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SUMMARY

Small scale experiments are invented to analyze several aspects of in-
stability and bifurcation occurring in structures and within materials.

Photoelasticity is employed to analyze the localization of stress in or-
dered granular materials and near stiff and thin inclusions embedded in
an elastic matrix.

Prototypes have been designed and realized of elastic structures ev-
idencing buckling under tensile dead loading and flutter and divergence
instabilities as related to dry friction.

All the experiments have been performed at the Laboratory for Phys-
ical Modeling of Structures and Photoelasticity of the Department of Me-
chanical and Structural Engineering of the University of Trento.

Trento, March 25, 2011

Giovanni Noselli
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2.2 A résumé of experimental results . . . . . . . . . . . . . . . 21

2.3 Interpretation of experimental results . . . . . . . . . . . . . 24

xi



i
i

“thesis noselli” — 2011/4/24 — 11:25 — page xii — #12 i
i

i
i

i
i

Contents

2.3.1 Micromechanics: masonry as a discrete structure
with random contacts between bricks . . . . . . . . . 24

2.3.2 Masonry as a continuous material with extreme or-
thotropy . . . . . . . . . . . . . . . . . . . . . . . . . 28

2.4 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

A Micromechanical model for thick joints . . . . . . . . . . . . 35

3 The stress intensity near a stiffener disclosed by photoe-
lasticity 37

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

3.2 Non-linear photoelasticity . . . . . . . . . . . . . . . . . . . 40

3.3 Linear elastic solution for a stiffener . . . . . . . . . . . . . 46

3.4 Experimental . . . . . . . . . . . . . . . . . . . . . . . . . . 51

3.4.1 The production of samples containing thin, stiff in-
clusions . . . . . . . . . . . . . . . . . . . . . . . . . 51

3.4.2 Photoelastic experiments . . . . . . . . . . . . . . . 52

3.4.3 Hunting the near-tip singular field . . . . . . . . . . 54

3.4.4 Determination of stress intensity factor K
(ε)
I . . . . . 57

3.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

A Stiffener neutrality under uniform Mode II loading condi-
tions (uniform shear parallel to the inclusion line) . . . . . . 61

B Results obtained with constant material fringe parameter . 62

4 Structures buckling under tensile dead load 65

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

4.2 A simple one d.o.f. structure which buckles for tensile dead
loading . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

4.3 Vibrations, buckling and the elastica . . . . . . . . . . . . . 70

4.3.1 The vibrations and critical loads . . . . . . . . . . . 70

4.3.2 The elastica . . . . . . . . . . . . . . . . . . . . . . . 74

4.4 Experimental . . . . . . . . . . . . . . . . . . . . . . . . . . 80

4.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

5 The experimental evidence of flutter instability induced
by dry friction 85

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

5.2 The two-degree-of-freedom system . . . . . . . . . . . . . . 90

xii



i
i

“thesis noselli” — 2011/4/24 — 11:25 — page xiii — #13 i
i

i
i

i
i

Contents

5.3 Experimental results . . . . . . . . . . . . . . . . . . . . . . 100
5.3.1 Experimental setting . . . . . . . . . . . . . . . . . . 102
5.3.2 The evidence of flutter and divergence instabilities

induced by friction . . . . . . . . . . . . . . . . . . . 104
5.4 A final discussion . . . . . . . . . . . . . . . . . . . . . . . . 111
A Details of the analysis for the two d.o.f. system shown in

Fig. 5.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114
A.1 Linearized analysis of the elastic structure . . . . . . 114
A.2 Linearized analysis of the viscoelastic structure . . . 116

B Wheel prevented from rotating and one-degree-of-freedom
system . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118
B.1 Wheel prevented from rotating . . . . . . . . . . . . 119
B.2 System reduced to one degree-of-freedom by block-

ing the central hinge . . . . . . . . . . . . . . . . . . 122

Bibliography 125

xiii



i
i

“thesis noselli” — 2011/4/24 — 11:25 — page xiv — #14 i
i

i
i

i
i

Contents

xiv



i
i

“thesis noselli” — 2011/4/24 — 11:25 — page 1 — #15 i
i

i
i

i
i

INTRODUCTION

Modern materials and structures are studied to work under extreme
conditions, so that the knowledge of bifurcations and instabilities that may
occur in a structural component during mechanical loading is the basis of
a rational design. In the pursuit of a combined theoretical/experimental
approach to mechanics, we address the design and realization of small scale
experiments to highlight crucial aspects of instability and to determine
special manifestations of this.

We begin analyzing ordered granular materials, in particular dry ma-
sonry walls, presenting in Chapter 1 experimental results obtained through
transmission photoelasticity on scale models. These experiments disclose
a stress distribution complicated by unilateral joints between elements,
where ‘randomness constrained within a geometrical scheme’ of contact
points occurs. As a result, a highly localized stress percolation is observed,
evidencing ‘unloading islands’ in a ‘stress stream’, see Fig. 1.

These findings are theoretically explained in Chapter 2 both proposing
a micromechanical model, based on a form of random cascade transmission
of forces between bricks, and applying a phenomenological description,
based on the extreme orthotropy of the equivalent homogeneous material.

The validity of photoelastic technique to determine highly localized and
severe stress fields is confirmed by the results reported in Chapter 3, re-
lated to the analysis of the stress field near a thin and stiff linear inclusion,
a so-colled ‘stiffener’, embedded in an elastic matrix. In particular, the
linear elastic solution for the stiffener, which involves a square-root singu-
larity, has been experimentally validated, (see for instance the comparison

1
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Introduction

between the experimental results and the theoretical full-field solution for
MODE I loading reported in Fig. 2).

Fig. 1: Photoelastic fringes in a model of dry masonry (see Fig. 2.2 for details) under an
applied vertical load, denoted with a white arrow. Note the highly localized, tree-like
stress percolation, showing ‘unloading islands’ separated by ‘stress streams’.

A novel and apparently unexpected behaviour is analyzed in Chapter 4,
where elastic structures buckling under tensile dead loads are discovered
and analyzed in detail, both theoretically and experimentally. In particu-
lar, prototypes have been designed and realized of elementary structures
with a single degree of freedom and more complex mechanical systems,
where buckling in tension is related to the presence of a structural junction,
called ‘slider’, allowing only relative transversal displacement between the
connected elements.

In systems composed by two elastic rods connected through a slider
bifurcations occur both in tension and compression and are governed by

2
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Fig. 2: Photoelastic fringes revealing the stress field near a thin line inclusion embedded
in an elastic matrix loaded at remote horizontal tensile stress, compared to the linear
elastic plane strain solution. The image is the composition of three experimental results,
obtained for different stiffener lengths, see Fig. 3.1 for details.

the equation of the elastica, employed here for tensile loading, so that the
buckled rods take the form of the capillary curve in a liquid, which is in
fact governed by the equation of the elastica under tension, see Fig. 3.

Fig. 3: Analogy between an elastic rod buckled under tensile force and a water meniscus
in a capillary channel (superimposed to the solution of the elastica, marked in red); the
deflection of the rod and the surface of the liquid have the same shape, see Section 4.4.

Chapter 5 is devoted to the experimental analysis of flutter and di-
vergence instabilities in a structure as connected to the presence of dry
friction, inducing a follower force, which was previously thought to be of
extremely difficult practical realization, but is now obtained in a quite

3
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simple way.
The presented results provide the first indisputable evidence that flut-

ter and divergence instabilities can be induced by Coulomb friction. Two

Fig. 4: A superposition of photos taken at different instants of time of a two-degree-
of-freedom structure (Ziegler’s column) exhibiting flutter (left) and divergence (right)
instability. The whole movement took 1.08 s (0.36 s) for flutter (for divergence). Note
the oscillatory nature of the flutter instability (left), in contrast to the growing motion
typical of divergence (right).

experiments evidencing flutter and divergence instability are shown in
Fig. 4.

All the experiments have been performed at the Laboratory for Phys-
ical Modeling of Structures and Photoelasticity of the Department of Me-
chanical and Structural Engineering of the University of Trento.

4
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CHAPTER

ONE

LOCALIZED STRESS PERCOLATION THROUGH DRY MASONRY

WALLS - EXPERIMENTS

Transmission photoelasticity on scale models is shown to disclose the stress

distribution within dry masonry walls. This distribution is found to be compli-

cated by unilateral joints between elements, where ‘randomness constrained

within a geometrical scheme’ of contact points occurs, so that stress per-

colation results highly localized, evidencing ‘unloading islands’ in a ‘stress

stream’. These findings are theoretically explained in Chapter 2 of this thesis

from both micromechanical and continuous modelling perspectives.

1.1 Introduction

How does the stress flow round a rose window in a masonry façade
of a church? How does the stress rearrange when a new hole is punched
in a masonry? What is the complexity of a stress state in the vicinity of
a relieving arch of several voussoirs embedded in a masonry? Although
masonry is an ancient and extremely successful1 composite material, these
questions still remain for many aspects open. This is due to the fact that,
even for simple geometries and far from failure loadings, masonry struc-
tures exhibit a mechanical response affected by extreme stiffness contrast
between constituents, randomness of contact points between bricks where

1Nacre, mother-of-pearl, is a natural material with unchallenged mechanical proper-
ties (Gao et al., 2003) and very similar to masonry (Bertoldi et al., 2008).

5
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1.1. Introduction

unilaterality and Coulomb friction dominate. These effects are known to
be important in granular materials, which represent typical disordered me-
dia. In contrast, masonry is a regular distribution of elements possessing
uniform geometry2, so that the contact point distribution is ‘orderly ran-
dom’, in the sense that it is randomly distributed within a constraining
regular scheme.

The interplay between extreme stiffness contrast and randomness on
the one hand and regularity of the fabric on the other, yields stress distri-
butions within masonry walls that may present localized stress paths, evi-
dencing stress concentrations and stress relieves (for instance, the so-called
‘arching effect’). Surprisingly, transmission photoelasticity - successfully
employed for granular materials3 - has never been applied to the analysis
of the stress state in a masonry wall, so that the only experimental setting
resembling a stone block construction (rather than a granular assemblage
or a masonry) has been investigated by Da Silva and Rajchenbach (2000).

We consider for the first time in the present work the so-called ‘stretcher
bond fabric’ (in the masonry nomenclature), reproduced without mortar4

and with different spacing between the vertical joints, where transmission
of a vertical compressive force (applied on a small area) is analyzed. Re-
sults reveal that the contact points are practically always located at the
brick corners, but with a random distribution so that a highly localized,
tree-like stress percolation results, showing ‘unloading islands’ separated
by ‘stress streams’. The ‘streams’ are shown to broaden when load is in-
creased, as a result of the fact that contact ‘points’ between bricks evolve
into contact ‘areas’5. Moreover, different stress percolations occur in ‘nom-

2The texture is fundamental to determine the ‘global’ mechanical behaviour of a
masonry structure. To highlight this concept with a simple example, we remark that
the construction without centering of the Brunelleschi’s dome in the Florence Cathedral
and the achievement of a minimal safety factor against collapse in this structure would
have both been simply impossible without the recourse to a highly sophisticated -and
effective- brick disposition (Mainstone, 1970).

3The idea of employing photoelasticity to investigate the stress distribution within
granular materials goes back to Drescher and de Josseiling de Jong (1972). A reference
interesting to our purposes is Zhu et al. (1996), where results are referred to elliptical
particles, which are more similar to a brick masonry than the circular or pentagonal
disks used for instance by Geng et al. (2001, 2003).

4An attempt to simulate mortar is presented in Appendix A
5The fact that the contact between bricks is localized at random points is perfectly

6
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1. Localized stress percolation through dry masonry walls. Experiments

inally identical’ masonries, due to the different contact distributions.

Two alternatives are proposed in Chapter 2 of this thesis to fully ex-
plain experiments, namely: (i.) the micromechanical model, where the
masonry is treated as an elastic structure with unilateral ‘orderly random’
contacts to generate a form of random cascade of vertical forces, where
‘random coalescence’ may occur in addition to the usual rule of random
branching; (ii.) the continuum model, where the masonry behaves as a
strongly orthotropic material close to the elliptic border and reveals stress
localization following concepts proposed by Bigoni and Capuani (2002,
2005).

Although simple structural models are addressed in this article, the
proposed experimental technique and mechanical constitutive description
can be applied to brick or stone masonry, as well as to megalithic construc-
tions, and easily extended to analyze: (i.) different homogeneous or com-
posite masonry textures6; (ii.) structural masonry elements (for instance,
an arch opening in a masonry); (iii.) effectiveness of restoration design (for
instance, a structural rehabilitation through reinforcement with FRP).

1.2 Experimental

Three different photoelastic materials produced in sheets have been
employed, namely, an extruded PC (LexanR©), a PSM–9 (purchased from
VishayR©), and a PMMA (PlexiglasR©) to manufacture 187 miniaturized
20 mm× 10 mm× 6 mm bricks (some of these have different dimensions,
namely 30 mm× 10 mm × 6 mm, to complete the rectangular geometry
employed in the experiments). The miniaturized bricks have been ordered

known in the building practice, where mortar is introduced with the main purpose of
distributing loading. Although less evident, this function of mortar is important also
for megalithic block constructions, where mortar facilitates masonry setting, but also
prevents cracking of stone blocks (see the example reported by Clarke and Engelbach
(1930) referred to the casing-blocks of the Great Pyramid at Giza). We have tried
to simulate mortar layers in our experiments by adding 0.5 mm thick paper slices be-
tween bricks. The resulting stress percolation patterns still remain highly localized (see
Appendix A).

6With reference to the ancient Roman architecture, examples of homogeneous tex-
tures, different from those analyzed in the present article, are the so-called ‘opus retic-
ulatum’, or ‘opus spicatum’, while ‘opus mixtum’ denotes an example of composite
texture.

7
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into two types of stretcher–bond fabric masonries, one with nominally null
and another with thick (8 mm) vertical joints.

Fig. 1.1: Photoelastic fringes of a model of dry masonry with thin vertical joints detected
with a linear transmission polariscope (axes at 45◦ with respect to the vertical) at (a)
white light and (b) sodium vapor lamp (λ = 589.3 nm); low vertical applied load (125 N),
denoted with a white arrow.

The PMMA and PC bricks have been cut with a AKE Cutting &
BetterR© circular saw blade HM-KS 200× 2.2× 30 Z80, while the PSM-
9 with a DremelR© moto-scroller saw blade 16440. To enhance optical
properties, all bricks have been hand polished employing sand-paper P120.

The masonries have been positioned between two glasses to prevent
possible out-of-plane displacements, but a 1 mm gap has been left between
the model and the glasses, to avoid diffused contact (in fact the masonry
samples have in some cases ‘touched’ the glasses at a few points only, so
that masonry/glass friction has not been involved).

Temperature near the samples, monitored with a thermocouple con-
nected to a Xplorer GLX PascoR©, has been found to lie around 22◦C,

8
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1. Localized stress percolation through dry masonry walls. Experiments

without sensible oscillations during experiments. Loading has been pre-
scribed by providing a vertical fixed 2 mm/min velocity of displacement
(corresponding to a ‘global’ conventional 1% per minute velocity of defor-
mation) to a steel tool similar to the edge of a screwdriver.

The vertical displacement has been imposed using a ELE Tritest 50
machine (ELE International Ltd) on which a linear and a circular (with
quarterwave retarders for 560 nm) polariscope (equipped with a white and
Sodium vapor lightbox purchased from Tiedemann & Betz) has been in-
stalled, which has been designed by us and manufactured at the University
of Trento7.

Fig. 1.2: Photoelastic fringes of a model of dry masonry with thin vertical joints detected
with a linear transmission polariscope (axes at 45◦ with respect to the vertical) at (a)
white light and (b) sodium vapor lamp (λ = 589.3 nm); high vertical applied load
(250 N), denoted with a white arrow.

7A description of photoelasticty and related experimental techniques can be found
for example in Coker and Filon (1957) and Frocht (1965).

9



i
i

“thesis noselli” — 2011/4/24 — 11:25 — page 10 — #24 i
i

i
i

i
i

1.2. Experimental

Photos have been taken with a NikonR© D200 digital camera, equipped
with a AF-S micro Nikkor (105 mm 1:2.8G ED) lens and with a AF-S
micro Nikkor (70-180 mm 1:4.5-5.6 D) lens for details.

Vertical displacements and vertical forces have been recorded during all
tests employing a PY2-F-25 vertical displacement transducer (purchased
from Gefran SpA), a TH-KN1D loading cell (also purchased from Gefran
SpA), and a Datascan 7320 data acquisition system (Measurement System
Ltd).

Fig. 1.3: Photoelastic fringes of a model of dry masonry with thick vertical joints
detected with a circular transmission polariscope at white light (the white arrow denotes
the applied load). (a) low vertical load (200 N) and (b) high vertical load (400 N).

Typical results obtained with a linear transmission polariscope on
PSM-9 material are shown in Figs. 1.1 and 1.2, obtained with polarizer
axes inclined at 45◦ with respect to the vertical, using white and Sodium
vapor lamps. The figures refer to low (125 N for Fig. 1.1) and high (250 N
for Fig. 1.2) loading.

10
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1. Localized stress percolation through dry masonry walls. Experiments

Figs. 1.1 and 1.2 pertain to a masonry with null space forming the
vertical joints (see Appendix A for further experimental results8).

Thick joints are investigated in Fig. 1.3 obtained with a circular po-
lariscope at low (200 N for Fig. 1.3a) and high (400 N for Fig. 1.3b) load,
employing white light. The joints are 8 mm thick.

Details (referred to a masonry different from those reported in Figs. 1.1
and 1.2) are reported in Fig. 1.4, together with the load displacement
curve recorded at the top of the sample. These have been taken at red
monochromatic light, employing the linear polariscope with a monochro-
mator filter (wavelength 680 nm) and the analyzer inclined at 45◦. The
details reported in Fig. 1.4 allow investigation of contact areas and forces.

Fig. 1.4: Photoelastic fringes of a model of dry masonry detected with a linear trans-
mission polariscope at red light. (a) photo taken at 100 N of vertical load; (b) photo
taken at 200 N of vertical load; (c) photo taken at 300 N of vertical load; (d) photo taken
at 400 N of vertical load. Note the typical Hertzian contact fringes in the brick roughly
at the centre of the photos. (e) load displacement curve, resulting nonlinear due to the
broadening of contact areas between bricks, in full agreement with results referred to
contact mechanics.

Note that the nonlinearity of the load displacement curve agrees with
the fact that contact areas increase during loading, consistently with re-
sults from contact mechanics (Johnson, 1985). In particular, Hertz’s the-

8A movie of an experiment and other information can be downloaded from:
http://ssmg.ing.unitn.it.

11
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1.2. Experimental

ory prescribes that the total load compressing two elastic spheres is pro-
portional to the mutual approach of the centres elevated to the power
3/2, the law which has been plotted in Fig. 1.4e with a proportionality
coefficient taken to fit our data.

Fig. 1.5: Detail (a) of Fig. 1.2b compared to (b) a linear elastic f.e. simulation of
isochromatics (black contours within white bricks denote calculated in-plane principal
stress difference).

An analysis of contacts between bricks with a quantification of the load
transmitted between them is provided Chapter 2 (see Fig. 2.2).

A detailed investigation of a particular of Fig. 1.2b is reported in
Fig. 1.5a, contrasted with a linear elastic finite element simulation of
isochromatics under the plane stress assumption (reported in Fig. 1.5b
and obtained using ABAQUS Standard, Ver. 6.7-1, Hibbitt, Karlsson &
Sorensen Inc., employing 4-nodes bilinear elements CPS4).

The simulation (black contours reported on ‘white’ bricks) provides
the difference between in-plane principal stresses, corresponding to the
isochromatics. In the simulation, bricks have been separately analyzed,
subjected to reciprocal contact forces taken in a way that equilibrium is
satisfied. It can be noted that the experiment is nicely reproduced, so that
the conclusion that the stress transmission within a masonry is dominated
by contact between bricks remains fully confirmed. Note also that when
the force is applied at the middle of the brick the stress state is very similar
to that obtained from the elastic solution of a circular disk loaded by two

12
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1. Localized stress percolation through dry masonry walls. Experiments

opposite forces, a consideration that will be used to quantify the force
percolation in the masonry (see Fig. 2.2).

The analysis of the photos reported in Figs. 1.1-1.4 and the simulation
reported in Fig. 1.5 reveals the following features:

i.) localized contacts at random positions (but constrained to lie near
the vertices, therefore within the ‘rigid’ masonry geometry) between
bricks;

ii.) existence of low friction at these contacts;

iii.) the stress distribution:

a.) is localized and elongated in the vertical direction;

b.) is organized as in a percolation tree;

c.) evidences unloading zones;

iv.) due to the fact that randomness is constrained, the stress percolations
do not qualitatively differ much from each other. However, our results
demonstrate that ‘nominally identical’ masonry structures can be
subjected to different stress states under the same loads.9

The fact that the stress percolation is highly localized explains the
known difficulty in detecting the stress state of masonry structures using
the so-called ‘flat-jack’ test.

Our results indicate that a sort of ‘indeterminacy principle’ could affect
this test, since -first- the location of the stress ‘streams’ is not known and
-second- the cut in the masonry (which is preliminary required to the
introduction of the flat-jack) alters the contact points and therefore the
stress distribution.10

1.3 Interpretation of experimental results

There are two ways to successfully explain the obtained experimental
results: one is the micromechanical approach, in which the masonry is

9Different stress percolation patterns are recorded in the same masonry, when the
brick distribution is changed, see Appendix A.

10For a definition of the flat-jack test, see ASTM Standard: ‘In-situ compressive stress
within solid unit masonry estimated using flat-jack measurements’ C 1196-91, 1991.
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1.4. Conclusions

modelled as a discrete structure, where bricks are randomly in contact at
their vertices; another is the continuum mechanics approach, in which the
material is modelled as a continuous homogeneous material, characterized
by an extreme orthotropy, so that the material response is close to an
instability threshold. Both approaches are deferred to Chapter 2.

1.4 Conclusions

Scale models represent a new tool for investigating the localized and
non-unique internal stress distribution induced by external loads within a
dry masonry, allowing the reproduction of the exact texture of a masonry,
crucial in the understanding of the global structural behaviour.

