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1 Introduction

The modern theory of integrable systems started with the discovery in 1967 that the
Korteweg de Vries (KdV) equation is integrable [7]. Such equation is an evolutionary
partial differential equation and corresponds to an integrable system with infinite degree
of freedom. Before 1967 it was believed that integrability as opposed to chaotic behaviour
was a rare phenomena, restricted to particular examples. Indeed there were few examples
of known integrable systems and results concerning integrability:

• two-body problem in celestial mechanics (Kepler, Newton 1600-1687);

• geodesics on ellipsoids and separation of variables in Hamilton-Jacobi equation (Ja-
cobi 1837);

• Liouville theorem about the integrability by quadratures of an integrable systems
(Liouville 1838);
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• harmonic oscillator on the unit sphere (Neumann 1859);

• Clebsh system (rigid body) 1871;

• Lagrange, Euler and Kovalevskaya (1888) tops;

• Noether theorem about the relation between symmetries and integrals of motion of
a mechanical system (Emmy Noether 1915);

• global version of Liouville theorem (Arnold 1963).

In 1967 Gardner, Green, Kruskal and Miura realized that the spectrum of the Schrödinger

equation − d2

dx2
+u(x, t) does not change with time if the potential u(x, t) evolves according

to the KdV equation
ut − 6uux + uxxx = 0,

where u = u(x, t) is a scalar function of x ∈ R and t ∈ R+ and ut =
∂

∂t
u(x, t) and

ux =
∂

∂x
u(x, t). With this observation it was realized that the KdV equation can be

integrated by inverse scattering that can be thought of as a nonlinear analogue of the
Fourier transform used to solve linear partial differential equations. Around 1974 there
were finite-dimensional versions of the inverse scattering transform that were applied to
solve finite dimensional integrable systems like the Toda lattice or the Calogero-Moser
systems (Flaschka [5], Manakov [14], Moser [15]). The main goal of these notes is to
study integrable sytems with finite and infinite degree of freedoms. We will first study the
inverse scattering transform for the open finite Toda lattice. Then we will consider inverse
scattering for the KdV equation with rapidly decreasing initial data and periodic initial
data. In this latter case, when the periodic initial data is ”finite gap”, namely when the
spectrum of the Hill’s equation has only a finite number of open gaps, the evolution in
time of the KdV solution u(x, t) corresponds to a linear flow on a finite-dimensional tori.

2 A short review of the classical theory of finite-dimensional
integrable systems

We review the basic definitions in the theory of finite-dimensional integrable systems.

2.1 Poisson manifolds

We start with the definition of Poisson bracket.
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Definition 2.1 A manifold P is said to be a Poisson manifold if P is endowed with a
Poisson bracket, that is a Lie algebra structure defined on the space C∞(P ) of smooth
functions over P

C∞(P )× C∞(P )→ C∞(P )

(f, g) 7→ {f, g}
(2.1)

so that ∀f, g, h ∈ C∞(P ) the bracket { . , . }

• is antisymmetric:
{g, f} = −{f, g}, (2.2)

• bilinear

{af + bh, g} = a{f, g}+ b{h, g},
{f, ag + bh} = a{f, g}+ b{f, h}, a, b ∈ R

(2.3)

• satisfies Jacobi identity

{{f, g}, h}+ {{h, f}, g}+ {{g, h}, f} = 0; (2.4)

• it satisfies Leibnitz identity with respect to the product of function

{f g, h} = g {f, h}+ f {g, h}. (2.5)

A Poisson bracket defines an anti-homomorphism from the space C∞(P ) to the space
of vector fields over P :

C∞(P )→ vect(P )

f → Xf = {. , f}

so that
[Xf , Xg] = −X{f,g},

where [., .] is the commutator of vector fields also known as Lie bracket: LXY := [X,Y ].
In order to write the definition 2.1 in local coordinates x = (x1, . . . , xN ) let us introduce
the matrix

πij(x) := {xi, xj}, i, j = 1, . . . , N = dimP. (2.6)

Theorem 2.2 [3] 1) Given a Poisson manifold P , and a system of local coordinates over
P , then the matrix πij(x) defined in (2.6) is antisymmetric and satisfies

∂πij(x)

∂xs
πsk(x) +

∂πki(x)

∂xs
πsj(x) +

∂πjk(x)

∂xs
πsi(x) = 0, 1 ≤ i < j < k ≤ N. (2.7)
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Furthermore the Poisson bracket of two smooth functions is calculated according to

{f, g} = πij(x)
∂f(x)

∂xi
∂g(x)

∂xj
. (2.8)

2) Given a change of coordinates

x̃k = x̃k(x), k = 1, . . . , N,

then the matrices πij(x) = {xi, xj} e π̃kl(x̃) = {x̃k, x̃l} satisfy the rule of transformation
of a tensor of type (2,0):

π̃kl(x̃) = πij(x)
∂x̃k

∂xi
∂x̃l

∂xj
. (2.9)

3) Viceversa, given a smooth manifold P and an antisymmetric tensor (2,0) πij(x) such
that (2.7) is satisfied, then (2.8) defines over P a Poisson bracket.

Proof. The matrix πij(x) is clearly antisymmetric. In order to derive (2.8) one observe
that for a fixed function f , the application

C∞(P )→ C∞(P )

g → {g, f}

is linear and satisfies Leibnitz rule (2.5), therefore it is a linear differential operator of first
order, namely

{g, f} = Xfg,

for a vector field

Xf = Xj
f

∂

∂xj
,

where we are taking the sum over repeated indices. In order to determine the components
of the vector field Xf one considers

Xj
f = Xf x

j = {xj , f}.

Now let us fix xj and consider the linear map

f 7→ {f, xj} = Xxjf = Xk
xj

∂

∂xk
f.

Since Xk
xj

= πkj by (2.6), it follows from the above relations that

Xj
f = πjk

∂

∂xk
f,
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so that

{g, f} = Xfg = Xj
f

∂g

∂xj
= πjk

∂f

∂xk
∂g

∂xj
.

Using the same rule for the change of coordinates x̃j = x̃j(x) and x̃k = x̃k(x) one obtains
the tensor rule (2.9). Equation (2.7) follows from Jacobi identity.

