
SISSA MathLabSeptember 2016, Cargese, Numerical Methods PDEs, IHP special semester

Reduced basis methods and a 
posteriori error estimation
for  parametrized PDEs: Advances

ERROR BOUNDS

Gianluigi Rozza
 Advanced Topics in Numerical Solution 
of PDEs: Reduced Basis Methods for Computational Mechanics



Advances
Extensions

Advances

I Advances: Elliptic Problems II, Parabolic Problems,
Extensions

1. Elliptic Problems II
(e) A Posteriori Error Estimation (elements)
(f) General Outputs (non-compliant), Non-symmetric Forms

(Dual Problem, A Posteriori Error Estimation)

2. Parabolic Problems
(a) Problem Statement, Truth Approximation
(b) Reduced Basis Approximation
(c) Offline-Online Computational Procedures
(d) A Posteriori Error Estimation
(e) POD - greedy sampling

3. Possible Extensions
I Stability Factors Approximation
I Non-Coercive Problems
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Advances
Extensions

Elliptic Problems
Parabolic Problems

Last Episode...

Input and Output

I Input parameter µ ∈ D: geometry, material prop., B.C., sources

I Output of interest s(µ) = `(u(µ)) = f(u(µ)): to be evaluated
in real time or many-query contexts

I Field variable u(µ) ∈ X: satisfies a µ-parametrized PDE

a(u(µ), v;µ) = f(v) ∀v ∈ X

I Rapidly convergent global reduced basis (RB) approximations
(Galerkin projection onto a space spanned by solution of governing
PDE at N selected µ1, . . . , µN )

I Offline/Online computational procedures
(very extensive and parameter independent Offline stage /
inexpensive Online calculations for new I/O evaluation)
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A posteriori Error Estimation: Role
I Rapidly convergent global reduced basis (RB) approximations
I Offline/Online computational procedures
I Rigorous a posteriori error estimation procedures

(inexpensive yet sharp bounds for the error in the RB
field-variable and output approximations)

OFFLINE

Error bound permits “large” Ξtrain ⊂ D,
⇒ rapidly convergent WNN ,

⇒ small ∂tcomp(µ→ sNN (µ)); and

rigorous assessment |sN (µ)− sNN (µ)|, ∀ µ ∈ D.

ONLINE
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A posteriori Error Estimation: Preliminaries

Residual

Define r : D → (XN )′ and ê : D → XN

r(v;µ) ≡ f(v)− a(uNN (µ), v;µ) ,

(ê(µ), v)X = r(v;µ), ∀v ∈ XN ;

then dual norm given by

‖r( · ;µ)‖(XN )′ = sup
v∈XN

r(v;µ)

‖v‖X
= ‖ê(µ)‖X .
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A posteriori Error Estimation: Preliminaries

Coercivity, Continuity Constants

Introduce coercivity “constants”

αe(µ) ≡ inf
w∈Xe

a(w,w;µ)

‖w‖2X
, αN (µ) ≡ inf

w∈XN

a(w,w;µ)

‖w‖2X
;

for our coercive problems,
αN (µ) ≥ αe(µ) ≥ αe

0 > 0, ∀ µ ∈ D .

Also define continuity “constant,”

γe(µ) = sup
w∈Xe

sup
v∈Xe

a(w, v;µ)

‖w‖X ‖v‖X
.
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A posteriori Error Estimation: Preliminaries

Coercivity Lower Bound

Require
αNLB : D → IR

such that
0 < αNLB(µ) ≤ αN (µ), ∀ µ ∈ D ,

and ∂tcomp(µ→ αNLB(µ))

is [O(1)] independent of N .

†A prescription can be found in [ARCME (Sec.10)].
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A posteriori Error Estimators: Error Bounds

Error estimators:

∆en
N (µ) ≡ ‖ê(µ)‖X

/
(αNLB(µ))1/2 ,

∆s
N(µ) ≡ ‖ê(µ)‖2X

/
αNLB(µ) ;

Effectivities:

ηen
N (µ) ≡ ∆en

N (µ)
/
|||uN (µ)− uNN (µ)|||µ ,

ηsN(µ) ≡ ∆s
N(µ)

/
(sN (µ)− sNN (µ)) .
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A posteriori Error Estimators: Error Bounds

Effectivity Results

Proposition 2

For N = 1, . . . †

1 ≤ ηen
N ≤

√
γe(µ)