The experimental technique evidences the behaviour of a material on
the verge of material instability, where the perturbative approach proposed
by Bigoni and Capuani (2002, 2005) reveals its effectiveness, as it is shown
in Chapter 2 of this thesis.
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1. Localized stress percolation through dry masonry walls. Experiments

A Additional experimental results

A.1 Dry masonry models

Experimental results, additional to those presented in Figs. 1.1-1.4, are
shown in Figs. 1.6-1.9, referred to the PSM-9 material (Figs. 1.6 and 1.7),
to the Lexan material (Fig. 1.8), and to the PMMA material (Fig. 1.9).
The photos have been taken with a linear transmission polariscope at

Fig. 1.6: Photoelastic fringes of a model of dry masonry detected with a linear trans-
mission polariscope at white light with analyzer inclined at 45◦. Material used is PSM-9
(the white arrow denote the applied vertical load). (a) low vertical load (400 N); (b)
high vertical load (800 N).

white light with analyzer inclined at 45◦. The vertical loads have been
taken equal to 400 N and 800 N for the parts (a) and (b), respectively,
of Figs. 1.6 and 1.8, relative to the PSM-9 and the Lexan material. The
photos in Fig. 1.9, relative to the PMMA material, have been taken at a
vertical load of 1000 N for part (a) and 2500 N for part (b).

15
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A. Additional experimental results

Fig. 1.7: Photoelastic fringes of a model of dry masonry detected with a linear trans-
mission polariscope at 200 N of vertical load. (a) white light with analyzer inclined at
45◦; (b) white light with analyzer inclined at 9◦ with respect to the vertical axis; (c)
red light with analyzer inclined at 45◦. The isoclines are visible from which low friction
and near-vertex contact points can be detected.

Fig. 1.8: Photoelastic fringes of a model of dry masonry detected with a linear transmis-
sion polariscope at white light with analyzer inclined at 45◦. Material used is LexanR©

(the white arrow denote the applied vertical load). (a) low vertical load (400 N); (b)
high vertical load (800 N).

16



i
i

“thesis noselli” — 2011/4/24 — 11:25 — page 17 — #31 i
i

i
i

i
i

1. Localized stress percolation through dry masonry walls. Experiments

Details of results reported in Fig. 1.6 evidencing near-vertex contact
points and low friction and additional to those reported in Fig. 1.3 are
reported in Fig. 1.7.

Fig. 1.9: Photoelastic fringes of a model of dry masonry detected with a linear transmis-
sion polariscope at white light with analyzer inclined at 45◦. Material used is PMMA
(the white arrow denote the applied vertical load). (a) low vertical load (1000 N); (b)
high vertical load (2500 N).

The details reported in Fig. 1.7 allow investigation of contact areas
and forces, see for example the second brick from left in the third course
from the top. Here the typical Hertz (see Johnson, 1985) fringe pattern is
clearly visible.

A.2 An attempt to simulate the effects of mortar

In an attempt to simulate the effects of mortar, 0.5 mm thick paper
layers have been introduced between brick courses, while the vertical joints

17
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A. Additional experimental results

Fig. 1.10: Photoelastic fringes of a model of dry masonry detected with a circular
transmission polariscope at white light and at 400 N of vertical load. Material used is
PSM-9. (a) dry masonry; (b) mortar courses are simulated with paper layers. Part (b)
shows that the intensity of transmitted forces is lower than in part (a), but localization
of ‘stress streams’ appears even greater where mortar is simulated.

between bricks have been kept dry.
Results obtained with a circular polariscope are reported in Fig. 1.10,

where a comparison is made with the same masonry (with exactly the
same brick distribution) at the same vertical load.

It is clear from Fig. 1.10 that the ‘mortar’ courses mitigate the stress
intensity, but the stress localization results even more pronounced in the
case where mortar is simulated using paper layers (Fig. 1.10b), than for
dry masonry (Fig. 1.10a).

18
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CHAPTER

TWO

LOCALIZED STRESS PERCOLATION THROUGH DRY MASONRY

WALLS - MODELLING

The highly localized stress distribution found within dry masonry walls

through transmission photoelasticity in Chapter 1 of this thesis is explained

both proposing a micromechanical model (based on a form of random cas-

cade transmission of forces between bricks, which includes random coales-

cence additionally to random branching) and applying a phenomenological

description (based on the extreme orthotropy of the equivalent homogeneous

material).

2.1 Introduction

Transmission photoelasticity has been shown in Chapter 1 of this the-
sis to reveal the highly inhomogeneous stress distribution within dry ma-
sonry walls, where ‘unloading islands’ emerge in a narrow ‘stress stream’.
The key to the interpretation of these experimental results is randomness
(but constrained within the regular scheme imposed by the masonry) of
contacts between bricks and ‘overall’ material orthotropy with high con-
trast in elastic moduli. Accordingly, two alternatives are proposed to fully
explain experiments presented in Chapter 1, namely, (i.) the microme-
chanical model - where the masonry is treated as an elastic structure with
unilateral ‘orderly random’ contacts, to generate a form of random cas-
cade of vertical forces, where ‘random coalescence’ may occur in addition
to the usual rule of random branching - and (ii.) the continuum model -
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2.1. Introduction

where the masonry behaves as a strongly orthotropic material close to the
elliptic border and reveals stress localization following concepts proposed
by Everstine and Pipkin (1971) and Bigoni and Capuani (2002, 2005).

Fig. 2.1: Photoelastic fringes of a model of dry masonry with thin vertical joints detected
with a circular transmission polariscope at white light. (a) Low vertical load (400 N); (b)
high vertical load (800 N). Note the unloaded brick three courses below the applied
vertical load (denoted with a white arrow).

Although they both successfully explain our experimental results, the
micromechanical approach and the continuum model have limitations, in
the sense that the former is a simple approach tailored on our experimen-
tal setting (so that it cannot be immediately generalized to cover complex
stress situations), while the latter approach is general, though does not
reproduce the diversity of the stress states within masonries (the two ap-
proaches could be combined, but this falls beyond the scope of this thesis).
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2. Localized stress percolation through dry masonry walls. Modelling

2.2 A résumé of experimental results

We refer to the experiments reported in Figs. 2.1 and 2.2, together
with those reported in Chapter 1 of this thesis to highlight: (i.) the highly
localized nature of (almost vertical) stress percolation within the masonry
and (ii.) the fact that forces are almost vertically transmitted at random
contacts between bricks.

Fig. 2.2: Photoelastic fringes of a model of dry masonry with thin vertical joints detected
with a linear transmission polariscope equipped with sodium vapor lamp (axes at 45◦

with respect to the vertical) at an applied load of 250 N, denoted with a white arrow.
Forces have been quantified through comparison with the solution of an elastic disk
subject to two opposite forces. (a) 1.2b of Chapter 1 of this thesis. Details are reported
in parts (b) and (c).

A quantification of these forces has been proposed in Fig. 2.2 (which is
the same photo reported in Fig. 1.2b of Chapter 1 of this thesis), through
comparison with the elastic solution of a disk subject to two equal and
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2.2. A résumé of experimental results

opposite forces (the material used is PSM-9, for which the fringe constant
is known to be 10.5 kPa/fringe/m). The stress state in the disk is very
similar to that obtained with f.e. simulations when the force is applied at
the center of the brick, so that the use of the analytical solution for the
disk permits a fast and enough accurate treatment of the images.

The quantification of force percolation shown in Fig. 2.2 reveals that
there is little diffusion of the load through the masonry, so that the 125 N
plus 70 N force near the load application becomes 75 N plus 75 N plus 45 N
in the three neighbor bricks near the bottom of the sample.

To fully appreciate the strong, qualitative difference between results
reported in Figs. 2.1 and 2.2 and those pertaining to a model of identical
dimension, but homogeneous, we report in Fig. 2.3 results pertaining a
72 mm× 88 mm× 6 mm rectangular plate of PSM-9 material, loaded in
the same way as for the masonry models, namely, with a vertical force
applied on a 8 mm× 4 mm× 6 mm punch (also made of PSM-9).

Fig. 2.3: A uniform rectangular plate loaded on a small portion of its edge through a
500 N vertical force. Isochromatic fringes detected with a circular transmission polar-
iscope at white light and compared to the analytical solution for an elastic homogeneous
isotropic half space, loaded on a portion of its boundary, Eq. (2.2).
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2. Localized stress percolation through dry masonry walls. Modelling

The photo reported in Fig. 2.3, taken with the circular polariscope at
500 N vertical load, has been split into two parts and interpolated with
the analytical solution for a uniform loading on a finite area of a semi-
infinite elastic plate (which is derived below, Eq. (2.2), see also Johnson,
1985). This solution can be derived from the problem of a concentrated
force F orthogonal to the otherwise free surface of an elastic half space,
the so-called ‘Flamant solution’, where only the radial stress is different
from zero and is given by

σr(r, θ) = −2F

π
· cos θ

r
, (2.1)

where r is the radial distance between the vertical force and the point
under consideration in the elastic half space, singled out by the angular
coordinate θ, taken null when the point lies on the vertical line of the load-
ing force. The stress state induced in the half space when a uniform load
p is applied on a segment of length 2b is obtained in Cartesian coordinates
through integration of Eq. (2.1) as

σ11(x1, x2) = −2p

π

∫ b

−b

(x1 − ξ)2x2

[(x1 − ξ)2 + x2
2]2

dξ,

σ22(x1, x2) = −2p

π

∫ b

−b

x3
2

[(x1 − ξ)2 + x2
2]2

dξ,

σ12(x1, x2) = −2p

π

∫ b

−b

(x1 − ξ)x2
2

[(x1 − ξ)2 + x2
2]2

dξ,

(2.2)

where x1 and x2 are respectively the horizontal and the vertical axes of a
coordinate system centered at the middle of the uniformly loaded segment
[−b, b]. Note that, although the stress field (2.2) is referred to a semi-
infinite elastic medium, the comparison with the experiment reported in
Fig. 2.3 and referred to a finite rectangular plate is very satisfactory. This
is related to the fact that the loading punch is small when compared to
the dimensions of the plate.

A comparison between Fig. 2.3 and the figures pertaining to the ma-
sonry models (Figs. 2.1 and 2.2) reveals that the stress state within the
masonry models deeply differs from the elastic, isotropic and homogeneous
solution. This situation has been noted in somewhat similar experiments
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2.3. Interpretation of experimental results

by Da Silva and Rajchenbach (2000). Their conclusion is that the exper-
iments do not fit both elasticity and plasticity models, rather, they show
diffusive patterns. Although we do not disprove their conclusions (rather
we agree on several points), we suggest here an interpretation not involv-
ing any diffusion. In particular, we point out that experimental results on
masonry models can be successfully interpreted in two alternative ways,
namely, either as the response of a highly inhomogeneous material com-
posed by a regular - though discontinuous - structure, or as the response
of a homogeneous elastic, but strongly orthotropic, material. The former
approach is based on micromechanical considerations, while a macroscopic
modelling in terms of an equivalent homogeneous material is pursued fol-
lowing the latter approach. We explain both approaches below.

2.3 Interpretation of experimental results

There are two ways to explain the obtained experimental results: one
is the micromechanical approach, in which the masonry is modelled as
a discrete structure, where bricks are randomly in contact at their ver-
tices; another is the continuum mechanics approach, in which the mate-
rial is modelled as a continuous homogeneous material, characterized by
an extreme orthotropy. Both approaches can be successfully developed as
follows.

2.3.1 Micromechanics: masonry as a discrete structure with
random contacts between bricks

The bricks have been found to be randomly in contact at their vertices,
so that a simple micromechanical model of our masonries can be obtained
as follows (explained with reference to the case of null vertical joints, while
thick vertical joints are treated in Appendix A):

i.) our physical models are loaded vertically and experiments show that
friction does not play an important role. Friction is therefore ne-
glected in the mathematical model, so that it is assumed that forces
percolate only vertically through the masonry;

ii.) since experiments show that forces are localized near the brick ver-
tices, we assume that every brick is loaded at its upper edge by three
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2. Localized stress percolation through dry masonry walls. Modelling

compressive vertical forces, applied at the centre and at the vertices
of the edge (F1, F2 and F3 in Fig. 2.4b). Moreover, the contact points
at the lower edge of a brick are always two, to be randomly chosen
between three possibilities (labeled 1, 2 and 3 in Fig. 2.4b);

iii.) equilibrium of the brick and unilaterality of the contacts at the lower
edge of it determine the vertical reaction forces (R1, R2 and R3 in
Fig. 2.4b), which become the vertical forces for the upper edges of
the bricks at the lower course.

More in detail, the load transmission mechanism 1 involves two reac-
tion forces applied at the lower corners of the brick, determined as

R1 = F1 +
F2

2
,

R2 = 0,

R3 = F3 +
F2

2
.

(2.3)

The load transmission mechanism 2 (3) involves a reaction force ap-
plied at the central point of the lower edge of the brick, plus a reaction force
applied at the left (right) corner or a reaction force applied at the right
(left) corner, depending on the satisfaction of the unilateral constraint that
no tensile forces are transmitted throughout the masonry. The reaction
forces are thus determined as

R1 = 〈F1 − F3〉,

R2 = F1 + F2 + F3 − 〈F1 − F3〉 − 〈F3 − F1〉,

R3 = 〈F3 − F1〉,

(2.4)

where 〈〉 denotes the Macaulay brackets defined for all real α as 〈α〉 =
(|α|+ α)/2.

The algorithm to determine a force percolation within a masonry works
as follows. For a given masonry geometry, first, the load mechanisms be-
tween the bricks are randomly generated (employing a discrete probability
density function) selecting between the three possibilities listed in Fig. 2.4b
and, second, the forces and the contact points are obtained by employing
Eqs. (2.3) or (2.4). The proposed algorithm works in such a way that
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2.3. Interpretation of experimental results

all equilibrium conditions (including rotational equilibrium) and unilat-
eral constraints are automatically satisfied. It is clear that the structure

Fig. 2.4: Model of a masonry as a discrete system with a form of random cascade ver-
tical force transmission, where ‘random coalescence’ is possible, in addition to random
branching. An example of force diffusion tree similar to results reported in Fig. 2.1 is
given in (a), where the darker is the color, the higher is the force transmitted (white
bricks are unloaded, see the scale reported in the lower part of the figure, where the
transmitted percent of vertical load has been reported). Force transmission mecha-
nisms are given respectively in part (b), while examples of random force branching and
coalescence are presented in parts (c) and (d), respectively.

is statically determinate and there is a great (although finite) number of
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2. Localized stress percolation through dry masonry walls. Modelling

force distributions (but all constrained to lie within a certain ‘limit’ ge-
ometry and to possess a certain ‘regularity’) to equilibrate a given vertical
load.1

Fig. 2.5: Isochromatics for the masonry loaded through the force percolation tree re-
ported in Fig. 2.4a is analyzed with linear elastic f.e. Monochromatic, part (a), and
colored, part (b), contours denote calculated in-plane principal stress difference, corre-
sponding to the photoelastic fringes.

Moreover, the obtained force distribution is a type of random cascade,
in which some additional rules have to be enforced, so that random branch-
ing (Fig. 2.4c) is also accompanied by random coalescence, occurring when

1Since force distributions are always possible and these will ensure equilibrium for ap-
plied vertical load distribution of arbitrary intensity, a collapse load will not be predicted
for applied vertical loads, a conclusion consistent with limit analysis, where compressive
strength is usually taken to be infinite (Heyman, 1966).
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2.3. Interpretation of experimental results

two or three vertical forces applied at the upper edge of a brick coalesce
into one or two (Fig. 2.4d).

An example of the above procedure for determining a force distribution
in a masonry is shown in Fig. 2.4a, where darker bricks are loaded more
than lighter. This stress distribution has been generated to mimic the
experiment shown in Fig. 2.1. After the load percolation through the
masonry has been generated with the above-explained algorithm, the stress
state within the bricks and the relative simulation of photoelastic fringe
patterns (corresponding to in-plane principal stress contours) has been
evaluated as in Fig. 1.5 of Chapter 1 (with ABAQUS-Standard, Ver. 6.7-
1, Hibbitt, Karlsson & Sorensen Inc., employing 4-nodes bilinear elements
CPS4) and reported in Fig. 2.5.

Due to the assumed randomness of the contacts, from a practical point
of view only ‘some’ of the possible stress distributions can be investigated
with the proposed model; however, the obtained diversity of the possible
stress distributions reproduces our experimental results.

The proposed model shares some similarity with the so-called ‘q–
model’ proposed by Liu et al. (1995) (see also Coppersmith et al., 1996),
in which the percolation of vertical forces through a granular system is
analyzed assuming that the vertical forces are randomly distributed at n
contact points, so that for n = 2, a unit force is split into a force q and
another force 1− q. Although rotational equilibrium is violated and hori-
zontal forces are neglected (Socolar, 1998), the q–method allows successful
predictions of so–called ‘force chains’ in random distributions of photoelas-
tic disks. However, the q–model does not provide information on the stress
distribution within the elements, while our method, in which both equi-
librium and unilaterality of contact are preserved, allows determination of
stresses even inside the bricks.

2.3.2 Masonry as a continuous material with extreme orthotropy

In a macroscopic modelling, the highly inhomogeneous structure of the
masonry models is ‘viewed at a distance’ from which inhomogeneity can
be disregarded, so that the response of a uniform equivalent continuum is
considered. In these conditions, the diversity of the possible stress per-
colations in nominally identical structures is necessarily lost, since these
become in a sense identical when ‘viewed at a sufficient distance’ and they
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2. Localized stress percolation through dry masonry walls. Modelling

appear as manifestations of the same localized stress distribution.
Since prior to vertical loading bricks are set in contact only under the

(evidently small) effect of gravity, the vertical joints are unable to sustain
any (normal or shearing) traction, while the horizontal joints cannot sup-
port shearing stress, but they can carry orthogonal compressive forces. In
these conditions and due to the specific geometry of the masonry, the ma-
terial becomes equivalent to an orthotropic homogeneous material, with a
high contrast between stiffness moduli.2

The solution for a concentrated force F orthogonal to the otherwise
free surface of an elastic orthotropic half space (with orthotropy x1–x2

axes aligned parallel and orthogonal to the free surface) has been found
by Lekhnitskii (1981). With reference to an elastic material loaded in plane
stress (as is the case of our masonry models), the constitutive equations
can be written in inverse

ε11 =
1

E1
(σ11 − ν12σ22),

ε22 =
1

E2
(σ22 − ν21σ11),

ε12 =
1

2µ12
σ12,

(2.5)

and direct form

σ11 =
E1

1− ν12ν21
(ε11 + ν21ε22),

σ11 =
E2

1− ν12ν21
(ε22 + ν12ε11),

σ12 = 2µ12ε12,

(2.6)

where E1 and E2 are the two Young moduli in the directions 1 and 2
respectively, µ12 is the shear modulus, while ν12 and ν21 play a role similar
to the Poisson coefficient of isotropic elasticity.

2More precisely, this material should be considered elastoplastic, rather than elastic,
in conditions where both an elastic or an elastoplastic strain increment may occur.
However, the plastic branch of such an elastoplastic material can be analyzed employing
an ‘elastic comparison material’, following concepts introduced by Bigoni and Capuani
(2002, 2005). Therefore, the analysis is reduced again to the analysis of the behaviour
of an elastic orthotropic material.
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2.3. Interpretation of experimental results

The solution for the concentrated force, where only the radial stress is
different from zero and defining θ as the angle taken from the vertical line
of the load F , is expressed by

σr(r, θ) = −F
π
· cos θ

r
·
√
E2

E1

u1 + u2

Λ(θ)
, (2.7)

which generalizes the Flamant solution, Eq. (2.1). Here u1 and u2 are two
roots (to be chosen with the rule that the resultant of σr over a semi circle
has to be F ) of the equation

E2

E1
u4 +

(
2ν12

E2

E1
− E2

µ12

)
u2 + 1 = 0, (2.8)

and

Λ(θ) =
E2

E1
sin4 θ −

(
2ν12

E2

E1
− E2

µ12

)
sin2 θ cos2 θ + cos4 θ

= det[A(θ)]
1− ν12ν21

µ12E1
,

(2.9)

is a quantity proportional to the determinant of the so-called ‘acoustic
tensor’ A(θ) (Rice, 1977). Therefore, the differential equations govern-
ing equilibrium remain (strongly) elliptic until this determinant is strictly
greater than zero. Our masonry structure is characterized by a low value
of shear modulus µ12 and of elastic modulus E1, the latter particularly in
the case of thick joints between bricks. Moreover, the two Poisson’s ratios
are certainly small and, as a first approximation, they can be taken to be
zero, ν12 = ν21 = 0, so that the function (2.9) becomes:

Λ(θ) =
1

µ12E1

(
µ12E2 sin4 θ + E1E2 sin2 θ cos2 θ + µ12E1 cos4 θ

)
. (2.10)

The analysis of the singularity of the acoustic tensor when an elastic
modulus tends to zero provides the key to the understanding of localization
of deformation (Rice, 1977). The following two cases are of interest to
describe our experimental results.

i.) Coefficient µ12 tends to zero, while E1 remains finite. Two shear
bands form: one vertical and one horizontal, corresponding to a band
normal inclined at θ = 0 and θ = π/2 in Eq. (2.10) and a shear
deformation mode within the band;
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2. Localized stress percolation through dry masonry walls. Modelling

ii.) both E1 and µ12 tend to zero. One vertical compaction/separation
band becomes possible, corresponding to a band normal inclined at
θ = 0 in Eq. (2.10) and a uniaxial strain deformation mode within
the band.

Since in both of the above cases one vertical shear band is always possi-
ble, the application of a vertical load will result in a stress map elongated
and focussed in the vertical direction. This becomes evident from the
analysis reported below.

Solution (2.7) depends on two independent elastic constants only and,
when a uniform load p is applied on a segment of length 2b, its integration
provides a generalization of solution (2.2) in the form

σ11(x1, x2) = − p
π

√
E2

E1

∫ b

−b

(x1 − ξ)2x2

Λ(x1, x2, ξ)[(x1 − ξ)2 + x2
2]2

dξ,

σ11(x1, x2) = − p
π

√
E2

E1

∫ b

−b

x3
2

Λ(x1, x2, ξ)[(x1 − ξ)2 + x2
2]2

dξ,

σ11(x1, x2) = − p
π

√
E2

E1

∫ b

−b

(x1 − ξ)x2
2

Λ(x1, x2, ξ)[(x1 − ξ)2 + x2
2]2

dξ,

(2.11)

where

Λ(x1, x2, ξ) =
1

[(x1 − ξ)2 + x2
2]2

[
E2

E1
(x1 − ξ)4+

−
(

2ν12
E2

E1
− E2

µ12

)
(x1 − ξ)2x2

2 + x4
2

]
.

