1.5 Particular case: reflectionless potential

To solve the initial value problem for KdV in the class of rapidly decreasing initial data
uo(x), we have to: solve the scattering problem (find r(k) for the given potential ug(x), the
ks and the by); define the function

o0 3
F(J? t) 1 / (]{1) ikx+8ik tdk‘—‘rz

b e—k m+8k t

27 ia’ (iks) ’

then solve the GLM equation

+oo
K(z,y,t)+ F(z+y,t) + K(z,z,t)F(z 4+ y,t)dz = 0;
x
finally compute u(z,t) = —2%-K(z,z,1).

This is not really all computable. We'll try to solve a particular case, in which (k) = 0
(this case was previously solved by Bargmann in 1949). In this case, the first term of F(z,t)
vanish and the integral equation can be solved explicitely. Forgetting for the moment about
time dependance, we have

n
bs
F(z) = E e ke
(z) ia’ (iks)
s=1
and the fraction is a real positive coefficient that we’ll denote with ¢s. Then

K(z,z2) Z e ke (xHY) gy — Z Es(x)e_kﬂy,
s=1 s=1

where é(z) = ¢s f;oc K(z,z)e **dz. We look then for solutions like K (z,y) = "1 | K;(x)e *¥:
substituting what we know in the GLM equation we get

ZK 7ky+ZCe k(m+y)+2/ Ki( e kiz i ki(z49) g, = 0

and this last term is equal to

—+oo

x

—(ki+k;)
6 z — k.
E K;i( Ny yy cre” Y,

1,j=1
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Now we can put the equation in the form of a linear system of n equations

N e~ (kitkj)x
KiJFZCinj :*Cieikiw, 1e{l,...,n}.
j=1 v

So the matrix of the system is A such that

e (kitkj)z
Ay =6y, 4+
g =0 1T¢
k; + kj
. &)
and we can solve the system with Kramer’s rule K; = 9t42

After this we have to compute K(z,):

K(z,x) = ZKi(x)e_k”” = me‘
i=1

1=

We define another matrix A incorporating the exponential so that K (z,z) = 2?21 dfitf:) :

to do that, A is obtained from A substituting the j-th column in this way:

67(k1+kj)1

a ki+k; —616—(]61—*_,6]')z
—2k)x
e J . o—2kx
1+CJ72kj — cje” =N
c e~ (kntkj)z 7Cnef(kn+kj)w .
n kntk; i ¢

We observe that the substitution is really a differentiation so that we get

d
o—det A
az SO d—logdetA(x)

Kleo)=Sod ~ @

and then )

u(z) = —2% log det A(x).

Studying the reflectionless case, we saw that F(x) assume the form Y 1 ¢;e” % with
¢; positive real constants. This allows us to solve the GLM equation as a system of n linear
equation for the n unknowns Kj(z),...,K,(x). Then we arrive to the potential u(x) as
-2 32? log det A.

Now we’ll inspect the dependency on time. We recall that ¢; was defined as —mgﬁ:
the numerator does depend on ¢, but the denominator does not. Including time dynamics

3
we get cg — cge3Fst,

Exercise 1.5.1: Denote w; := k;(x — 4k?t); let
Cief(wi+wj)

& QT k‘i—‘rk‘j

?

prove that u(z,t) = —2% log det A(z, ).
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In the case n = 1, we have
ce—2ke+8Kt

A=1
MY
so that
d 6672km+8k3t
—logAd=——p—u=
ce—2k+8k3t
dx 1+ 2k
Le—2l~cw+8k3t +1-1 o2k
= —2k 2 ce—2kz+8k3t = —2k + ce—2kz+8k3t ;
1+ s 1+ —r
deriving again,
a2 2k0672km+8k3t Ve ce=2
@logA: —2kz+8k3t z = = w C ,—w z =
(1 + %) =2 (e¥ + e V)
Qk;/f k2

) o <ﬁew + Jfke‘wf ~ cosh®(k(z — 4kt — x0))

where g = ﬁ log 57 -
Then the solution of KdV is

2k?
cosh? (k(z — 4k2t — x¢))

u(zx,t) =

which is called the soliton solution. This solution is moving to the right with constant speed
4k?; xo is just interpreted as a phase shift. For fixed ¢, the graph of the solution resemble
the opposite of a bell; as time goes on, the bell travel to the right. Another way to see this
is to find solution to the KdV in the form u = u(x — ct).

