Universal Quantum Simulator, Local Convertibility and Edge States in Many-Body Systems

Collaborators:
J. Cui, L. Amico, H. Fan, M. Gu,
V. E. Korepin, L. C. Kwek, V. Vedral

arXiv:1306.6685
(submitted to PRX, almost accepted)
Entanglement

- **Entanglement**: fundamental quantum property

- **Different reasons for interest**:
 1. Quantum information \rightarrow quantum computers
 2. Quantum Phase Transitions \rightarrow universality
 3. Condensed matter \rightarrow non-local correlator
 4. Integrable Models \rightarrow new playground
 5. Cosmology \rightarrow Black Holes
 6. ...
Entanglement: what is it good for?

- Characterization of quantum states and how to simulate them (DMRG, MPS.....)
- Detection of novel quantum phases (topological phases)
- Can determine computational power of a quantum phase?
- Does a quantum phase transition change such comp. power?

→ Our answer: if QPT yields degeneracy from edge states
⇒ the long-range order of these boundary states gives phase a greater quantum computational power
Computational power

- Divide system into two subsystems A & B

- Consider only Local Operations & Classical Communications (LOCC) with respect to (A|B)

Question:

Can an adiabatic evolution be rendered through LOCC?

- If Yes, no advantage from quantum manipulation

- If Not, more powerful quantum phase!
Consider a pure ground state and bi-partition \((A|B)\).

If system wave-function:

\[
|\Psi^{A,B}\rangle = |\Psi^A\rangle \otimes |\Psi^B\rangle \quad \rightarrow \text{No Entanglement}
\]

\[
|\Psi^{A,B}\rangle = \sum_{j=1}^{D} \sqrt{\lambda_j} |\Psi^A_j\rangle \otimes |\Psi^B_j\rangle \quad \rightarrow \text{Entangled}
\]

(with \(D > 1, |\Psi^A_j\rangle \& |\Psi^B_j\rangle \text{ linearly independent}):

Entangled: Measurements on \(B\) affect \(A\)
Von Neumann & Renyi Entropies

\[|\Psi^{A,B}\rangle = \sum_{j=1}^{d} \sqrt{\lambda_j} |\Psi^A_J \rangle \otimes |\Psi^B_J \rangle \]

\[\rho_A = \text{tr}_B |\Psi^{A,B}\rangle \langle \Psi^{A,B}| = \sum \lambda_j |\Psi^A_J \rangle \langle \Psi^A_J| \]

- **Von Neumann** (Quantum analog of Shannon Entropy):

\[S = -\text{tr}_A (\rho_A \log \rho_A) = - \sum \lambda_j \log \lambda_j \]

- **Renyi Entropy \rightarrow Entanglement spectrum**

\[S_\alpha = \frac{1}{1-\alpha} \log \text{tr} (\rho_A^\alpha) = \frac{1}{1-\alpha} \log \sum_j \lambda_j^\alpha \]

(equal to Von Neumann for \(\alpha \rightarrow 1 \))
• Consider bi-partite states \((A \mid B)\): \(|\Psi_{A,B}\rangle \& |\Phi_{A,B}\rangle\)

• **Entanglement cannot increase** under Local Operations &

 Classical Communications (LOCC)

\[\Rightarrow \text{ if } S_\alpha ([\Phi]) < S_\alpha ([\Psi]) \quad \forall \alpha \]

\(|\Psi_{A,B}\rangle \text{ can be converted to } |\Phi_{A,B}\rangle \text{ but not vice-versa!} \]

(Depends upon partition choice!)