(2.12)

Equations (2.1) and (2.7) are exact. However, in the case (i) of extreme
contrast in orthotropy, there is an asymptotic solution available, which
approximates Eq. (2.7). This has been found by Everstine and Pipkin
(1971)3 (see also Christensen, 1979) and is expressed by

σ11(x1, x2) = 0, σ2i(x1, x2) =
F

επ

xi(x1

ε

)2
+ x2

2

, (2.13)

3Everstine and Pipkin (1971) also noticed a ‘stress channeling effect’ for fiber rein-
forced materials, essentially similar to the stress percolation found in our models.
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2.3. Interpretation of experimental results

where i ∈ [1, 2] and ε2 is in our case (in which ν12 = ν21 = 0) the ratio
between the shear modulus µ12 and the vertical elastic modulus E2. When

Fig. 2.6: Level sets of in-plane principal stress difference for a vertical uniform force
distribution (denoted with a thick black arrow) on an area of finite length on an elastic
half space, Eqs. (2.11). (a) The isotropic solution; (b) and (c) ‘intermediate’ values of
orthotropy; (d) the highly orthotropic solution, obtained with both E1 and m12 tending
to zero (while E1/µ12 = 2) evidencing nearly vertical stress percolation.
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2. Localized stress percolation through dry masonry walls. Modelling

a uniformly distributed load p acts on a half space, Eq. (2.13) can be
integrated to obtain the following approximation to Eq. (2.11)

σ11(x1, x2) = 0, σ2i(x1, x2) = − p

επ

∫ b

−b

xi − ξδ1i

x2
2 +

(
x1 − ξ
ε

)2 dξ, (2.14)

where i ∈ [1, 2] and δ1i is the Kronecker delta.
The use of Eq. (2.11) or (2.14) is equivalent to our purposes, since

results are qualitatively identical in both the limit cases (i) and (ii) of
extreme orthotropy. Hence, maps of in-plane principal stress difference
have been plotted in Fig. 2.6, obtained with Eq. (2.11) and elastic con-
stants ranging from the isotropic case (Fig. 2.6a) to the extreme orthotropy
where both E1 and µ12 tend to zero (Fig. 2.6d), keeping E1/µ12 = 2. In
particular, Fig. 2.6b-d correspond to E1/E2 taken equal to 2/3, 1/3, and
1/300, respectively.

An inspection of Fig. 2.6 clearly reveals that the stress distribution
strongly localizes and focusses parallel to the direction of the load when
the orthotropy becomes high, which explains the nearly vertical stress
percolation in the masonry models. This finding is in complete agreement
with results obtained in elastic solids prestressed near the elliptic bound-
ary by Bigoni and Capuani (2002, 2005); Bigoni and Dal Corso (2008);
Bigoni et al. (2008); Dal Corso et al. (2008); Piccolroaz et al. (2006).
Therefore, our physical models provide examples of a material character-
ized by constitutive equations with an extreme orthotropy and therefore
near the elliptic boundary, or - in other words - near material instabil-
ity. Perturbed with concentrated forces, the response of such a material
can be interpreted within the theory proposed by Bigoni and Capuani
(2002, 2005).4 Accordingly, the mechanical response is highly localized,
so that the stress percolates in a ‘narrow channel’ almost coaxial with the
concentrated force.

Note that Fig. 2.6d closely resembles the wave-like stress diffusion pur-
sued by Goldenberg and Goldhirsh (2005), see also Luding (2005) to ex-
plain the behaviour of granular materials.5 In the case (i) of extreme

4The perturbative approach has been recently employed to explain fundamental fea-
tures of shear band propagation by Bigoni and Dal Corso (2008).

5Piccolroaz et al. (2006) have pointed out that the perturbative approach by Bigoni
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2.4. Conclusions

orthotropy, where only µ12 tends to zero, Eq. (2.14) yields, for ε = 1/25,
a plot of the principal in-plane stress difference qualitatively identical to
Fig. 2.6d and therefore the experimental results are fully explained in both
cases (i) and (ii) of extreme orthotropy.

The solution relative to an extreme orthotropy contrast (Fig. 2.6d)
fully explains the near vertical stress percolation found in our experiments.
The localized stress distribution obtained for high orthotropy contrast de-
generates at the boundary of ellipticity into a set of vertical lines, trans-
mitting the load without diffusion, as pointed out by Di Pasquale (1992),
with reference to the so-called ‘no-tension material model’ introduced by
Heyman (1966). It should be noted that, consistently with the continuum
mechanics assumption and differently from the micromechanics approach,
the diversity of stress states within the same masonry structure cannot be
now reproduced, since masonry is interpreted as a homogeneous material,
while the different localized stress streams are manifestations of the same
localized response, differing only for the presence of structural imperfec-
tions. A way for reproducing stress-state diversity within a masonry might
be pursued by introducing some form of randomly distributed defects in
the continuum material, similarly to the randomly distributed dislocations
in the simulations of crystal plasticity (van der Giessen and Needleman,
1995), but this leads us beyond the scope of the present investigation.

2.4 Conclusions

Models of dry masonry walls have been shown to represent: (i.) from
micromechanical point of view, an example of a microstructure dominated
by random (but constrained within a regular fabric) contacts between
bricks; (ii.) from continuum modelling point of view, an example of a
material on the verge of an instability. These two points of views have
been successfully translated into modelling using micromechanical con-
siderations and the perturbative approach proposed by Bigoni and Ca-
puani (2002, 2005). These models explain experimental results presented
in Chapter 1 of the present thesis and open a new perspective in the
modelling of masonry structures.

and Capuani (2002, 2005) can be generalized to model the behaviour of granular mate-
rials.
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2. Localized stress percolation through dry masonry walls. Modelling

A Micromechanical model for thick joints

In a microstructural modelling, we can take into account that the dis-
tribution of the contact points between bricks is random, but localized
near the edges of the bricks. Roughly speaking, the idea here is to treat

Fig. 2.7: Model of a masonry with thick vertical joints as a discrete system with a form
of random cascade vertical force transmission, where ‘random coalescence’ is possible,
in addition to random branching. A dark color denotes a high force transmission, so
that white bricks are unloaded (see the scale reported in the lower part of the figure,
where the transmitted percent of vertical load is reported). (a) A force percolation tree
obtained with the model; (b) force splitting-rules for a masonry with thick joints; (c),
(d) examples of random branching and random coalescence.
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A. Micromechanical model for thick joints

every brick as a doubly supported beam by randomly distributed reac-
tion forces (R1–R4, to be selected between the three possibilities shown in
Fig. 2.7b), subject to the vertical loads (F1–F4, Fig. 2.7b) transmitted by
the two bricks in the upper course.

Note that we have excluded the possibility, never observed in our ex-
periments, that a brick be supported simultaneously at the two corners
of the lower bricks. The result of the procedure is a form of random
cascade admitting random coalescence, in addition to random branching
(Fig. 2.7c–d). Note that the width of the bricks is b and the thickness of
the joints is d in Fig. 2.7, so that the reaction forces are determined as

R1 = F1 + F2

(
b+ d

2b

)
+ F3

(
b− d

2b

)
,

R2 = R3 = 0,

R4 = F4 + F2

(
b− d

2b

)
+ F3

(
b+ d

2b

)
,

(2.15)

for mechanism 1; as

R1 =
〈b(F1 − F4)− d(F1 + 2F3 + F4)〉

b− d
,

R2 = F1 + F2 + F3 + F4 +R1 −R4, R3 = 0

R4 =
〈b(F4 − F1) + d(F1 + 2F3 + F4)〉

b+ d
,

(2.16)

for mechanism 2, and as

R1 =
〈b(F1 − F4) + d(F1 + 2F2 + F4)〉

b+ d
,

R2 = 0, F1 + F2 + F3 + F4 −R1 −R4,

R4 =
〈b(F4 − F1)− d(F1 + 2F3 + F4)〉

b− d
,

(2.17)

for mechanism 3.
We can note from Figs. 2.4 and 2.7 that the proposed micromechanical

model correctly reproduces both the tree-like form of the stress percolation
and the diversity of ‘stress streams’ occurring even in nominally identical
masonries.
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CHAPTER

THREE

THE STRESS INTENSITY NEAR A STIFFENER DISCLOSED BY

PHOTOELASTICITY

Can the thickness of a thin inclusion (in a matrix material) be made so small

(though retaining sufficient stiffness and matrix adhesion) to generate ‘in

practice’ a stress state in agreement with the analytical (square-root singu-

lar) solution for a rigid line inclusion (so-called ‘stiffener’) embedded in a

linear elastic plate? Can this inhomogeneous stress state be generated for

tensile loading parallel to the stiffener? We provide a direct and positive

answer to these questions, by showing how to produce elastic materials con-

taining thin inclusions and by providing photoelastic investigation of these

structures. The experiments fully validate the stress state calculated for an

elastic plate containing a rigid (finite-length) line inclusion, until a distance

from the inclusion tip on the order of its thickness, corresponding to a stress

concentration up to seven.

3.1 Introduction

The experimental stress analysis near a fracture in an elastic material
is one of the most explored topics in solid mechanics. Without attempting
a review, we limit ourself to quote the thorough photoelastic investigation
of this problem (see the review by Østervig, 1987, the recent applications
to dynamics by Lim and Ravi-Chandar, 2007; 2009, and Sammis et al.,
2009).
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3.1. Introduction

Surprisingly, the experimental investigation of the stress state near a
thin stiff inclusion in an elastic matrix, akin to the problem of fracture,
has received no attention, although the analytical solution is known since
fifty years (Muskhelishvili, 1953) and, more importantly, the mechanical
behaviour of thin inclusions is fundamental in the design of composite
materials. In these materials, the inclusions increase the global stiffness
but introduce strong stress concentrators, leading to premature failure
(experiments performed in our lab and not reported here show that the
presence of a thin inclusion may decrease the failure load of a factor ranging
from ten to twenty).1

Compared to a crack, the thin rigid inclusion model poses new prob-
lems (as first noticed by Dal Corso et al., 2008), so that, while the chief
difficulty of experimental fracture mechanics is the realization of a suffi-
ciently sharp crack tip in a sufficiently stiff matrix, a thin inclusion should
be realized sufficiently: (i.) thin, (ii.) stiff, (iii.) adherent to the matrix
material, in which (iv.) residual stresses should be negligible; moreover,
(v.) the presence of the inclusion (rigid when compared to the matrix
stiffness) introduces a dependance on the matrix Poisson’s ratio, so that
plane stress and plane strain correspond to different in-plane stress distri-
butions.2

A first, qualitative, approach to the problem has been attempted by
Dal Corso et al. (2008), so that the purpose of the present paper is: (i.) to
describe a technique to obtain photoelastic materials ‘sufficiently’ free of
residual-stress and embedding ‘sufficiently’ thin, stiff, adherent metallic

1Although failure is not addressed in the present article, we have eventually sacrificed
all the samples employed for our photoelastic experiments to detect the mean failure
stress, to be compared with the failure stress of the material without inclusion. We
have found that the ratio between the latter and the former stress fluctuates around
ten and may grow to twenty, showing that the thin inclusion is definitely detrimental
to strength.

2Other problems (not investigated in the present article) raised by the stiffener model
are related to the near-reinforcement failure behaviour. One of these (mentioned by Dal
Corso et al., 2008) is that the hoop-stress criterion of fracture mechanics does not rule
the near-stiffener failure. Another problem is that the criticality of the stress intensity
factor cannot directly be related to any energy associated to a ‘fracture advance’, al-
though the stress intensity factor still remains a measure of the severity of the fields and
therefore a higher stress intensity factor is related to an earlier near-stiffener fracture
nucleation. A final problem is related to the fact that a stiffener may buckle, when
subject to compressive parallel load.
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3. The stress intensity near a stiffener disclosed by photoelasticity

inclusions, (ii.) to present results of photoelastic experiments on this ma-
terial, (iii.) to provide systematic and quantitative comparison with both
asymptotic and full-field elastic solutions.

Fig. 3.1: Photoelastic fringes revealing the stress field near a thin line inclusion (0.1 mm
thick steel platelet) embedded in an elastic matrix (a two-component ‘soft’ epoxy resin)
loaded at remote stress σ∞xx=0.116 MPa, compared to the elastic solution (in plane
strain, with Poisson’s ratio equal to 0.45). The image is the composition of three
different photos taken for different stiffener lengths (2l = {20, 30, 40}mm), scaled down
according to self-similarity in order to provide the same stress fields.

The achievement of result (i.) is less trivial than it might appear, since
the matrix material should be prepared ‘soft enough’ to eliminate residual
stresses in the vicinity of the rigid inclusion. The fact that the matrix ma-
terial is soft, implies that a nonlinear dependance of the refraction tensor
on the stress state plays a role in interpreting the experiments. Therefore,
we have employed a simplified version of a nonlinear theory of photoelas-
ticity in which we have assumed a linear stress/strain response together
with a nonlinear dependence of the refraction tensor on the stress, which
has been proposed on the basis of our experimental data. As a result, the
experiments show an excellent agreement with theoretical prediction, fully
substantiating the rigid-line inclusion (so-called ‘stiffener’) model, Fig. 3.1.
Moreover, the stress field in the vicinity of the stiffener tip (Fig. 3.2) is
shown to follow with great precision the linear elastic asymptotic solution
until a distance comparable with the stiffener thickness (0.1 mm), where
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3.2. Non-linear photoelasticity

the maximum measured stress concentration (the ratio between stress at
a point and the remote applied stress) results to be equal to seven.

Fig. 3.2: In-plane principal stress difference ∆σ along the stiffener line: comparison be-
tween photoelastic experiment with monochromatic light and the full-field and asymp-
totic elastic solutions, for remote stress σ∞xx=0.116 MPa. A detail of the region near to
the (right) stiffener tip has been captured using an optical microscope (photo reported
in the inset), so that a great number (twenty) of fringes have been detected, until a dis-
tance from the tip of the same order of magnitude of the stiffener thickness (0.1 mm).
A stress concentration of seven is visible.

3.2 Non-linear photoelasticity

We begin assuming a nonlinear hyperelastic behaviour, isotropic in
the unloaded state, so that the constitutive equation can be written in
terms of a strain energy density W (ε1, ε2, ε3), function of the principal
logarithmic (or ‘true’) strains εi (i = 1, 2, 3), from which the Kirchhoff
stress K, defined in terms of Cauchy stress σ and J , determinant of the
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3. The stress intensity near a stiffener disclosed by photoelasticity

deformation gradient F, as

K = Jσ, J = exp(ε1 + ε2 + ε3), (3.1)

is given by (Ogden, 1984)

K =
∂W

∂ε1
v1 ⊗ v1 +

∂W

∂ε2
v2 ⊗ v2 +

∂W

∂ε3
v3 ⊗ v3, (3.2)

where vi (i = 1, 2, 3) are the unit vectors defining the principal Eulerian
axes. In terms of nominal stress σ(n), defined as

σ(n) = F−1K, (3.3)

Eq. (3.2) becomes

σ(n) =
1

λ1

∂W

∂ε1
u1 ⊗ v1 +

1

λ2

∂W

∂ε2
u2 ⊗ v2 +

1

λ3

∂W

∂ε3
u3 ⊗ v3, (3.4)

where λi (i = 1, 2, 3) are the stretches and ui (i = 1, 2, 3) are the unit
vectors defining the principal Lagrangean axes. Note that the logarithmic
strains and the stretches are related by εi = log λi (i = 1, 2, 3).

For an elastic material, isotropic in the unloaded state, the refraction
symmetric second-order tensor n can be expressed as isotropic function of
the Cauchy stress σ,

n = n̂(σ), (3.5)

so that the principle of material frame indifference requires

n̂(σ) = QT n̂(QσQT )Q, (3.6)

for every rotation tensor Q. As a consequence, the function n̂ has to be
isotropic, so that the representation theorems (Wang, 1970) imply that it
can be expressed as

n = αI + βσ + γσ2, (3.7)

where α, β and γ are arbitrary functions of the invariants of σ.

Our experiments (detailed later) suggest that the nonlinear law (3.7)
can be simplified by assuming γ = 0. Moreover, it is instrumental (to
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3.2. Non-linear photoelasticity

immediately recover the nomenclature used in the linear theory) to re-
define α and β in the following way

α = n0 + c2trσ, β = c1 − c2, (3.8)

where n0 is the refraction index for the unstressed material, c1 and c2

are constant in the linear theory, but in general arbitrary functions of the
invariants of σ. The refraction tensor (3.7) becomes

n = (n0 + c2trσ) I + (c1 − c2)σ. (3.9)

Restricting attention to plane (stress or strain) condition, the angu-
lar phase shift ∆ between the two refracted components of the incident
light (with wavelength λ and orthogonal to the plane defining the plane
condition) is given by

∆ =
2π t

λ
(nI − nII) , (3.10)

where t is the current out-of-plane thickness of the material element un-
der consideration, (nI − nII) is the difference of the in-plane principal
components of the refraction tensor, that using Eq. (3.9) becomes

nI − nII = (c1 − c2) ∆σ, (3.11)

where ∆σ = σI −σII is the in-plane principal stress difference. Therefore,
the isochromatic fringe order N = ∆/2π is given by

N =
t

λ
(c1 − c2) ∆σ. (3.12)

In the linear theory, the material fringe constant fσ

fσ =
λ

c1 − c2
, (3.13)

is introduced, that in our case becomes a function of the stress invariants,
so that the fringe order (3.12) is given by

N =
t

fσ
∆σ, (3.14)
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3. The stress intensity near a stiffener disclosed by photoelasticity

corresponding to the well-known law of linear photoelasticity when fσ
and t are assumed to be constants, but in the nonlinear theory under
consideration they are related to the current values of t, fσ and ∆σ.

Equation (3.14) can be rewritten in terms of nominal quantities (i.e.
referred to the undeformed configuration) as

N =
t0

f
(n)
σ

∆σ(n), (3.15)

where t0 is the undeformed thickness, ∆σ(n) is the nominal in-plane prin-

cipal stress difference and f
(n)
σ is the nominal material fringe parameter.

Note that f
(n)
σ and fσ are related through the following equation

f (n)
σ =

λ1λ2∆σ(n)

σ
(n)
I λ1 − σ(n)

II λ2

fσ. (3.16)

The parameters f
(n)
σ and fσ, functions of the stress, have to be obtained

experimentally. To this purpose, we have performed uniaxial stress exper-
iments (in the way described in Section 3.4.2), employing homogeneous
dog-bone shaped samples cut from each of the samples prepared with the
inclusion (and described in Section 3.4.2).3

In a uniaxial stress test, where σ2 = σ3 = σ
(n)
2 = σ

(n)
3 = 0 and λ2 =

λ3 = t/t0, Eq. (3.16) becomes

f (n)
σ =

t

t0
fσ, (3.17)

a simple relation which is of great help in measuring f
(n)
σ and fσ as func-

tions only of the applied stress σ1.
The uniaxial stress experiments have revealed a viscous behaviour of

the two-component epoxy resin employed for photoelasticity, so that the
experiments have been performed at controlled load applied in discrete
steps, with a waiting time of 5 minutes before reading displacements and
performing the subsequent loading step. The true and nominal stress

3The geometry of dog-bone shaped samples has been taken according to the specific
ASTM standards ASTM D 638-98 ‘Standard Test Method for Tensile Properties of
Plastics’ (Test specimen TYPE IV).
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3.2. Non-linear photoelasticity

Fig. 3.3: Mechanical properties: applied true (Cauchy) stress σI versus true (logarith-
mic) deformation εl. Experimental data obtained with a uniaxial test at controlled
load.

behaviours, respectively versus conventional and logarithmic deformation,
are shown in Figs. 3.3 and 3.4, the latter showing the locking in tension
typical of rubber-like materials. Note that one curve (sample S1) is slightly

Fig. 3.4: Mechanical properties: applied nominal stress σ
(n)
I versus conventional defor-

mation εc. Experimental data obtained with a uniaxial test at controlled load.
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3. The stress intensity near a stiffener disclosed by photoelasticity

stiffer than the others, due to a spurious oscillation in the temperature
during polimerization of the sample.

Turning now the attention to the optical properties, we have measured
the isochromatic fringe order N (using the so-called ‘Tardy compensation
procedure’, see Dally and Riley, 1965), together with the nominal stress

σ
(n)
1 and the longitudinal and transversal stretches λ1 and λ2 = λ3. From

these data, Eq. (3.15) allows to calculate f
(n)
σ as a function of the in-plane

nominal stress difference, and then fσ is given by Eq. (3.16) as a function
of the true stress. Results are plotted in Figs. 3.5 and 3.6.

The experimental results for the true quantities reported in Fig. 3.5
are described by the law

fσ = 0.214 + 0.024 |∆σ|3/2 [N/mm], (3.18)

while the results in terms of nominal quantities, reported in Fig. 3.6 and
more important for our subsequent calculations, are fitted by the law

f (n)
σ = a+ b {exp(−c |∆σ(n)|)− 1}, (3.19)

where a, b and c are constants, so that the nominal material fringe pa-

rameter f
(n)
σ becomes a function of the in-plane maximum shear stress

|∆σ(n)|/2. Our experiments indicate the following values for the coeffi-
cients in Eq. (3.19)

a = 0.214 [N/mm], b = 0.038 [N/mm], c = 3.245 [mm2/N], (3.20)

which provides the nonlinear function of stress plotted in Fig. 3.6 to fit
the experimental data. We finally remark that the linearization of the
constitutive equations (3.2) [or (3.4)] and of the optical law (3.14) [or
(3.15)] leads to the usual setting of linear photoelasticity. However, the
stress/strain mechanical problem and the optical problem are decoupled,
so that there are no conceptual difficulties in linearizing the former and
keeping nonlinear the latter. In fact, in the following we will show that
the optimal interpretation of experiments leads us to the use of the linear
theory of elasticity for the determination of the stress fields, so that ∆σ =
∆σ(n), employed together with the nonlinear Eq. (3.19) for the optical
behaviour of the material.
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3.3. Linear elastic solution for a stiffener

Fig. 3.5: Optical properties: true material fringe parameter fσ versus true principal
stress difference ∆σ. Experimental data and proposed law, Eq. (3.18).

Fig. 3.6: Optical properties: nominal material fringe parameter f
(n)
σ versus nominal

principal stress difference ∆σ(n). Experimental data and proposed law, Eq. (3.19) with
the coefficients (3.20).

3.3 Linear elastic solution for a stiffener

It is instrumental now to recall the solution for a rigid line inclusion
embedded in a linear elastic matrix. To this purpose, we assume general-
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3. The stress intensity near a stiffener disclosed by photoelasticity

ized plane conditions, so that the displacement field is defined as

ux = ux(x, y), uy = uy(x, y), (3.21)

from which the in-plane deformations εαβ (α, β=x, y) can be obtained as

εxx =
∂ux
∂x

, εyy =
∂uy
∂y

, εxy =
1

2

(
∂ux
∂y

+
∂uy
∂x

)
. (3.22)

For a linear elastic isotropic material, the relation between deformations
(3.22) and stresses σαβ (α, β=x, y) is given by the in-plane constitutive
equations,

εxx =
(κ+ 1)σxx + (κ− 3)σyy

8µ
,

εyy =
(κ+ 1)σyy + (κ− 3)σxx

8µ
,

εxy =
σxy
2µ

,

(3.23)

where µ represents the shear modulus and

κ =


3− 4ν, for plane strain,

3− ν
1 + ν

, for plane stress,
(3.24)

where ν ∈ (−1, 1/2) is the Poisson’s ratio. Note that κ = 1 in the limit
case of incompressible material under plane strain.

