Entanglement Entropy in the XY Model

Fabio Franchini

Coauthors: V. E. Korepin, A. R. Its, B.-Q. Jin

Thanks: A.G. Abanov, B.M. McCoy, L.A. Takhtajan

- JPA 40, 8467 (2007)
- JPA 41, 2530 (2008)
- work in progress...
Outline

• Introduction: Von Neumann and Renyi Entropy as a measure of Entanglement

• Quantum Entropy of the XY model

• Ellipses of constant Entropy and the Essential Critical Point

• Modular properties of the entropy and of the partition function - Not enough time -

• Conclusions
Understanding Entanglement

- Consider a unique (pure) ground state
- Divide the system into two Subsystems: A & B
- If system wave-function is:

 \[|\Psi^{A,B} \rangle = |\Psi^A \rangle \otimes |\Psi^B \rangle \]

 \[\rightarrow \quad \text{No Entanglement} \]

 (Measurements on B does not affect A state)
• If the system wave-function is:

\[|\Psi^{A,B}\rangle = \sum_{j=1}^{d} \lambda_j |\Psi^A_j\rangle \otimes |\Psi^B_j\rangle \]

(with \(d > 1 \), \(|\Psi^A_j\rangle \& |\Psi^B_j\rangle \) linearly independent):

→ **Entangled** (Measurements on B affect A state):

i.e. \[\langle \Psi^B_i |\Psi^{A,B}\rangle = \lambda_j |\Psi^A_i\rangle \]
How to measure Entanglement?

• Compute Density Matrix of subsystem:

\[\rho_A = tr_B \left(|\Psi^{A,B}\rangle \langle \Psi^{A,B}| \right) \]

• Entanglement for pure state as Quantum Entropy (Bennett, Bernstein, Popescu, Schumacher 1996):

\[S = -tr_A \left(\rho_A \ln \rho_A \right) \]

Von Neumann Entropy
More Entanglement Estimators

- Von Neumann Entropy: \(S_A = -\text{tr} (\rho_A \log \rho_A) \)

- Renyi Entropy: \(S = \frac{1}{1-\alpha} \ln \text{tr} (\rho_A^\alpha) \)
 (equal to Von Neumann for \(\alpha \to 1 \))

- Tsallis Entropy

- Concurrence (Two-Tangle)

- ...
Entropy of a subsystem

\[|\Psi^{A,B}\rangle = \sum \lambda_j |\Psi^A_j\rangle \otimes |\Psi^B_j\rangle \]

\[\rho_A = \text{tr}_B |\Psi^{A,B}\rangle \langle \Psi^{A,B}| = \sum \lambda_j^2 |\Psi^A\rangle \langle \Psi^A| \]

\[\rho_B = \text{tr}_A |\Psi^{A,B}\rangle \langle \Psi^{A,B}| = \sum \lambda_j^2 |\Psi^B\rangle \langle \Psi^B| \]

\[S_A = -\text{tr} (\rho_A \log \rho_A) = -\text{tr} (\rho_B \log \rho_B) = S_B \]

• NB: \(S_{AB} = 0 < S_A + S_B \) (Unlike thermodynamic entropy)
Entropy as a measure of entanglement

• Assume Bell State as unity of Entanglement:

$$|\text{Bell}\rangle = \frac{|\downarrow \downarrow\rangle + |\uparrow \uparrow\rangle}{\sqrt{2}}$$

• Von Neumann Entropy measures how many Bell-Pairs are contained in a given state $$|\Psi^A\rangle$$ (i.e. closeness of state to maximally entangled one)
Entanglement in a Spin Chain

• Consider the Ground state of a Hamiltonian:

\[
H = \sum_{i=1}^{N} \left[J_x \sigma_i^x \sigma_{i+1}^x + J_y \sigma_i^y \sigma_{i+1}^y + J_z \sigma_i^z \sigma_{i+1}^z \right] - \hbar \sum_i \sigma_i^z
\]

• Block of spins in the space interval \([1, n]\) is subsystem A

• The rest of the ground state is subsystem B.

→ Entanglement of a block of spins on a space interval \([1, n]\) with the rest of the ground state as a function of \(n\)
We study the bi-partite entropy of the ground state of a system:

$$\rho_A = \text{tr}_B |\Psi^{A,B}\rangle \langle \Psi^{A,B}|$$

$$S(n) = -\text{tr} (\rho_A \log \rho_A) \quad \text{Von Neumann}$$

$$S_\alpha(n) = \frac{1}{1 - \alpha} \ln \text{tr} (\rho_A^\alpha) \quad \text{Renyi}$$

- Multi-Point correlation function with contributions from all two-point correlators
- Highly non-trivial correlation function: new insights?
General Behavior

