

Massachusetts Institute of

Spontaneous Breaking of U(N) Symmetry in Invariant Matrix Models Fabio Franchini

SISSA and I.N.F.N, Via Bonomea 265, 34136, Trieste, Italy, e-mail: ffranchi@sissa.it Center for Theoretical Physics, Massachusetts Institute of Technology, Cambridge, MA 02139, U.S.A

ABSTRACT

Matrix Models have a strong history of success in describing a variety of situations, from nuclei spectra to conduction in mesoscopic systems, from strongly interacting systems to various aspects of mathematical physics. Traditionally, the requirement of base invariance has lead to a factorization of the eigenvalue and eigenvector distribution and, in turn, to the conclusion that invariant models describe extended systems. I show that deviations of the eigenvalue statistics from the Wigner-Dyson universality (in the form of a gap) reflects itself on the eigenvector distribution and that the phase transition observed when the eigenvalue density become disconnected corresponds to a breaking of the U(N) symmetry to a smaller one. This spontaneous symmetry breaking means that the system looses ergodicity, with implications on localization problems, as well as for fundamental theories

INTRODUCTION

- Base invariant matrix models: $d\mu \left(\mathbf{M}\right) = e^{-N \operatorname{Tr} V(\mathbf{M})} d\mathbf{M} = e^{-N \sum_{j} V(\lambda_{j})} \prod d\lambda_{j} d\mathbf{U}$
- Eigenvector distribution independent from weight V(x)
- \Rightarrow Uniform eigenvector distribution
- ⇒ Delocalized phases, Porter-Thomas Distribution
 - $\mathcal{P}\left(\left|U_{ij}\right|^{2}
 ight) = N \exp\left[-N \left|U_{ij}\right|^{2}
 ight]$
- Localization by non-invariant ensembles (Banded Matrices) $d\mu(\mathbf{M}) \propto e^{-\sum_{j,l} A_{jl} |M_{jl}|^2} \Rightarrow \langle M_{nm}^2 \rangle = A_{nm}^{-1}$ $\succ A_{nm} = \mathrm{e}^{|n-m|/B|}$
 - Localized (Fyodorov & Mirlin, PRL '91)

GENERAL CONSIDERATIONS

- The de Haar measure not flat in eigenvalue-eigenvector coordinates $ds^2 = \operatorname{Tr} (dM)^2$ $= \sum_{i=1}^{N} (d\lambda_j)^2 + 2\sum_{i>l}^{N} (\lambda_j - \lambda_l)^2 \left| \left(\mathbf{U}^{\dagger} d\mathbf{U} \right)_{jl} \right|^2$
- If two eigenvalues are distant, even a small angular change can produce a large ds

Delta-Correlated, independent, stochastic sources

Dyson Brownian motion representation

 $d\lambda_j = -\frac{dV(\lambda_j)}{d\lambda_j} dt + \frac{\beta}{2N} \sum_{l \neq j} \frac{dt}{\lambda_j - \lambda_l} + \frac{1}{\sqrt{N}} dB_j$ $d\vec{\psi}_j = -\frac{1}{2N} \sum_{l \neq j} \frac{dt}{(\lambda_j - \lambda_l)^2} \vec{\psi}_j + \frac{1}{\sqrt{N}} \sum_{l \neq j} \frac{dW_{jl}}{\lambda_j - \lambda_l} \vec{\psi}_l$

• If two sets of eigenvalues are separated by a gap of the order of

DOUBLE WELL MATRIX MODELS

 $V_{2W}(x) = \frac{1}{4}x^4 - \frac{t}{2}x^2$

- Disjoint (two-cuts) support of eigenvalue distribution for t>2
- Half of eigenvalues around each minima $\pm t$ (assume N even)
- U(N) symmetry broken into $U(N/2) \times U(N/2)$

Critical (multi-fractal) (Evers & Mirlin, PRL '00)

But limited tractability (numerics or perturbative regimes)

Can a non-trivial (non Wigner-Dyson) eigenvalue distribution trigger a spontaneous breaking of U(N) symmetry and lead to (partially) localized eigenstates?