Substituting in the KdV, we get —cu’ = 6un’ — u, that is —cu = 3u? — " + a, ie.
" = 3u? 4 cu + a. This is the equation for the motion of a particle in a specific cubic

potential V' := V (u) defined by u” = —8212”): the potential is then

2
V(u) = —u® - c% + au + const.

We can solve this equation using the conserving of energy:

()’
2

+V(u)=F
and we get the elliptic integral
/ du
———— =1 — 0.
V2(E = V(u))

Now we have to use particular values of the integration constants to impose the decaying
behaviour of the solution. In particular we have to choose the right energy level F in such
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a way the particle can pass over the mountain of potential given by the cubic polynomial.
If we choose a lower energy level, then the solution is periodic and is called a cnoidal wave;
if the energy level is greater, then the solution does not decay at infinity.

If n > 1 we have a nonlinear interaction of solitons with different x(; asymptotically
they look like a sum of noninteracting solitons; but for finite time there may be nontrivial
interactions deriving from the different velocities. In particular, at the beginning the amplest
bell will be on the left (since its xg is lower), but at infinity it will be on the right (since its
velocity is greater). If we denote with ) the phase at a particular time, we get

Lo, (ki ?
ok o \kit+ k)

1.6 Bloch spectrum of the Schrodinger operator with a periodic
potential

Ty —xy = E Az*, with Az"7 =

Jlzj<z;

We now consider smooth real periodic potentials
u(x+T) =u(x)
of the Schrédinger operator.

Definition 1.6.1. The Bloch spectrum (or stability zone) is the set
A€ C such that 3 solution to Ly = A\, bounded Vx € R.

Theorem 1.6.2.

1. The Bloch spectrum is a collection of (finite or infinite) real intervals [A1, A2], [A3, Aal, - . .
with Ay < Ao < A3 < .... If there are only a finite number of intervals, then the last
one is [Aap+1, +00].

2. Consider the Riemann surface

I:={(\v)eC?v?= H()\— Ai)

i>1

(we will explain later how to manage the infinite interval case); then for any v € R,
there exists a function (xz, P) meromorphic in P € T such that:
e its poles are not in some interval (Ao;—1, Aa;);

o the restriction of ¥(x, P) to the internal part of the Bloch spectrum (i.e., P =
(A, v) is such that X € (Aai—1,A2:)) is a pair of independent solutions P (z, \) to
Ly = My bounded for every x € R;

o (x,\) has exponential behaviour at infinity.

Example 1.6.3. If u(x) = wup, then Ly = A corresponds to " = (ug — A\)yp and its
solutions if \ # ug are 14 (x, \) 1= eF?VA~u0% At least one solution is bounded for every
z € R if and only if /A —ug is real; this means that A € R and A > wug. Hence the
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Bloch spectrum is constituted by only one interval [ug, +oo]. If A > wug, both solutions are
bounded; instead if A = ug, ¥; = 1 and 2 = x are the two solutions. The solutions 11 are
not analytic on all the complex plane for A, since we have a square root. But it is analytic
on the Riemann surface given by v? = X\ — ug: infact we can rewrite the two functions as
a single function ¢ (x,v) = e#®. What we are doing is take two sheaves over the inner
part of the interval glued at A = ug; the two-valued function ¢ (considered as a function of
A) becomes a single-valued function (considered as a function of v). In general, for every
bounded zone in the Bloch spectrum, we obtain a circle.

We now define the monodromy operator as Ti(zx) = (z + T). If we fix A, we have a
2-dimensional solutions space to L) = A\); we denote uy (A) the two eigenvelues of 7' in the
solutions space (depending on \).

Lemma 1.6.4. The Bloch spectrum contains A € C if and only if there exists an eigenvalue
w(A) of T such that |u(N\)| = 1.

Proof. It |u(A)| > 1, then |¢(z+nT)| = |u(N)|™|¥(x)| goes to infinity on the right; if
|(A)] < 1, it goes to infinity to the left. O

We have now to choose a basis for the space of solutions to Ly = \p. We fix g € R and
let ¢ := c(x,70,A) and s := s(x, 70, A) be such that ¢,, =1, Cixo =0, 8z, = 0, szo =1
Any other solution y such that y,, = yo and y"zo = y(, is represented as cyo + sy
Example 1.6.5. If u(z) = 0, then ¢ = cos VA(z — 2¢) and s = % sin vV A(z — 2¢). In this

case both functions are entire functions in A (since cosine is an even function and sine is

odd).
Lemma 1.6.6. The functions ¢ and s are always entire functions in A.