• **A state can only be converted to one of lower entanglement**

 S. Turgut JPA (2007)
Local Convertibility

- Take two bipartite states: $|\Psi_{A,B}\rangle \& |\Phi_{A,B}\rangle$

- If $\exists \alpha_1$ such that $S_{\alpha_1} ([\Phi]) < S_{\alpha_1} ([\Psi]) \&$
 $\exists \alpha_2$ such that $S_{\alpha_2} ([\Phi]) > S_{\alpha_2} ([\Psi])$

\Rightarrow the two states cannot be transferred locally (by LOCC) one into the other
Local Convertibility & Adiabatic Evolution

- Adiabatic evolution: $|\Psi_{A,B}\rangle$ ground state of $H(g)$ and $|\Phi_{A,B}\rangle$ ground state of $H(g + \Delta g)$

• Study Renyi entropy derivative w.r.t g as function of α

$S_\alpha(g)$ monotonous

$S_\alpha(g)$ non-monotonous

• Study Renyi entropy derivative w.r.t g as function of α

→ Differential Local Convertibility
Adiabatic evolution: Renyi entropy of instantaneous ground state of Hamiltonian $H(g)$ as function of g and α

If $\frac{dS_\alpha}{dg}$ changes sign as α varies

\Rightarrow LOCC cannot simulate evolution

Sign of entropy derivative

distinguishes computational power of different phases
• Naively, we expect all entanglement entropies to increase with the correlation length

\[|\Psi^{A,B}\rangle = \sum_{j=1}^{d} \sqrt{\lambda_j} |\Psi_j^A\rangle \otimes |\Psi_j^B\rangle \quad \Rightarrow \quad \rho_A = \sum \lambda_j |\Psi_j^A\rangle \langle \Psi_j^A| \]

\[S_{\alpha} = \frac{1}{1-\alpha} \log \text{tr} (\rho_A^{\alpha}) = \frac{1}{1-\alpha} \log \sum \lambda_j^{\alpha} \]

• Approaching a QPT, scale invariance require more eigenvalues to contribute equally:

\[\text{Tr} \rho_A = \sum_{j=1}^{D} \lambda_j = 1 , \quad \Rightarrow \quad \lambda_j \approx \frac{1}{D} \]
Quantum phases with differing computational power

Jian Cui1,2, Mile Gu2, Leong Chuan Kwek2,3, Marcelo França Santos4, Heng Fan1 & Vlatko Vedral2,5,6

1Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China. 2Centre for Quantum Technologies, National University of Singapore, 3 Science Drive 2, Singapore 117543, Singapore. 3National Institute of Education and Institute of Advanced Studies, Nanyang Technological University, 1 Nanyang Walk, Singapore 637616, Singapore. 4Departamento de Física, Universidade Federal de Minas Gerais, Belo Horizonte, Caixa Postal 702, 30123-970 Minas Gerais, Brazil. 5Department of Atomic and Laser Physics, Clarendon Laboratory, University of Oxford, Parks Road, Oxford OX13PU, UK. 6Department of Physics, National University of Singapore, 3 Science Drive 2, Singapore 117543, Singapore. Correspondence and requests for materials should be addressed to J.C. (email: cuijian@iphy.ac.cn).
Numerical Results

\[H_I = - \sum_{j=1}^{N} \left(\sigma_j^x \sigma_{j+1}^x + g \sigma_j^z \right) \]

- Ising model for \(N=12 \) and bipartitions \((6|6), (7|5), (8|4)\)
- Sign of entropy derivative:
 Blue = Negative; Red = Positive
- Ferromagnetic phase more powerful for adiabatic quantum computation!
- Not true for large subsystems!
Local Convertibility & Topological Order

Entanglement and Quantum Computation in Ising Chain

Local characterization of one-dimensional topologically ordered states

Jian Cui,1,2 Luigi Amico,3,4 Heng Fan,1 Mile Gu,4,5 Alioscia Hamma,5,6 and Vlatko Vedral4,7,8

• Cluster Ising Model:

\[H(g) = -\sum_{j=1}^{N} \sigma_j^x \sigma_{j+1}^x + g \sum_{j=1}^{N} \sigma_j^y \sigma_{j+1}^y \]

(50|50)