• We study the behavior for block size $n \to \infty$

 (Double scaling limit: $0 << n << N$)

 \[S(n) = -\text{tr} \left(\rho_A \log \rho_A \right) \]

• For gapped phases: (Vidal, Latorre, Rico, Kitaev 2003)
 \[S(n) \to \text{Constant} \]

• For critical phases: (Calabrese, Cardy, 2004)
 \[S(n) \to \frac{c}{3} \ln n + \ldots \]
The Anisotropic XY Model

\[H = -\sum_i \left[(1 + \gamma) \sigma_i^x \sigma_{i+1}^x + (1 - \gamma) \sigma_i^y \sigma_{i+1}^y + h \sigma_i^z \right] \]

- Jordan-Wigner followed by Bogoliubov transformation to diagonalize the Hamiltonian

\[H = \sum_q \varepsilon_q \left(\chi_q^\dagger \chi_q - 1/2 \right) \quad \varepsilon_q = \sqrt{(h/2 - \cos q)^2 + \gamma^2 \sin^2 q} \]

- The XY Model is essentially Free Fermions
- Correlators for physical quantities involve inverting the transformation to FF: complications
The Phase Diagram of the XY Model

\[H = \sum_i \left[(1 + \gamma) \sigma_i^x \sigma_{i+1}^x + (1 - \gamma) \sigma_i^y \sigma_{i+1}^y + h \sigma_i^z \right] \]

\[\varepsilon_q = \sqrt{\left(\frac{h}{2} - \cos q\right)^2 + \gamma^2 \sin^2 q} \]

Phase Diagram:

- 3 non-critical regions (2, 1a, 1b)
- 2 critical phases:
 - \(\Omega_0 \): Isotropic XY
 - \(\Omega_+ \): Critical magnetic field

Phase Diagram of the XY Model
(only \(\gamma > 0 \) shown)
Entropy on the gapped phases for $|GS\rangle$

1. Case 1a: $2\sqrt{1 - \gamma^2} < h < 2$, medium magnetic field
2. Case 1b: $0 \leq h < 2\sqrt{1 - \gamma^2}$, small magnetic field
3. Case 2: $h > 2$, strong magnetic field

• We define an Elliptic Parameter:

\[
k = \begin{cases}
\frac{\gamma}{\sqrt{(h/2)^2 + \gamma^2 - 1}}, & \text{Case 2} \\
\frac{\sqrt{(h/2)^2 + \gamma^2 - 1}}{\gamma}, & \text{Case 1A} \\
\frac{\sqrt{1 - \gamma^2 - (h/2)^2}}{\sqrt{1 - (h/2)^2}}, & \text{Case 1B}
\end{cases}
\]
Asymptotic Entropy

\[S = -\text{tr} (\rho_A \log \rho_A) \quad S_R = \frac{1}{1 - \alpha} \ln \text{tr} (\rho_A^\alpha) \]

- For \(h > 2 \):

\[
S_R = \frac{1}{6} \frac{\alpha}{\alpha - 1} \ln \left(k k' \right) - \frac{1}{3} \frac{1}{\alpha - 1} \ln \left(\frac{\theta_2(0|q^\alpha)}{\theta_3(0|q^\alpha)} \right) - \frac{1}{3} \ln 2
\]

\[
S(\rho_A) = \frac{1}{6} \left[\ln \frac{4}{k k'} + (k^2 - k'^2) \frac{2I(k)I(k')}{\pi} \right]
\]

\[q = e^{-\pi I(k')/I(k)} \quad k' = \sqrt{1 - k^2} \]

- For \(h < 2 \):

\[
S_R = \frac{1}{6} \frac{\alpha}{\alpha - 1} \ln \left(\frac{k'}{k^2} \right) + \frac{1}{3} \frac{1}{\alpha - 1} \ln \left(\frac{\theta_2^2(0|q^\alpha)}{\theta_3(0|q^\alpha) \theta_4(0|q^\alpha)} \right) - \frac{1}{3} \ln 2
\]

\[
S(\rho_A) = \frac{1}{6} \left[\ln \left(\frac{k^2}{16k'} \right) + (2k^2) \frac{2I(k)I(k')}{\pi} \right] \ln 2
\]
We have a completely analytical expression for the asymptotic entropy.