A rigid line inclusion of length 2 l, aligned parallel to and centered at
the origin of the x–axis, is considered perfectly bonded to an elastic matrix
defined by the constitutive equations (3.23). The presence of such inclu-
sion introduces boundary conditions on the line where the inclusion lies
(different from those corresponding to a crack), that can be distinguished
in:

• kinematical boundary conditions (expressing the fact that, for points
belonging to the inclusion line, the displacements field consists in a
generic rigid-body motion)

ux(ξ, 0) = ux(0, 0), uy(ξ, 0) = uy(0, 0) + ωS ξ, ∀ |ξ| < l, (3.25)
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3.3. Linear elastic solution for a stiffener

where ux(0, 0), uy(0, 0) represent the unknown generic displacements
of the mid-point of the inclusion and ωS a rigid-body rotation;

• statical boundary conditions (expressing the fact that the resultant
forces on the rigid line inclusion have to be null in order to satisfy
equilibrium) ∫ l

−l
[[σxy(ξ, 0)]] dξ = 0,

∫ l

−l
[[σyy(ξ, 0)]] dξ = 0,

∫ l

−l
[[σyy(ξ, 0)]] ξ dξ = 0,

(3.26)

where the bracket operator [[·]] denotes the jump in the relevant
argument across the inclusion line.

The full-field solution for a stiffener of finite length 2l can be obtained
using the method of complex potentials for plane problems, where the
stress components are expressed in terms of complex potentials Φ(z) and
Ψ(z), function of z = x+ i y (where i is the imaginary unit) and defining
the stress fields as (Muskhelishvili, 1953)

σxx = Re
[
2Φ(z)− zΦ′(z)−Ψ(z)

]
,

σyy = Re
[
2Φ(z) + zΦ′(z) + Ψ(z)

]
,

σxy = Im
[
zΦ′(z) + Ψ(z)

]
.

(3.27)

Considering uniform Mode I and Mode II loadings4 described by the
remote in-plane stresses σ∞xx, σ∞yy and σ∞xy, the stiffener solution is (Atkin-

4The definition of in-plane Mode loadings for the stiffener problem is given in analogy
with their equivalent in fracture mechanics, so that Mode I is defined as an in plane
symmetric loading, while Mode II is defined as an in plane antisymmetric loading.
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3. The stress intensity near a stiffener disclosed by photoelasticity

son, 1973; see also Ballarini, 1990)

Φ(z) =
σ∞xx + σ∞yy

4
−

(κ+ 1)σ∞xx + (κ− 3)σ∞yy
8κ

(
1− z√

z2 − l2

)
,

Ψ(z) =
σ∞yy − σ∞xx

2
+ iσ∞xy +

(κ+ 1)σ∞xx + (κ− 3)σ∞yy
8κ

×

×

[
1 + κ− (2 + κ)

z√
z2 − l2

+
z3√

(z2 − l2)3

]
.

(3.28)

Solution (3.28) yields:

• for Mode I loading and due to the symmetry of the problem, a stress
state which automatically satisfies conditions (3.26) and leads to

εxx(ξ, 0) = εxy(ξ, 0) = 0, ∀ |ξ| < l, (3.29)

so that conditions (3.25) are also satisfied with ωS = 0 and unpre-
scribed ux(0, 0) and uy(0, 0);

• for Mode II loading, a uniform stress state, so that all jumps in
Eqs. (3.26) are null and Eqs. (3.25) are satisfied with ωS = σ∞xy/µ
and unprescribed ux(0, 0) and uy(0, 0).

Therefore, differently from the crack problem, solution (3.28) shows that:

• the mechanical fields depend on the Poisson’s ratio through param-
eter κ, Eq. (3.24);

• the rigid line inclusion perturbs the homogeneous state for stress
component parallel to the inclusion, σ∞xx, but it is ‘neutral’ to stress
component σ∞xy, leaving unperturbed5 the homogeneous shear stress
field (see Appendix A for experimental results about stiffener ‘neu-
trality’).

5The neutrality of a rigid line inclusion occurs only for uniform Mode II, indeed a
square-root singularity can be found for a generic Mode II loading.
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3.3. Linear elastic solution for a stiffener

For uniform Mode I loading, the asymptotics of solution (3.28) (taken
near the stiffener tip on the right hand side, z = l+r exp(iθ), with small r/l
ratio) or, more in general, the asymptotics for an arbitrary Mode I loading
leads to an expression for stress and strain fields in the form (Wang et al.,
1985)


σxx

σyy

σxy

 =
HI√
2πr



cos
ϑ

2

(
3 + κ

2
− sin

ϑ

2
sin

3ϑ

2

)
cos

ϑ

2

(
1− κ

2
+ sin

ϑ

2
sin

3ϑ

2

)
sin

ϑ

2

(
1 + κ

2
+ cos

ϑ

2
cos

3ϑ

2

)


,


εxx

εyy

εxy

 =
HI

2µ
√

2πr



cos
ϑ

2

(
κ− sin

ϑ

2
sin

3ϑ

2

)
− cos

ϑ

2

(
1− sin

ϑ

2
sin

3ϑ

2

)
sin

ϑ

2

(
1 + κ

2
+ cos

ϑ

2
cos

3ϑ

2

)


,

(3.30)

where HI is a Mode I stress intensity factor, which takes different forms
according to a normalization criterion. In particular, the usual normaliza-
tion criterion of fracture mechanics for Mode I loadings gives

KI = lim
r→0

√
2πr σyy(r, ϑ = 0) =

1− κ
2

HI , (3.31)

which is not well behaved under plane strain condition in the limit of
incompressibility, κ = 1. To emend the problem of incompressibility, in
agreement with Wu (1990), we introduce the following normalization

K
(ε)
I = lim

r→0
2µ
√

2πr εxx(r, ϑ = 0) = κHI . (3.32)

From the full-field solution (3.28), we can now obtain the stress in-
tensity factors for a rigid line inclusion under uniform Mode I loading at
infinity, following the normalizations (3.31) and (3.32) in the forms

KI =
1− κ
κ

µε∞xx
√
πl, K

(ε)
I = 2µε∞xx

√
πl. (3.33)
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3. The stress intensity near a stiffener disclosed by photoelasticity

Note that the definition (3.32) leads to the stress intensity factor
(3.33)2, which is similar to the analogous quantity (where ‘remote strain’
replaces ‘remote stress’) obtained for a crack using definition (3.31). The
analogy between the two definitions of stress intensity factor is connected
to the difference of the fields that are constrained to assume null value
within the inclusion, namely, σyy for the crack and εxx for the stiffener.

3.4 Experimental

3.4.1 The production of samples containing thin, stiff inclusions

A photoelastic matrix material has been realized employing a com-
mercial two-part epoxy resin (Crystal Resins c© by Gedeo, 305 Avenue du
pic de Bretagne, 13420 Gemenos, France), commonly used for produc-
ing highly transparent non-yellowing casts. Different samples have been
made pouring the obtained blend (with resin and hardener in proportion
of 1:1) in a PTFE mould (at the bottom of which the stiffener was kept
orthogonal with the help of some cyanoacrylate drop used at his centre)
and de-moulded after 48 hours during which it has been kept at a con-
stant temperature of 25◦C. To realize the stiffener, we have used a 0.1 mm
and 0.05 mm thick steel sheets, with a superficial rugosity improved (to
enhance adhesion) using a fine (P 500) sandpaper.

With this technique we have realized and tested fifteen samples, which
have all given the same qualitative results. For brevity, we report here the
results obtained from five samples tested after one week from de-moulding
(and labeled S1, S2, S3, S4 and S5 in the following). Samples S1–S4 have
dimensions 100 mm× 260 mm× 5 mm (see Fig. 3.7), while sample S5 has a
reduced thickness of 3 mm. The samples contain stiffeners centered within
the matrix and arranged parallel to the larger side, in particular:

• S1, S2 and S3 contain a single inclusion of thickness 0.1 mm, respec-
tively with length 2l = {20; 30; 40}mm;

• S4 contains two collinear inclusions of thickness 0.1 mm and length
2l = 20 mm with their tips at a distance of 10 mm;

• S5 contains a single inclusion of thickness 0.05 mm and length 2l =
30 mm.
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3.4. Experimental

Fig. 3.7: Two-part epoxy resin samples (S1, S2, S3, S4, S5) containing 0.1 mm (samples
S1–S4) and 0.05 mm (sample S5) thick steel laminae of different lengths ({20; 30; 40}mm
for samples S1–S3, 20 mm for sample S4 and 30 mm for sample S5). The thickness of
samples S1–S4 is 5 mm, while sample S5 is 3 mm thick.

3.4.2 Photoelastic experiments

Experiments have been performed with a linear and a circular (with
quarterwave retarders for 560 nm) polariscope (dark field arrangement and
equipped with a white and sodium vapor lightbox at λ = 589.3 nm, pur-
chased from Tiedemann & Betz), designed by us and manufactured at the
University of Trento.6 Photos have been taken with a Nikon D200 digital
camera, equipped with a AF-S micro Nikkor (105 mm, 1:2.8G ED) lens and

6A detailed descriptions of our polariscope can be found on http://ssmg.ing.unitn.it
while general description of photoelastic experimental techniques can be found in Coker
and Filon (1957) and Frocht (1965).

52



i
i

“thesis noselli” — 2011/4/24 — 11:25 — page 53 — #67 i
i

i
i

i
i

3. The stress intensity near a stiffener disclosed by photoelasticity

with a AF-S micro Nikkor (70-180 mm, 1:4.5Ű5.6 D) lens for details. Mon-
itoring with a thermocouple connected to a Xplorer GLX Pasco c©, temper-
ature near the samples during experiments has been found to lie around
22.5◦C, without sensible oscillations. Near-tip fringes have been captured
with a Nikon SMZ800 stereozoom microscope equipped with Nikon Plan
Apo 0.5x objective and a Nikon DS-Fi1 high-definition color camera head.

The samples have been loaded by prescribing vertical dead loads (par-
allel to the stiffener) increasing from7 0 to 50 N (with steps of 5 N). Data
have been acquired after 5 minutes from the load application time in order
to damp down the largest amount of viscous deformation, noticed as a set-
tlement of the fringes, which follows displacement stabilization. Releasing
the applied load after the maximum amount of 50 N, all the samples at
rest showed no perceivably residual stresses in the whole specimen.

In Fig. 3.8 (which is the counterpart of Fig. 3.1, but taken under
monochromatic light) photoelastic fringes detected on the samples S1, S2
and S3 loaded at 50 N are compared all together with the linear elastic
solution (3.28) in plane strain,8 with a Poisson’s ratio9 equal to 0.45 and
σ∞xx = 0.116 MPa, equal to the nominal stress applied to the samples. In
order to report results of three samples with different stiffener lengths in
the same figure, we have scaled down the photos in a way that all the
stiffeners appear to have the same length, so that self-similarity of the
elastic solution allows us to conclude that the fringes have to be the same,
a circumstance fully verified in the experiments.

We can note from Fig. 3.8 that (i.) the linear elastic solution is in a very
good quantitative agreement with the photoelastic results and (ii.) being
the material almost incompressible, the mid-point of inclusion corresponds
to an in-plane pressure stress state, i.e. ∆σ ≈ 0), so that the zone looks

7Note that a further load of 8 N corresponding to the grasp weight has been taken
into account.

8The state in the vicinity of a stiffener can be considered a plane strain state, since
the inclusion imposes null deformation on its surface and therefore even in the out-of-
plane direction. The comparison of the fields obtained from the experiments and from
the analytical solution under plane strain condition proves the validity of this statement.

9For the matrix material employed in our experiments, we have estimated the value
of the Poisson’s ratio using optical measurements, performed until large deformations
occurred. Due to the known difficulties in measuring the Poisson’s ratio, these measures
have to be taken with care, so that we have estimated ν = 0.45, with an error that can
arrive to 20%.

53



i
i

“thesis noselli” — 2011/4/24 — 11:25 — page 54 — #68 i
i

i
i

i
i

3.4. Experimental

Fig. 3.8: Monochromatic photoelastic fringes revealing the in-plane principal stress
difference field near a thin line inclusion (a 0.1 mm thick steel platelet) embedded in an
elastic matrix (a two-component ‘soft’ epoxy resin) compared to the elastic solution (in
plane strain, with Poisson’s ratio equal to 0.45). The image is the composition of three
different photos taken for different stiffener lengths [2l = 20 mm (sample S1), 30 mm
(sample S2), and 40 mm (sample S3)], scaled down according to self-similarity to provide
the same stress fields.

black and the fringe order is 0.

3.4.3 Hunting the near-tip singular field

Singularities cannot exist in reality, since the stress cannot become
infinite in any real material. However, the investigation of the behaviour
in vicinity of a singularity is of crucial importance in assessing an elastic
solution and its domain of validity.

For all samples, the count of fringes has been possible directly on the
photos, producing results shown in Figs. 3.2, 3.9 and 3.11, where the stress
along the stiffener line y = 0 is reported for the experimental quantifica-
tions and compared with the asymptotic and full-field elastic solutions.
Differently from samples S1 and S3, the specimen S2 was optically pure
until near the tip of the stiffener (in the outside region), so that, with the
aid of an optical stereomicroscope (a Nikon SMZ800), we have been able
to detail the very near-tip fringes in the direction outward to the stiff-
ener (in the inward direction the optical purity was compromised by the
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3. The stress intensity near a stiffener disclosed by photoelasticity

Fig. 3.9: In-plane principal stress difference along the stiffener line (y =0): compar-
ison between photoelastic experiments at monochromatic light on samples S1 (left),
S3 (right) and the (full-field and asymptotic) elastic solutions for remote stress σ∞xx=
0.116 MPa.

cyanoacrylate used to fix the stiffener before pouring the resin), until a
distance from the tip of the same order of the stiffener thickness (0.1 mm),
see Fig. 3.2. It has been possible to count twenty different fringes, corre-

Fig. 3.10: Monochromatic photoelastic fringes near the stiffener tip of sample S5, which
has suffered a delayed failure. A ‘spear-shaped’ microscopic fracture is visible at the tip
of the stiffener (having a thickness 0.05 mm).

55



i
i

“thesis noselli” — 2011/4/24 — 11:25 — page 56 — #70 i
i

i
i

i
i

3.4. Experimental

sponding to a stress concentration equal to seven. A stress concentration
equal to eight has been obtained testing sample S5, which however has
suffered a delayed near-tip microscopic failure just an instant after we had
finished counting twenty-three fringes.

The near-stiffener failure of specimen S5 is shown in Fig. 3.10 (taken
with the Nikon SMZ800 stereomicroscope), evidencing a ‘spear’ shape of
the near-tip fracture, which we have found to be the typical failure mode
in all our samples (see also Dal Corso et al., 2008, their Fig. 7).

Although our experiments are not conclusive on this aspect, debonding
is not observed along the long edges defining the stiffener line, so that the
spear-shaped fracture seems to involve debonding only along the short edge
(0.05 mm× 3 mm in the experiment reported in Fig. 3.10) of the stiffener
tip. Considering the Figs. 3.9 and 3.2, we may observe that the stress

Fig. 3.11: In-plane principal stress difference along the stiffener line (y =0): comparison
between photoelastic experiment at monochromatic light on sample S4 (containing two
stiffeners) and the full-field elastic solution relative to a single stiffener, for remote stress
σ∞xx=0.116 MPa. Note that the distance between the stiffeners (equal to the inclusion
half-length) is not close enough that to invalidate the single inclusion solution.
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3. The stress intensity near a stiffener disclosed by photoelasticity

raises near the tip of the stiffener in very good quantitative agreement
with the elastic solution, to decrease at a distance 1.5l to 110% of the
remote stress σ∞xx.

From these figures we may note that the elastic solution remains valid
until very near to the stiffener tip (0.1 mm), so that the asymptotic ap-
proximation has a range of validity in an annular zone with an external
radius equal to l/3 (and corresponding to a 20% discrepancy with the
full-field solution).

A special comment is related to Fig. 3.11, where we see that the inter-
action between two collinear stiffeners (when their tips are at a distance
l from each other) is not strong enough to completely invalidate the solu-
tion for the single stiffener, which is still shown to reproduce very well the
stress field in the experiment.

In closure of this Section we mention that, although all our experi-
mental results have been interpreted using the nonlinear law for the fringe

material parameter f
(n)
σ , Eq. (3.19), the assumption of a constant value

for the fringe material parameter does not alter substantially results. A
discussion on this point is deferred to Appendix B.

3.4.4 Determination of stress intensity factor K
(ε)
I

In the literature, photoelastic experiments on fracture have mainly
been conducted with the purpose of providing a quantitative description
of the introduced singularity through the determination of the stress in-
tensity factor KI , a quantity which is usually determined through the
so-called ‘two– three– and four– parameter methods’ (reviewed by Øster-
vig, 1987), based on a procedure proposed by Irwin (1958). However,
our purpose here is different, since we want to experimentally validate

the analytical value of stress intensity factor K
(ε)
I for a uniform Mode I

at infinity, Eq. (3.33)2. To this purpose, we note that applying the two–
parameter method (Irwin, 1958) to the asymptotics of the stiffener (3.30),
the introduction of a ‘uniform stress parameter’ yields unrealistic (experi-
mentally not observed) corners of the predicted fringes along the stiffener
line. For this reason, instead using the two–parameter method or its vari-
ants, we have found more suited the recent approach proposed by Chen
(1996) based on the experimental measure of the area enclosed within two
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isochromatic fringes.

Following this approach, the area between two isochromatic fringes can
be related to the stress intensity factor via the asymptotic solution and
the optical properties of the material. Applied to the rigid line inclusion
problem, the stress intensity factor takes an expression different from that
defined for a crack, which is the following (referred to two different fringes
numbered N and M and the associated nominal quantities)

K
(ε)
I = 2κ

Mf
(n)
σ,MNf

(n)
σ,N

t0
×

× 4

√√√√ 2π (AN −AM )

(8κ4 + 16κ3 + 20κ2 + 12κ+ 3)
[
(Mf

(n)
σ,M )4 − (Nf

(n)
σ,N )4

] , (3.34)

where Ai (i = N,M) is the area enclosed within the two isochromatic
fringes with order N and M , representing the only quantity that has to

be measured in order to estimate the stress intensity factor K
(ε)
I .

Reference Fringe orders (AN −AM )/l2
Mean Variance

Area N - M S1 S2 S3

5− 6 0.0171 0.0174 0.0153 0.0166 0.1345× 10−5

2− left 6− 7 0.0094 0.0087 0.0071 0.0084 0.1409× 10−5

7− 8 0.0058 0.0045 0.0038 0.0047 0.1017× 10−5

5− 6 0.0511 0.0479 0.0394 0.0461 3.6347× 10−5

2− right 6− 7 0.0183 0.0180 0.0152 0.0172 0.2907× 10−5

7− 8 0.0087 0.0084 0.0071 0.0080 0.0667× 10−5

5− 6 0.0341 0.0326 0.0273 0.0314 1.2706× 10−5

total 6− 7 0.0139 0.0133 0.0112 0.0128 0.2068× 10−5

7− 8 0.0072 0.0064 0.0054 0.0064 0.0786× 10−5

Tab. 3.1: Measures of the area between fringes N and M (divided by the square of the
stiffener length) (AN −AM )/l2 for the fringe patterns shown in Figs. 3.2 and 3.9.

Since formula (3.34) is obtained from the Mode I asymptotic fields
(3.30), its application becomes more accurate the closer are the fringes
to the stiffener tip. However, the asymptotic solution (referring for the
moment to the right stiffener tip) evidences a symmetry (with respect to
x = +l) of the areas between two fringes, which cannot be perfectly ver-
ified in any real experiment. Therefore, we propose the three estimates
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3. The stress intensity near a stiffener disclosed by photoelasticity

of K
(ε)
I which give the same results, would the symmetry be exactly ver-

ified. In addition to the direct measure of the area between two fringes,
labeled ‘total’ in Tab. 3.1, we propose the measure labeled ‘2-left’ (labeled
‘2-right’), corresponding to twice the area enclosed between two fringes
observed for x ≤ l (for x ≥ l). Note that ‘total’ corresponds to the av-
erage of ‘2 left’ and ‘2 right’. The data reported in Tab. 3.1 have been
measured with reference to the fringe patterns shown in Figs. 3.2 and 3.9.
The measures of the area between fringes has been normalized through
division by the square of the stiffener length. From the values reported in

Reference Fringe orders K
(ε)
I,exp/K

(ε)
I,th Mean Variance

Area N - M S1 S2 S3

5− 6 0.9216 0.9253 0.8954 0.9141 0.2657× 10−3

2− left 6− 7 0.9716 0.9510 0.9049 0.9425 1.1664× 10−3

7− 8 1.0190 0.9572 0.9167 0.9643 2.6541× 10−3

5− 6 1.2111 1.1918 1.1350 1.1793 1.5650× 10−3

2− right 6− 7 1.1468 1.1418 1.0948 1.1278 0.8230× 10−3

7− 8 1.1287 1.1187 1.0745 1.1073 0.8319× 10−3

5− 6 1.0947 1.0829 1.0358 1.0711 0.9711× 10−3

total 6− 7 1.0699 1.0592 1.0132 1.0474 0.9076× 10−3

7− 8 1.0780 1.0475 1.0049 1.0435 1.3481× 10−3

Tab. 3.2: Estimate of the ratio between measured and theoretical stress intensity factor,
K

(ε)
I,exp/K

(ε)
I,th, for the fringe patterns shown in Figs. 3.2 and 3.9 obtained with the area

reported in Tab. 3.1.A value of 1 means perfect adherence between theory and measured
values.

Tab. 3.1, the estimations of stress intensity factor K
(ε)
I have been calcu-

lated with Eq. (3.34) and reported in Fig. 3.12 and in Tab. 3.2 (where the

ratio between experimental K
(ε)
I,exp and theoretical10 K

(ε)
I,th values of stress

intensity factors is reported, so that value of 1 means perfect adherence
between theory and measure).

From Tab. 3.2 we can conclude that:

• the values of K
(ε)
I,exp/K

(ε)
I,th range between the minimum value of

0.8954 and the maximum of 1.2111, with a mean value 1.0442 and a
standard deviation 0.0903;

10The theoretical values of the stress intensity factor K
(ε)
I,th have been calculated from

Eq. (3.33)2 under plane strain condition, using the estimated Poisson’s ratio and the
remote stress σ∞xx=0.116 MPa.
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• fringes closer to the stiffener tip give smaller error in the estimation
of stress intensity factor;

• at same fringe order, the smaller error in the estimation of stress
intensity factor is obtained for the ‘2- left’ area criterion.