αNLB(µ)
, ∀ µ ∈ D ,

(rigor) (sharpness)

1 ≤ ηsN(µ) ≤
γe(µ)

αNLB(µ)
, ∀ µ ∈ D ;

recall a is symmetric and s is “compliant” (` = f). 2

†Similar results obtain for ∆N(µ), the error bound in the X norm.
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A posteriori Error Estimators: Error Bounds

Proofs

It follows from a(e(µ), v;µ) = (ê(µ), v)X for v = e(µ) and
the Cauchy-Schwarz inequality that

|||e(µ)|||2µ ≤ ‖ê(µ)‖X ‖e(µ)‖X , (1)

but (αN (µ))
1
2 ‖e(µ)‖X ≤ a

1
2 (e(µ), e(µ);µ) ≡ |||e(µ)|||µ,

and hence from (1) we obtain

(αN (µ))
1
2

|||e(µ)|||2µ
‖ê(µ)‖X

≤ |||e(µ)|||µ

s.t. |||e(µ)|||µ ≤ ∆en
N (µ) or ηen

N (µ) ≥ 1.
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the Cauchy-Schwarz inequality that
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A posteriori Error Estimators: Error Bounds

Proofs: Again for v = ê(µ) in a(e(µ), v;µ) = (ê(µ), v)X and
the Cauchy-Schwarz inequality we have

‖ê(µ)‖2X ≤ |||ê(µ)|||µ |||e(µ)|||µ . (2)

But from continuity |||ê(µ)|||µ ≤ (γe(µ))
1
2 ‖ê(µ)‖X , and hence

from (2)

ηen
N =

∆en
N (µ)

|||e(µ)|||µ
≡
αNLB(µ))−

1
2‖ê(µ)‖X

|||e(µ)|||µ
≡

αNLB(µ))−
1
2‖ê(µ)‖2X

|||e(µ)|||µ‖ê(µ)‖X
≤
αNLB(µ))−

1
2 |||ê(µ)|||µ |||e(µ)|||µ

|||e(µ)|||µ‖ê(µ)‖X
≤

(αNLB(µ))−
1
2 (γe(µ))

1
2 , or

ηen
N (µ) ≤

√
γe(µ)

αNLB(µ)
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A posteriori Error Estimators: Error Bounds

Since sN (µ)− sNN (µ) =

|||e(µ)|||2µ, and hence since ∆s
N(µ) =

(
∆en
N (µ)

)2
ηsN(µ) ≡

∆s
N(µ)

sN (µ)− sNN (µ)
=

(
∆en
N (µ)

)2
|||e(µ)|||2µ

=
(
ηen
N (µ)

)2
. (3)
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Offline-Online: ‖ê(µ)‖X

Ingredients: 1. Affine Parameter Dependence

r(v;µ) ≡ f(v)− a(uN(µ), v;µ)

= f(v)− a
( N∑
n=1

uNn(µ) ζn, v;µ
)

= f(v)−
N∑
n=1

uNn(µ) a(ζn, v;µ)

= f(v)−
N∑
n=1

uNn(µ)
Q∑
q=1

Θq(µ) aq(ζn, v) .
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Offline-Online: ‖ê(µ)‖X

Ingredients: 2. Linear Superposition

⇒

(ê(µ), v)X = f(v)−
Q∑
q=1

N∑
n=1

Θq(µ) uNn(µ) aq(ζn, v),

ê(µ) = C +
Q∑
q=1

N∑
n=1

Θq(µ) uNn(µ) Lqn ,

where (C, v)X = f(v), ∀ v ∈ XN ;

(Lqn, v)X = −aq(ζn, v), ∀ v ∈ XN ,
1 ≤ n ≤ N, 1 ≤ q ≤ Q.
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Offline-Online: ‖ê(µ)‖X

Ingredients: 2. Linear Superposition

Thus ‖ê(µ)‖2X

=
(
C +

Q∑
q=1

N∑
n=1

Θq(µ) uNn(µ) Lqn , •
)
X

= (C, C)X +
Q∑
q=1

N∑
n=1

Θq(µ) uNn(µ)
{

2(C,Lqn)X +
Q∑

q′=1

N∑
n′=1

Θq′(µ) uNn′(µ) (Lqn,L
q′

n′)X

}
.
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Offline-Online: ‖ê(µ)‖X

Computational Procedure

Offline: once, parameter independent

Compute C, Lqn, 1 ≤ n ≤ Nmax, 1 ≤ q ≤ Q.