Let’s extract some physics out of it!!
Minima of the Entropy

- Absolute minimum at $h \to \infty$ or $\gamma \to 0$ ($h > 2$): $S_\infty \to 0$
 as the ground state becomes ferromagnetic ($\uparrow \ldots \uparrow$)

- Local minimum $S_\infty = \ln 2$
 at the boundary between cases 1a and 1b ($h = 2\sqrt{1 - \gamma^2}$)

- The ground states is factorized:
 (each state is factorized and has no entropy)

$$
|GS_1\rangle = \prod_{n \in \text{lattice}} \left[\cos(\theta)|\uparrow_n\rangle + \sin(\theta)|\downarrow_n\rangle \right]
$$

$$
|GS_2\rangle = \prod_{n \in \text{lattice}} \left[\cos(\theta)|\uparrow_n\rangle - \sin(\theta)|\downarrow_n\rangle \right]
$$

$$
|GS\rangle_+ = |GS_1\rangle + |GS_2\rangle
$$

$$
\cos^2(2\theta) = (1 - \gamma)/(1 + \gamma)
$$
Entropy at fixed γ

Von Neumann Entropy

Entanglement Entropy in the XY Model

Fabio Franchini
Entropy at fixed γ

Von Neumann Entropy
($\alpha = 1$)

Renyi Entropy
$\alpha = 1/2$

Renyi Entropy
$\alpha = 2$

Entanglement Entropy in the XY Model

Fabio Franchini
3-D plot of the Entropy

Von Neumann Entropy
\(\alpha = 1 \)

\((\gamma, h) = (0, 2) \)

Essential Critical Point

Entanglement Entropy in the XY Model

n. 20

Fabio Franchini
3-D plot of the Entropy

Von Neumann Entropy
(\(\alpha = 1 \))

Rényi Entropy
\(\alpha = 1/2 \quad \alpha = 2 \)

Essential Critical Point

\((\gamma, h) = (0, 2) \)

Entanglement Entropy in the XY Model
The Essential Critical Point (ECP)

- Point \((\gamma, h) = (0, 2)\) is special:
 - Theory is critical, but not CFT (quadratic spectrum)
 - We can study the entropy close to this point:
 - Approaching it along \(h = 2, \gamma > 0\): \(S_\infty = \infty\)
 - Approaching it along \(\gamma = 0, h > 2\): \(S_\infty = 0\)
 - Approaching it along \(\gamma = 0, h < 2\): \(S_\infty = \infty\)
 - Approaching it along \(h = 2\sqrt{1 - \gamma^2}\): \(S_\infty = \ln 2\)
Entropy around the ECP

$\alpha = 1$

(Von Neumann Entropy)

Entanglement Entropy in the XY Model

Fabio Franchini
Entropy around the ECP

\[\alpha = 2 \]

\[\alpha = 1 \]

\[\alpha = 1/2 \]

(Von Neumann Entropy)

Entanglement Entropy in the XY Model

Fabio Franchini
Recalling the formulae

For $h > 2$:

\[
S_R = \frac{1}{6} \frac{\alpha}{\alpha - 1} \ln \left(\frac{k}{k'} \right) - \frac{1}{3} \frac{1}{\alpha - 1} \ln \left(\frac{\theta_2(0|q^\alpha) \theta_4(0|q^\alpha)}{\theta_3^2(0|q^\alpha)} \right) - \frac{1}{3} \ln 2
\]

\[
S(\rho_A) = \frac{1}{6} \left[\ln \frac{4}{k, k'} | (k^2, k'^2) \frac{2I(k)I(k')}{\pi} \right]
\]

For $h < 2$:

\[
S_R = \frac{1}{6} \frac{\alpha}{\alpha - 1} \ln \left(\frac{k'}{k^2} \right) + \frac{1}{3} \frac{1}{\alpha - 1} \ln \left(\frac{\theta_2^2(0|q^\alpha)}{\theta_3(0|q^\alpha) \theta_4(0|q^\alpha)} \right) - \frac{1}{3} \ln 2
\]

\[
S(\rho_A) = \frac{1}{6} \left[\ln \left(\frac{k^2}{16 k'} \right) \mid (2, k^2) \frac{2I(k)I(k')}{\pi} \right] \mid \ln 2
\]

The entropy depends just on one parameter (k)
Curves of constant Entropy

- Curves of constant Entropy are curves of constant k
- These curves are Hyperbolae and Ellipses:

\[
\begin{align*}
\text{Case 2 } (h > 2) & : \quad \left(\frac{h}{2}\right)^2 - \left(\frac{\gamma}{\kappa}\right)^2 = 1, \quad 0 \leq \kappa < \infty \\
\text{Case 1a } (2\sqrt{1-\gamma^2} < h < 2) & : \quad \left(\frac{h}{2}\right)^2 + \left(\frac{\gamma}{\kappa}\right)^2 = 1, \quad \kappa > 1 \\
\text{Case 1b } (h < 2\sqrt{1-\gamma^2}) & : \quad \left(\frac{h}{2}\right)^2 + \left(\frac{\gamma}{\kappa}\right)^2 = 1, \quad \kappa < 1.
\end{align*}
\]

- All these curves pass through the Essential Critical Point!
Importance of the Essential Critical Point

- From any point in the phase diagram one reaches the ECP following a curve of constant Entropy
- The range of the Entropy in the phase diagram is the positive real axis

Near the ECP the Entropy reaches every positive value!

