
SYMMETRY BREAKING TERM: DOUBLE WELL CASE 
 

• Introduce an explicit symmetry breaking term 

• Want to favor alignment of the eigenvectors of M along those of the given Hermitian matrix S 

• Most natural choice:  (but too complicated to handle) 

• We use 

 

 

• Double well case: S with two sets of N/2 degenerate eigevanlues 

• Study the generating function 

 

 

• To calculate the order parameter: 

 
 

 
• Remark: order parameter vanishes for symmetry broken 

⇒   U(N) symmetry broken into U(N/2) x U(N/2) 
 

• Corrections to SSB as : contributions from          

    instantons exchanging two eigenvalues between the wells  

 →   instantons progressively restore the broken symmetries,               
  but are suppressed for large N (and large distances) 
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INTRODUCTION 
 

• Base invariant matrix models: 

 
 

• Eigenvector distribution independent from weight 

 ⇒ Uniform eigenvector distribution 

 ⇒ Delocalized phases, Porter-Thomas Distribution 

 
• Localization by non-invariant ensembles (Banded Matrices) 

 
 

   Localized 
 

   Critical (multi-fractal) 
 

• But limited tractability (numerics or perturbative regimes) 

 

 

 

 

 

 

• Like for a ferromagnet, base invariance means that no 
direction over the N-dimensional unit sphere of the Hilbert 
space is preferred, but a gap in the eigenvalue distribution 
freezes the motion of eigenvectors in certain directions 

 ⇒  U(N) SSB breaks ergodicity 

DOUBLE WELL MATRIX MODELS 
 

 

 

• Disjoint (two-cuts) support of eigenvalue distribution      
for 

• Half of eigenvalues around    
each minima                       

(assume N even) 

• U(N) symmetry broken      
into U(N/2) x U(N/2) 
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CONCLUSIONS  & OUTLOOK 
 

• A gap in the eigenvalue distribution induces a spontaneous breaking of U(N) symmetry 

• 3 arguments provided: 

 
 

• Eigenvectors corresponding to distant eigenvalues cannot mix: breaking of ergodicity in invariant matrix models 

• At finite N: suppression of off-diagonal block of unitary matrices/suppression of spillage of eigenvectors out of localization basin 

• Applications:  
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Can a non-trivial (non Wigner-Dyson) 

eigenvalue distribution trigger          

a spontaneous breaking of           

U(N) symmetry and lead to  

(partially) localized eigenstates? 

GENERAL CONSIDERATIONS 
 

• The de Haar measure not flat in eigenvalue-eigenvector coordinates 

 

 

• If two eigenvalues are distant, even a small angular change can 

produce a large 

• Dyson Brownian motion representation 

 

 

• If two sets of eigenvalues are separated by a gap of the order of 

unity, the evolution of the eigenvectors toward the subspace 

spanned by eigenvectors belonging to the distant eigenvalues is 

suppressed 

⇒   eigenvectors cannot spread ergodically         

 over the whole Hilbert space 
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EFFECT OF A SMALL PERTURBATION: 
THE DOUBLE WELL CASE 

 

• How do eigenvectors respond to a perturbation? 

 

 

 
• We study the perturbed  

eigenvectors  

in the basis  

where M is diagonal 

• Block structure ⇒  SSB 
 

• Diagonal and Off-diagonal elements follow two different 

distributions 

 

 

 

 

 

 

 

 

 

• Overlap between eigenstates: 

 

 

 

 

 

 

 

• Off-diagonal blocks suppressed by a power of N:            

in the thermodynamic limit the eigenvectors are localized over a 

N/2-dimensional sphere  
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TECHNICAL ASPECTS 
 

• Itzykson-Zuber formula to integrate over U(N) 

 

 
 

 

• With degeneracies needs to be regularized 

• Double well case:               

B has two sets of N/2 degenerate eigenvalues 

 

 

 

 

 

 

• Sum over assignments of eigenvalues of A into 
two sets →  reduced Van der Monde!   
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ABSTRACT 
 

Matrix Models have a strong history of success in 
describing a variety of situations, from nuclei spectra 
to conduction in mesoscopic systems, from strongly 
interacting systems to various aspects of mathematical 
physics. Traditionally, the requirement of base 
invariance has lead to a factorization of the eigenvalue 
and eigenvector distribution and, in turn, to the 
conclusion that invariant models describe extended 
systems. I  show that deviations of the eigenvalue 
statistics from the Wigner-Dyson universality (in the 
form of a gap) reflects itself on the eigenvector 
distribution and that the phase transition observed 
when the eigenvalue density become disconnected 
corresponds to a breaking of the U(N) symmetry to a 
smaller one. This spontaneous symmetry breaking means 
that the system looses ergodicity, with implications on 
localization problems, as well as for fundamental 
theories 
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 Plausibility by geometric reasoning, 
 Explicit analytical construction with symmetry breaking term,  
 Numerical experiment to study finite size behavior. 

 Characterization of critical behavior at the birth of a cut as a phase transition to lower symmetry 
 Invariant Matrix models to describe Anderson Metal/Insulator transition (Weakly Confined Matrix Models) 
Overlaps and IPR alone cannot detect localization: new approach based on response to perturbation   
Matrix models from localization limit of string theories (ABJM): new SSB mechanism for fundamental physics 

and holographic applications (AdS/CFT, AdS/CMT, QGP…) 
Opens matrix models techniques to the study of a whole new set of problems related to eigenvectors 

Distribution of diagonal and o®-diagonal
elements of a typical unitary matrix
(¢M has N £ n non-zero elements,

with N = 1000, n = 150; t = 4)

Log-log plot of the ¯nite size behavior for di®erent quantities,
averaged over several realizations of the applied perturbation:

notice the remarkable aggreement with the analytical expectations
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