To prove the sufficiency of the theorem one observe that given a (2, 0) antisymmetric
tensor πij(x), the map

(f, g) 7→ {f, g} := πij(x)
∂f

∂xi
∂g

∂xj

is bilinear, antisymmetric and satisfies Leibnitz rule. Furthermore it does not depend on
the choice of local coordinates

π̃kl
∂f

∂x̃k
∂g

∂x̃l
= πst

∂x̃k

∂xs
∂x̃l

∂xt
∂xi

∂x̃k
∂xj

∂x̃l
∂f

∂xi
∂g

∂xj
= πstδisδ

j
t

∂f

∂xi
∂g

∂xj
= πij(x)

∂f

∂xi
∂g

∂xj
.

In order to show validity of the Jacobi identity it is sufficient to observe that for any
functions f , g, h and any antisymmetric tensor πij(x) the following identity is satisfied:

{{f, g}, h}+ {{h, f}, g}+ {{g, h}, f}

=
[
{{xi, xj}, xk}+ {{xk, xi}, xj}+ {{xj , xk}, xi}

] ∂f

∂xi
∂g

∂xj
∂h

∂xk
.

so that the Jacobi identity follows from (2.7). 2

The Poisson bracket is said to be non degenerate if the rankπ = dim(P ). Clearly the
antisymmetry implies that only even dimensional manifolds can have a non-degenerate
Poisson bracket.

Definition 2.3 Given a Poisson bracket the set of functions that commutes with any
other functions of C∞(P ), namely

{h ∈ C∞(P ) | {h, f} = 0,∀f ∈ C∞(P )}

are called Casimirs of the Poisson bracket.

For a nondegenerate Poisson bracket, the only Casimirs are the constant functions.

Definition 2.4 A 2n-dimensional P manifold is called symplectic manifold if it is endowed
with a close non degenerate 2-form ω.
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In local coordinates one has

ω =
n∑

i,j=1

ωijdx
i ∧ dxj

where ∧ stands for the exterior product. We recall that the form ω is closed if dω =
n∑

ijk=1

∂

∂xk
ωijdx

k ∧ dxi ∧ dxj = 0, which implies that

∂

∂xk
ωij +

∂

∂xi
ωjk +

∂

∂xj
ωki = 0, i 6= j 6= k.

Lemma 2.5 A Poisson manifold {P, π} with non degenerate Poisson bracket π, is a sym-
plectic manifold, with ωij = (πij)−1.

For a symplectic manifold (P, ω) one has the identies

ω(Xf , .) = −df

and
{f, g} = ω(Xg, Xf ) = Xg(f) = 〈df,Xg〉

where 〈., .〉 is the pairing between one form and vectors, i.e. for a one form α = αidx
i and

a vector v = vi
∂

∂xi
then 〈α, v〉 = αiv

i. In order to verify the above second identity let Xi
f

and Xj
g be the coordinates of the vector fields Xf and Xg respectively, then one has

ω(Xg, Xf ) =
∑
i,j

ωijX
i
gX

j
f =

∑
i,j

∑
k,l

ωijπ
il ∂g

∂xl
πjk

∂f

∂xk
=
∑
il

πil
∂g

∂xl
∂f

∂xi
= {f, g}.

The classical Darboux theorem says that in the neighbourhood of every point of a symplec-
tic manifold (P, ω), dimP = 2n, there is a local systems of co-ordinates (q1, . . . qn, p1, . . . , pn)
called Darboux coordinates or canonical coordinates such that

ω =

n∑
i=1

dpi ∧ dqi . (2.10)

In such coordinates the Poisson bracket takes the form

{f, g} =
n∑
i=1

(
∂f

∂qi
∂g

∂pi
− ∂f

∂pi

∂g

∂qi

)
and the Hamiltonian vector field Xf takes the form

Xf =
n∑
i=1

(
∂f

∂pi

∂

∂qi
− ∂f

∂qi
∂

∂pi

)
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and the Poisson tensor π is

π =

(
0 1
−1 0

)
.

The existence of Darboux coordinates is related to the vanishing of the second group
of the so called Poisson cohomology H∗(P, π). If the Poisson bracket is non-degenerate,
the Poisson cohomology coincides with the de-Rham cohomology and Darboux theorem
is equivalent to the vanishing of second de-Rham cohomology group in an open set. In
order to have global Darboux coordinates one needs the vanishing of the Poisson cohomol-
ogy group H2(P, π). There are many tools for computing de Rham cohomology groups,
and these groups have probably been computed for most familiar manifolds. However,
when π is not symplectic, then H∗(P, π) does not vanish even locally [16] and it is is
much more difficult to compute than the de Rham cohomology. There are few Poisson
(non-symplectic) manifolds for which Poisson cohomology has been computed [8]. The
Poisson cohomology H∗(P, π) can have infinite dimension even when P is compact, and
the problem of determining whether H∗(P, π) is finite dimensional or not is already a
difficult open problem for most Poisson structures that we know of. In the case of linear
Poisson structures, Poisson cohomology is intimately related to Lie algebra cohomology,
also known as Chevalley - Eilenberg cohomology, [17].

Given a Poisson manifold (P, π), dimP = N , and a function H ∈ C∞(P ), an Hamil-
tonian system in local coordinates (x1, . . . , xN ) is a set of N first order ODEs defined
by

ẋi = {xi, H},

with initial condition xi(t = 0) = xi0. For a symplectic manifold (P, ω), dimP = 2n, the
Hamilton equations in Darboux coordinates takes the form

q̇i = {qi, H} =
∂H

∂pi

ṗi = {pi, H} = −∂H
∂qi

, i = 1, . . . , n

(2.11)

with initial conditions qi(t = 0) = qi0, pi(t = 0) = p0
i .

Definition 2.6 A function F ∈ C∞(P ) is said to be a conserved quantity for the Hamil-
tonian system (2.11) if

dF

dt
= {F,H} = 0.

Namely conserved quantities Poisson commute with the Hamiltonian. We remark that if
F1, . . . , Fm are conserved quantities, then any function of g = g(F1, . . . , Fm) is a conserved
quantity.
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Let ΦF (x, s) be the Hamiltonian flow associated with F ∈ C∞(P ) and ΦH(x, t) the
Hamiltonian flow associated with the Hamiltonian H. We use the notation x(t, s) :=
φF (φH(x, t), s) to indicate the integral curve obtained by first applying the Hamiltonian
vector field XH and then the Hamiltonian vector field XF . Viceversa we use the nota-
tion x(s, t) := φH(φF (x, s), t) to indicate the integral curve obtained by first applying
the Hamiltonian vector field XF and then the Hamiltonian vector field XH . A natural
question is to ask when x(t, s) = x(s, t).

