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The Anisotropic XY ModelThe Anisotropic XY Model

• A Jordan-Wigner transformation takes the spin Hamiltonian 
to the spinless fermions hamiltonian

• Switching to Fourier components we get:

• A Bogoliubov transformation diagonalize the Hamiltonian:

• The Emptiness Formation  Probability can be written as:

• We can rotate the “2n × 2n” skew-symmetric matrix M:

• Thus, EFP is (exactly):

• In this work, we evaluate the asymptotic behavior of this 
matrix as n → ∞, in the different regions of the phase 
diagram of the XY Model

Phase Diagram of the XY Model
(only γ>0 shown)
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Phase Diagram:
• 3 non-critical regions (Σ0,Σ±)

• 3 critical phases:
Ω0: Isotropic XY
Ω±: Critical magnetic field
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IntroductionIntroduction
• For 1-Dim. theories, the ground state can be found using Bethe Ansatz, but no general way is known 

to calculate the correlators of the theory, which stands as an open problem
• Korepin et Al. introduced a determinant represantation for correlators in terms of a generating 

functional: from this analysis, a special correlator known as Emptiness Formation Probability (EFP) 
is introduced to be the simplest correlator

• EFP it is the probability that a system doesn’t present any particle in a region of a certain lenght

• In one dimensional spin models we are interested in the

Probability of Formation of a Ferromagnetic String (PFFS) of lenght n:

• In the mapping to spinless fermion, PFFS becomes EFP: the EFP P(n) measures the probability of 
formation of a string of n aligned spins

• Considerable efforts has been devoted to the study of this n-points correlator for the XXZ Spin 
Chain aiming to completely solve the model

• Lukyanov’s result shows that P(n) is Gaussian for the critical phase, but it comes without a
derivation and doesn’t explain what is the physical picture

• Abanov and Korepin tackled the problem using a bosonization technique and derived the Gaussian
form from first principles: they described a crossover (at finite temperature T) from a Gaussian 
behavior to an exponential one as n increases so that this crossover happens at infinity at zero 
temperature, but the procedure failed in providing quantitative results

• The behavior in the critical regime (-1<∆<1) is Gaussian, but what happens in the non-critical
“Ising Regime” (∆>1)? Is the Gaussian behavior general for critical models?

• We study a simple model in order to understand better the meaning of the EFP
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The Critical XXZ ModelThe Critical XXZ Model

T ≠ 0: (γ: density of free energy)
(Korepin et al. 1993)

T = 0:
(Lukyanov et al. 2002)
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Conclusions and DiscussionsConclusions and Discussions

• The power law contributions in Ω± remind us of the 
scaling dimension of the square root of σx and σy

• Common feature for critical theories seems to be 
the presence of an universal power-law contribution 
(from which operators is it coming?)

• Gaussian behavior seems to be connected to the 
length of the “Fermi Surface”

• The bosonization argument for Gaussian behavior 
fails at the critical magnetization, because the EFP 
has non-local terms when expressed in terms of the 
bose field, due to the quasi-particle transformation

• This is the first physically-motivated example of 
application of the generalized Fisher-Hartwig
Conjecture

• We suggested a way to find subleading behavior to 
the asymptotics using the generalized FH Conjecture

Perspective for the futurePerspective for the future

• Understand the meaning of the different behaviors 
and identify the signature of criticality

• Complete the phase diagram of the XXZ Model (D>1)
• Understand better EFP

New MethodsNew Methods

• Bosonization approach
• New Hydrodynamic Model for Bosonization
• Bethe Ansatz WaveFunctions (?)
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Phase 
Jumps
of σ(q)

Zeros of 
σ(q)P(n)γ, hCriticalRegion

Plot of the function β(h,γ) for certain
values of g (β(h,γ) is defined for γ≠0)

Critical Phase: Critical Phase: ΩΩ00
• For γ = 0, σ(q) is supported only for  -cos-1(h) < q < cos-1(h)
• This case has already been studied by Shiroshi et al. (2001) 

and in the ‘70s in the context of Unitary Random Matrices
• The Fisher-Hartwig conjecture and its generalization don’t apply
• We use Widom’s Theorem and the behavior is Gaussian times 

a power law pre-factor:
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Critical Phases: Critical Phases: ΩΩ±±

Ω− : σ(q) develops a phase jump at q = π
Ω+ : σ(q) vanishes at q = π and presents two phase jumps at q = 0, π

Using the FH Conjecture the result would be:

but, by pushing the generalized FH Conjecture beyond its limit, we gain a 
better agreement with the numerics:

1
( 1, )n16P(n) E( )n e

− −β ± γγ∼

1 1
( 1, )n16 2: P(n) E( )n 1 A( )n e

− − −β − γ
−

 
Ω γ + γ 

 
∼

1 1
n (1, )n16 2: P(n) E( )n 1 ( 1) A( )n e

− − −β γ
+

 
Ω γ + − γ 

 
∼

Numerical vs. Analytical results
at γ=1, h=1

Non Critical RegionsNon Critical Regions
Σ− : σ(q) has no singularities
Σ0 : σ(q) vanishes and presents a phase jump at q = π
Σ+ : σ(q) vanishes and has phase jumps at q = 0, π

Using the FH Conjecture, the EFP is found to be:

For h ≥ 1, there is Z2 symmetry breaking and we have to use the 
generalized FH Conjecture to find:

which is in very good agreement with numerical calculations
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ToeplitzToeplitz MatricesMatrices and theand the
Generalized FisherGeneralized Fisher--HartwigHartwig ConjectureConjecture

• Matrices like Sn are called Toeplitz, because their elements 
depend only on the difference of the indices and they are 
determined by a periodic generating function σ(q)=σ(q+2π)

• Analytical results are know in the literature regarding the 
asymptotic behavior of their determinant

• These behaviors strongly depend on the “singularities” of 
the generating function, so  we parameterize the 
generating function to singled them out as:

where τi(q) is a smooth, non-zero function with winding 
number 0

• The index i labels the different possible parameterizations
• The asymptotic behavior of the determinant is:

• In our case the generating function is:

and the parameterizations (and asymptotic behaviors of the 
determinant) depend on the region of the phase diagram 
one considers
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