Proof. The function ¢ as a function of x is determined by

o) = cos V(e =) + [ TV )0

for s, we have
sin V\(z — ) sinVA(z — ) .
el [ sy

expanding this functions we get the analyticity. O

0

We define the monodromy matriz as

T, \) = c(xo+T,20,\) s(xo+T,x0,A\)
O TN (w0 4+ T, 20, N) ' (w0 + T, 0, \)

so that
(C(ZL’ + Ta Zo, )‘)7 S('T + Ta Zo, )‘)) = (C(iﬂ, Zo, >‘)7 S(QE, Zo, )‘))T(x()v >‘)

As a corollary we get that the monodromy matrix 7' is composed by entire functions in
AreC.
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We begin the study of the solution of the Schrédinger operator L in the case of a periodic
data u of period T. For a given parameter A € C and a given zg € R, we defined a
basis (¢ = ¢(x,x0,A),s = s(x,x0,A)) of the space of solutions of Lip) = A\, given by two
entire function in A\. We also defined the monodromy operator Ty(z) = y(z + T) and the
monodromy matrix T(xg, A); the entries of this matrix are also entire in A; moreover, T is
unimodular, because in the space of solutions we have an antisymmetric bilinear form (the
Wronskian) which do not depend on z and in particular on the shift by a period. Let u an
eigenvalue of the monodromy operator and ¢ an eigenvector (also called a Bloch function),
so that ¢(z 4+ T) = py(x).

To find p we have to find the eigenvalues of T'(xg, A), i.e. the roots of det(ul —T) = 0.
To write down this equation, denote with A the half trace of T: it depends only on A
(and not on zy), since changing the choosen basis (c,s) conjugate T with an invertible
matrix A, but this do not change A. It is also an entire function and we can write the
characteristic polynomial as u? + 2A(A)p + 1 = 0, since T is unimodular. So, the solutions
are py(A) = A(X) £i4/1 — A2(N). It will be clear why we put the 7 in front of the square
root.

In particular, if A € R, then A(X) € R (since ¢ and s are real if the initial data is real)
and this tell us something about the module of A:

1. if |A(N)] > 1, then from pyp— € R and pg + p— = 2A, we get |u4| > 1 and |pu—| <1,
so A is outside the Bloch spectrum;

2. if |A()N)| < 1, then from p_ = jiy we have |u,|? = 1, hence ) is in the Bloch spectrum.
Lemma 1.6.7. If |u(A\)| =1, then A € R.

Proof. There exists ¢ (x) such that L) = M) and ¢(z +T) = wp(x). In particular 1 (xo +
T) = pap(wo) and ' (xo + T') = )’ (x0). The complex conjugate function ¢ satisfies L) =
M, h(zo +T) = pp(xo) and ' (zo + T') = )’ (o). Therefore

xo+T zo+T B
(- X)/ p|2de = / (& Lt — o L)

= (o' —dy] = (lul* = 1) (¥(x0)¢' (z0) — P(x0)d' (0)) -
The right hand side vanishes, since |u| = 1. Hence A = \. O

zo+T

zo

In other words, the Bloch spectrum is equal to the set of A € R such that |[A(X)] < 1.
Example 1.6.8. If u = ug, we already saw that

c=cosv/A—up(r—z9) and s= ﬁsin VA —ug(x — x9).

Then A(X) = cosv/A —wugT. The square root is real and positive if and only if A is real
and greater or equal than ug. For A real and less then wug, the cosine becomes a hyperbolic
cosine, and we can draw the graph of A depending on real A: before ug it comes from above,
reaching A = 1 for A = ug, then it oscillates between A = —1 and A = 1. The points
where it reaches this bounds are the ones with A = ug + (%)2 and they are the spectrum
of L = —92 + up. In particular, for n even we have periodic eigenvectors and for n odd we
have antiperiodic eigenvectors (i.e., ¥(z +T) = —p(z)).
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We now look to deformations of constant potential. If we start from u = wug, then after
a deformation sure it cannot happen that an eigenvector (periodic or antiperiodic) vanish,
i.e. the graph cannot be included in |[A(X)| < 1. Instead, if it rises above |A(A)] = 1, the
Bloch spectrum splits in some number of intervals, potentially infinite. Before, at a point
with |A(M)| = 1, we had two equal eigenvalues corresponding to the same energy level; after
the deformation, the two eigenvalues split in two different ones.

We have to justify something anyway:

1. that in intervals of the Bloch spectrum the graph of A has to be monotonic, even after
a deformation;

2. roots of [A(A)| = 1 are at most double (i.e. we have a simple maximum or a simple
minimum, like before the deformation, or a transversal intersection, like after).