Fig. 3.12: Stress intensity factor K
(ε)
I versus semi-length of stiffener, l. Theoretical

curve and measured values, the latter reported in Tab. 3.2.

3.5 Conclusions

The singular stress field around a rigid line inclusion in an elastic
matrix represents an excellent approximation to the photoelastic fringes
visible in a two-component epoxy resin material containing thin steel lam-
inae. The experiments provide a superb quantitative validation of the
elastic model until a distance from the inclusion tip on the same order
of its thickness and corresponding to a stress concentration up to seven.
An accurate estimation of the stress intensity factor has been provided by
extension of a method used for fracture.
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3. The stress intensity near a stiffener disclosed by photoelasticity

A Stiffener neutrality under uniform Mode II loading condi-
tions (uniform shear parallel to the inclusion line)

The stiffener neutrality to uniform shear stress states has been exper-
imentally verified imposing to the sample S2 a simple shear deformation
parallel to the inclusion.

The shear deformation has been estimated from the deformation of a
rectangle drawn (with a pen on the sample surface) with the edges par-
allel and orthogonal to the inclusion line in the undeformed configuration
(Fig. 3.13 on the left).

Photoelastic results of the simple shear test are reported in Fig. 3.13,
where global shear strain εxy is (approximately) 2.5% (centre) and 5%
(right). Higher deformations were precluded by out-of-plane buckling of
the sample.

From the figure we conclude that the stiffener leaves almost unper-
turbed the imposed shear stress state, so that concentration of stress
around the inclusion is not visible. Note that this shear deformation,
ε∞xy, is quantitatively equivalent to the maximum elongation, ε∞xx, imposed
during the experiments described in Section 3.4.2 and disclosing a strong
focussing of the stress/strain field around the stiffener tips.

Fig. 3.13: Photoelastic fringes for in-plane principal stress difference around a stiffener
subjected to a simple shear (ε∞xy) parallel to the inclusion line at different stages of
deformation (ε∞xy = {0; 2.5; 5}%). The shearing deformation can be estimated from
the distortion of the rectangle drawn (with a pen on the surface of the sample) with
edges parallel and orthogonal to the stiffener in the unloaded configuration (on the left).
The homogeneity of the fields demonstrates the stiffener neutrality for uniform Mode II
loading.
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B Results obtained with constant material fringe parameter

All our experimental results have been interpreted using the nonlinear

law for the fringe material parameter f
(n)
σ , Eq. (3.19), but the the assump-

tion of a constant value for the fringe material parameter does not alter
qualitatively results. It may be therefore of interest to quantify how the
data result quantitatively affected.

The photoelastic fringes shown in Fig. 3.8 are reported in Fig. 3.14 and
compared this time to the theoretical elastic solution assuming a constant

value for f
(n)
σ (equal to 0.196 N/mm, the mean value of the measures),

instead of the law (3.19).

Fig. 3.14: As for Fig. 3.8, but for constant fringe parameter f
(n)
σ = 0.196 N/mm (mean

value obtained from the tests).

Globally, we note a good agreement, although a close comparison to
Fig. 3.8 reveals some discrepancies, particularly, in the behaviour of the
third fringe in the elastic solution.

The most evident differences arise near the stiffener tips, so that in
Fig. 3.15 we report a detail of the near-tip fringes of Fig. 3.14 (referred
to 2l = 40 mm), compared with the two interpretations based on the law

(3.19) (labeled ‘Proposed law’) and the mean value f
(n)
σ = 0.196 N/mm

(labeled ‘Mean value’).

Finally, the ratio has been calculated between the values of the stress
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3. The stress intensity near a stiffener disclosed by photoelasticity

Fig. 3.15: Details of the left stiffener tip of Figs. 3.8 (on the left) and 3.14 (on the right).
The elastic fields in the former figure have been obtained with the nonlinear law (3.19),

while the latter with the constant value f
(n)
σ = 0.196 N/mm.

intensity factors experimentally deduced (K
(ε)
I,exp) assuming a constant

fringe parameter f
(n)
σ , and theoretically determined (K

(ε)
I,th). These ratios

result very similar to the analogous values evaluated for variable fringe

parameter f
(n)
σ and reported in Tab. 3.2. The fact that these values are

in close agreement follows from the circumstance that the stress intensity

factors have been evaluated working on fringes N=5, 6, 7, 8, where f
(n)
σ,N

is very close to the mean value f
(n)
σ = 0.196 N/mm.
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B. Results obtained with constant material fringe parameter
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CHAPTER

FOUR

STRUCTURES BUCKLING UNDER TENSILE DEAD LOAD

After the systematic experiments by Musschenbroek and their rationalization

by Euler, for the first time we show that it is possible to design structures

(i.e. mechanical systems whose elements are governed by the equations of

the elastica) exhibiting bifurcations and instabilities (‘buckling’) under tensile

load of constant direction and point of application (‘dead’). We show both

theoretically and experimentally that the behaviour is possible in elementary

structures with a single degree of freedom and in more complex mechanical

systems, as related to the presence of a structural junction, called ‘slider’,

allowing only relative transversal displacement between the connected ele-

ments. In continuous systems where the slider connects two elastic thin

rods, bifurcations occur both in tension and compression and are governed

by the equation of the elastica, employed here for tensile loading, so that the

deformed rods take the form of the capillary curve in a liquid, which is in

fact governed by the equation of the elastica under tension. Since axial load

in structural elements deeply influences dynamics, our results may provide

application to innovative actuators for mechanical wave control, moreover,

they open a new perspective in the understanding of failure within structural

elements.

4.1 Introduction

Buckling of a straight elastic column subject to compressive end thrust
occurs at a critical load for which the straight configuration of the column
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4.1. Introduction

becomes unstable and simultaneously ceases to be the unique solution of
the elastic problem (so that instability and bifurcation are concomitant
phenomena). Buckling is known from ancient times: it has been exper-
imentally investigated in a systematic way by Pieter van Musschenbrok
(1692-1761) and mathematically solved by Leonhard Euler (1707-1783),
who derived the differential equation governing the behaviour of a thin
elastic rod suffering a large bending, the so-called ‘elastica’ (see Love,
1927).

Fig. 4.1: Analogy between an elastic rod buckled under tensile force (left) and a water
meniscus in a capillary channel (right, superimposed to the solution of the elastica,
marked in red): the deflection of the rod and the surface of the liquid have the same
shape, see Section 4.4.

Through centuries, engineers have experimented and calculated com-
plex structures, such as frames, plates and cylinders, manifesting insta-
bilities and bifurcations of various forms (Timoshenko and Gere, 1961),
so that certain instabilities have been found involving tensile loads. For
instance, there are examples classified by Ziegler (1977) as ‘buckling by
tension’ where a tensile loading is applied to a system in which a com-
pressed member is always present, so that they do not represent true
bifurcations under tensile loads. Other examples given by Gajewski and
Palej (1974) are all related to the complex live (as opposed to ‘dead’) load-
ing system, for instance, loading through a vessel filled with a liquid, so
that Zyczkowski (1991) points out that ‘With Eulerian behaviour of load-
ing (materially fixed point of application, direction fixed in space), the
bar cannot lose stability at all [...].’ Note finally that necking of a circular
bar represents a bifurcation of a material element under tension, not of a
structure.

It can be concluded that until now structures made up of line elements
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4. Structures buckling under tensile dead load

(each governed by the equation of the elastica) exhibiting bifurcation and
instability under tensile load of fixed direction and point of application (in
other words ‘dead’) have never been found, so that the word ‘buckling’ is
commonly associated to compressive loads.

In the present article we show that:

• simple structures can be designed evidencing bifurcation (buckling)
and instability under tensile dead loading;

• the deformed shapes of these structures can be calculated using the
equation of the elastica, but under tension, so that the deflection of
the rod is identical to the shape of a capillary curve in a liquid, which
is governed by the same equation, see Fig. 4.1 and Sections 4.3.2
and 4.4;

• experiments show that elastic structures buckling under tension can
be realized in practice and that they closely follow theory predictions,
Sections 4.2 and 4.4.

The above findings are complemented by a series of minor new re-
sults for which our system behaves differently from other systems made
up of elastic rods, but with the usual end conditions. First, our system
evidences load decrease with increase of axial displacement (the so-called
‘softening’), second, the bifurcated paths involving relative displacement
at the slider terminate at an unloaded limit configuration, for both tension
and compression.

We will see that the above results follow from a novel use of a junction
between mechanical parts, namely, a slider or, in other words, a connec-
tion allowing only relative sliding (transverse displacement) between the
connected pieces and therefore constraining the relative rotation and axial
displacement to remain null.

Vibrations of structures are deeply influenced by axial load, so that the
speed of flexural waves vanishes at bifurcation (Bigoni et al. 2008; Gei et
al. 2009), a feature also evidenced by the dynamical analysis presented in
Section 4.3.1, so that, since bifurcation is shown to occur in our structures
both in tension and compression, these can be used as two-way actuators
for mechanical waves, where the axial force controls the speed of the waves
traversing the structure. Therefore, the mechanical systems invented in
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4.2. A simple one d.o.f. structure which buckles for tensile dead loading

the present article can immediately be generalized and employed to de-
sign complex mechanical systems exhibiting bifurcations in tension and
compression, to be used, for instance, as systems with specially designed
vibrational properties (a movie providing a simple illustration of the con-
cepts exposed in this work, together with a view of experimental results
is provided, see http://ssmg.ing.unitn.it).

4.2 A simple one d.o.f. structure which buckles for tensile dead
loading

The best way to understand how a structure can bifurcate under ten-
sile dead loading is to consider the elementary single-degree-of-freedom
structure shown in Fig. 4.2, where two rigid rods are connected through
a ‘slider’ (a device which imposes the same rotation angle and axial dis-
placement to the two connected pieces, but null shear transmission, leaving
only the possibility of relative sliding). Bifurcation load and equilibrium

Fig. 4.2: Bifurcation of a single-degree-of-freedom elastic system under tensile dead
loading (the rods of length l are rigid and jointed through a slider, a device allowing
only for relative sliding between the two connected pieces). A rotational elastic spring
of stiffness k, attached at the hinge on the left, provides the elastic stiffness. Note that
the bifurcation is ‘purely geometrical’ and is related to the presence of the constraint at
the middle of the beam which transmits rotation, but not shear (left). The bifurcation
diagram, showing bifurcation and softening in tension is reported on the right. The
rotation angle φ0 = {1◦, 10◦} denotes an initial imperfection, in terms of an initial
inclination of the two rods with respect to the horizontal direction.

paths of this single-degree-of-freedom structure can be calculated by con-
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4. Structures buckling under tensile dead load

sidering the bifurcation mode illustrated in Fig. 4.2 and defined by the
rotation angle φ. The elongation of the system and the potential energy
are respectively

∆ = 2l

(
1

cosφ
− 1

)
(4.1)

and

W (φ) =
1

2
kφ2 − 2Fl

(
1

cosφ
− 1

)
, (4.2)

so that solutions of the equilibrium problem are

F =
k φ cos2 φ

2l sinφ
, (4.3)

for φ 6= 0, plus the trivial solution (φ = 0, ∀F ). Analysis of the second-
order derivative of the strain energy reveals that the trivial solution is
stable up to the critical load

Fcr =
k

2l
, (4.4)

while the nontrivial path, evidencing softening, is unstable.

Fig. 4.3: A model of the single-degree-of-freedom elastic structure shown in Fig. 4.2 on
the left (in which a metal strip reproduces the rotational spring and the load is given
through hanging a load) displaying bifurcation for tensile dead loading (left: undeformed
configuration; right: buckled configuration).

For an imperfect system, characterized by an initial inclination of the
rods φ0, we obtain

W (φ, φ0) =
1

2
k (φ− φ0)2 − 2Fl

(
1

cosφ
− 1

cosφ0

)
(4.5)
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4.3. Vibrations, buckling and the elastica

and

F =
k (φ− φ0) cos2 φ

2l sinφ
, (4.6)

so that the force–rotation relation is obtained, which is reported dashed
in Fig. 4.2 for φ0 = 1◦ and φ0 = 10◦.

The simple structure presented in Fig. 4.2, showing possibility of a
bifurcation under dead load in tension and displaying an overall softening
behaviour, can be realized in practice, as shown by the wooden model
reported in Fig. 4.3.

4.3 Vibrations, buckling and the elastica for a structure subject
to tensile (and compressive) dead loading

In order to generalize the single-degree-of-freedom system model into
an elastic structure, we consider two inextensible elastic rods clamped at
one end and joined through a slider, identical to that used to join the two
rigid bars employed for the single-degree-of-freedom system (see the inset
of Fig. 4.4). The two bars have bending stiffness B, length l− (on the left)
and l+ (on the right) and are subject to a load F which may be tensile
(F > 0) or compressive (F < 0).

4.3.1 The vibrations and critical loads

The differential equation governing the dynamics of an elastic rod sub-
ject to an axial force F (assumed positive if tensile) is

∂4v(z, t)

∂z4
− F

B

∂2v(z, t)

∂z2
+
ρ

B

∂2v(z, t)

∂t2
= 0, (4.7)

where ρ is the unit-length mass density of the rod and v the transversal
displacement, so that time-harmonic motion is based on the separate-
variable representation

v(z, t) = ṽ(z) e−iωt, (4.8)

in which ω is the circular frequency, t is the time and i =
√
−1 is the

imaginary unit.
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4. Structures buckling under tensile dead load

A substitution of Eq. (4.8) into Eq. (4.7) yields the equation governing
time-harmonic oscillations

d4ṽ(z)

dz4
− α2 sign(F )

d2ṽ(z)

dz2
− βṽ(z) = 0, (4.9)

where the function ‘sign’ (defined as sign(α) = |α|/α ∀α ∈ Re and sign(0) =
0) has been used and

α2 =
|F |
B
, β = ω2 ρ

B
. (4.10)

The general solution of Eq. (4.9) is

ṽ(z) = C1 cosh(λ1z) + C2 sinh(λ1z) + C3 cos(λ2z) + C4 sin(λ2z), (4.11)

where

λ1,2 =

√√
α4 + 4β ± α2 sign(F )

2
. (4.12)

Eq. (4.11) holds both for the rod on the left (transversal displacement
denoted with ‘−’) and on the right (transversal displacement denoted with
‘+’) shown in the inset of Fig. 4.4, so that the boundary conditions at the
clamps impose

ṽ−(0) =
dṽ−

dz

∣∣∣∣
z=0

= 0, ṽ+(l+) =
dṽ+

dz

∣∣∣∣
z=l+

= 0, (4.13)

while at the slider we have the two conditions

d3ṽ−

dz3

∣∣∣∣
z=l−

=
d3ṽ+

dz3

∣∣∣∣
z=0

= 0, (4.14)

expressing the vanishing of the shear force. The imposition of the six
conditions (4.13)–(4.14) provides the constants C±2,3,4 as functions of the

constants C±1 , so that the continuity of the rotation at the slider

dṽ−

dz

∣∣∣∣
z=l−

=
dṽ+

dz

∣∣∣∣
z=0

(4.15)

and the equilibrium of the slider

d2ṽ−

dz2

∣∣∣∣
z=l−

− α2 sign(F ) ṽ−(l−) =
d2ṽ+

dz2

∣∣∣∣
z=0

− α2 sign(F ) ṽ+(0), (4.16)
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4.3. Vibrations, buckling and the elastica

yields finally a linear homogeneous system (with unknowns C−1 and C+
1 ),

whose determinant has to be set equal to zero, to obtain the frequency
equation, function of α2, ω and sign(F ). The circular frequency ω (nor-
malized through multiplication by

√
ρl4/B) versus the axial force (normal-

ized through multiplication by 4l2/(Bπ2)) is reported in Fig. 4.4, where
the first four branches are shown for a system of two rods of equal length.
In this figure the gray zones represent situations that cannot be achieved,

2   global mode
nd

2   slider mode
nd

1 global mode
st

1 slider mode
st

0 5 10 15-5-10-15
0
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15
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35

w
l2

r
/B

4Fl
2
/( B)p

2

l
-

l
+

F+z-z
+v-v

Fig. 4.4: Dimensionless circular frequency ω for the structure shown in the inset (in the
particular case of rods of equal length, l) as a function of the dimensionless applied load
F . Note that solutions in the gray region cannot be achieved, since the rods cannot
remain straight for axial forces external to the bifurcation range of loads (shown as a
white zone).

in the sense that the axial force falls outside the interval where the straight
configuration of the system is feasible (in other words, for axial loads ex-
ternal to the interval of first bifurcations in tension and compression the
straight configuration cannot be maintained).

The branches shown in Fig. 4.4 intersect the horizontal axis in corre-
spondence to the bifurcation loads of the system, namely, 4Fcrl

2/(π2B) =
−16,−15.19,−4,−3.17,+0.58, so that there is one critical load in tension
(the corresponding branch is labeled ‘1st slider mode’ in Fig. 4.4), and in-
finitely many bifurcation loads in compression, the first three are reported
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4. Structures buckling under tensile dead load

in Fig. 4.4 (bifurcations corresponding to the label ‘global mode’ do not
involve relative displacement across the slider).

Beside the possibility of bifurcation in tension, an interesting and novel
effect related to the presence of the slider is that a tensile (compressive)
axial force yields a decrease (increase) of the frequency of the system, while
an opposite effect is achieved when ‘global modes’ are activated.

Quasi-static solutions of the system and related bifurcations can be
obtained in the limit ω → 0 of the frequency equation, which yields

tanh
(
α l−

)
cosh

(
α l+

)
+

+ sinh
(
α l+

) [
1− (l+ + l−)α tanh

(
α l−

)]
= 0, forF > 0,

tan
(
α l−

)
cos
(
α l+

)
+

+ sin
(
α l+

) [
1 + (l+ + l−)α tan

(
α l−

)]
= 0, forF < 0.

(4.17)

In the particular case of rods of equal length l, Eqs. (4.17) simplify tosinh (α l) [1− α l tanh (α l)] = 0, forF > 0,

sin (α l) [1 + α l tan (α l)] = 0, forF < 0.
(4.18)

Eqs. (4.18) show clearly that there is only one bifurcation load in ten-
sion (branch labeled ‘1st slider mode’ in Fig. 4.4), but there are ∞2 bi-
furcation loads in compression (the first three branches are reported in
Fig. 4.4). In compression, the bifurcation condition sin (α l) = 0, provid-
ing ∞1 solutions, yields the critical loads of a doubly clamped beam of
length 2l and defines what we have labeled ‘global modes’ in Fig. 4.4. Bi-
furcation loads, normalized through multiplication by (l+ + l−)2/(π2B),
are reported in Fig. 4.5 as functions of the ratio l+/l− between the lengths
of the two rods.

Note that the graph is plotted in a semi-logarithmic scale, which en-
forces symmetry about the vertical axis. In the graph, the first two buck-
ling loads in compression are reported: the first corresponds to a mode
involving sliding, while the second does not involve any sliding (and when
l+ = l− corresponds to the first mode of a doubly clamped rod of length
2l). Used as an optimization parameter, l+ = l− corresponds to the lower
bifurcation load in tension (+0.58), near five times smaller (in absolute
value) that the buckling load in compression (−3.17).
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4.3. Vibrations, buckling and the elastica
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Fig. 4.5: Dimensionless critical loads Fcr as a function of the ratio between the lengths
of the rods, l+/ l−. The dimensionless axial forces for bifurcation in tension and those
corresponding to the first two modes in compression are reported.

4.3.2 The elastica

The determination of the non-trivial configurations at large deflections
of the mechanical system requires a careful use of Euler’s elastica. It is
instrumental to employ the reference systems shown in Fig. 4.6 and impose
one kinematic compatibility condition and three equilibrium conditions.
These are as follows.

• The kinematic compatibility condition can be directly obtained from
Fig. 4.6 noting that the jump in displacement across the slider (mea-
sured orthogonally to the line of the elastica), ∆s, can be related to
the angle of rotation of the slider Φs, a condition that assuming the
local reference systems shown in Fig. 4.6 becomes[

x−1 (l−) + x+
1 (l+)

]
tan Φs + x−2 (l−) + x+

2 (l+) + ∆s = 0, (4.19)

where x1(s) and x2(s) are the coordinates of the elastica and the
index − (+) denotes that the quantities are referred to the rod on
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4. Structures buckling under tensile dead load

the left (on the right). Note that Φs is assumed positive when an-
ticlockwise and ∆s is not restricted in sign (negative in the case of
Fig. 4.6).

• Since the slider can only transmit a moment and a force R orthogonal
to it, equilibrium requires that (see the inset in Fig. 4.6)

R =
F

cos Φs
, (4.20)

where F is the axial force providing the load to the rod, assumed
positive (negative) when tensile (compressive), so that since Φs ∈
[−π/2, π/2], R is positive (negative) for tensile (compressive) load.
Note that with the above definitions we have

θ+(0) = θ−(0) = 0, θ+(l+) = θ−(l−) = −Φs. (4.21)

Fig. 4.6: Sketch of the problem of the elastica under tensile axial load F . Note the
reference systems employed in the analysis and note that the moments on the slider
have been reported positive and the curvature results to be negative.

• Equilibrium of the slider requires that

κ−s + κ+
s =

R

B
∆s, (4.22)
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4.3. Vibrations, buckling and the elastica

where B is the bending stiffness of the rod and κ±s is the curvature
on the left (−) or on the right (+) of the slider. Note that B is
always positive, but R, κ±s and ∆s can take any sign.

• For both rods (left and right) rotational equilibrium of the element
of rod singled out at curvilinear coordinate s requires

d 2θ

ds 2
− R

B
sin θ = 0, (4.23)

where θ is the rotation of the normal at each point of the elastica,
assumed positive when anticlockwise, with added the superscript −
(+) to denote the rod on the left (on the right).

Eq. (4.23) is usually (see for instance Love, 1927, his Eq. (8) at Sect. 262)
written with a sign ‘+’ replacing the sign ‘−’ and R is assumed positive
when compressive; the same equation describes the motion of a simple
pendulum (see for instance Temme, 1996). The ‘+’ sign originates from
the fact that the elastica has been analyzed until now only for deforma-
tions originating from compressive loads. However, an equation with the
‘−’ sign and with R/B replaced by the ratio between unit weight den-
sity and surface tension of a fluid –thus equal to Eq. (4.23)– determines
the shape of the capillary curve of a liquid (Lamb, 1928), which therefore
results to be identical to the deflection of a rod under tensile load.