Lemma 2.7 Let (P, { . , . }) be a nondegenerate Poisson bracket. Consider the Hamilto-
nians F,H ∈ C∞(P ), in involution {F,H} = 0 and their Hamiltonian flows

dxi

dt
= {xi, H}, i = 1, . . . , N (2.12)

dxi

ds
= {xi, F}, i = 1, . . . , N. (2.13)

Then
d

ds

dxi

dt
=

d

dt

dxi

ds
.

Proof. Take the derivative with respect to s of equation (2.12) and with respect to t of
equation (2.13). One has

d

ds

dxi

dt
=

d

ds
{xi, H} = { d

ds
xi, H}+ {xi, d

ds
H} = {{xi, F}, H}, i = 1, . . . , N

d

dt

dxi

ds
=

d

dt
{xi, F} = { d

dt
xi, H}+ {xi, d

dt
H} = {{xi, H}, F}, i = 1, . . . , N

Subtracting the two terms and applying Jacobi identity one arrives to

d

ds

dxi

dt
− d

dt

dxi

ds
= {{xi, F}, H}+ {{H,xi}, F} = {{H,F}, xi} = 0, i = 1, . . . , N.

which is equal to zero by the commutativity of F and H. 2

In order to introduce Liouville theorem, we first define the concept of Lagrangian sub
manifold and integrable system.

Definition 2.8 Let P be a symplectic manifold of dimension 2n. A a sub-manifold G ⊂ P
is called a Lagrangian submanifold if dimΛ = n and the symplectic form is identically zero
on vectors tangent to G, namely

ω(X,Y ) = 0, ∀X,Y ∈ TG.
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Definition 2.9 A Hamiltonian system defined on a 2n dimensional Poisson manifold P
with non degenerate Poisson bracket and with Hamiltonian H ∈ C∞(P ) is called com-
pletely integrable if there are n independent conserved quantities H = H1, . . . ,Hn in
involution, namely

{Hj , Hk} = 0, j, k = 1, . . . , n (2.14)

and the gradients ∇H1, . . .∇Hn are linearly independent.

Let us consider the level surface

ME = {(p, q) ∈ P |H1(p, q) = E1, H2(p, q) = E2, Hn(p, q) = En} (2.15)

for some constants E = (E1, . . . , En).

Theorem 2.10 [Liouville, see e.g. [3]] Consider a completely integrable Hamiltonian
system on a non degenerate Poisson manifold P of dimension 2n and with canonical co-
ordinates (q, p). Let us suppose that the Hamiltonians H1(p, q), . . . , Hn(p, q) are linearly
independent on the level surface ME (2.15) for a given E = (E1, . . . , En). The Hamilto-
nian flows on ME are integrable by quadratures.

Proof. By definition the system posses n independent conserved quantities H1 = H,
H2, . . . Hn. Without loosing generality, we assume that (q, p) are canonical coordinates
with respect to the symplectic form ω and the Poisson bracket {., .}.

The gradients

∇Hj =

(
∂Hj

∂q1
, . . . ,

∂Hj

∂qn
,
∂Hj

∂p1
, . . . ,

∂Hj

∂pn

)
are orthogonal to the surface ME . Since the vector fields XHj are orthogonal to ∇Hk

because {Hj , Hk} = 0, it follows that the vector fields XHj are tangent to the level
surface ME . Furthermore, since the Hamiltonian Hj are linearly independent, it follows
that the vector fields XHj , j = 1, . . . , n generate all the tangent space TME . Therefore
the symplectic form is identically zero on the tangent space to ME , namely ω|TME

≡ 0
because

ω(XHj , XHk
) = {Hk, Hj} = 0.

This is equivalent to say that ME is a Lagrangian submanifold. We also observe that since
∇Hj , j = 1, . . . , n are linearly independent, it is possible to assume, without loosing in
generality that

det
∂Hj

∂pk
6= 0.

Then by the implicit function theorem we can define

pk = pk(q, E).
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Putting together the last two observations, we have for fixed E = (E1, . . . , En)

0 = ω|TME
=
∑
i

dpi(q, E) ∧ dqi =
∑
ij

∂pi
∂qj

dqj ∧ dqi

which implies
∂pi
∂qj
− ∂pj
∂qi

= 0, i 6= j.

The above identity implies that the one form W = pidq
i is exact, and therefore there

exists a function S = S(q, E) so that W = dS. The function S is the generating function
of a canonical transformation. Recall that a change of coordinates x→ Φ(x) is defined by
2n functions. The change of coordinates is a canonical transformation if Φ∗ω = ω where
Φ∗ is the pullback of Φ. Since ω = dW and the pullback commutes with differentiation,
one has

Φ∗ω − ω = Φ∗(dW − dW ) = d(Φ∗W −W ) = 0.

Namely the form d(Φ∗W−W ) is exact, so there is locally a function S so that Φ∗W−W = S
and S is called the generating function of the canonical transformation. In other words
a canonical change of coordinates is defined by one function. After this digression we
come back to the function S = S(q, E) which is the generating function of a canonical
transformation (q, p)→ (ψ,E) where

pi =
∂S

∂qi
, ψi =

∂S

∂Ei
.

In the canonical coordinates (ψ,E) the Hamiltonian flow with respect to the Hamiltonian
H1 = H takes the form

ψi = {ψi, H1} =
∂H1

∂Ei
= δ1i

Ei = {Ei, H1} = −∂H1

∂ψi
= 0.

So the above equations can be integrated in a trivial way:

ψ1 = t+ ψ0
1, ψi = ψ0

i , i = 2, . . . , n Ei = E0
i , i = 1, . . . , n

where ψ0
i and E0

i are constants. Therefore we have shown that the Hamiltonian flow can
be integrated by quadratures. Furthermore

q = q(t+ ψ0
1, ψ

0
2, . . . , ψ

0
n, E), p = p(t+ ψ0

1, ψ
0
2, . . . , ψ

0
n, E).

2
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In 1968 Arnold observed that if the level surface ME is compact, the motion takes place
on a torus and is quasi-periodic.

Theorem 2.11 (Arnold) If the level surface ME0 defined in (2.15) is compact and con-
nected then the level surfaces ME for |E − E0| sufficiently small are diffeomorphic to a
torus

ME ' Tn = {(φ1, . . . , φn) ∈ Rn |φi ∼ φi + 2π, i = 1, . . . , n}, (2.16)

and the motion on ME is quasi-periodic, namely

φ1(t) = ω1(E) t+ φ0
1, . . . , φn(t) = ωn(E) t+ φ0

n (2.17)

where ω1(E), . . . , ωn(E) depends on E and the phases φ0
1, . . . , φ0

n are arbitrary.