For generic A (outside some isolated points) there are two linearly independent Bloch
functions, i.e. two roots us(A) and two functions 14 (x, ) (the functions are not really
unique, but they’re determined up to normalization, for example they may be such that

Y(xo, A) = 1).

Consider the log derivative:

. _ Yh(z, w0, A)
ZXi(x,A) B ’l/]:t(x,x();)\).

It does not depends on z( (since choosing xg changes both the solutions and its derivative
by a common factor). We write now the Riccati equation

X' —x>=u—A\

— 1)
Lemma 1.6.9. Let A € R, then x = 5 é}g; )
Proof. From Riccati, we get (Rx)" — 23yRy = 0. O

Lemma 1.6.10.

+iy/1— AZ(N\) + L (Top — T1 1)
T

Vi (z, 20, N) = c(z, 20, A) + s(x, To, \).

Proof. From 9 (x,x9,\) = ac(x,x0,\) + bs(x,z9,A), let & = o then 1 = ¢ = a (from the

normalization); then T' ( ll) ) =A < ll) ) O

Corollary 1.6.11.

+4/1— AQ()\) + %(T272(x0, )\) — T171(l‘0, /\))

X:t(va) = T1,2(x07/\)

Proof. From v = ¢ + bs, we may compute b by taking derivative: ¢’ = ¢’ + b's; restricting
to = xg, ¢’ vanish and s’ becomes 1; hence we have ix(zg, A) = b. O
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This means that in the Bloch spectrum, we have

=AY
Rx(z,\) = V"=,
x(@;A) T12(z0, )
T2(xo, ) — T1,1(z0, )
x A) = > ) .
\SX(J,‘, ) 2T1’2(.%'0,>\)

The functions p4(A) are not analytic, since there is a square root. Hence they have
branch points at the roots of |[A(A)| = 1. If X is not a branch points, there are locally two
solutions p4 and p_; moreover, there are locally two meromorphic eigenvectors ¢4 and ¥_
(they may have poles). If Ag is a branch point, then A()\g) = 1 or A(\g) = —1; walking
along a small loop around A, the two eigenvelues could interchange; but if the multiplicity
is odd (i.e. it is 1, since it is less or equal to 2) that can’t happen. Let us study the poles
of 1: they can be at points A such that 77 2(x¢, A) = 0.

Lemma 1.6.12.
1. Roots of Th 2(zo, ) = 0 are real.
2. They are not in the inner part of the Bloch spectrum.

Proof. The reality of the roots is related to the self-adjointment: recall that T; o(zg, A) =
s(xo+T, zo, A); we imposed that s(zo, o, A) =0, so it Ty o = 0 we have s(zo+T,z9,A) = 0.
Then A is an eigenvalue of the Dirichlet spectrum on [zg, g + T7.

Now it T3 5 = 0, the unimodularity says that 77 1722 = 1 and the reality of A says
that %|T1’1 + T5 2| < 1. The case where the poles are in the border are precisely when T} 1
and T o are both 1 or both —1. This allows also roots of T3 5 in case of a maximum or
a minimum at |[A(\)| = 1 (so that this point is inside the Bloch spectrum); but if Ay is a
double root of |[A(M)| = 1, then also 711 = T2 so that 11 has no poles at Ag (provided
that T7 o have only simple root at Ag). O

Example 1.6.13. Recall the case u = ug; then T} 2 roots are simple; when perturbing, we
open some real gaps between the intervals of the Bloch spectrum, and the root still remains
in these gaps and cannot merge into roots of higher order.

We saw the behaviour of the function A(X) for A € R. Points where the graph intersects
A(X) =1 are the eigenvalues of the periodic problem and we have A\g < A\; <Ay < A3 <.,
where the less or equal is equal if the corresponding gap is reduced to a point. If instead
A(p) = —1, p is an eigenvalue for the antiperiodic problem and we have again p; < pg <
H3 S e

Remark 1.6.14. The set {\g, \1,...} and the set {u1, i, ...} are not independent. In other
words, we may fix one of the two and the other will be determined. Indeed, from the theory
of entire function, fixed for example the first set, we can express A in terms of an infinite
product: \ \
7 n—
AnyhzfoA@IIiiji
k>1 ( T )
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1.7 Properties of the monodromy matrix

We saw that the eigenvalues of T, = p+(A\) are determined from the equation p? —2A(\)+
1 = 0. Two branches collide (i.e., gy = p—) when |A(X)| = 1. 