

Plot of the function $\beta(h,\gamma)$ for certain values of g ($\beta(h,\gamma)$ is defined for $\gamma \neq 0$)

Emptiness Formation Probability for the Anisotropic XY Spin Chain in Transverse Magnetic Field

Fabio Franchini & Alexander Abanov

Phase Diagram of the XY Model (only $\gamma > 0$ shown)

Introduction

- For 1-Dim. theories, the ground state can be found using Bethe Ansatz, but no general way is known to calculate the correlators of the theory, which stands as an open problem
- Korepin et Al. introduced a determinant representation for correlators in terms of a generating functional: from this analysis, a special correlator known as Emptiness Formation Probability (EFP) is introduced to be the simplest correlator
- EFP it is the probability that a system doesn't present any particle in a region of a certain lenght
- In one dimensional spin models $H = \frac{1}{2} J_{ij} \vec{s}_i \times \vec{s}_j + h \frac{1}{2} s_i^z$ we are interested in the

Probability of Formation of a Ferromagnetic String (PFFS) of lenght n:

$$\mathbf{P}(\mathbf{n}) = \left\langle \mathbf{O}_{i=1}^{\mathbf{n}} \frac{1 - \mathbf{s}_{i}^{z}}{2} \right\rangle = \frac{1}{Z} \operatorname{Tr} \mathbf{g}_{e}^{\mathbf{e}_{-\mathbf{b}_{H}}} \mathbf{O}_{i=1}^{\mathbf{n}} \frac{1 - \mathbf{s}_{i}^{z}}{2} \mathbf{O}_{e}^{\mathbf{e}_{-\mathbf{b}_{H}}}$$

The Anisotropic XY Model

$$H = \overset{\circ}{a} \underbrace{\overset{\circ}{g}}_{i} \underbrace{\overset{\circ}{g}}_{i} \underbrace{\overset{\circ}{g}}_{i} \underbrace{\overset{\circ}{g}}_{i} \underbrace{\overset{\circ}{g}}_{i} \underbrace{\overset{\circ}{g}}_{i} \underbrace{\overset{\circ}{g}}_{i+1} \underbrace{\overset{\circ}{g}}_{i+1} \underbrace{\overset{\circ}{g}}_{i} \underbrace{\overset{\circ}{g}}_{i} \underbrace{\overset{\circ}{g}}_{i} \underbrace{\overset{\circ}{g}}_{i} \underbrace{\overset{\circ}{g}}_{i} \underbrace{\overset{\circ}{g}}_{i+1} \underbrace{\overset{\circ}{u}}_{u} \underbrace{\overset{\circ}{h}}_{i} \underbrace{\overset{\circ}{h}}_{i} \underbrace{\overset{\circ}{s}}_{i} \underbrace{\overset{\circ}{h}}_{i} \underbrace$$

• A Jordan-Wigner transformation takes the spin Hamiltonian to the spinless fermions hamiltonian

$$\mathbf{s}_{j}^{\pm} = \frac{1}{2} (\mathbf{s}_{j}^{x} \pm \mathbf{i} \mathbf{s}_{j}^{y}) \qquad \begin{array}{l} \mathbf{\hat{j}} \mathbf{s}_{j}^{z} = 2\mathbf{y}_{j}^{\dagger} \mathbf{y}_{j} - 1 \\ \mathbf{\hat{j}} \mathbf{s}_{j}^{z} = 2\mathbf{y}_{j}^{\dagger} \mathbf{y}_{j} - 1 \\ \mathbf{\hat{j}} \mathbf{s}_{j}^{z} = \mathbf{y}_{j}^{\dagger} \mathbf{e}^{\mathbf{i} \mathbf{i} \mathbf{j}} \mathbf{y}_{i}^{z} \mathbf{y}_{i} \\ \mathbf{\hat{j}} \mathbf{s}_{j}^{\pm} = \mathbf{y}_{j}^{\dagger} \mathbf{e}^{\mathbf{i} \mathbf{i} \mathbf{j}} \end{array}$$

• Switching to Fourier components we get:

$$\mathbf{H} = \mathop{\stackrel{\bullet}{a}}_{q} 2(\cos q - \mathbf{h}) \mathbf{y}_{q}^{\dagger} \mathbf{y}_{q} + \mathrm{i} \operatorname{gsin} q \left(\mathbf{y}_{q}^{\dagger} \mathbf{y}_{-q}^{\dagger} - \mathbf{y}_{-q} \mathbf{y}_{q} \right)$$

- In the mapping to spinless fermion, PFFS becomes EFP: the EFP P(n) measures the probability of formation of a string of **n** aligned spins
- Considerable efforts has been devoted to the study of this n-points correlator for the XXZ Spin Chain aiming to completely solve the model