Like for a ferromagnet, base invariance means that no direction over the N-dimensional unit sphere of the Hilbert space is preferred, but a gap in the eigenvalue distribution freezes the motion of eigenvectors in certain directions

 \Rightarrow U(N) SSB breaks ergodicity

unity, the evolution of the eigenvectors toward the subspace spanned by eigenvectors belonging to the distant eigenvalues is suppressed

 \Rightarrow eigenvectors cannot spread ergodically over the whole Hilbert space

EFFECT OF A SMALL PERTURBATION: THE DOUBLE WELL CASE

How do eigenvectors respond to a perturbation? $\mathbf{M} = \mathbf{U}^{\dagger} \mathbf{\Lambda} \mathbf{U}$ $ilde{\mathbf{U}}=\mathbf{U}'\mathbf{U}^{\dagger}$ $\mathbf{M} + \mathbf{\Delta}\mathbf{M} = \mathbf{U}'^\dagger \mathbf{\Lambda}' \mathbf{U}'$ Order N non-zero elements independently sampled from a Gaussian distribution (mean 0 , width \sqrt{N})

- We study the perturbed eigenvectors in the basis
 - where \mathbf{M} is diagonal
- 0.037 0.028 0.019 9.×10⁻³ Block structure \Rightarrow SSB 1.×10⁻³ Diagonal and Off-diagonal elements follow two different distributions **Diagonal Blocks** $\chi_{\rm D} = \frac{N}{2}$ ³⁰⁰ - Numerics ----- Analitics $\mathcal{P}\left(\left|U_{ij}\right|^{2}\right) = \chi e^{-\chi |U_{ij}|^{2}}$ 0.006 0.002 0.004 **Off** – Diagonal Blocks $\chi_{\rm OD} = \frac{2tN^2}{n} \quad 20\,000$ - Numerics ----- Analitics 0.00004 0.00006 0.00008 0.00002 Distribution of diagonal and off-diagonal elements of a typical unitary matrix $(\Delta \mathbf{M} \text{ has } N \times n \text{ non-zero elements},$ with N = 1000, n = 150; t = 4) • Overlap between eigenstates: $O_{jl} = \sum_{m}^{N} \left| \tilde{U}_{mj} \right|^2 \left| \tilde{U}_{ml} \right|^2$

SYMMETRY BREAKING TERM: DOUBLE WELL CASE

2

- Introduce an explicit symmetry breaking term
- \cdot Want to favor alignment of the eigenvectors of ${f M}$ along those of the given Hermitian matrix ${f S}$

t = 4

-1

-2

• Most natural choice: $V_{
m br}={
m Tr}\left(\left[{f M},{f S}
ight]
ight)^2$ (but too complicated to handle) $\mathbf{M}=\mathbf{U}^{\dagger}\mathbf{\Lambda}\mathbf{U}$ • We use

- $\mathbf{S}=\mathbf{V}^{\dagger}\mathbf{T}\mathbf{V}$ $d\mu(\mathbf{M}) \propto e^{-N \mathrm{Tr} \left[V_{2\mathrm{W}}(\mathbf{M}) + J | \mathbf{\Lambda} \, \mathbf{T} - \mathbf{M} \, \mathbf{S} |
 ight]}$
- Double well case: S with two sets of N/2 degenerate eigevanlues $\pm au$
- Study the generating function $W(J) = \ln \int d\mathbf{M} e^{-N \operatorname{Tr} \left[V_{2W}(\mathbf{M}) + J |\mathbf{\Lambda} \mathbf{T} - \mathbf{M} \mathbf{S}| \right]}$

• To calculate the order parameter:

 $\left. \frac{dW(J)}{dJ} \right|_{J=0} = \langle \mathbf{\Lambda} \, \mathbf{T} - \mathbf{M} \, \mathbf{S} \rangle$

$$\lim_{N \to \infty} \lim_{J \to 0} \frac{dW}{dJ} \neq 0$$
$$\lim_{J \to 0} \lim_{N \to \infty} \frac{dW}{dJ} = 0$$

- Remark: order parameter vanishes for symmetry broken
- \Rightarrow U(N) symmetry broken into U(N/2) x U(N/2)

• Corrections to SSB as $e^{-N J \left|\lambda_j^{(1)} - \lambda_l^{(2)}\right|}$: contributions from

- instantons exchanging two eigenvalues between the wells
- \rightarrow instantons progressively restore the broken symmetries,

TECHNICAL ASPECTS

• Itzykson-Zuber formula to integrate over U(N) $1 \downarrow [a;b_1]$

$$\mathcal{Z} = \int d\mathbf{U} e^{\mathrm{Tr}\mathbf{A}\mathbf{U}\mathbf{B}\mathbf{U}^{\dagger}} = \frac{\det\left[e^{a_{j}o_{l}}\right]}{\Delta(\{a\})\Delta(\{b\})} ,$$
$$\Delta(\{a\}) = \prod_{j < l} (a_{j} - a_{l})$$

With degeneracies needs to be regularized

• Double well case:

B has two sets of N/2 degenerate eigenvalues $\pm b$ $\mathcal{Z} = \frac{\det \begin{bmatrix} a_l^{j-1} e^{b a_l} \\ a_l^{j-1} e^{-b a_l} \end{bmatrix}}{\left[\begin{array}{c} a_l^{j-1} e^{b a_l} \\ a_l^{j-1} e^{-b a_l} \end{bmatrix}} \right]$ $(2b)^{N^2/4} \left(\prod_{n=1}^{N/2-1} n!\right)^2 \Delta(\{a\})$ $= \frac{\sum_{\alpha,\alpha'=a} e^{b \sum (\alpha_j - \alpha'_j)} \Delta(\{\alpha\}) \Delta(\{\alpha'\})}{(2b)^{N^2/4} \left(\prod_{n=1}^{N/2 - 1} n!\right)^2 \Delta(\{a\})}$

• Sum over assignments of eigenvalues of \mathbf{A} into two sets \rightarrow reduced Van der Monde!

but are suppressed for large N (and large distances)

CONCLUSIONS & OUTLOOK

• A gap in the eigenvalue distribution induces a spontaneous breaking of U(N) symmetry

• 3 arguments provided:

Explicit analytical construction with symmetry breaking term,

✓ Numerical experiment to study finite size behavior.

• Eigenvectors corresponding to distant eigenvalues cannot mix: breaking of ergodicity in invariant matrix models

• At finite N: suppression of off-diagonal block of unitary matrices/suppression of spillage of eigenvectors out of localization basin

• Applications:
Characterization of critical behavior at the birth of a cut as a phase transition to lower symmetry

□ Invariant Matrix models to describe Anderson Metal/Insulator transition (Weakly Confined Matrix Models)

- Overlaps and IPR alone cannot detect localization: new approach based on response to perturbation
- □ Matrix models from localization limit of string theories (ABJM): new SSB mechanism for fundamental physics and holographic applications (AdS/CFT, AdS/CMT, QGP...)

• Opens matrix models techniques to the study of a whole new set of problems related to eigenvectors

 Log-log^{500} plot of the finite size behavior for different quantities, averaged over several realizations of the applied perturbation: notice the remarkable aggreement with the analytical expectations

Off-diagonal blocks suppressed by a power of N:

in the thermodynamic limit the eigenvectors are localized over a N/2-dimensional sphere

Work supported by a Marie Curie International Outgoing Fellowship within the 7th European Community Framework Programme (FP7/2007-2013) under the grant PIOF-PHY-276093.