- Small variations in the parameters change the Entropy dramatically!
- ECP important for Quantum Control
Entropy on the critical phases

Phase transitions: as the gap closes $S_\infty \to +\infty$

$$S_\infty \to -\frac{1}{6} \ln |2 - h| + \frac{1}{3} \ln 4 \gamma + O(|2 - h| \ln^2 |2 - h|)$$

$h \to 2$ and $\gamma \neq 0$

Critical Magnetic Field:
(Calabrese, Cardy, 2004)

Isotropic XY model (XX Model):
(Jin, Korepin 2003)

$\gamma \to 0$ and $0 < h < 2$

$$S_\infty \to -\frac{1}{3} \ln \gamma + \frac{1}{6} \ln (4 - h^2) + \frac{1}{3} \ln 2 + O(\gamma \ln^2 \gamma)$$
Critical Magnetic Field:

\[S_R(\alpha) = \frac{1 + \alpha}{\alpha} \left(-\frac{1}{12} \ln |2 - h| + \frac{1}{6} \ln 4\gamma \right) + O(|h - 2| \ln^2 |h - 2|) \]

\(h \to 2 \) and \(\gamma \neq 0 \)

Isotropic XY model (XX Model):

\[S_R(\alpha) = \frac{1 + \alpha}{6\alpha} c \ln x + \ldots \]

\(\gamma \to 0 \) and \(0 < h < 2 \)

\[S_R(\alpha) = \frac{1 + \alpha}{\alpha} \left(-\frac{1}{6} \ln \gamma + \frac{1}{12} \ln (4 - h^2) + \frac{1}{6} \ln 2 \right) + O(\gamma \ln^2 \gamma) \]
• Diverges for $\alpha \to 0$

• Except at the factorizing field ($h = 2\sqrt{1 - \gamma^2}$):
 $S_R = \ln 2$

• Limit $\alpha \to \infty$ gives largest eigenvalue of density matrix (Single copy entanglement)
Conclusions

• We studied analytically the entropy (Von Neumann and Renyi) as a measure of bipartite entanglement in double scaling limit of the XY model.

• Entropy diverges for critical phases, approaches a constant in gapped phases.

• We achieved detail knowledge of the behavior of the entropy (also in α).

• Near Essential Critical Point, entropy reaches every positive value.

• We can access the spectrum of the density matrix (we have the largest eigenvalue, we are working on the others).

• Entropy is sensitive to previously unnoticed modular properties of the model.

Thank you!
Von Neumann Entropy of the XY model

<table>
<thead>
<tr>
<th>Region</th>
<th>$S(\rho_A)$</th>
<th>Curves of Constant S</th>
<th>Range of Parameters</th>
</tr>
</thead>
<tbody>
<tr>
<td>2: $h > 2$</td>
<td>$\frac{1}{6} \left[\ln \frac{4}{k k'} + \frac{2(k^2 - k'^2)I(k)I(k')}{\pi} \right]$</td>
<td>$\left(\frac{h}{2}\right)^2 - \left(\frac{\kappa}{\kappa'}\right)^2 = 1$</td>
<td>$0 \leq k < 1$ $0 \leq \kappa < \infty$ $k = \sqrt{\frac{\kappa^2}{1+\kappa^2}}$</td>
</tr>
<tr>
<td>1b: $2\sqrt{1 - \gamma^2} < h < 2$</td>
<td>$\frac{1}{6} \left[\ln \frac{k^2}{16k'} + \frac{2(2 - k^2)I(k)I(k')}{\pi} \right] + \ln 2$</td>
<td>$\left(\frac{h}{2}\right)^2 + \left(\frac{\gamma}{\kappa}\right)^2 = 1$</td>
<td>$0 < k < 1$ $\kappa > 1$ $k = \sqrt{\frac{\kappa^2}{k^2}}$</td>
</tr>
<tr>
<td>1a: $h < 2\sqrt{1 - \gamma^2}$</td>
<td>$\frac{1}{6} \left[\ln \frac{k'^2}{16k} + \frac{2(2 - k'^2)I(k)I(k')}{\pi} \right] + \ln 2$</td>
<td>$\left(\frac{h}{2}\right)^2 + \left(\frac{\gamma}{\kappa}\right)^2 = 1$</td>
<td>$0 < k < 1$ $\kappa < 1$ $k = \sqrt{1 - \kappa^2}$</td>
</tr>
<tr>
<td>$h = 2\sqrt{1 - \gamma^2}$</td>
<td>$\ln 2$</td>
<td>$\left(\frac{h}{2}\right)^2 + \gamma^2 = 1$</td>
<td>$k = 0$ $\kappa = 1$</td>
</tr>
</tbody>
</table>