Form/Store (C, C)X , (C,Lqn)X , (Lqn,L
q′

n′)X ,

1 ≤ n, n′ ≤ Nmax,
1 ≤ q, q′ ≤ Q.

Complexity depends on N, Q, and N .
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Offline-Online: ‖ê(µ)‖X

Computational Procedure

Online: many times, for each µ deployed

Evaluate ‖ê(µ)‖2X =
(C, C)X +

Q∑
q=1

N∑
n=1

Θq(µ) uNn(µ)
{

2(C,Lqn)X +
Q∑

q′=1

N∑
n′=1

Θq′(µ) uNn′(µ) (Lqn,L
q′

n′)X

}


— O(Q2N2).

Complexity depends on N, Q, but not N .
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A Posteriori Error Estimation: Numerical Example

TBlock-(3, 3): Metrics

Define
∆s

max = max
µ∈Ξtest

∆s
N(µ) ,

ηs

N, ave
max

=
ave
max
µ∈Ξtest

ηsN(µ) ;

recall from Proposition 2 µr = 100

1 ≤ ηsN,max ≤ max
µ∈Ξtest

γe(µ)

αLB(µ)
≤ 100 .†

†Result for µ = (1, . . . , 1); improvement for “multi-inner product.”
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A Posteriori Error Estimation: Numerical Example

TBlock-(3, 3): Metrics

Effectivities †

N ∆s
N,max ηsN,ave ηsN,max

10 2.2036E + 00 6.7067 31.2850
20 2.0020E− 01 7.5587 37.3024
30 1.5100E− 02 12.1138 62.2537
40 1.2000E− 03 14.4598 73.1151
50 1.0000E− 04 10.2566 57.5113

†Note penalty for ηsN “large” mitigated by rapid convergence ∆s
N → 0.
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Coercivity Lower Bound: Parametric Coercivity "Θ Method"

If Θq(µ) > 0, ∀µ ∈ D and aq(w,w) ≥ 0, ∀w ∈ Xe,
1 ≤ q ≤ Q, a(·, ·;µ) is said to be parametrically coercive.

In this case:
a(w,w;µ) =

Q∑
q=1

Θq(µ)aq(w,w)

=
∑Q
q=1

Θq(µ)
Θq(µ′)Θ

q(µ′)aq(w,w)

≥ min
q∈[1,Q]

Θq(µ)

Θq(µ′)

Q∑
q=1

Θq(µ′)aq(w,w)

≥ min
q∈[1,Q]

Θq(µ)

Θq(µ′)
a(w,w;µ′) = min

q∈[1,Q]

Θq(µ)

Θq(µ′)
||w||2X

so also

αN (µ) ≡ inf
w∈XN

a(w,w;µ)

||w||2X
≥ min

q∈[1,Q]

Θq(µ)

Θq(µ′)
= αNLB(µ).
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Problem Generalization: General Output
Consider u ∈ X

a(u, v;µ) = f(v), ∀v ∈ X,
and

s(µ) = `(u(µ))

If a is symmetric and ` = f we revert to compliant case. If not,
with Primal only, we find uN ∈WN (Lagrange RB space)

a(uN(µ), v;µ) = f(v), ∀v ∈WN ,

Then we need
sN(µ) = `(uN(µ)).

We can readily develop an a posteriori error bound for sN(µ):

|s(µ)− sN(µ)| ≤ ||`||(XN )′∆N(µ)

where

||u(µ)− uN(µ)||X ≤ ∆N(µ) =
||ê(µ)||X
αLB(µ)

.
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Problem Generalization: Output Error Bounds
Proof: First

a(e(µ), v;µ) =r(v;µ) = f(v)− a(uN , v, µ)

=a(u, v, µ)− a(uN , v, µ) = (ê(µ), v)X

hence for v = e αLB(µ)||e(µ)||2X ≤ ||ê(µ)||X ||e||X , or

||e(µ)||X ≤
||ê(µ)||
αLB(µ)

.