In the following we derive equations holding along both rods ‘+’ and
‘−’, so that these indices will be dropped for simplicity. Multiplication of
Eq. (4.23) by d θ/ds and integration from 0 to s yields(

d θ

d s

)2

= −2 α̃2 sign(R) cos θ + 2 α̃2

(
2

k2
− 1

)
, (4.24)

where, using the Heaviside step function H, we have

α̃2 =
|R|
B

and k2 =

(
κ2
s

4 α̃2
+H(R)

)−1

. (4.25)

Eq. (4.24) can be re-written as(
d θ

d s

)2

=
4 α̃2

k2

[
1− k2 sin2

(
θ

2
+
π

2
H(R)

)]
, (4.26)
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4. Structures buckling under tensile dead load

so that the change of variable u = sα̃/k yields

d θ

d u
= ±2

√
1− k2 sin2

(
θ

2
+
π

2
H(R)

)
. (4.27)

The analysis will be restricted for simplicity to the case ‘+’ in the following.
At u = 0 it is θ = 0, so that Eq. (4.27) gives the solution

θ = 2 am [u+KH(R), k]− πH(R) (4.28)

and
d θ

d s
=

2

k
α̃ dn [u+KH(R), k] , (4.29)

where am and dn are respectively the Jacobi elliptic functions amplitude
and delta-amplitude and K is the complete elliptic integral of the first kind
(Byrd and Friedman, 1971). Since in the local reference system we have
dx1/ds = cos θ and dx2/ds = sin θ, an integration gives the coordinates
x1 and x2 of the elastica expressed in terms of u,

x1 =

(
2− k2

)
u− 2 E [am [u, k] , k] + 2k2sn [u, k] cd [u, k]

k α̃

x2 =
2
√

1− k2 (1− dn [u, k])

k α̃ dn [u, k]

(4.30)

for tensile axial loads (R > 0), while for compressive axial loads (R < 0)
x1 =

(
k2 − 2

)
u+ 2 E [am [u, k] , k]

k α̃

x2 =
2 (1− dn [u, k])

k α̃

(4.31)

in which the constants of integration are chosen so that x1 and x2 vanish at
s = 0. In Eqs. (4.30)–(4.31) sn and cd are respectively the Jacobi elliptic
functions sine-amplitude and cosine-amplitude/delta-amplitude and E is
the incomplete elliptic integral of the second kind (Byrd and Friedman,
1971).

Eqs. (4.31) differ from Eqs. (16) reported by Love (1927, his Section
263) only in a translation of the coordinate x2, while Eqs. (4.30), holding
for tensile axial force, are new.
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4.3. Vibrations, buckling and the elastica

Finally, with reference to Fig. 4.6, we note that the horizontal displace-
ment ∆c of the right clamp can be written in the form

∆c =
x−1 (l−) + x+

1 (l+)

cos Φs
−
(
l+ + l−

)
. (4.32)
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Fig. 4.7: Bifurcation of the structure sketched in Fig. 4.6 under tensile load. Dimen-
sionless axial load F versus slider rotation (versus dimensionless end displacement) is
shown on the left (on the right).

To find the axial load F as a function of the slider rotation Φs, or as a
function of the end displacement ∆c, we have now to proceed as follows:

• values for κ−s and κ+
s are fixed (as a function of the selected mode,

for instance, κ−s = κ+
s , to analyze the bifurcation mode in tension);

• k can be expressed using Eq. (4.25)2 as a function of α̃;

• the equations for the coordinates of the elastica, Eq. (4.30) for tensile
load, or Eq. (4.31) for compressive load, and Eq. (4.28), evaluated
at l− and l+, become functions of only α̃;

• Eqs. (4.21) and (4.22) provide Φs and ∆s, so that Eq. (4.19) becomes
a nonlinear equation in the variable α̃, which can be numerically
solved (we have used the function FindRoot of MathematicaR© 6.0);
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4. Structures buckling under tensile dead load

• when α̃ is known, R and F can be obtained from Eqs. (4.25)1 and
(4.20);

• finally, Φs and ∆c are calculated using Eqs. (4.21)2 and (4.32).

Results are shown in Fig. 4.7 for tensile loads and in Fig. 4.8 for com-
pressive loads, in terms of dimensionless axial load 4Fl2/(Bπ2) versus
slider rotation Φs (on the left) and dimensionless end displacement ∆c/(2l)
(on the right).
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Fig. 4.8: Bifurcation of the structure sketched in Fig. 4.6 under compressive load. Di-
mensionless axial load F versus slider rotation (versus dimensionless end displacement)
is shown on the left (on the right).

Note that, while there is only one bifurcation in tension, there are in-
finite bifurcations in compression, so that we have limited results to the
initial three modes in compression. Two of these modes involve slider ro-
tation (labeled ‘slider mode’), while an intermediate mode (labeled ‘global
mode’) does not.

The load/displacement curve shown in Fig. 4.7 on the left is plotted
until extremely large displacements, namely, ∆c = 20l (a detail at mod-
erate displacement is reported in the inset). It displays a descending, in
other words softening and unstable, postcritical behaviour, which contrasts
with the usual postcritical of the elastica under various end conditions, in
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4.4. Experimental

which the load rises with displacement. In compression, the post-critical
behaviour evidences another novel behaviour, so that the first and the
second slider modes present an initial part where the load/displacement
rises, followed by a softening behaviour. Finally, it is important to note
that the curves load versus Φs in Figs. 4.7 and 4.8, both for tension and
compression intersect each other at null loading at the extreme rotation
Φs = 90◦, which means that two unloaded configurations (in addition to
the initial configuration) exist. These peculiarities, never observed before
in simple elastic structures, are all related to the presence of the slider.

Deformed elastic lines are reported in Fig. 4.9, both for tension and
compression, the latter corresponding to the first three slider modes (the
global mode is not reported since it corresponds to the first mode of a
doubly-clamped rod).
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Fig. 4.9: Deflections (the scale of the axes is 2l) of the structure shown in Fig. 4.6 (with
rods of equal length) at a slider rotation of 30◦ in tension (upper part, on the left) and
compression (first 3 slider modes are reported, whereas the global mode has not been
reported).

4.4 Experimental

The structure sketched in Fig. 4.6 has been realized with two carbon
steel AISI 1095 strips (250 mm× 25 mm× 1 mm; Young modulus 200 GPa)
and the slider with two linear bearings (type Easy Rail SN22-80-500-610,
purchased from RollonR©), commonly used in machine design applications,
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4. Structures buckling under tensile dead load

see Fig. 4.10. The slider is certified by the producer to have a low friction
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F
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Experimental set-up

Displacement transducer

Elastic rod

Slider

Load frame

Fig. 4.10: Load versus end displacement for the model representing the structure
sketched in Fig. 4.6 recorded during tensile (positive F ) and compressive (negative
F ) tests. The red curves are the theoretical predictions (the dashed line is obtained
keeping into account the effective values of the lengths of the rods, 10% smaller than
the values measured from the clamps to the middle of the slider). The values ‘5◦’, ‘10◦’,
‘20◦’ and ‘30◦’ denote the inclination of the slider in degrees reached during the test. A
photo of the experimental setup during the postcritical behaviour in tension is reported
on the right.

coefficient, equal to 0.01. Tensile force on the structure has been pro-
vided by imposing displacement with a load frame ELE Tritest 50 (ELE
International Ltd), the load measured with a load cell Gefran OC-K2D-
C3 (Gefran Spa), and the displacement with a potentiometric transducer
Gefran PY-2-F-100 (Gefran Spa). Data have been acquired with system
NI CompactDAQ, interfaced with Labview 8.5.1 (National Instruments).
Photos have been taken with a Nikon D200 digital camera, equipped with
a AF-S micro Nikkor lens (105 mm 1:2.8G ED) and movies with a Sony
Handycam HDR-XR550. Tensile and compressive tests have been run at
a velocity of 2.5 mm/s.

Photos taken at different slider rotations (and thus load levels) are
shown in Fig. 4.11 for tension (Φs = 0◦, 10◦, 20◦, 30◦) and in Fig. 4.12
for compression (Φs = 0◦, 5◦, 10◦, 20◦). A comparison between theo-
retical predictions and experiments is reported in the lower parts of the
figures where photos are superimposed to the line of the elastica, shown
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in red and plotted using Eq. (4.30) for tensile load and Eq. (4.31) for
compression. These experiments show clearly the existence of the bi-

Fig. 4.11: Photos of the model representing the structure sketched in Fig. 4.6 and loaded
in tension at different values of slider rotation Φs = 0◦, 10◦, (upper part) 20◦, 30◦ (lower
part). The elastica calculated with Eq. (4.30) is superimposed on the photos at 20◦,
30◦ in the lower part. The side of the grid marked on the paper is 10 mm.

Fig. 4.12: Photos of the model representing the structure sketched in Fig. 4.6 and loaded
in compression at different values of slider rotation Φs = 0◦, 5◦, (upper part) 10◦, 20◦

(lower part). The elastica calculated with Eq. (4.30) is superimposed on the photos at
10◦, 20◦ in the lower part. The side of the grid marked on the paper is 10 mm.

furcation in tension and provide an excellent comparison with theoretical
results obtained through integration of the elastica both in tension and
in compression. A further quantitative comparison between theoretical
results and experiments is provided in Fig. 4.10, where the axial load in
the structure (positive for tension and negative for compression) is plotted
versus the end displacement ∆c. The experimental result is compared to
theoretical results (marked red) expressed by Eq. (4.32), used in the way
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4. Structures buckling under tensile dead load

detailed at the end of Section 4.3.2.

The theoretical result marked in red with continuous curve has been
calculated assuming an initial length of the rods (25 cm) measured from
the end of the clamps to the middle of the slider. However, the slider and
the junctions to the metal strips are 58 mm thick, so that the system is
stiffer in reality. Therefore, we have plotted dashed the theoretical results
obtained employing an ‘effective’ initial length of the rods reduced of 10%
(so that the effective length of the system has been taken equal to 45 cm).
The experimental curve evidences oscillations of ±1 N for tensile loads
and ±5 N for compressive loads. These oscillations are due to friction
within the slider, so that it is obvious that the oscillations are higher in
compression than in tension, since in the former case the load is higher.
Except for these oscillations, the friction (which is very low) has been
found not to influence the tests.

The fact that experimentally the bifurcations initiate before the the-
oretical values are attained represents the well-known effect of imperfec-
tions, so that we may conclude that the agreement between theory and
experiments is excellent.

To provide experimental evidence to the fact that the elastica in ten-
sion corresponds to the shape of the free surface of a liquid in a capillary
channel, we note that a meniscus in a capillary channel satisfies (by sym-
metry) a null-rotation condition at the centre of the channel, so that it
corresponds to a clamped edge of a rod. If the tangent to the meniscus at
the contact with the channel wall is taken to correspond to the rotation
of the non-clamped edge of the rod and the width of the channel is calcu-
lated employing the elastica, the elastic deflection of the rod scales with
the free surface of the liquid. Therefore, we have performed an experiment
in which we have taken a photo (with a Nikon SMZ800 stereo-zoom micro-
scope equipped with Nikon Plan Apo 0.5x objective and a Nikon DD-FI1
high definition color camera head) of a water meniscus in a polycarbonate
channel. We have proceeded as follows. First, we have observed that the
contact angle between a water surface in air and polycarbonate (at a tem-
perature of 20◦C) is 70◦. Second, we have taken a photo of the meniscus
formed in a polycarbonate ‘V-shaped’ channel with walls inclined at 10◦

with the vertical, so that the angle between the horizontal direction and
the free surface results to be 30◦ and the distance between the walls results
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6 mm. This photo has been compared with a photo taken (with a Nikon
D200 digital camera, and shown in Fig. 4.11 on the right) during buckling
in tension when the elastic rods form the same angle of 30◦. The result is
shown in Fig. 4.1, together with the theoretical solution shown red.

4.5 Conclusions

We have theoretically proven and fully experimentally confirmed that
elastic structures can be designed and practically realized in which bifur-
cation can occur with tensile dead loading. In these structures no parts
subject to compression are present. The finding is directly linked to the
presence of a junction allowing only for relative sliding between two parts
of the mechanical system. Our findings open completely new and unex-
pected perspectives, related for instance to the control of the propagation
of mechanical waves and to the understanding of certain failure modes in
material elements.
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CHAPTER

FIVE

THE EXPERIMENTAL EVIDENCE OF FLUTTER INSTABILITY

INDUCED BY DRY FRICTION

Flutter and divergence instabilities have been advocated to be possible in

elastic structures with Coulomb friction, but no direct experimental evidence

has ever been provided. Moreover, the same types of instability can be

induced by tangential follower forces, but these are commonly thought to

be of extremely difficult, if not impossible, practical realization. Therefore,

a clear experimental basis for flutter and divergence induced by friction or

follower-loading is still lacking. This is provided for the first time in the

present article, showing how a follower force of tangential type can be realized

via Coulomb friction and how this, in full agreement with the theory, can

induce a blowing-up vibrational motion of increasing amplitude (flutter) or an

exponentially growing motion (divergence). In addition, our results show the

limits of a treatment based on the linearized equations, so that nonlinearities

yield the initial blowing-up vibration of flutter to reach eventually a steady-

state. The presented results give full evidence to potential problems in the

design of mechanical systems subject to friction, open a new perspective

in the realization of follower loading systems and of innovative structures

exhibiting ‘unusual’ dynamical behaviours.

5.1 Introduction

Coulomb friction at the contact between two elastic bodies is an ex-
ample of a live load (since it acts in a direction opposite to the relative
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5.1. Introduction

velocity during sliding of the bodies) and is known to be connected to
different forms of instabilities. Two of these, the so-called ‘flutter’ and
‘divergence’ (the former associated to blowing-up oscillations and the lat-
ter to an exponentially growing motion), are dynamical instabilities that
have been theoretically shown to be possible in elastic structural systems
with Coulomb friction (Martins et al., 1999; Simões and Martins, 1998;
Nguyen, 2003) and even in plastic continua characterized by frictional be-
haviour (Rice, 1977; Loret, 1992; Bigoni, 1995; Bigoni and Loret, 1999;
Loret et al., 2000; Piccolroaz et al., 2006). However, no clear experimental
evidence of flutter and divergence instabilities related to dry friction has
ever been presented 1, so that flutter induced by friction has always been
thought to be a puzzling phenomenon, since it is rather ‘unexpected’ that
a merely dissipative factor such as friction, can induce blowing-up dynam-
ical motions in a mechanical system that would be stable in the absence
of it. Moreover, for friction-related flutter in structures and continua, the
role played by the nonlinearities, usually neglected in the stability anal-
yses, is simply not known from the experimental point of view, so that
these could even have a stabilizing effect, see the discussion by Bigoni and
Petryk (2002).

The primary purpose of this work is to provide a definitive and in-
disputable experimental evidence for flutter and divergence instability in
elastic systems with dry Coulomb friction. The key for this achievement is
the link with a special elastic structure exhibiting flutter and divergence:
the so-called ‘Ziegler column’ (Ziegler, 1953; 1977). This is a two-degree-
of-freedom structure made up of two rigid bars, jointed each other and
fixed at one end through two elastic rotational springs, while a tangential
follower load, in other words a load remaining collinear with the terminal
rod, is applied at one end (Fig. 5.1). Since the follower load is nonconser-

1Friction-related dynamical instabilities are thought to be responsible of brake squeal
and of the ‘song’ of a fingertip moved upon the rim of a glass of water, but these
phenomena involve stick and slip, a phenomenon modelled as a drop of friction coefficient
with velocity (Rice and Ruina, 1983). It is therefore not clear if the instabilities would
occur in the absence of this drop and it is not possible to definitely conclude about
the real nature of these, which appear to be only weakly related to the flutter of the
structures subject to follower load, so that there are many different theories to describe
brake squeal involving or not follower forces (see the reviews by Flint and Hultén, 2002;
Kröger et al., 2008).
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5. The experimental evidence of flutter instability induced by dry friction

Fig. 5.1: The Ziegler column, a two-degree-of-freedom system subject to follower load
(the force P remains always applied to C and directed parallel to the rod BC), exhibiting
flutter and divergence instability. The two rods, of linear mass density ρ, are rigid and
connected through two rotational springs of stiffness k1 and k2. Note that there is no
bifurcation for this system.

vative, the structure becomes dynamically unstable at a certain load level
(although non-trivial equilibrium configurations do not exist), so that it
evidences flutter (a blowing-up oscillating motion) and, at higher load,
divergence instability (an exponentially growing motion) 2.

As a result of a complex fluid-structure interaction, follower loads and
related instabilities may occur in aeroelasticity, but these do not directly
involve the tangential follower force postulated in the Ziegler column,
which is thought to be of such difficult practical realization3 that a clear
experimental basis for flutter and divergence instability as induced by tan-
gential follower load is still lacking. These difficulties led Professor W.T.

2The history of the discovery of this instability involves, among others, Nikolai
(1928), Pflüger (1950; 1955), Beck (1952), Ziegler (1953; 1956; 1977), Bolotin (1963),
Herrmann and Jong (1965), Como (1966) and is explained in detail by Elishakoff (2005),
who also provides an account of the frustrating attempts of giving experimental evidence
to the theory.

3Follower tangential forces have been realized until now through a fluid flowing from
a nozzle, or through a solid motor rocket fixed at the end of the structure (Herrmann
et al., 1966; Sugiyama et al., 1995; 2000), two devices introducing complications in the
modelling. In fact, the complex fluid/structure interaction of a fluid flowing from a
nozzle is only as a first approximation reduced to a follower thrust, while in the other
experimental set-up complications arise from the non-negligible mass and dimensions of
the solid motor rocket and from the short duration of the thrust provided by it, which
prevents long-term analyses of the motion.
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Koiter (1996) to propose the ‘elimination of the abstraction of follower
forces as external loads from the physical and engineering literature on
elastic stability’ and to conclude with the warning: ‘beware of unrealistic
follower forces’.

In the present article we show that it is possible to exploit dry friction
to generate follower loads of the type postulated by Ziegler (1953; 1977),
so that flutter and divergence instabilities in structures and in mechanical
systems with dry friction are shown to be strictly connected phenomena.
In particular, we will prove the following results.

• First, we definitely disclaim Koiter’s statement and the current opin-
ion that follower forces are unrealistic, showing that a follower load
can be easily realized exploiting dry friction and that flutter and di-
vergence instabilities can be observed with a simple experimental set-
ting, so simple that can even be reduced to a toy for kids.

• Second, we prove in a direct and indisputable way that flutter and
divergence instabilities can be induced by dry friction.

• Third, we investigate experimentally and theoretically the role of
nonlinearities on the development of the instability, showing that
in the case of flutter these induce the attainment of a steady-state
motion.

The above mentioned results have been obtained by inventing, design-
ing and testing a two-degree-of-freedom elastic structure with a frictional
(obeying the Coulomb rule) element.

A brief explanation of our idea and results can be given as follows. Our
two-degree-of-freedom system is a simple variant to the Ziegler column
(Fig. 5.1), where the follower load is induced by a frictional force acting
on a wheel mounted at the end of the structure and kept sliding with
friction against a plane. Note the crucial role played by the wheel, which
transmits the frictional force coaxial to its axis (see the sketch in Fig. 5.3).
The behaviour of the structure is shown in Fig. 5.2, where photos taken at
different time instants have been superimposed. On the left of the figure
we may see an example of flutter instability, while on the right an example
of divergence. The numbers provide the order in which the photos have
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5. The experimental evidence of flutter instability induced by dry friction

Fig. 5.2: A superposition of photos, adapted from Figs. 5.10 and 5.14 on the left, taken
at different instants of time [(0, 0.48, 0.72, 1.08) s for flutter and (0, 0.20, 0.28, 0.36) s for
divergence] of the two-degree-of-freedom structure (Fig. 5.8b) exhibiting flutter (left)
and divergence (right) instability. vp is the velocity of a plate sliding against the wheel,
taken equal to 75 mm/s for flutter and 50 mm/s for divergence.

been taken, so that we can clearly detect the oscillatory blow-up of flutter,
to be contrasted with the progressive growth of divergence4.

The Chapter is organized as follows. A variant of the Ziegler column
is presented in Section 5.2, in which the mass is distributed along the two
rigid beams forming the system and the follower load is provided by a
frictional device obeying Coulomb friction. The basic ideas for the design
of the structure and the complication involved with the friction constraint
are detailed. The practical realization of the structure is described in
Section 5.3, where experimental results are provided and commented. A
final discussion is presented in Section 5.4.

4A movie with experiments can be downloaded at http://ssmg.ing.unitn.it/. Note
in the movie the acoustic emission during the test, also evidencing the instability.
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5.2 The two-degree-of-freedom system

It is well-known that flutter instability may be induced in a struc-
ture by non-conservative loads and the typical example is the so-called
‘Ziegler column’, the two-degree-of-freedom system with heavy rigid rods
(mass per unit length ρ) shown in Fig. 5.1, where two rotational springs
of stiffness k1 and k2 provide the elasticity. The generic configuration of
the structure remains determined by the two Lagrangean parameters α1

and α2. The applied load P, assumed positive when compressive, main-
tains the direction parallel to the rod BC. The analysis of a system similar
to this (with concentrated masses instead than diffused) can be found in
Herrmann (1971), Ziegler (1977) and, in a simplified version, in Nguyen
(1995), while the analogous problem of a clamped column subjected to a
load tangential to its axis at the free end has been solved by Beck (1952)
and Pflüger (1955).

The follower force P in the structure shown in Fig. 5.1 has been pre-
viously realized through a fluid flowing from a nozzle (Herrmann et al.,
1966) or through an end rocket (Sugiyama et al., 1995; 2000) fixed at the
end of the structure.

Our idea is

to provide the follower force through a wheel of negligible mass
mounted at the top of the structure and constrained to slide
against a frictional plane, see Fig. 5.3.

In fact, a perfect (massless and fully free of rotating) wheel sliding with
pure Coulomb friction (but without rolling friction) on a rigid plane, which
is ideally touched at a point, can only transmit an axial force and we
will show that these conditions can be successfully approximated in real
experiments, since the deviations from the ideal model that necessarily
arise in experiments are not sufficient to hide the instabilities.

Following the above-mentioned idea, we analyze the structure shown in
Fig. 5.1 under the hypotheses that: (i.) the wheel is massless, free of rotat-
ing, and touches the horizontal plane at a point, (ii.) the hinges (unloaded
in the straight configuration) are viscoelastic, (iii.) the follower force is
transmitted through Coulomb friction of coefficient µd by a plane moving
at the speed −vp e1, and that (iv.) there is no rolling friction, so that the
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5. The experimental evidence of flutter instability induced by dry friction

Fig. 5.3: The way to produce a force coaxial to a rod from friction; a freely rotating
wheel of negligible mass is mounted at the top of the rod.

analysis merely differs from results in the above-mentioned literature in
the inclusion of the friction condition at the end of the structure.