(48|3|49)

Fabio Franchini
Local Convertibility & Topological Order

PHYSICAL REVIEW B 88, 125117 (2013)

Local characterization of one-dimensional topologically ordered states

Jian Cui,1,2 Luigi Amico,3,4 Heng Fan,1 Mile Gu,4,5 Alioscia Hamma,5,6 and Vlatko Vedral4,7,8

• The λ-D Model:

$$H = \sum_i \left[(S_i^x S_{i+1}^x + S_i^y S_{i+1}^y) + \lambda S_i^z S_{i+1}^z + D(S_i^z)^2 \right]$$

(a1) (a2) (a3) (a4) (b1) (b2) (b3) (b4)

(50|50) (96|4)
Local Convertibility & Topological Order

Local Response of Topological Order to an External Perturbation

Alessia Hamma
Center for Quantum Information, Institute for Interdisciplinary Information Sciences, Tsinghua University, Beijing 100084, P.R. China and Perimeter Institute for Theoretical Physics, 31 Caroline Street N, N2L 2Y5 Waterloo, Ontario, Canada

Lukasz Cincio
Perimeter Institute for Theoretical Physics, 31 Caroline Street N, N2L 2Y5 Waterloo, Ontario, Canada

Siddhartha Santra and Paolo Zanardi
Department of Physics and Astronomy and Center for Quantum Information Science and Technology, University of Southern California, Los Angeles, California 90089-0484, USA

Luigi Amico
CNR-MATIS-IMM and Dipartimento di Fisica e Astronomia Universita di Catania, C/O ed. 10, viale A. Doria 6, 95125 Catania, Italy and Perimeter Institute for Theoretical Physics, 31 Caroline Street N, N2L 2Y5 Waterloo, Ontario, Canada

(Received 24 December 2012; revised manuscript received 16 March 2013; published 21 May 2013)

• Perturbed 2-D Toric Code:

$$\mathcal{H} = -\sum_s \prod_i \sigma_i^x - \sum_p \prod_i \sigma_i^z + V(\lambda)$$

<table>
<thead>
<tr>
<th>Perturbation $V(\lambda)$</th>
<th>G.I.</th>
<th>DLC</th>
<th>Exact</th>
<th>ξ</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\sum_s e^{-\lambda_s \sum_i \sigma_i^z}$</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>0</td>
</tr>
<tr>
<td>$\lambda_h \sum_{i \in H} \sigma_i^z$</td>
<td>✓</td>
<td>×</td>
<td>✓</td>
<td>$\neq 0$</td>
</tr>
<tr>
<td>$\lambda_z \sum_i \sigma_i^z$</td>
<td>✓</td>
<td>×</td>
<td>×</td>
<td>$\neq 0$</td>
</tr>
<tr>
<td>$\lambda_z \sum_i \sigma_i^z + \lambda_x \sum_j \sigma_j^z$</td>
<td>×</td>
<td>×</td>
<td>×</td>
<td>$\neq 0$</td>
</tr>
</tbody>
</table>
The Quantum Ising Chain

\[H_I = - \sum_{j=1}^{N} \left(t \sigma_j^x \sigma_{j+1}^x + h \sigma_j^z \right) \]

\[H_I = \sum_q \varepsilon_q \left(\chi_q^\dagger \chi_q - \frac{1}{2} \right), \quad \varepsilon_q = \sqrt{t^2 + h^2 - 2ht \cos q} \]

\[
\begin{cases}
 h/t > 1 \rightarrow \langle \sigma^x \rangle = 0 & \text{Paramagnetic phase} \\
 h/t < 1 \rightarrow \langle \sigma^x \rangle \neq 0 & \text{Ferromagnetic phase} \\
 h/t = 1 & \text{Ising QPT: } c=1/2
\end{cases}
\]
Kitaev Chain

\[H_I = -\sum_{j=1}^{N} \left(t \sigma_j^x \sigma_{j+1}^x + h \sigma_j^z \right) = -\sum_{j=1}^{N} \left(t f_j^{(2)} f_{j+1}^{(1)} + h f_j^{(1)} f_j^{(2)} \right) \]