Proof. To prove the theorem we use a standard lemma (see [3]).

Lemma 2.12 Let M be a compact connected n-dimensional manifold. If on M there are
n linearly independ vector fields X1, . . . , Xn such that

[Xi, Xj ] = 0, i, j = 1 . . . , n

then M ' TN , the n-dimensional torus.

In our case the vector field XH1 , . . . , XHn are linearly independent and commuting, so, in
the case ME0 is compact and connected, it is also isomorphic to a n-dimensional torus. By
continuity, for small values of |E −E0| the surface ME is also isomorphic to a torus. The
coordinates ψ = (ψ1, ψ2, . . . , ψn) introduced in the proof of Liouville theorem 2.10 are not
angles on the torus. Let us make a change of variable φ = φ(ψ) so that the coordinates
φ = (φ1, . . . , φn) are angles on the torus and let I1(E), . . . In(E) be the canonical variables
associated to the angles (φ1, . . . , φn). By definition one has for any Hamiltonian Hm

XHm =
n∑
j=1

∂Hm

∂Ej

∂

∂ψj
=

∂

∂ψm
=

n∑
j=1

∂Hm

∂Ij

∂

∂φj
,

since Hm depends only on E and φ depends only on ψ. It follows that φj and ψk are
related by a linear transformation

φj =
∑
m

σjmψm, σjm = σjm(E), detσjm 6= 0.

Comparing the above two relations one arrives to

σjm =
∂Hm

∂Ij
.
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Let us verify that (φ, I) are indeed canonical variables:

{φj , Ik} = {
∑
k

σjmψm, Ik} =
∑
m

σjm{ψm, Ik} =
∑
m

σjm
∂Ik
∂Em

=
∑
m

∂Hm

∂Ij

∂Ik
∂Em

= δjk.

The equation of motions in the variables (φ, I) are given by

φ̇k =
∂H1

∂Ik
=: ωk(E)

İk =
∂H1

∂φk
= 0

therefore the motion is quasi periodic on the tori. In the variable (p, q), with p =
p(φ, I), q = q(φ, I), the evolution is given as

q = q(ω1t+ φ0
1, . . . , ωnt+ φ0

n, I)

p = p(ω1t+ φ0
1, . . . , ωnt+ φ0

n, I),

where (φ0
1, . . . , φ

0
n) are constant phases. 2

3 Bi-Hamiltonian geometry and Lax pair

In this subsections we give the basic concepts of bi-Hamiltionian geometry, skipping most
of the relevant proofs.

Definition 3.1 Two Poisson tensors π0 and π1 on a manifold P are called compatible if

c0π0 + c1π1

is a Poisson tensor for any real c0 and c1.

Definition 3.2 A vector field X on a manifold is called a bi-Hamiltonian system if it is
Hamiltonian with respect to two compatible Poisson structures π1 and π0: X = Xπ1

H1
=

Xπ0
H0

or equivalently
{ . ,H1}1 = { . ,H0}0 (3.1)

From now on we assume to have a Poisson manifold P of dimension 2n with non
degenerate Poisson bracket.

Remark 3.3 Bi-Hamiltonian systems admit large sets of first integrals, which make them
into integrable Hamiltonian systems. Conversely, a vast majority of known integrable
systems turn out to be bi-Hamiltonian. The importance of bi-Hamiltonian systems for
the recursive construction of integrals of motion starts with Magri [12] and there is now a
very large amount of articles on the subject.
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Lemma 3.4 [12] Let H0, H1, . . . , be a sequence of functions on Poisson manifold P with
compatible Poisson structures π1 and π0 satisfying the recursion relation

{ . ,Hp+1}1 = { . ,Hp}0, p = 0, 1, . . . (3.2)

Then
{Hp, Hq}1 = {Hp, Hq}0 = 0, p, q = 0, 1, . . .

Proof. Let p < q and q−p = 2m for some m > 0. Using the recursion and antisymmetry
of the brackets we obtain

{Hp, Hq}1 = {Hp, Hq−1}0 = −{Hq−1, Hp}0 = −{Hq−1, Hp+1}1 = {Hp+1, Hq−1}1.

Iterating one arrives to

{Hp, Hq}1 = · · · = {Hp+m, Hq−m}1 = 0

since p+m = q −m. In a similar way in the case q − p = 2m+ 1 one obtains

{Hp, Hq}1 = · · · = {Hn, Hn+1}1 = {Hn, Hn}0 = 0

where n = p+m = q −m− 1. 2

We remark that this proof uses only (3.2) and the skew symmetry of π1 an π0, while it
does not uses the assumption of compatibility of the Poisson structures.

However, the assumption that π1 and π0 are compatible Poisson structures is essential
in order to guarantee the existence of functions Hk fulfilling the Lenard-Magri recursion
relations (3.2) . The question of existence of such functions in the case of an arbitrary
bi-Hamiltonian structure is a difficult problem. In the special case π1 is invertible, one
can defined the field (1, 1) tensor N : TP → TP

N = π0π
−1
1 (3.3)

which is called the recursion operator for the bi-Hamiltonian structure. The recursion
procedures is effective, namely it produces first integrals when, for a given vectorX = X(x)
of the tangent space TxP , the vectors NkX for 0 ≤ k ≤ 2n − 1 span the whole tangent
space TxP , where we assume that dimP = 2n.

We recall that the torsion of a (1, 1) tensor N on a manifold P is the vector values
two-form T (N)

T (N)(X,Y ) = [NX,NY ]−N([NX,Y ] + [X,NY ]) +N2[X,Y ]. (3.4)

Definition 3.5 A (1, 1) tensor with vanishing torsion is called Nijenhuis tensor or Nijen-
huis operator.
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We state without proving the following lemma

Lemma 3.6 [10] If (π1, π0) are compatible Hamiltonian structures on P and π1 is invert-
ible, then the recursion operator N = π0π

−1
1 is a Nijenhuis operator.

Remark 3.7 If both π0 and π1 are invertible then both the torsions T (N) and T (N−1)
are equal to zero. One observe that the existence of the Lenard-Magri chain implies that

dHp+1 = N∗dHp, p ≥ 0.

where N∗ : T ∗P → T ∗P is the adjoint operator, namely the (1, 1) tensor π−1
1 π0 applied to

the exact differential dHp gives the exact differential differential dHp+1. When one applies
a (1, 1) tensor to an exact one form, gets a one form that in general is not exact. The
condition of getting an exact differential is not a trivial condition. The difficult part of
the bi-Hamiltonian geometry is to show the existence of the functions Hp, p = 0, 1, . . . .
satisfying the Lenard-Magri recursion formula (3.2). In the case in which π0 and π1 have
maximal rank, this problem has a quite explicit solution which we are going to explain
below.