- Lukyanov's result shows that P(n) is Gaussian for the critical phase, but it comes without a derivation and doesn't explain what is the physical picture
- Abanov and Korepin tackled the problem using a bosonization technique and derived the Gaussian form from first principles: they described a crossover (at finite temperature T) from a Gaussian behavior to an exponential one as **n** increases so that this crossover happens at infinity at zero temperature, but the procedure failed in providing quantitative results
- The behavior in the critical regime ($-1 < \Delta < 1$) is Gaussian, but what happens in the non-critical "Ising Regime" ($\Delta > 1$)? Is the Gaussian behavior general for critical models?
- We study a simple model in order to understand better the meaning of the EFP

Toeplitz Matrices and the

Non Critical Regions

Conclusions and Discussions

Generalized Fisher-Hartwig Conjecture

Matrices like S_n are called Toeplitz, because their elements depend only on the difference of the indices and they are determined by a periodic generating function $\sigma(q) = \sigma(q+2\pi)$

 $(\mathbf{S}_n)_{jk} = \mathbf{O}_p^{\mathbf{P}} \mathbf{S}(q) e^{iq(j-k)} \frac{dq}{2m}$

- Analytical results are know in the literature regarding the asymptotic behavior of their determinant
- These behaviors strongly depend on the "singularities" of the generating function, so we parameterize the generating function to singled them out as:

 $\mathbf{s}(\mathbf{q}) = \mathbf{t}^{i}(\mathbf{q}) \mathbf{\mathbf{0}}^{\mathbf{k}} \mathbf{e}^{-\mathbf{k}_{r}^{i} (\mathbf{p} - (\mathbf{q} - \mathbf{q}_{r}) \mod 2\mathbf{p})} \left(2 - 2\cos(\mathbf{q} - \mathbf{q}_{r})\right)^{\mathbf{l}_{r}^{i}}$

- where $\tau^{i}(q)$ is a smooth, non-zero function with winding number 0
- The index i labels the different possible parameterizations
- The asymptotic behavior of the determinant is:

 $det(S_n) \sim a_{\mathbb{R} \otimes \mathbb{Y}} E[t^i, k^i, l^i] n^{\mathbb{W}} e^{-b[t^i]n}; \quad b[t^i] = -b_{\mathbb{P}} Log(t^i(q)) \frac{dq}{2p}$ $\mathbf{T} = \left\{ \mathbf{i}; \mathbf{S}\left((\mathbf{l}_{r}^{i})^{2} - (\mathbf{k}_{r}^{i})^{2} \right) = \max_{i} \mathbf{S}\left((\mathbf{l}_{r}^{j})^{2} - (\mathbf{k}_{r}^{j})^{2} \right) = \mathbf{W} \right\}$

• In our case the generating function is:

 $\mathbf{s}(\mathbf{q}) = \frac{1}{2} \frac{\mathbf{q}}{\mathbf{q}} + \frac{\cos \mathbf{q} - \mathbf{h} + \mathbf{i} \, \mathbf{g} \sin \mathbf{q}}{\sqrt{(\cos \mathbf{q} - \mathbf{h})^2 + \mathbf{q}^2 \sin^2 \mathbf{q}}} \mathbf{\dot{\dot{s}}}$

 Σ_{-} : $\sigma(q)$ has no singularities

- Σ_0 : $\sigma(q)$ vanishes and presents a phase jump at $q = \pi$
- Σ_+ : $\sigma(q)$ vanishes and has phase jumps at $q = 0, \pi$

Using the FH Conjecture, the EFP is found to be:

$$P(n) \sim E(h, g)e^{-b(h, g)n}; \quad b(h, g) = -\delta_p^P Log(s(q))\frac{dq}{2n}$$

For $h \ge 1$, there is Z_2 symmetry breaking and we have to use the generalized FH Conjecture to find:

 $P(n) \sim E(h,g) \not \in I + (-1)^n A(h,g) \dot = e^{-b(h,g)n}$

which is in very good agreement with numerical calculations

Critical Phase: Ω_0

- For $\gamma = 0$, $\sigma(q)$ is supported only for $-\cos^{-1}(h) < q < \cos^{-1}(h)$
- This case has already been studied by Shiroshi et al. (2001) and in the '70s in the context of Unitary Random Matrices
- The Fisher-Hartwig conjecture and its generalization don't apply
- We use Widom's Theorem and the behavior is Gaussian times a <u>power law</u> pre-factor:

$$P(n) \sim 2^{\frac{5}{24}} e^{3z(-1)} (1-h)^{-\frac{1}{8}} n^{-\frac{1}{4}} \frac{a(1+h)}{b(1-h)} \ddot{o}^{n^{2}/4}$$