Majorana Fermion \(f_j^{(1)} = \sigma_j^x \prod_{l<j} \sigma_l^z \)

Majorana Fermion \(f_j^{(2)} = \sigma_j^y \prod_{l<j} \sigma_l^z \)

For large \(h/t \):

\[c_j = f_j^{(1)} + i f_j^{(2)} \]

For small \(h/t \):

\[c_j = f_{j+1}^{(1)} + i f_j^{(2)} \]

Entanglement and Quantum Computation in Ising Chain

Fabio Franchini
Edge States

\[H_I = - \sum_{j=1}^{N} \left(t \sigma_j^x \sigma_{j+1}^x + h \sigma_j^z \right) \]

\[= - \sum_{j=1}^{N} \left(t f_j^{(2)} f_{j+1}^{(1)} + h f_j^{(1)} f_{j+1}^{(2)} \right) \]

\[
\frac{h}{t} > 1 \quad \text{subsystem B} \quad \boxed{\text{subsystem A}} \quad \text{subsystem B}
\]

\[
\frac{h}{t} < 1 \quad \text{subsystem B} \quad \boxed{\text{subsystem A}} \quad \text{subsystem B}
\]
• Edge states combined into a complex fermion:
 occupied/empty ⇒ two-fold degeneracy

→ Long-range entanglement among edge states

• Edge states also generated by partitioning

• Grow closer as correlation length increases
EPR Analogy

\[S = 0 \]

\[S = \ln 2 \]

\[0 < S < \ln 2 \]

- Approaching the QPT, edge states effectively grow closer

\[|0\rangle \]

\[|\uparrow \downarrow\rangle - |\downarrow \uparrow\rangle \]

\[j \# \rangle \]

\[\text{their entanglement can decrease} \]

(while bulk states entanglement increases)
Conclusions

• Entanglement derivative to study non-local convertibility

• Local way of detecting long-range entanglement!

• Edge state recombination explains it

• Approaching a QPT:
 1. Correlation length increases
 2. Bulk states entanglement increases
 3. Edge states entanglement decreases

• Universal quantum simulator cannot be locally convertible

Thank you!
• Certain problems too complex for classical computers: factorization, searches, simulation of quantum systems...

• Quantum algorithms give exponential speed-up, but implementation of quantum computers is hard

• Quantum systems as computers

→ Universal quantum simulator
Quantum Adiabatic Algorithm

- Ground state of H_I is the output of given problem
- Start from ground state of easy Hamiltonian H_0
- Adiabatically evolved it to desire state

$$H(t) = \left(1 - \frac{t}{T} \right) H_0 + \frac{t}{T} H_I$$

- If velocity sufficiently small ($T \ll \Delta_{\text{min}}^{-2}$), system stays in instantaneous ground state
Computational power

• Any efficient quantum algorithm can be casted as a Quantum Adiabatic Algorithm

• Adiabatic evolution performs quantum computation

 → computational power of a quantum phase

• How to extract this computational power

 → Entanglement!
Entropy as a measure of entanglement

- Assume Bell State as unity of Entanglement:

\[|\text{Bell}\rangle = \frac{|\downarrow \downarrow\rangle \pm |\uparrow \uparrow\rangle}{\sqrt{2}} , \frac{|\downarrow \uparrow\rangle \pm |\downarrow \uparrow\rangle}{\sqrt{2}} \]

- Von Neumann Entropy measures how many Bell-Pairs can be distilled using LOCC from a given state \(|\Psi^{A,B}\rangle\) (i.e. closeness of state to maximally entangled one)