Remark 3.8 If X is a bihamiltonian vector field, namely

X = π1dH1 = π0dH0

then LXπ1 = LXπ0 = 0 where LX1 is the Lie derivative. Indeed one has

(LXπ)ij = Xk ∂π
ij

∂xk
− ∂Xi

∂xk
πkj − ∂Xj

∂xk
πik

and substituting in the above relation Xk
H1

= πkm1

∂H1

∂xm
or Xk

H0
= πkm0

∂H0

∂xm
and using

(2.7) one immediately obtains that the Lie derivative of the Poisson tensors with respect
to their Hamiltonian vector fields is equal to zero.

If π1 is invertible it follows that also LXN = 0. Let us write in components the above
condition

(LXN)ij =
∑
k

(
Xk ∂

∂xk
N i
j +

∂Xk

∂xj
N i
k −

∂Xi

∂xk
Nk
j

)
If we interpret N as a matrix with entries ij given by N i

j , one can write the r.h.s. of the
above equation in matrix form

LXN + [N, J ] = 0 (3.5)

14



where now (LXN)ij stands for the Lie derivative with respect to X of the function N i
j and

the bracket [., .] stands for the commutator of matrices and the matrix J is the Jacobian

(J)kl =
∂Xk

∂xl
.

Introducing the time t associated to the vector field X, one arrives to the equation

dN

dt
= [J,N ]. (3.6)

Such equation has the so-called Lax form and the trace of Nk are all conserved quantities
(see below). Such quantities are proportional to the Hamiltonians appearing in the Lenard-
Magri recursion formula.

When compatible Poisson tensors do not have maximal rank, the geometry is much
more reach and also the corresponding theory of integrable systems [2],[16], [17]. However
these issues are beyond the scope of these lectures.

3.1 First integrals associated to a Lax pair

One of the most known method to construct first integrals of a Hamiltonian system is
through symmetries of the space P . Another powerful method is due to Lax [11] and
represents the starting point of the modern theory of integrable systems. Given an ODE

ẋ = f(x), x = (x1, . . . , xN ) (3.7)

and two m ×m matrices L = (Lij(x)), A = (Aij(x)), they constitute a Lax pair for the
dynamical systems if for every solution x = x(t) of (3.7) the matrices L = (Lij(x(t))) and
A = (Aij(x(t))) satisfy the equation

L̇ = [A,L] := AL− LA (3.8)

and the validity of (3.8) for L = L(x), A = A(x) implies (3.7).

Theorem 3.9 Given a Lax pair for the dynamical system (3.7), then the eigenvalues
λ1(x), . . . , λm(x) of L(x) are integrals of motion for the dynamical system.

Proof. The coefficients a1(x), . . . , am(x) of the characteristic polynomial

det(L− λ I) = (−1)m
[
λm − a1(x)λm−1 + a2(x)λm−2 + · · ·+ (−1)mam(x)

]
(3.9)

of the matrix L = L(x) are polynomials in tr L, tr L2, . . . , tr Lm:

a1 = tr L, a2 =
1

2

[
(tr L)2 − tr L2

]
, a3 = . . .

15



Next we show that
tr Lk, k = 1, 2, . . . (3.10)

are first integral of the dynamical system. Indeed for k = 1

d

dt
tr L = tr L̇ = tr (AL− LA) = 0.

more generally
d

dt
trLk = ktr ([A,L]Lk−1) = 0. (3.11)

Since the coefficients of the characteristic polynomial L(x) are constants of motion it
follows that its eigenvalues are constants of motion. 2

Another proof of the theorem, close to Lax’s original proof, can be obtained observing
that the solution of the equation L̇ = [A,L] can be represented in the form

L(t) = Q(t)L(t0)Q−1(t) (3.12)

where the evolution of Q = Q(t) is determined from the equation

Q̇ = A(t)Q (3.13)

with initial data
Q(t0) = 1.

Then the characteristic polynomials of L(t0) e Q(t)L(t0)Q−1(t) are the same and conse-
quently the eigenvalues are the same.

Remark 3.10 Recalling the results of section 3 for a bihamiltonian system (P, π0, π1)
one can write the Lax equation (3.6). Therefore the traces of the matrix N = π0π

−1
1 are

integrals of motion.

Example 3.11 [4] Let us consider in R2n with coordinates (q1, . . . , qn, p1, . . . , pn) the
canonical Poisson bracket π0 and the non degenerate Poisson bracket π1 given by

π1 =

n−1∑
i=1

e(qi−qi+1) ∂

∂pi+1
∧ ∂

∂pi
+

n∑
i=1

pi
∂

∂qi
∧ ∂

∂pi
+
∑
i<j

∂

∂qj
∧ ∂

∂qi
. (3.14)

The canonical brackets π0 and π1 are compatible brackets. The first traces of the recursion
operator N = π1π

−1
0 are given by

H0 =
1

2
trN =

n∑
i=1

pi, H1 =
1

4
trN2 =

1

2

n∑
i=1

p2
i +

n−1∑
i=1

eqi−qi+1
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H2 =
1

6
trN3 =

1

3

n∑
i=1

p3
i +

n−1∑
i=1

(pi + pi+1)eqi−qi+1 ,

and so on. The Hamiltonian H1 is the Hamiltonian of the open Toda lattice equation with
respect to the Poisson bracket π0 (see next section). The conserved quantities given by

Hk =
1

2(k + 1)
TrNk+1, 0 ≤ k ≤ n − 1 are independent and involution with respect to

both Poisson brackets π0 and π1 and satisfy the Lenard-Magri recursion

{., Hk}0 = {., Hk−1}1.

4 The Toda system

Let us consider the system of n points q1, q2, . . . , qn on the real line interacting with nearest
neighbour interaction potential

U(q1, . . . , qn) =

n−1∑
i=1

eqi−qi+1

the so called Toda lattice. The Hamiltonian H(q, p) ∈ C∞(T ∗Rn) takes the form

H(q, p) =
1

2

n∑
i=1

p2
i +

n−1∑
i=1

eqi−qi+1 . (4.1)

There are two possible boundary conditions:

• open Toda with q0 = −∞ and qn+1 = +∞

• closed Toda with q1 = qn+1.