But then

|s(µ)− sN(µ)| =|`(u(µ))− `(uN(µ))| = |`(e(µ))|

=
|`(e(µ))|
||e(µ)||X

||e(µ)||X ≤
(

sup
v∈XN

`(v)

||v||X

)
︸ ︷︷ ︸

||`||(XN )′

||e(µ)||X

≤ ||`||(XN )′∆N(µ) = ∆s,nc
N (µ)
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Problem Generalization: Primal-Dual

Dual Problem

Find Ψ ∈ X such that

a(v,Ψ;µ) = −`(v), ∀v ∈ X.

Note we no longer assume that a is symmetric, and hence
Ψ 6= −u necessarily even if ` = f .

(We still assume that a is coercive and affine, but this case
considers transport-advection-convection terms.)
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Problem Generalization: Primal-Dual

RB Approach Galerkin

Introduce

W pr
Npr

= span
{
u(µkpr) ≡ ζ

k, 1 ≤ k ≤ Npr

}
,

W du
Ndu

= span
{

Ψ(µkdu), 1 ≤ k ≤ Ndu

}
,

1 ≤ Npr ≤ Npr,max, 1 ≤ Ndu ≤ Ndu,max

Then uNpr ∈W
pr
Npr

,ΨNdu ∈W du
Ndu

satisfy

a(uNpr(µ), v;µ) = f(v), ∀v ∈W pr
Npr

,

a(v,ΨNdu(µ);µ) = −`(v), ∀v ∈W du
Ndu

,
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Problem Generalization: Primal-Dual

And [Patera & Ronquist, Giles & Pierce]

sNpr,Ndu(µ) = `(uNpr)− rpr(ΨNdu;µ)

where

rpr(v;µ) = f(v)− a(uNpr , v;µ)

rdu(v;µ) = −`(v)− a(v,ΨNdu;µ)

Offline-Online is similar to Primal-only, but now we need to do
everything both for Primal and Dual (see following Sampling).
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Problem Generalization: Primal-Dual

A Priori Theory
It is standard that

|s− sNpr,Ndu| ≤

C

(
inf

wpr∈W pr
Npr

||u− wpr||X

)(
inf

wdu∈W du
Ndu

||Ψ− wdu||X

)

Proof:
|s− sNpr,Ndu| = `(u− uNpr)︸ ︷︷ ︸

epr

+rpr(ΨNdu;µ)

= −a(epr,Ψ;µ) + a(epr,ΨNdu;µ)

= −a(epr, edu;µ).

Then apply continuity and Galerkin optimality to Primal and Dual.
G.Rozza Reduced Basis Approximations: Advances
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Problem Generalization: A Posteriori Output Bounds
We can readily derive that

|sN − sNNpr,Ndu| ≤ ∆
s(,nc)
N “N ≡ Npr, Ndu”

where
∆s
N(µ) = ||rduN (·;µ)||(XN )′∆N(µ).

Proof: we know that

s− sNpr,Ndu = `(u− uNpr) + rpr(ΨNdu;µ)

= `(epr) + a(epr,ΨNdu;µ) = −rdu(epr;µ)

So

|s− sNpr,Ndu| ≤ ||rdu(·;µ)||(XN )′||epr||X
≤ ||rdu(·;µ)||(XN )′∆N(µ)

where recall that ||epr||X ≤ ∆N(µ).
G.Rozza Reduced Basis Approximations: Advances
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Problem Generalization: Sampling
The Offline-Online procedure is very similar to before, but now we
evaluate both a Primal and a Dual residual dual norm. We have

|s− sNpr,Ndu| ≤
(
||rdu(·;µ)||(XN )′

α
1/2
LB(µ)

)(
||rpr(·;µ)||(XN )′

α
1/2
LB(µ)

)
Hence if εsmax is the smallest output error desired, we perform a
Primal greedy until (⇒ Npr,max)

||rpr(·;µ)||(XN )′

α
1/2
LB(µ)

≤
√
εsmax, over Ξprtrain.

and a Dual greedy until (⇒ Ndu,max)

||rdu(·;µ)||(XN )′

α
1/2
LB(µ)

≤
√
εsmax, over Ξdutrain.

If (say) the Dual converges much more quickly than the Primal, it would be more efficient to choose
“Npr,max = 0” and let the Dual do all the work.
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If (say) the Dual converges much more quickly than the Primal, it would be more efficient to choose
“Npr,max = 0” and let the Dual do all the work.