What can entanglement entropy teach us about a system?
\[H_I = -\sum_{j=1}^{N} \left(t \sigma_j^x \sigma_{j+1}^x + h \sigma_j^z \right) \]

- Ising model: prototype of \mathbb{Z}_2 symmetry
- Realized non-locally: string order parameter:
 \[\mu_N^x = \prod_{j=1}^{N} \sigma_j^z \]
- Eigenstates with \mathbb{Z}_2 symmetry: \(\langle \sigma^x \rangle = 0 \) \text{ → thermal ground state}
- Symmetry broken states: \(\langle \sigma^x \rangle \neq 0 \)
Entanglement

\[|0\rangle = \sum_{\kappa=1}^{2^L} \sqrt{\lambda_\kappa} |\Psi^A_\kappa\rangle \otimes |\Psi^B_\kappa\rangle \]

\[S_\alpha = \frac{1}{1 - \alpha} \log \sum_\kappa \lambda_\kappa^\alpha \]

- **Quadratic Theory:** Block eigenstates from block excitations

\[|\Psi^A_\kappa\rangle = |n_1, n_2, \ldots, n_L\rangle, \quad n_l = 0, 1 \]

\[\lambda_\kappa = |\langle \Psi^A_\kappa |0\rangle|^2 = \prod_{j=1}^{L} \langle 0|n_j\rangle \langle n_j|0\rangle \]

- Measure overlap of block excitations with G.S.:

Whole system excitations:

\[c_j, c_j^\dagger \rightarrow c_j |0\rangle = 0 \]

Block excitation:

\[\tilde{c}_l, \tilde{c}_l^\dagger \rightarrow \tilde{c}_j |0\rangle \neq 0 \]
Entanglement

\[|0\rangle = \sum_{\kappa=1}^{2^L} \sqrt{\lambda_\kappa} |\Psi_\kappa^A\rangle \otimes |\Psi_\kappa^B\rangle \]

\[S_\alpha = \frac{1}{1 - \alpha} \log \sum_{\kappa} \lambda_\kappa^\alpha \]

- **Block excitations from correlation matrix:**

 \[\langle f_k^{(a)} f_j^{(b)} \rangle = \delta_{j,k} \delta_{a,b} + i (B_L)^{(a,b)}_{(j,k)} \]

 \[\langle 0|0_j\rangle \langle 0_j|0 \rangle = \langle 0|\tilde{c}_j \tilde{c}_j^\dagger |0 \rangle = \frac{1 + \nu_j}{2} \]

 \[\langle 0|1_j\rangle \langle 1_j|0 \rangle = \langle 0|\tilde{c}_j^\dagger \tilde{c}_j |0 \rangle = \frac{1 - \nu_j}{2} \]

\[\lambda_\kappa = \prod_{j=1}^{L} \langle 0|n_j\rangle \langle n_j|0 \rangle = \prod_{j=1}^{L} \left(\frac{1 \pm \nu_j}{2} \right) \]

Overlap between block excitations and ground state
Correlation Matrix Eigenvalues

\[\langle f_k^{(a)} f_j^{(b)} \rangle = \delta_{j,k} \delta_{a,b} + i (B_L)^{(a,b)}_{(j,k)} \]

- One edge state for \(h < 1 \): partial overlap
- Approaching QPT: bulk states overlap decreases, edge states overlap increases (edge state recombination)

\[\langle 0 | d_j d_j^\dagger | 0 \rangle = \frac{1 + \nu_j}{2} \]
\[\langle 0 | d_j^\dagger d_j | 0 \rangle = \frac{1 - \nu_j}{2} \]
2-Sites Block Entanglement

- Lack of **local convertibility** due to edge state recombination
- 2-sites classical gates destroy long-range correlations!
Large Block Entanglement

- For $L \to \infty$ we have **full analytical knowledge of entanglement (spectrum)**: Its & al. (2005); F.F. & al. (2008); F.F & al. (2011)
- For $h/t < 1$ edge states give **double degeneracy**
- **Local convertibility restored!**
- **Numerics confirm**
Symmetry broken Ground State

- So far, ground state as eigenstate of $\mathbb{Z}_2 : \mu_N^x = \prod_{j=1}^{N} \sigma_j^z$

- For $h < 1, \langle \sigma^x \rangle \neq 0$: symmetry broken state
 → no edge states → locally convertible!