Here we analyse the open Toda lattice. The Hamilton equations with respect to the
canonical Poisson bracket

{qk, pj} = δkj , {qk, qj} = {pk, pj} = 0, jk = 1, . . . , n (4.2)

are

q̇k =
∂H

∂pk
= pk, k = 1, . . . , n

ṗk = −∂H
∂qk

=


−eq1−q2 if k = 1

eqk−1−qk − eqk−qk+1 if 2 ≤ k ≤ n− 1
eqn−1−qn if k = n
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Since the Hamiltonian is translation invariant, the total momentum is a conserved quantity
together with the Hamiltonian.

Flaschka [5],[6] and Manakov [14] separetely showed that the Toda lattice is a com-
pletely integrable system. Let us introduce a new set of dependent variables

ak =
1

2
e

qk−qk+1
2 , k = 1, . . . , n− 1

bk = −1

2
pk, k = 1, . . . , n,

(4.3)

with evolution given by the equations

ȧk = ak(bk+1 − bk), k = 1, . . . , n− 1

ḃk = 2(a2
k − a2

k−1), k = 1, . . . , n,
(4.4)

where we use the convention that a0 = an = 0. Observe that there are only 2n−1 variables
and this is due the translation invariance of the original system. The equations (4.4) have
an Hamiltonian form with Hamiltonian

H(a, b) = 2
n∑
i=1

b2i + 4
n−1∑
i=1

a2
i

with Poisson bracket define on (R∗)n−1 × Rn given by

{ai, bj} = −1

4
δijai +

1

4
δi,j−1ai, i = 1, . . . , n− 1, j = 1, . . . , n,

while all the other entries are equal to zero. We observe that the total momentum
∑n

k=1 bk
is a Casimir of the above Poisson bracket
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Next we introduce the tridiagonal n× n matrices:

L =



b1 a1 0 . . . 0 0
a1 b2 a2 0 0
0 a2 b3 0

. . . . . . . . .

0 bn−1 an−1

0 an−1 bn



A =



0 a1 0 . . . 0 0
−a1 0 a2 0 0

0 −a2 0 0

. . . . . . . . .

0 0 an−1

0 −an−1 0



(4.5)

where A = L+ − L− and we are using the following notation: for a square matrix X we
call X+ the upper triangolar part of X

(X+)ij =

{
Xij , i < j
0, otherwise

and in a similar way by X− the lower triangular part of X

(X−)ij =

{
Xij , i < j
0, otherwise.

A straighforward calculation shows that

Lemma 4.1 The Toda lattice equations (4.4) are equivalent to

dL

dt
= [A,L]. (4.6)

Exercise 4.2 Determine the Lax pair for the closed Toda lattice.

The open Toda lattice equation is sometimes written in the literature in Hessebeg
form. Conjugating the matrix L by a diagonal matrix D = diag(1, a1, a1a2, . . . ,

∏n−1
j=1 aj)
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yelds the matrix L̂ = DLD−1

L̂ =



b1 1 0 . . . 0 0
a2

1 b2 1 0 0
0 a2

2 b3 0

. . . . . . . . .

0 bn−1 1
0 a2

n−1 bn


(4.7)

The Toda equations (4.4) take the form

dL̂

dt
= −2[Â, L̂] (4.8)

where the matrix Â = L̂− namely

Â =



0 0 0 . . . 0 0
a2

1 0 0 0 0
0 a2

2 0 0

. . . . . . . . .

0 0 0
0 a2

n−1 0


(4.9)

From the results of the previous section, the Lax formulation guarantees the existence
of conserved quantities, namely the traces

Fj = tr Lj+1, j = 0, . . . , n− 1.

are conserved quantities. To show the independence of the integrals F0, . . . , Fn−1 we
observe that

Fj−1 =
n∑
k=1

bjk + lower order polynomials of ak and bk.

Since the polynomials bj1 + bj2 + · · · + bjn for j = 1, . . . , n are linearly independent with
respect to the variables b1, . . . , bn, it follows that the integrals F0, . . . , Fn−1 are functionally
independent. Next we show that the integrals are in involution. For the purpose we need
the following lemma.

Lemma 4.3 (i) The spectrum of L consists of n distinct real numbers λ1 < λ2 < · · · <
λn.
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(ii) Let Lv = λv with v = (v1, . . . vn)t. Then v1 6= 0 and vn 6= 0. Furthermore, vk =
v1pk(λ) where pk(λ) is a polynomial of degree k in λ.

Proof. We will first prove (ii). From the equation Lv = λv one obtains

(b1 − λ)v1 + a1v2 = 0 (4.10)

ak−1vk−1 + (bk − λ)vk + akvk+1 = 0, 2 ≤ k < n. (4.11)

Since a1 6= 0 clearly v1 = 0 =⇒ v2 = 0, but then from (4.11) with k = 2, since a2 6= 0,
then v1 = 0 and v2 = 0 implies v3 = 0. Hence v = 0 if v1 = 0. Therefore v1 6= 0. In the
same way it can be proved that vn 6= 0. From (4.10) and (4.11) it easily follows that vk
is a polynomial of degree k in λ. To prove (i), since L is symmetric, the eigenvalues are
real. In order to show that the eigenvalues are distinct, let us suppose that v and ṽ are
two eigenvalues corresponding to the same eigenvector λ. Then the linear combination
αv+βṽ is also an eigenvector of L with eigenvalue λ. But then one can choose α 6= 0 and
β 6= 0 so that αv1 + βṽ1 = 0 and by (ii) it follows that αv + βṽ=0 implying that v and ṽ
are dependent. 2

Using the above lemma one has

det
∂Fj
∂λk

=


1 1 . . . 1

2λ1 2λ2 . . . 2λn
. . . . . . . . . . . .

(n− 1)λ1 (n− 1)λ2 . . . (n− 1)λn

 = n!
∏
i<j

(λi − λj) 6= 0,

because the eigenvalues are all distinct. This shows that we can take the eigenvalues
λ1, . . . , λn as a new set of functionally independent variables. In order to show that the
Toda lattice is an integrable system we also need to show that the functions F1, . . . , Fn,
or equivalently the eigenvalues λ1, . . . , λn commute with respect to the canonical Poisson
bracket. For the purpose let us consider the equation

Lv = λv, (4.12)

where v is a normalised eigenvector, v = (v1, . . . , vn)t and (v, v) = 1. Then we introduce
the discrete Wronkstian

Wi(v, w) = ai(viwi+1 − vi+1wi) (4.13)

where w is an eigenvector with respect to the eigenvalue µ. We use the convention that
W0 = Wn = 0. It is easy to see using the equation (4.12) that the Wronkstian satisfies

Wi = (µ− λ)viwi +Wi−1. (4.14)
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Indeed we have from (4.12)

(bi − λ)vi + ai−1vi−1 + aivi+1 = 0, (bi − µ)wi + ai−1wi−1 + aiwi+1 = 0.