The above-mentioned assumptions (i.)–(iv.) are very close to our ex-
perimental setup and have been verified both experimentally (changing
the wheel’s mass and profile, the friction coefficient, the geometry of the
structure and the stiffness and viscosity of the springs, see Section 5.3)
and theoretically (we have performed more sophisticated computations by
introducing the mass and rotational inertia of the wheel, the rolling fric-
tion and a possible deviation of the frictional load from collinearity), so
that we may point out that, though more complex models might yield a
better quantitative comparison with experiments, they cannot change the
overall qualitative picture, which will be shown to be very well captured
with simple assumptions.

A simple static analysis of the structure shown in Fig. 5.1 is sufficient to
conclude that only the trivial (straight) configuration satisfies equilibrium
(in fact equilibrium of the rod BC is only possible if α1 = α2, while
equilibrium of the complex ABC requires α1 = 0), so that quasi-static
bifurcations are excluded.

Let us obtain now the equations of motion for the system. To this
purpose, we start from the position vectors of the point C and of the mass
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center of the rods G1 and G2

C−A = {l1 cosα1 + l2 cosα2}e1 + {l1 sinα1 + l2 sinα2}e2

G1 −A = {l1 cosα1/2}e1 + {l1 sinα1/2}e2

G2 −A = {l1 cosα1 + l2 cosα2/2}e1 + {l1 sinα1 + l2 sinα2/2}e2

(5.1)

where e1 and e2 are the two unit vectors singling out the horizontal and
vertical direction respectively, so that the follower force P, of modulus P ,
can be expressed as

P = −{P cosα2}e1 − {P sinα2}e2, (5.2)

where, denoting with a superimposed dot the derivative with respect to
time, P is given by the Coulomb friction law with stiction

P = Rµ(Ċrp), µ(Ċrp) =

 µd sign(Ċrp), if Ċrp = Ċp·er 6= 0,

[−µs, µs], if Ċrp = Ċp·er = 0,
(5.3)

where R is the vertical reaction applied at the wheel (orthogonal to the
moving plane), µs and µd are the static and dynamic friction coefficients
(their difference gives the ‘stiction effect’, which vanishes taking µs = µd)
and Ċrp is the radial component (er = {cosα2}e1 + {sinα2}e2) of the
velocity of the wheel relative to the plate, so that we can write

Ċp = Ċ + vp e1, Ċp·er = vp cosα2 − l1 sin(α1 − α2)α̇1. (5.4)

For the practical realization of the experiment, the vertical reaction R will
be provided by using the structure itself as a lever to which a dead load
W is applied, as sketched in Fig. 5.4, so that

R =
ls

lf + l1 cosα1 + l2 cosα2
W, (5.5)

where ls is the length of one arm of the lever, while the denominator is
the variable length of the other, see Fig. 5.4.

It is assumed that the hinges are viscoelastic of the Voigt type with
constants β1, β2, k1, and k2, so that the moments applied to the rods are
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5. The experimental evidence of flutter instability induced by dry friction

Fig. 5.4: The structure shown in Fig. 5.3 is used as a lever to provide the vertical reaction
R from the vertical dead load W , so that the force from friction results P = µdR.

k1α1 + β1α̇1 and k2(α2 − α1) + β2(α̇2 − α̇1) and the principle of virtual
works, denoting with ‘·’ the scalar product, writes as (see Appendix A for
details)

P·δC− (k1α1 + β1α̇1)δα1 − [k2(α2 − α1) + β2(α̇2 − α̇1)](δα2 +

−δα1)− ρ[l1G̈1·δG1 + l2G̈2·δG2 + (l31α̈1δα1 + l32α̈2δα2)/12] = 0,
(5.6)

holding for every virtual rotation δα1 and δα2. Imposing now the condition
(5.6) and invoking the arbitrariness of δα1 and δα2 we arrive at the two
nonlinear differential equations

ρ
l21
3

(l1 + 3l2) α̈1 + ρ
l1l

2
2

2
[cos(α1 − α2)α̈2 + sin(α1 − α2)α̇2

2] +

+ (β1 + β2)α̇1 − β2 α̇2 + (k1 + k2)α1 − k2 α2 +

− l1P (Ċrp) sin(α1 − α2) = 0,

ρ
l1l

2
2

2
[cos(α1 − α2)α̈1 − sin(α1 − α2)α̇2

1] + ρ
l32
3
α̈2 +

−β2(α̇1 − α̇2)− k2(α1 − α2) = 0,

(5.7)

governing the dynamics of the system. A numerical solution of the nonlin-
ear differential system (5.7) faces the well-known numerical difficulty that
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5.2. The two-degree-of-freedom system

the friction law (5.3) is a multivalued, discontinuous relation (Threlfall,
1977; Oden and Martins, 1985; Martins et al., 1990). This difficulty can
be overcome using a viscous smooth approximation of the law, including
or not the difference between static and dynamical friction, which in the
continuous approximation becomes the so-called ‘Stribeck effect’ (Stribeck,
1902). In the following we have numerically solved the system (5.7) us-
ing different approximations to the law (5.3), including and neglecting the
Stribeck effect, and we have found that results for our structure do not
differ much, so that the root of the unstable behaviour is not linked to a
drop in the friction coefficient. Therefore, we will refer to the simple ap-
proximation to the relation (5.3) employed by Oden and Martins (1985)
and Martins et al. (1990)

µ(Ċrp) = µd


sign(Ċrp), if Ċrp /∈ [−ε, ε],(

2−
|Ċrp |
ε

)
Ċrp
ε
, if Ċrp ∈ [−ε, ε],

(5.8)

where ε is a small parameter.
A purely elastic analysis (β1 = β2 = 0) of the structure (a linear vis-

coelastic analysis is deferred to Appendix A), valid for configurations in a
small neighborhood of the trivial one (α1 = α2 = 0) can be performed with
the incrementally nonlinear differential system obtained from Eqs. (5.7)
through a Taylor series expansion in the form

ρ
l21
3

(l1 + 3l2) α̈1 + ρ
l1l

2
2

2
α̈2 + (k1 + k2)α1 − k2 α2 +

− l1P (Ċrp)(α1 − α2) = 0,

ρ
l1l

2
2

2
α̈1 + ρ

l32
3
α̈2 − k2(α1 − α2) = 0,

(5.9)

where P (Ċrp) remains the incrementally nonlinear function (5.3). Note
that the Eqs. (5.9) are similar (keeping aside for the moment the compli-
cation related to the difference between µs and µd) to the piecewise in-
cremental nonlinearity of a rigid perfectly-plastic body. The complication
connected to the incremental nonlinearity disappears if the plate/wheel
sliding condition Ċrp > 0 is always verified, a situation which certainly
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5. The experimental evidence of flutter instability induced by dry friction

holds at the instant of flutter (when α1 = α2 = 0) and even for a fi-
nite interval of time from this instant, , for vp sufficiently high to satisfy
vp > l1 sin(α1 − α2)α̇1/ cosα2. In this case, we can operate with the fully
linearized version of Eqs. (5.7)

ρ
l21
3

(l1 + 3l2) α̈1 + ρ
l1l

2
2

2
α̈2 + (k1 + k2)α1 − k2 α2 +

− l1P (α1 − α2) = 0,

ρ
l1l

2
2

2
α̈1 + ρ

l32
3
α̈2 − k2(α1 − α2) = 0,

(5.10)

where P is now independent of Ċrp and given by

P = µdR = µd
ls

lf + l1 + l2
W. (5.11)

In the flutter analyses usually performed in nonassociative elastoplasticity
(see for instance Bigoni, 1995), ‘plastic loading’ is always assumed, in other
words, a fully linear system such as that described by Eqs. (5.10) and
(5.11) is considered. We will soon be in a position to test this assumption
on our structure both theoretically and experimentally; for the moment,
continuing with the linearization Eq. (5.11), we look for time-harmonic
vibrations so that we can conclude that (see Appendix A for details):

• flutter instability occurs when Wf < W < Wd, with

Wf
d

=
k2(lf + l1 + l2)

µdlsl1
·
k + (1 + λ)3 ∓ λ

√
k(3 + 4λ)

1 + 3λ/2
, (5.12)

where

λ =
l1
l2
, k =

k1

k2
, (5.13)

• and divergence instability occurs when W > Wd.

The linearized analysis yields the known conclusion (which cannot be
reached through a quasi-static analysis) that, while divergence instability
corresponds to a motion growing exponentially in time, flutter instability
corresponds to a self-excited oscillation blowing up in time. This statement
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is confirmed in Fig. 5.5, where results are reported as solution of the
linear differential system (5.10) with the initial conditions α1 = α2 = 0.5◦

(α1 = α2 = −0.5◦ for divergence) and α̇1 = α̇2 = 0 and with the geometric
and stiffness setting that will be employed for experiments (see Tab. 5.2).
A 0.52 (0.2) seconds sequence of configurations at different instants of
time is reported in the figure, where each configuration is drawn at fixed
intervals of time (0.04 s). The oscillatory blow-up (exponential growth) of
the solution is clearly visible in the case of flutter (divergence).

The linearized elastic analysis has the mentioned limitations that: (i.)
slip at the wheel/plate contact is assumed, Ċrp > 0, (ii.) geometrical
nonlinearities are neglected, and (iii.) viscous behaviour of the hinges is
set to zero. So that the the question arises whether the blowing-up motion
connected to flutter (or to divergence) really develops or is strongly altered,
maybe even ‘damped-down’, by nonlinearities. We can provide various
answers to these questions, which are now discussed in detail.

• Assumption (i.), namely, Ċrp > 0. For sufficiently high velocities of
the plate, vp, this condition is verified not only at the instant of
flutter, but also for a finite interval of time, say, until l1(α1 − α2)α̇1

remains sufficiently small when compared to vp. It is therefore ex-
pected that the linearized analysis based on Eqs. (5.10) correctly
predicts the onset and the early development of a dynamical insta-
bility, without involving any stick-slip phenomena. This statement
is verified in the example reported in Fig. 5.5, where we have ob-
served that the wheel/plate slip condition is satisfied for all reported
configurations until the instant of time 0.40 s for flutter (0.16 s for
divergence). Therefore, the problem to be addressed is not if flutter
and divergences are ‘true’ instabilities, but how these instabilities
develop when displacements become sufficiently large to violate the
wheel/plate slip condition (and to involve the other nonlinearities).
This problem is solved in the following both with a numerical and
an experimental approach.

• Assumptions (ii.). The geometrical nonlinearities play a role only
when the displacement of the structure becomes large. These effects
need to be included for a correct modelling of the experiments, since
we have observed large (and very fast) movements to occur, so large
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5.2. The two-degree-of-freedom system

in the case of divergence instability, that we have had to limit the
maximum stroke of the structure with a constraint, to avoid failure
of the equipment.

• Assumptions (iii.). We have experimentally detected (in a way inde-
pendent of the instability tests, that will be explained later) a viscous
behaviour of the hinges, the consideration of which in the modelling
has yield a better comparison to experiments. In any case the insta-
bility is not associated to the viscosity, so that we have observed it
to occur under various conditions of lubrications at the hinges.

To check the limits of the above assumptions and to be able to model
our experiments, we have provided fully nonlinear analyses of the differ-
ential system (5.7), employing the regularization (5.8) with ε = 10−5 m/s.
One of these analyses (performed numerically using the function ‘NDSolve’
of Mathematica 6.0) is shown in Fig. 5.6, where configurations at different
instants of time have been reported as in Fig. 5.5, but introducing now
also the damping coefficients β1 and β2, with the values that best fit our
experiments (that will be introduced in the next Section, see Tabs. 5.1
and 5.2). We highlight that for all the deformed configurations reported
in Fig. 5.6 for flutter, the regularization law (5.8) is not ‘activated’, so that
Ċrp > ε, while in the case of the divergence, the regularization is activated
starting from the configuration at the instant of time 0.20 s. This means
that in the conditions relevant for our experiments, the early development
of flutter and divergence fully occurs without involving transitions from
the dynamic to static friction coefficients, with the possibility of stick-slip
instabilities.

We can conclude from Fig. 5.6 that an initial oscillation of increas-
ing amplitude is observed, as would be predicted by a linearized anal-
ysis, but that the oscillation becomes steady at large deformations (see
http://ssmg.ing.unitn.it), so large which could yield the failure of a real
structure (in fact we have broken our first two prototypes of the structure
during early tests, so that eventually we have designed the third prototype
to resist large displacements). A plot of the movement of the tip of the
structure recorded on the moving plate, as calculated from solution of the
nonlinear Eqs. (5.7) is reported in Fig. 5.7, contrasted with an experimen-
tal result, namely, a scratch left on the plate by the wheel during a test.
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5. The experimental evidence of flutter instability induced by dry friction
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5.3. Experimental results

Note that the initial velocity has been taken equal to α̇1 = α̇2 = 0.5 rad/s,
since in the experiment we have observed first a slight deviation from rec-
tilinearity and then a movement to reach the straight configuration before
the initiation of flutter. We can observe that cusps form in the predicted
behaviour when the steady motion is reached, a feature which is present
also in the experiment and which is related with the decrease to zero of
Ċrp . We have found that the slip velocity Ċrp never became negative in all
nonlinear simulations that we have performed.

We have observed some of the scratches left by the wheel on the alu-
minum plate during the experiments, using an optical microscope (with
a Nikon SMZ800 stereo-zoom microscope equipped with Nikon Plan Apo
0.5x objective and a Nikon DD-FI1 high definition color camera head),
without finding traces of detachments.

5.3 Experimental results

We have performed experiments with three different prototypes of the
two-degree-of-freedom structure sketched in Figs. 5.3 and 5.4, always find-
ing flutter and divergence instabilities for appropriate loads. In the first
prototype the elastic hinges were realized with thin steel strips working
under flexure, while for the other structures these have been realized as
true hinges without (in the case of the second prototype) and with (in
the case of the third prototype) ball bearings. In this way the viscous be-
haviour of the hinges in the three prototypes was markedly different. We
have tried a series of different wheel/plate friction conditions, first using
an aluminum wheel sliding on paper, then sliding on P2000-sand paper,
later, using a steel wheel sliding on a sandblasted-steel plate and, finally,
we have used a steel wheel sliding against an aluminum plate.

Since the rotational inertia of the wheel introduces a force transversal
to the axis of the structure, we have checked the influence of this effect in
the three prototypes by employing five different wheels, one in aluminum
(V-shaped cross section, external diameter 15 mm, thickness 5 mm and
weight 3 gr) and four in steel (one with V-shaped cross section, external
diameter 25 mm, thickness 6 mm and weight 17 gr; three cylindrical with
external diameter 25 mm, thicknesses 5, 6 and 10 mm and weights 18, 22
and 36 gr), so that we have proved that, within the dimension range of our
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5. The experimental evidence of flutter instability induced by dry friction

Fig. 5.7: The scratch left by the wheel on the plate compared with the nonlinear solution
of Eqs. (5.7) with W = (Wf+Wd)/2, vp =100 mm/s and initial conditions α1 = α2 = 0◦

and α̇1 = α̇2 = 0.5 rad/s. The red spots along the scratches are positions of the wheel
corresponding to photos taken with the high speed camera; the scratch left during the
experiment is clearly visible in the initial part of the test, not evidencing detachments.
The whole sequence corresponds to 2.04 s.

prototypes, the mass of the wheel and the real dimensions of the contact
area (which reduces to a point only in ideal conditions) do not affect much
the instability.

The two initial prototypes have both broken during experiments to
detect divergence instability, so that we have limited in the third prototype
the stroke of the model. Precise measurements have been carried out only
using the third prototype, specially designed with this purpose. While
we will limit the presentation to the third prototype in the following, we
stress now the point that since flutter was always observed at sufficiently
high loading, the phenomenon has been found to occur: (i.) with the
different viscosity related to the different mechanical realization of the
hinges, (ii.) with different friction conditions at the wheel/plate contact
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(aluminum/paper, aluminum/P2000-sand paper, steel/sandblasted-steel,
steel/aluminium) and (iii.) with different geometries and stiffnesses, always
in agreement with the theoretical modelling.

5.3.1 Experimental setting

The two-degree-of-freedom system sketched in Figs. 5.3 and 5.4 has
been realized as shown in Fig. 5.8 with two 100 mm long stainless steel
AISI 304 rods with a cross section of external dimensions equal to 30 mm ×
10 mm. The rods are connected trough hinges realized using ball bearings

Fig. 5.8: The practical realization of the concept exemplified in Figs. 5.3 and 5.4. (a)
A global view of the experimental setting; (b) a detail of the whole structure suffering
instability; (c) detail of the structure: the wheel (a 25 mm diameter steel cylinder, 6 mm
thick) and the accelerometer; (d) detail of the structure: an elastic hinge.

(SKF, mod. 628/5-2Z), with a torsional spring obtained from a (1 mm
diameter) music wire ASTM A228. The wheel, of diameter d=25 mm,
mounted (with two ball bearings SKF, mod. 618/5) at the top of the final
rod is made of stainless steel AISI 304 and the structure is hinged (with
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5. The experimental evidence of flutter instability induced by dry friction

two ball bearings SKF, mod. 61800) to the loading frame through a load
cell (Gefran S.p.A., mod. OC-K5U-C3), to measure the axial force (along
e1).

The plate sliding against the structure is a 500 mm×1000 mm×5 mm
aluminium alloy 6082 plate moved through a linear drive unit (Damo
S.r.l., mod. AMV120LB), equipped with an ABB AC servo motor (mod.
BSM0400CN00) and controlled with and ABB servo drive (mod. BSD0400),
both purchased from ABB Sace S.p.A. The plate has been polished with
sandpaper P100. An IEPE accelerometer (PCB Piezotronics Inc., mod.
333B50) has been attached at the top of the final piece of the struc-
ture. Photos of the system have been taken with a high speed camera
(Genie HM1400 from DALSA Corporation), equipped with AF Nikkor
(18-35 mm 1:3.5-4.5 D) lens (Nikon Corporation) and a movie has been
recorded during the whole test with a Sony handycam (mod. HDR-
XR550VE). The axial force, the transversal acceleration (along eθ) and
the position of the plate have been acquired with a sample rate of 5 kS/s
through a NI PXI-6221 data acquisition system, interfaced with Labview
8.5.1 (National Instruments).

The viscosity of the hinges has been measured in the following way.
The central hinge of the system has been blocked, so that the structure
has been reduced to a one-degree-of-freedom elastic pendulum (α1 = α2),
which has been left free of oscillating starting from an initial configuration
at α1 = 45◦, for different values of load W , with the plate advancing at a
constant speed of 50 mm/s. The deformations of the structure have been
recorded with the high-speed camera at 25 frames per second and the pa-
rameter β1 has been estimated through comparison with the solution of
the free damped vibrations of a pendulum. The results are reported in
Tab. 5.1. Although we have found that the viscosity of the hinges depends

Wi 19.5 N 24.5 N 29.5 N 34.5 N 39.5 N

βi 0.0036 N m s 0.0041 N m s 0.0052 N m s 0.0074 N m s 0.0095 N m s

Mean and standard deviation of the parameters β1 and β2= {0.006; 0.0025}N m s

Tab. 5.1: Measured values of the viscosity parameters β1 and β2 as a function of the
applied dead load W characterizing the structure shown in Fig. 5.8.

on W , an effect related to the fact that an increase in the applied weight
yields an increase of the dissipation within the bearings, a good approxi-
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mation to the viscosity of the hinges (β1 and β2, taken to be equal) has
been found that reported in Tab. 5.2, where all parameters characteriz-
ing the geometry and the mechanical behaviour of the structure shown in
Fig. 5.8 have been reported, to be used for numerical simulations 5. The

Lengths of the rods Hinges charact. General data

l1 100 mm k1 0.189 N m ρ 1.84 g/mm

l2 100 mm k2 0.189 N m µs 0.61± 0.06

lf 50 mm β1 0.006 N m s µd 0.47± 0.05

ls 125 mm β2 0.006 N m s d 25 mm

Tab. 5.2: Measured valued of the parameters characterizing the structure shown in
Fig. 5.8 and used in the numerical simulations.

friction coefficients (between steel and aluminum) in the table have been
evaluated as mean values of the axial forces measured during all the tests
during the stable behaviour and fit the values available in the literature
(Minshall, 1992). Using the values listed in the table, we can estimate
the critical loads for flutter and divergence from Eqs. (5.12). These, in
the absence of viscosity (β1 = β2 = 0), result to be Wf = 20.5 N and
Wd = 37.5 N, which become 14.4 N and 55.9 N when the viscosity of the
hinges is kept into account.

Note that all the values listed in Tab. 5.2 have been determined in-
dependently from flutter and divergence experiments and will be found to
nicely fit these experiments.

5.3.2 The evidence of flutter and divergence instabilities in-
duced by friction

Since the interval of loads W corresponding to flutter and divergence is
know, we can test these instabilities on the structure shown in Fig. 5.8 (b)
by increasing the load W from a stable situation. The result is shown
in Fig. 5.9, where an experimental investigation of the critical loads for
flutter and divergence instability is reported. We have not found any de-
pendence of the critical loads on the plate velocity vp, which has been

5We have performed numerical simulations of our prototype introducing a rolling
friction at the wheel, but the results were not in line with the obtained experiments, so
that we have concluded that the viscosity of the hinges is a factor dominating rolling
friction.
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5. The experimental evidence of flutter instability induced by dry friction

Fig. 5.9: Experimental investigation on flutter and divergence instability at increasing
load W at vp=50 mm/s. The elastic model predicts flutter instability to occur at Wf

and divergence at Wd; these values are corrected to 0.70Wf and 1.49Wd when viscosity
at the hinges is included.

imposed equal to 50 mm/s to measure the values reported in Fig. 5.9.
Note that the elastic model predicts flutter at Wf and divergence at Wd

and this interval is ‘broadened’ (note the arrows in the figure) to 0.7Wf

and 1.49Wd, when viscosity of the hinges is kept into account (see Ap-
pendix A). This broadening of the flutter range is consistent with our
experimental results shown in Fig. 5.9. The discrimination between sta-
bility and flutter instability has been performed through visual inspection
and documented with the photographic record. This discrimination has
been found easy, while some difficulties have been found in distinguishing
between flutter and divergence instability in the transition zone between
the two phenomena.

A sequence of photos taken with the high-speed camera (with the Sony
handycam) at 25 shots per second is shown in Fig. 5.10 (in Fig. 5.11)
documenting a case of flutter instability at a load W = (Wf + Wd)/2
and a speed of 75 mm/s of the aluminum plate. The vibrational motion
of increasing amplitude is evident from both Figs. 5.10 and 5.11. Note
that the sequence of photos corresponds to the sequence of configurations
reported in Fig. 5.6 (upper part), so that the direct comparison results to
be excellent.