- No analytical approaches, just numerics

$Z_2 : \mu_N^x = \prod_{j=1}^{N} \sigma_j^z$

$Z_2 : \mu_N^x = \prod_{j=1}^{N} \sigma_j^z$

$Z_2 : \mu_N^x = \prod_{j=1}^{N} \sigma_j^z$
Conclusions

• Non-local convertibility from entanglement derivative

• Local way of detecting long-range entanglement!

• Edge state recombination explains it

• Approaching a QPT:
 1. Correlation length increases
 2. Bulk states entanglement increases
 3. Edge states entanglement decreases

• Universal quantum simulator cannot be locally convertible

Thank you!
Entanglement Spectrum

First few eigenvalues of the reduced density matrix (multiplicities not shown)

Finite Size Numerical results

Theromodynamic Limit Analytical results
• Entropy depends on single parameter ε

• ε vanishes at phase transitions, large in gapped phase

• Microscopics of the model through $\varepsilon(k)$

\[
\langle \sigma^x \rangle = 0 \quad \text{(2)} \quad \Gamma_i
\]

\[
\langle \sigma^x \rangle \neq 0 \quad \text{(1a)} \quad \Omega_o
\]

\[
\text{h} > 1 : \quad k = \frac{\gamma}{\sqrt{h^2 + \gamma^2 + 1}} \rightarrow \frac{dk}{dh} < 0
\]

\[
\text{h} < 1 : \quad k = \frac{\sqrt{h^2 + \gamma^2 + 1}}{\gamma} \rightarrow \frac{dk}{dh} > 0
\]
Entanglement Derivative

$\frac{dS_R}{dk}$

Paramagnetic Phase

$\times \frac{dk}{dh} < 0$

Ferromagnetic Phase

$\times \frac{dk}{dh} > 0$

Entanglement and Quantum Computation in Ising Chain

Fabio Franchini
L-spins subsystem

- Diagonalize $L \times L$ Hankel matrix:

$$\tilde{B} = \begin{pmatrix} g_{L-1} & g_{L-2} & \cdots & g_0 \\ g_{L-2} & g_{L-3} & \cdots & g_{-1} \\ \vdots & \ddots & \vdots & \vdots \\ g_0 & g_{-1} & \cdots & g_{1-L} \end{pmatrix}, \quad g_j \equiv \frac{1}{2\pi} \int_{0}^{2\pi} e^{ij\theta} \frac{\cos \theta - h + i\gamma \sin \theta}{\sqrt{(\cos \theta - h)^2 + \gamma^2 \sin^2 \theta}} \, d\theta$$

- Use L eigenvalues λ_j to compute Renyi entropy as sum of entropies of 2-levels systems:

$$S(\alpha) = \frac{1}{1-\alpha} \sum_{l=1}^{L} \ln \left[\left(\frac{1 + \lambda_l}{2} \right)^\alpha + \left(\frac{1 - \lambda_l}{2} \right)^\alpha \right]$$

$$dS(\alpha) = \frac{\alpha}{1-\alpha} \sum_{l=1}^{L} \frac{(1 + \lambda_l)^{\alpha-1} - (1 - \lambda_l)^{\alpha-1}}{(1 + \lambda_l)^\alpha + (1 - \lambda_l)^\alpha} \, d\lambda_l$$
2-spins subsystem: Ising line

- Entropy derivative vanishes in ferromagnetic phase!
 \[\Rightarrow \text{ the two phases have different computation power!} \]
- Role of Majorana edge states?