Multiplying the first equation by wi and the second by vi and subtracting them, one
obtains the statement. We are ready to prove the following.

Proposition 4.4 The eigenvalues of L commute with respect to the canonical Poisson
bracket (4.2).

Proof. Let us consider the equation (4.12) and its variational derivative

δL v + Lδv = v δλ + λ δv

Taking the scalar product with respect to v and using (v, v) = 1 one obtains

δλ = (v, δL v) + (v, (L− λ)δv) = (v, δL v) + ((L− λ)v, δv) = (v, δL v) (4.15)

where we use the fact that the operator L is symmetric.
Let λ and µ be two eigenvalues of L with normalized eigenvectors v an w respectively.

Then from (4.15) one has

∂λ

∂pi
= (v,

∂L

∂pi
v) = −1

2
v2
i

∂λ

∂qi
= (v,

∂L

∂qi
v) = aivivi+1 − ai−1vivi−1, i = 1, . . . , n,

(4.16)

where we use the fact that (v, v) = 1 and we define a0 = 0 = an. The same relations hold
for the eigenvalue µ. Then one has

{λ, µ} =

n∑
i=1

(
∂λ

∂qi

∂µ

∂pi
− ∂λ

∂pi

∂µ

∂qi

)

=
1

2

n∑
i=1

(viwi(ai(viwi+1 − vi+1wi) + ai−1(wivi−1 − viwi−1)) .

(4.17)

Using the definition of Wronkstian in (4.13) and the identity (4.14) one can reduce the
above relation to the form

{λ, µ} =
1

2(µ− λ)

n∑
i=1

(W 2
i −W 2

i−1) =
W 2
n −W 2

0

2(µ− λ)
= 0.

2
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Summarazing, we have proved the following theorem.

Theorem 4.5 The Toda Lattice is a completely integrable Hamiltonian system.

By Liouville theorem it follows that the Toda system can be integrated by quadratures.
Let us show how to do this. By the lemma 4.3 it follows that

L = UΛU t (4.18)

where Λ = diag(λ1, . . . , λn) with distinct eigenvalues and U is an orthogonal matrix UU t =
1 with entries Uij = uij the normalized eigenvectors ui = (u1i, . . . uni)

t of L. From
UU t = U tU = 1 one has

(ui, uj) = δij ,
n∑
k=1

(ukj)
2 = 1, i, j = 1, . . . , n.

We know the eigenvalues of L(t), since they are constants of motion. In order to know
L(t) at time t we need to know the orthogonal matrix U = U(t), with entries Uij = uij .
From (4.6) and (4.18) one has that

U̇ = AU. (4.19)

In particular, the dynamics implied by the above equation on the first row u1i, i = 1, . . . , n
of the matrix U is quite simple.

Lemma 4.6 The time evolution of the first row of the matrix U , namely the entries u1i

i = 1, . . . , n are given by

u1i(t)
2 =

e2λitu1i(0)2∑n
k=1 e

2λktu1k(0)2
, i = 1, . . . , n. (4.20)

Proof. From (4.19) one has

du1i

dt
= (AU)1i = a1ui2

and from the relation Lui = λiui, with ui = (u1i, . . . , uni)
t, one reduces the above equation

to the form
du1i

dt
= (λi − b1)u1i.

The solution is given by

u1i(t) = E(t)eλitu1i(0), E(t) = exp

(
−
∫ t

0
b1(τ)dτ

)

23



Using the normalization conditions

1 =
n∑
i=1

u1i(t)
2 = E(t)2

n∑
i=1

e2λitu1i(0)2

which implies

E(t)2 =

(
n∑
i=1

e2λitu1i(0)2

)−1

one arrives to the statement of the lemma. 2

Introducing the notation
ξi(t) = u1i(t), i = 1, . . . , n (4.21)

one can see from lemma 4.3 that the orthogonal matrix U can be written in the form

U =


ξ1(t)p0(λ1, t) ξ2(t)p0(λ2, t) . . . ξn(t)p0(λn, t)
ξ1(t)p1(λ1, t) ξ2(t)p1(λ2, t) . . . ξn(t)p1(λn, t)

...
...

...
ξ1(t)pn−1(λ1, t) ξ2(t)pn−1(λ2, t) . . . ξn(t)pn−1(λn, t)


where pk(λ, t) is a polynomial of degree k in λ. Since U is an orthogonal matrix, the
orthogonality relations on the rows of U take the form

n∑
k=1

ξ2
k pm(λk)pj(λk) = δmj . (4.22)

In other words, the polynomials pj(λ, t) are normalized orthogonal polynomials with re-
spect to the discrete weights ξ2

k at the points λk. To find the orthogonal polynomials from
the weights, is a standard procedure, called QR factorisation, which is a decomposition
of a matrix into an orthogonal matrix and an upper triangular matrix. There are sev-
eral methods for actually computing the QR decomposition. One of such method is the
Gram-Schmidt process. The QR factorisation for solving the Toda lattice equations was
developed by Symes [18]. Therefore, from the weights ξ1(t), . . . ξn(t) at time t one can get
the orthogonal matrix U(t). The explicit calculations on the Toda lattice (and the full
hierarchy) can also be found in [9]. Here we report the result without stating the proof.
Introducing the quantities

cij(t) =
n∑
k=1

uik(0)ujk(0)e2λkt
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and
Dk(t) = det({cij(t)}i,j=1...,k), D0(t) = 1,

the matrix entries of U are given by

uki(t) =
eλit√

Dk(t)Dk−1(t)

∣∣∣∣∣∣∣∣∣
c11(t) . . . c1k(t)

. . .

ck−1 1(t) . . . ck−1 k(t)
u1i(0) . . . uki(0)

∣∣∣∣∣∣∣∣∣ .
Using the identity L(t) = U(t)L(0)U(t)t we recover the quantities bj(t) and aj(t), namely

bj(t) =
n∑
k=1

λku
2
jk(t), j = 1, . . . , n, (4.23)

aj(t) =
n∑
k=1

λkujk(t)uj+1 k(t), j = 1, . . . , n− 1. (4.24)

We are going to derive a different procedure to integrate the Toda lattice due to Moser
[15]. Recall that we have denoted by (ξ1, . . . ξn) the first row of the matrix U . Consider
the set

Spec = {λ1 < λ2 < · · · < λn, (ξ1, . . . , ξn), ξi > 0,
n∑
i=1

ξ2
i = 1}, (4.25)

which is the spectral data associated to the matrix L = L(a, b). The matrix L is a Jacobi
matrix, namely a tridiagonal symmetric matrix where the lower and upper diagonal entries
are positive.