The measured load (upper part: a, b) and acceleration (lower part: c,
d) versus time during a flutter test at a load W = (Wf + Wd)/2 = 29 N
are reported in Fig. 5.12, for a plate velocity of 75 mm/s (a detail of the
curve on the left is shown on the right). Results of the numerical nonlinear
(linear viscoelastic) simulation are also reported in red (in blue) for the
initial 6 s (1.5 s), with initial conditions α1 = α2 = 0.5◦ and α̇1 = α̇2 = 0.
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5.3. Experimental results

Note from Fig. 5.12 the initial increase in the amplitude of the acceleration,
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Fig. 5.12: Measured load (a) and acceleration (c) versus time during the flutter test
reported in Figs. 5.10 and 5.11, at a load W = (Wf +Wd)/2 and for a plate velocity of
75 mm/s. Parts (b) and (d) are details of (a) and (c) respectively, referred to the initial
1.5 s. Results of the numerical nonlinear (linear with viscosity) simulation at the same
load and with initial conditions α1 = α2 = 0.5◦ are reported in red (in blue). Note the
initial increase in the amplitude of the acceleration denoting flutter (well captured even
by the linearized viscoelastic analysis), and the following stabilization (captured by the
nonlinear analysis), due to the effect of the nonlinearities.

denoting flutter, and the following stabilization, when a steady situation
is reached. The attainment of a steady dynamics at large displacement is
an important conclusion of our study.

It is important to point out that, although the onset of flutter and
the transition between flutter and divergence have been found indepen-
dent of the plate velocity, we have found a dependence on this velocity of
the maximum amplitude of displacement reached during steady motion in
flutter conditions. This dependence is connected with the attainment of
the stick/slip condition Ċrp ≤ ε, in the sense that the smaller is the veloc-
ity, the earlier the stick condition is attained and the oscillation inverted.
This behaviour is consistent with the fact that the velocity of the plate
is essential to satisfy the sliding condition and ensures the validity of the
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5. The experimental evidence of flutter instability induced by dry friction

linearized analysis to capture the onset of the instability. It is clear that
the effects of the instability become more ‘intense’ when the velocity of the
plate is increased. These observations is fully confirmed by the numerical
simulations of the nonlinear equations (5.7), so that a comparison between
theoretical predictions and measured values is reported in Fig. 5.13.
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Fig. 5.13: Maximum lateral displacement of the end point C of the structure as a
function of the plate velocity vp when the steady state motion is reached. The black
dashed curve is obtained through the numerical solution of Eqs. (5.7), for different
plate velocities and an applied dead load W = (Wf + Wd)/2; the red spots are the
experimental data.

Two sequences of photos taken with the high-speed camera and with
the Sony handycam, both at 25 shots per second, is shown in Fig. 5.14,
documenting a case of divergence instability at a load 1.75Wd and a speed
of 50 mm/s of the aluminum plate. In the experimental setting a lateral
rubber constraint has been added to prevent possible failure of the equip-
ment. In fact the motion caused by divergence instability has been found
to be particularly violent. As in the case of flutter, the blowing-up char-
acter of divergence instability is clearly visible in the figure. Note that the
sequence of photos can be directly compared with the sequence of con-
figurations shown in Fig. 5.6, lower part, and show excellent agreement.

Finally, a case of stability is documented with a 5 seconds long sequence
of photos, taken (with a Sony handycam) at a time intervals of 1 s, and is
reported in Fig. 5.15 at a load W=5 N, and at a speed of the aluminum
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5.3. Experimental results

Fig. 5.14: Two sequences of photos (taken with a high-speed camera, on the left, and
with a Sony handycam, on the right, at 25 frames per second) of the structure sketched
in the lower part of Fig. 5.8 and exhibiting divergence instability. The whole sequence of
photos has been recorded in 0.36 seconds and the time interval between two photos was
0.04 seconds. The experiment refers to W = 1.75Wd and vp = 50 mm/s. The sequence
of photos on the left can be directly compared with the sequence of configurations shown
in Fig. 5.6, lower part.

plate of 50 mm/s.

During our experiments we have also recorded the noise generated
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5. The experimental evidence of flutter instability induced by dry friction

Fig. 5.15: A sequence of photos (taken with a Sony handycam) of the structure sketched
in the lower part of Fig. 5.8 within the region of stability. The whole sequence of
photos has been recorded in 5 s and the time interval between two photos was 1 s. The
experiment refers to W=5 N and vp = 50 mm/s.

during sliding and we have carefully observed the rotational motion of the
wheel. The emitted noise highlights the vibrational character of flutter
instability and the rotational motion of the wheel shows that there is no
inversion of the rotation before the end of an oscillation is reached, in
agreement with our model.

In closure, we note that all instabilities are suppressed in our system
if the central hinge (Fig. 5.8 d) is blocked, since the follower load induced
by friction does not work. Moreover, divergence instability and buckling
occur, but not flutter, if the wheel is prevented from rotating. These two
behaviours have been both studied and checked experimentally, see B.

5.4 A final discussion

Flutter and divergence instabilities have been experimentally demon-
strated to occur in a two-degree-of-freedom elastic structure, as related
to dry friction, in full agreement with theoretical predictions. In par-
ticular, all the following phenomena, documented in various experiments
with different settings, are all quantitatively predicted by the theoretical
modelling and fully interpretable as friction-induced flutter or divergence
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5.4. A final discussion

instabilities.

• Experiments performed on three different realizations of the struc-
ture sketched in Figs. 5.3 and 5.4 have all shown at increasing load:
nearly-null vibrations (interpreted as stable behaviour, Fig. 5.15),
blowing-up oscillations becoming large and steady after 1–2 sec-
onds (interpreted as flutter, Figs. 5.10 and 5.11) and, finally, ex-
ponentially growing motion (interpreted as divergence instability,
Fig. 5.14).

• Since the three structures had different geometries, stiffnesses, types
of elastic hinges and wheel/plate friction coefficients, the instabilities
are quantitatively but not qualitatively affected by all these parame-
ters and, in particular, by the viscosity at articulations and by the
value of the friction coefficient at the wheel/plate contact.

• While the amplitude of the vibrations during steady motion has
been found to depend on the sliding velocity of the plate, the onset
of flutter has been found independent of this.

• The accelerations measured at the tip of the structure and the noise
recorded during the tests show initially an oscillatory blow-up, which
finally reaches a steady-state, during flutter instability (Fig. 5.12).

• No evidences of detachment at the wheel/plate contact have been
found at a microscope investigation of the scratches on the plate.

• The wheel rotates during instability and does not invert rotation
before the end of an oscillation.

• When the wheel is prevented from rotating, three behaviours are
found at increasing load: nearly-null vibrations (interpreted as sta-
ble behaviour), growing motion with low acceleration and without vi-
brations (interpreted as divergence instability, Fig. 5.17 upper part)
and, finally, stick of the wheel with flexure of the structure (inter-
preted as buckling, Fig. 5.17 lower part).

• When the central hinge of the structure is blocked, the structure
is found to have nearly-null vibrations at every load level (stable
behaviour, Fig. 5.18).
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5. The experimental evidence of flutter instability induced by dry friction

Neither any evidence against the model of flutter or divergence instabil-
ities, nor possibilities of describing these phenomena with different models,
have been found. Our experiments show that a follower load of tangen-
tial type can be easily obtained by exploiting a constraint with Coulomb
friction. Moreover, the fully nonlinear dynamics which develops in flut-
ter conditions shows that the system reaches a steady state, in which the
maximum amplitude of the motion depends on the initial relative velocity
at the friction contact.
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A. Details of the analysis for the two d.o.f. system shown in Fig. 5.1

A Details of the analysis for the two d.o.f. system shown in
Fig. 5.1

We provide details of the stability analysis of the structure shown in
Fig. 5.1, which have been omitted in Section 5.2.

Denoting the time derivative by a superimposed dot, the velocities of
points C, G1 and G2 can be obtained from Eqs. (5.1) as

Ċ =− {l1α̇1 sinα1 + l2α̇2 sinα2}e1+

+ {l1α̇1 cosα1 + l2α̇2 cosα2}e2,

Ġ1 =− {l1α̇1 sinα1/2}e1 + {l1α̇1 cosα1/2}e2,

Ġ2 =− {l1α̇1 sinα1 + l2α̇2 sinα2/2}e1+

+ {l1α̇1 cosα1 + l2α̇2 cosα2/2}e2,

(5.14)

so that the accelerations of the mass center of the two rigid bars are

G̈1 =− {(l1/2)(α̈1 sinα1 + α̇2
1 cosα1)}e1+

+ {(l1/2)(α̈1 cosα1 − α̇2
1 sinα1)}e2,

G̈2 =− {l1(α̈1 sinα1 + α̇2
1 cosα1)+

+ (l2/2)(α̈2 sinα2 + α̇2
2 cosα2)}e1+

+ {l1(α̈1 cosα1 − α̇2
1 sinα1)+

+ (l2/2)(α̈2 cosα2 − α̇2
2 sinα2)}e2.

(5.15)

The expressions (5.14) and (5.15) are employed to write down the principle
of virtual works (5.6), from which the differential equations governing the
dynamics of the structure, Eqs. (5.7), follow.

A.1 Linearized analysis of the elastic structure

For a flutter analysis in the absence of viscosity, solutions of the lin-
earized equations of motion (5.10) are sought in the time-harmonic form

αj = Aj e
−iΩ t, j = 1, 2 (5.16)
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5. The experimental evidence of flutter instability induced by dry friction

where Aj are (complex) amplitudes, Ω is the circular frequency, and i is
the imaginary unit (i =

√
−1), so that a substitution of Eq. (5.16) into

Eqs. (5.10) yields
(

1 +
λ

3

)
ω2 + γ − k − 1

ω2

2λ
− γ + 1

ω2

2λ
+ 1

ω2

3λ2
− 1




A1

A2

 =


0

0

 , (5.17)

where

γ =
Pl1
k2

, ω2 =
l21l2ρ

k2
Ω2. (5.18)

Non-trivial solution of system (5.17) is possible if the determinant of the
matrix vanishes, a condition which immediately provides the solutions

ω2 =
b(γ)±

√
∆(γ)

1 + (4/3)λ
, (5.19)

where

∆(γ) = b2(γ)− 4kλ2(3 + 4λ) (5.20)

and

b(γ) = −γ(2 + 3λ) + 2(1 + λ)3 + 2k, (5.21)

so that

Ω =
1

l1

√
k2

l2ρ
ω. (5.22)

We note that k > 0, λ > 0 and ∆(γ) < b2(γ) and that

b(γ) > 0 ⇔ γ <
k + (1 + λ)3

1 + (3/2)λ
,

∆(γ) < 0 ⇔ 0 < γf < γ < γd,

(5.23)

where

γf
d

=
k + (1 + λ)3 ∓ λ

√
k(3 + 4λ)

1 + (3/2)λ
, (5.24)

so that following three possibilities only arise:
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A. Details of the analysis for the two d.o.f. system shown in Fig. 5.1

• two real and positive values for ω2, corresponding to b(γ) > 0 and
∆(γ) > 0. There are four Ω, two positive and two negative and
vibrations are sinusoidal, a situation which corresponds to stability;

• two complex conjugate values for ω2, corresponding to ∆(γ) < 0.
There are two complex-conjugate pairs of Ω, so that there are four
exponential solutions, two blowing up and the other two decaying
with time, a situation corresponding to flutter instability;

• two real and negative values for ω2, corresponding to b(γ) < 0 and
∆(γ) > 0. There are two purely imaginary complex-conjugate pairs
of Ω, so that vibrations are exponential with time (one amplifying
and the other decaying), a situation corresponding to divergence
instability.

As a conclusion

• flutter instability occurs when γf < γ < γd, a condition identical
(though written in a different notation) to Eq. (5.12).

• and divergence instability occurs when γ > γd.

A.2 Linearized analysis of the viscoelastic structure

A linear viscoelastic analysis can be performed through a linearization
of Eqs. (5.7) near the trivial solution (α1 = α2 = 0), yielding

ρ
l21
3

(l1 + 3l2) α̈1 + ρ
l1l

2
2

2
α̈2 + (β1 + β2)α̇1 − β2α̇2 +

+ (k1 + k2)α1 − k2 α2 − l1P (α1 − α2) = 0,

ρ
l1l

2
2

2
α̈1 + ρ

l32
3
α̈2 − β2(α̇1 − α̇2)− k2(α1 − α2) = 0.

(5.25)

We look now for time-harmonic vibrations near the equilibrium con-
figuration, so that we seek solutions of Eqs. (5.25) in the form (5.16), so
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5. The experimental evidence of flutter instability induced by dry friction

that a substitution into Eqs. (5.25) yields
(

1 +
λ

3

)
ω2 + η(β + 1)ω − γ + k + 1

ω2

2λ
− ωη + γ − 1

ω2

2λ
− ωη − 1

ω2

3λ2
+ ωη + 1

×

×


A1

A2

 =


0

0


(5.26)

where

β =
β1

β2
, ω = −i l1

√
l2ρ

k2
Ω, η =

√
β2

2

l21l2k2ρ
. (5.27)

Non-trivial solution of system (5.26) is possible if the determinant of the
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Fig. 5.16: Real and imaginary part of the solutions Ωi l1
√
l2ρ/k2 as a function of the

loading parameter γ and obtained solving the characteristic equation (5.28). Note the
broadening of the flutter region due to damping.

matrix vanishes, a condition which immediately provides the characteristic
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equation
p0ω

4 + p1ω
3 + p2ω

2 + p3ω + p4 = 0, (5.28)

where the coefficients are

p0 = 1/4 + λ/3 > 0,

p1 = η[β + (1 + λ)3] > 0,

p2 = λ3 + 3λ2(1 + βη2) + 3λ+ k − γ(1− 3λ/2) + 1,

p3 = 3λ2(k + β)η > 0,

p4 = 3λ2k > 0.

(5.29)

In this context we have the following possibilities for a solution Ωi:

• Im[Ωi] < 0 stability,

• Im[Ωi] > 0 and Re[Ωi]6=0 flutter,

• Im[Ωi] > 0 and Re[Ωi]=0 divergence.

The numerical determination of the solutions of Eq. (5.28), assuming
λ = k = β = 1 and η = 0.32, the values corresponding to the structure
tested in our experiments (Tab. 5.2), reveals that flutter occurs within the
interval 0.70Wf < W < 1.49Wd, while for W < 0.70Wf the system is
stable and, finally, divergence occurs for W > 1.49Wd. The situation is
sketched in Fig. 5.16, where the real and imaginary parts of the solutions
Ωi l1

√
l2ρ/k2 are reported as a function of the loading parameter γ. In the

figure, the values γf and γd correspond to flutter and divergence instabil-
ities in the absence of viscosity, so that we may see that the introduction
of the viscosity broadens the interval of flutter.

B Wheel prevented from rotating and one-degree-of-freedom
system

To complete our study, we analyze the case in which the wheel in
the structure shown in Fig. 5.8(c) is blocked and the case in which the
structure is reduced to a one-degree-of-freedom system by blocking the
central hinge (but leaving free the wheel). In the former case there is
no flutter, but divergence and quasi-static buckling occur, whereas in the
latter case the behaviour is always stable. Our experiments confirm these
theoretical findings.
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5. The experimental evidence of flutter instability induced by dry friction

B.1 Wheel prevented from rotating

If the wheel is replaced with a fixed contact (we have blocked the wheel
with a screw), the system becomes subjected to a frictional force, which
assuming sliding can be written as

P = −P Ċp

|Ċp|
,

P = µd
ls

lf + l1 cosα1 + l2 cosα2
W.

(5.30)

Eq. (5.30), can be linearized near the configuration α1 = α2 = 0 assuming
vp >> l1α̇1 + l2α̇2, so that it becomes

P = −{P}e1 − {P (l1α̇1 + l2α̇2)/vp}e2

P = µd
ls

lf + l1 + l2
W

(5.31)

and Eqs. (5.10) become



ρ
l21
3

(l1 + 3l2) α̈1 + ρ
l1l

2
2

2
α̈2 + (k1 + k2)α1 − k2 α2 +

− l1Pα1 + l1P
l1α̇1 + l2α̇2

vp
= 0,

ρ
l1l

2
2

2
α̈1 + ρ

l32
3
α̈2 − k2 α1 + k2 α2 +

− l2Pα2 + l2P
l1α̇1 + l2α̇2

vp
= 0.

(5.32)

We look now for time-harmonic vibrations near the equilibrium con-
figuration, so that the Lagrangean parameters are now assumed to be
harmonic functions of time (5.16), so that a substitution into Eqs. (5.32)
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B. Wheel prevented from rotating and one-degree-of-freedom system

yields
(

1 +
λ

3

)
ω2 + γνω − γ + k + 1

ω2

2λ
+
ωγν

λ
− 1

ω2

2λ
+
ωγν

λ
− 1

ω2

3λ2
+
ωγν

λ2
− γ

λ
+ 1

×

×


A1

A2

 =


0

0


(5.33)

where

ω = −i l1
√
l2ρ

k2
Ω, ν =

1

vp

√
k2

l2ρ
. (5.34)

Non-trivial solution of system (5.33) is possible if the determinant of
the matrix vanishes, a condition which provides the characteristic equation

p0ω
4 + p1ω

3 + p2ω
2 + p3ω + p4 = 0, (5.35)

where the coefficients are

p0 = 1/4 + λ/3,

p1 = γ(1 + λ)ν,

p2 = k + (1 + λ)3 − γ[1 + λ(3 + λ)],

p3 = 3γ[k + (1− γ + λ)(1 + λ)]ν,

p4 = 3λ[γ2 + kλ− γ(1 + k + λ)].

(5.36)

The stability of the system can be analyzed using the Routh–Hurwitz
criterion (Ziegler, 1977), which ensures that all the ωi have negative real
part; the criterion for stability requires that

p1 > 0,

p1p2 − p0p3 > 0,

(p1p2 − p0p3)p3 − p2
1p4 > 0,

p4 > 0.

(5.37)

Conditions (5.37) are equivalent to
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5. The experimental evidence of flutter instability induced by dry friction

Fig. 5.17: The structure with fixed wheel exhibiting divergence (upper part) and buck-
ling (lower part). The time interval between two consecutive deformed shapes is 1 s for
divergence and 0.2 s for buckling, while the whole sequence corresponds to 5 seconds
for divergence and to 1 second for buckling. The applied dead loads are, respectively,
W=6.5 N and W=16.5 N, while the velocity of the plate is 50 mm/s in both cases.

γ < γcr =
1 + k + λ−

√
(1 + k)2 + λ(2− 2k + λ)

2
, (5.38)

corresponding to the buckling load of the two degree-of-freedom struc-
ture, when subjected to a compressive dead load −{P}e1. For γ > γcr
the structure is unstable and in fact divergence has been experimentally
detected, see Fig. 5.17, upper part, referred to a load W = 6.5 N.

Regarding this instability, we note that its onset is difficult to be de-
tected, since the instability has an extremely mild character and may
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manifest itself only after a long plate sliding. Therefore, although the
Routh–Hurwitz criterion provides a stability limit of 3.1 N, since the stroke
of our plate is only 1 m, we have been able to detect the instability only
from a load of 6 N.

Another, more evident, instability has been observed in our experi-
ments (see Fig. 5.17, lower part) at an applied load W higher than that
predicted by the Routh–Hurwitz criterion.

In this instability, the wheel already sticks before the plate begins to
move, so that a progressive buckling occurs without involving any relative
movement at the wheel/plate contact.

In this case, the system is reduced to a single degree-of-freedom struc-
ture (lower part of Fig. 5.17) and the critical load can be easily calculated
to be (we recall that γ = Pl1/k2)

γbcr =
k

1 + λ
+ λ+ 1, (5.39)

which, assuming a value for static friction, corresponds to a force W that
can be easily evaluated.

Note that γbcr ≥ γcr, so that if the structure would be kept fixed and so
‘forced’ to reach the slip condition, the divergence dynamical instability
would occur instead of the quasi-static buckling, possibly involving stick
and slip.

Note that Fig. 5.17, lower part, refers to an applied load equal to
16.5 N, in good agreement with the calculated γbcr, corresponding to a
load W equal to 15.5 N.

B.2 System reduced to one degree-of-freedom by blocking the
central hinge

When the central hinge in the structure shown in Fig. 5.8 (d) is fixed
and the wheel is left free of rotating, stability is always verified, since the
follower force does not work.

We have confirmed this behaviour with a series of experiments in which
the hinge between the two rods has been fixed. In these experiments
we have raised the vertical load W until 50 N (well inside the region of
divergence for the 2 d.o.f. structure), without finding sensible oscillations.
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5. The experimental evidence of flutter instability induced by dry friction

Fig. 5.18: A sequence of photos (taken with a Sony handycam) of the structure with a
single d.o.f. (the hinge between the two rods has been fixed), demonstrating stability.
The whole sequence of photos has been recorded in 5 seconds, so that the time interval
between two photos is 1 seconds. The plate velocity was vp=50 mm/s and the load W
was equal to 29 N.

A sequence of photos taken during one of these experiments with
vp=50 mm/s and W= 29 N is reported in Fig. 5.18, where we observe
that the structure remains straight.
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function measurements of force transmission in 2D granular materials.
Physica D, 182, 274-303.

[35] Goldenberg, C. and Goldhirsh, I. (2005) Friction enhances elasticity
in granular solids. Nature, 435, 188-191.

[36] Heyman, J. (1966) The stone skeleton. Int. J. Solid Struct., 2, 249-
279.

[37] Herrmann, G. and Jong, I.C. (1965) On the destabilizing effect of
damping in nonconservative elastic system. J. Appl. Mech., 32, 592-
597.

[38] Herrmann, G., Nemat-Nasser, S. and Prasad, S.N. (1966) Mod-
els demonstrating instability of nonconservative dynamical systems.
Tech. Rept. No. 66-4, Northwestern University, Dept. of Civil Engi-
neering.

[39] Herrmann, G. (1971) Dynamics and stability of mechanical systems
with follower forces. Tech. Rept. NASA CR-1782.

[40] Irwin, G.R. (1958) Discussion to a paper by A. Wells and D. Post
(1958, Proc. SESA, 16, 69-92). Proc. SESA, 16, 93-96.

[41] Johnson, K.L. (1985) Contact Mechanics. Cambridge University
Press.

[42] Koiter, W.T. (1996) Unrealistic follower forces. J. Sound Vib., 194,
636-638.

128



i
i

“thesis noselli” — 2011/4/24 — 11:25 — page 129 — #143 i
i

i
i

i
i

Bibliography
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