Critical Phases:
$$\Omega_{1}$$

Region	Critical	γ, h	P(n)	Zeros of σ(q)	Phase Jumps of σ(q)
Ω_0	Yes	$\gamma = 0,$ -1 <h<1< td=""><td>E n^{-1/4} e^{-αn²}</td><td>q ∉ (-k_f,k_f)</td><td>none</td></h<1<>	E n ^{-1/4} e ^{-αn²}	q ∉ (-k _f ,k _f)	none
Σ_	No	h < -1	E e ^{-βn}	none	none
Ω_	Yes	h = -1	E n ^{-1/16} [1+An ^{-1/2}] e ^{-βn}	none	π
Σ ₀	No	-1 <h<1< td=""><td>E e^{-βn}</td><td>π</td><td>π</td></h<1<>	E e ^{-βn}	π	π
Ω_+	Yes	h = 1	E n ^{-1/16} [1+(-1) ⁿ An ^{-1/2}] e ^{-βn}	π	0, π
Σ_+	No	h > 1	E [1+(-1) ⁿ A] e ^{-βn}	0, π	0, π

- The power law contributions in Ω_+ remind us of the scaling dimension of the square root of σ^x and σ^y
- Common feature for critical theories seems to be the presence of an universal <u>power-law</u> contribution (from which operators is it coming?)
- Gaussian behavior seems to be connected to the length of the "Fermi Surface"
- The bosonization argument for Gaussian behavior fails at the critical magnetization, because the EFP has non-local terms when expressed in terms of the bose field, due to the guasi-particle transformation
- This is the first physically-motivated example of application of the generalized Fisher-Hartwig Conjecture

and the parameterizations (and asymptotic behaviors of the determinant) depend on the region of the phase diagram one considers

References and Acknowledgments

- V.E. Korepin, N.M. Bogoliubov and A.G. Izerin,"Quantum Inverse Scattering Method and CorrelationFunctions"
- M. Shiroischi, M. Takahashi and Y. Nishiyama (2001)
- V.E. Korepin, S. Lukyanov, Y. Nishiyama and M. Shiroishi (2002)
- A.G. Abanov and V.E. Korepin (2002)
- E. Lieb, T. Schultz and D. Mattis (1961)
- E. Barouch and B. McCoy (1971)
- E.L. Basor and C.A. Tracy (1991)
- E.L. Basor and K.E. Morrison (1994)
- T. Ehrhardt (2001)
- H. Widom (1971)

Finally, we like to thank F. Essler, V.E. Korepin and B. McCoy for their help

 Ω_{-} : $\sigma(q)$ develops a phase jump at $q = \pi$ Ω_+ : $\sigma(q)$ vanishes at $q = \pi$ and presents two phase jumps at $q = 0, \pi$

Using the FH Conjecture the result would be: $P(n) \sim E(g)n^{-16}e^{-b(\pm 1,g)n}$

but, by pushing the generalized FH Conjecture beyond its limit, we gain a better agreement with the numerics: $P(n)n^{1/16}e^{\beta n}$

W: **P**(**n**) ~ **E**(**g**)**n**
$$-\frac{1}{16} \stackrel{\bullet}{e}$$
i + **A**(**g**)**n** $-\frac{1}{2} \stackrel{\bullet}{u}$ **i** e $-\mathbf{b}(-1,\mathbf{g})\mathbf{n}$

$$\begin{array}{c}
0.82 \\
0.8 \\
0.8 \\
100 \\
200 \\
300 \\
400 \\
500
\end{array}$$

$$F(\mathbf{n}) \sim \mathbf{E}(\mathbf{g}) \mathbf{n}^{-\frac{1}{16}} \stackrel{\bullet}{\mathbf{a}} + (-1)^{\mathbf{n}} \mathbf{A}(\mathbf{g}) \mathbf{n}^{-\frac{1}{2}} \stackrel{\bullet}{\mathbf{u}}_{\mathbf{c}}^{-\mathbf{b}(1,\mathbf{g})\mathbf{n}}$$

Numerical vs. Analytical results at $\gamma = 1$, h=1

• We suggested a way to find subleading behavior to the asymptotics using the generalized FH Conjecture

Perspective for the future

 Understand the meaning of the different behaviors and identify the signature of criticality Complete the phase diagram of the XXZ Model (D>1) Understand better EFP

New Methods

Bosonization approach

- New Hydrodynamic Model for Bosonization
- Bethe Ansatz WaveFunctions (?)