Theorem 4.7 (Moser) The spectral map

S : L(a, b)→ Spec

is a bijection between Jacobi matrices and the set Spec.

Proof. We need to show that for a given set (λ, ξ) ∈ Rn × Rn where λ = (λ1, . . . , λn),
with λ1 < λ2 < · · · < λn and ξ = (ξ1, . . . , ξn) with (ξ, ξ) = 1 and ξi > 0 there is a unique
Jacobi matrix with such spectral data. For the purpose define for j = 0, . . . , n − 1 the
(n− j)× (n− j) matrices

∆j(z) = det


z − bj+1 −aj+1 0 0 . . . . . .
−aj+1 z − bj+2 −aj+2 0 . . . . . .

0 −aj+2 z − bj+3 −aj+3

. . . . . . . . .
. . . 0 0 −an−1 z − bn
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with ∆n(z) := 1 and ∆n+1(z) = 0 and ∆0(z) = det(zI − L). It is easy to see that ∆j

is a polynomial of degree n − j. Furthermore, expanding the determinant along the first
column, one obtains the recursion relation

∆j(z) = (z − bj+1)∆j+1 − a2
j+1∆j+2. (4.26)

Now let us consider the entry (1, 1) of the resolvent R := (zI − L)−1. Such entry turns
out the be equal to

R(z)11 =
∆1(z)

∆0(z)

by the form of the inverse of a matrix. On the other hand, one also has

R(z)11 = (zI − L)−1
11 = (U(zI − Λ)U t)−1

11 = (U(zI − Λ)−1U t)11 =

n∑
i=1

ξ2
i

z − λi

Combining the above two relations and the recursive formula (4.26) one arrives to the
continued fraction expansion

n∑
i=1

ξ2
i

z − λi
=

1
∆0
∆1

=
1

z − b1 −
a2

1
∆1
∆2

=
1

z − b1 −
a2

1

z−b2−
a2
2

...
···−

a2
n−1

z−bn

(4.27)

2

For example from the continued fraction expansion one has

b1 =
n∑
i=1

λiξ
2
i , an−1 =

∑
i<j

(λi − λj)ξiξj .

So the integration of the Toda lattice is obtained by the following diagram:

{ai(0), bi(0)} direct spectral problem
=⇒ {λ1, . . . , λn, ξ1(0) . . . , ξn(0)}

⇓

{ai(t), bi(t)}
inverse spectral problem⇐= {λ1, . . . , λn, ξ1(t) . . . , ξn(t)}.

Such procedure is called inverse scattering.
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Example 4.8 In the particular case n = 2 from the continued fraction expansion

ξ2
1

z − λ1
+

ξ2
2

z − λ2
=

1

z − b1 −
a2

1

z − b2

one can get easily the explicit formulas of the solution

b1(t) = −1

2
p1 = λ1ξ1(t)2 + λ2ξ2(t)2 =

λ1ξ1(0)2e2λ1t + λ2ξ2(0)2e2λ2t

ξ1(0)2e2λ1t + ξ2(0)2e2λ2t

b2(t) = −1

2
p2 = λ2ξ1(t)2 + λ1ξ2(t)2 =

λ2ξ1(0)2e2λ1t + λ1ξ2(0)2e2λ2t

ξ1(0)2e2λ1t + ξ2(0)2e2λ2t

a1 =
1

2
e

q1−q2
2 = (λ2 − λ1)ξ1(t)ξ2(t) =

(λ2 − λ1)ξ1(0)ξ2(0)e(λ1+λ2)t

ξ1(0)2e2λ1t + ξ2(0)2e2λ2t

or equivalently

q1 = − log
(
ξ1(0)2e2λ1t + ξ2(0)2e2λ2t

)
q2 = −2(λ1 + λ2)t− 2 log(2(λ1 − λ2)ξ1(0)ξ2(0)) + log

(
ξ1(0)2e2λ1t + ξ2(0)2e2λ2t

)
.

Observe that for t→ +∞ one has

a1(t)→ 0, b1(t)→ λ2, b2(t)→ λ1.

Exercise 4.9 Prove that for t→ +∞ the Lax matrix becomes diagonal with entries

L→ drag(λn, λn−1, . . . , λ2, λ1).

4.1 The Hamiltonian flows

Let us consider the Hamiltonians

Hk = (−1)k+1 4

k + 1
tr Lk+1, k = 0, . . . , n− 1.

Observe that H1 = H is the Hamiltonian of the Toda lattice. The Hamiltonian flows
generated by Hk are called Toda lattice hierarchy and they are given by the Hamilton
equations

∂qi
∂tk

= ∂Hk
∂pi

∂pi
∂tk

= −∂Hk
∂qi

 , i = 1, . . . , n. (4.28)
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Such flows have a Lax representation given by the following expressions. Let us define
the matrices Ak, k ≥ 1 as

Ak =
(
Lk
)

+
−
(
Lk
)
−
, k = 1, 2, . . . . (4.29)

with the convention that A1 = A.

Exercise 4.10 Show that for k ≥ 1 the commutator [Ak, L] is a tridiagonal matrix.

Hint: using commutativity of [Lk, L] = 0 show that

[Ak, L] =,
[
2(Lk)+ − (Lk)0, L

]
,

where (Lk)0 is the diagonal of Lk. Then use the property of the commutator between an
upper triangular matrix and a tridiagonal matrix.

Exercise 4.11 Show that the Hamiltonian flows (4.28) are equivalent to the equations

∂L

∂tk
:= [Ak, L], k = 1, . . . , n. (4.30)

Exercise 4.12 Show from the commutativity of the Toda flows that the matrices Aj ,
Ak satisfy the equations

∂Ak
∂tl
− ∂Al
∂tk

= [Ak, Al], j, k = 1, . . . , n. (4.31)

Such equations are also called zero curvature representation.

Exercise 4.13 Integrate the Toda hierarchy for any time tj , j = 1, . . . , n.

Exercise 4.14 Consider the recursion operator N = π1π
−1
0 where π0 is the canonical

Poisson bracket and π1 defined in (3.14) is compatible with π0. Show that

Hk =
1

2(k + 1)
TrNk+1 = (−1)k+1 4

k + 1
TrLk+1

where L is the Lax matrix (4.5).
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