G.Rozza Reduced Basis Approximations: Advances
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Advances
Extensions

Elliptic Problems
Parabolic Problems

Parabolic Problems

Given µ ∈ D ⊂ IRP , t ∈ (0, tf ]

evaluate se(t;µ) = `(ue(t;µ);µ)

where ue(t;µ) ∈ Xe(Ω) satisfies1

m

(
∂ue

∂t
(t;µ), v;µ

)
+ a(ue(t;µ), v;µ)

= g(t) f(v;µ), ∀ v ∈ Xe .

1We assume for simplicity that ue(0;µ) = ue
0 = 0.
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Advances
Extensions

Elliptic Problems
Parabolic Problems

Parabolic Problems: Hypotheses

a( · , · ;µ) : bilinear, affine in µ,
Xe-continuous,
Xe-coercive,† ∀ µ ∈ D

m( · , · ;µ) : bilinear, affine in µ,
L2(Ω)-continuous,
L2(Ω)-coercive, ∀ µ ∈ D

f( · ;µ) : linear, affine in µ,
L2(Ω)-bounded, ∀ µ ∈ D

g( · ) : L2(0, tf) “control”

`( · ;µ) : linear, affine in µ,
L2(Ω)-bounded,† ∀ µ ∈ D

†In fact, a may satisfy a weak coercivity condition.
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Advances
Extensions

Elliptic Problems
Parabolic Problems

Parabolic Problems:FD-FE Approximation - Discretization

FD in time: EB (Euler Backward) or CN (Crank-Nicholson)

∆t = tf/K ⇒
tk = k∆t, 0 ≤ k ≤ K , or

IT = {t0, t1, . . . , tK} ;

IK = {1, 2, . . . ,K} .

FE in space: XN ∈ Xe .

G.Rozza Reduced Basis Approximations: Advances



Advances
Extensions

Elliptic Problems
Parabolic Problems

Parabolic Problems:FD-FE Approximation - EB-Galerkin

Given µ ∈ D, ∀ k ∈ IK

evaluate sN k(µ) = `(uN k(µ);µ)

where uN k(µ) ∈ XN satisfies

m
(
uN k(µ)−uN k−1(µ)

∆t
, v
)

+ a(uN k(µ), v;µ)

= g(tk) f(v;µ), ∀ v ∈ XN .

TRUTH: sN k(µ) ≈ se(tk;µ), uN k(µ) ≈ ue(tk;µ) .

G.Rozza Reduced Basis Approximations: Advances



Advances
Extensions

Elliptic Problems
Parabolic Problems

Parabolic RB: Rapid Convergence

A reduced basis approximation ∀ k ∈ IK

sN k
N ∈ IR and uN k

N (µ) ∈ XNN ⊂ XN :

for all µ ∈ D,

sN k
N (µ)→ sN k(µ) and uN k

N (µ)→ uN k(µ)

rapidly as N = dim(XNN )→∞(= 10–200).2

2The reduced basis inherits the fixed truth temporal discretization.
G.Rozza Reduced Basis Approximations: Advances



Advances
Extensions

Elliptic Problems
Parabolic Problems

Parabolic RB: Rigor & Certainty

A posteriori error bounds ∆k
N(µ) and ∆s k

N (µ):

1 (rigor) ≤
∆k
N(µ)

‖uN k(µ)− uN k
N (µ)‖

≤ C (sharpness)

and ‖ · ‖ ≡ ‖ · ‖L2(Ω)

1 (rigor) ≤
∆s k
N (µ)

|sN k(µ)− sN k
N (µ)|

≤ C (sharpness)

for all N ∈ IN and all k ∈ IK, µ ∈ D.

G.Rozza Reduced Basis Approximations: Advances



Advances
Extensions

Elliptic Problems
Parabolic Problems

Parabolic RB: Computational Efficiency

Offline-Online computational strategies: ∀ k ∈ IK

tOffline
comp � cost

{
µ→ sN k(µ)

}
;

BUT

∂tcomp ≡ marginal cost
{
µ

Online→ sN k
N (µ),∆s k

N (µ)
}

depends only on Q and N and K — but not on N .3

3We may choose our truth FE discretization very conservatively.
G.Rozza Reduced Basis Approximations: Advances



Advances
Extensions

Elliptic Problems
Parabolic Problems

Parabolic RB: Relevance

Real-Time Context: ∀ k ∈ IK

µ → sN k
N (µ),∆s k

N (µ)

t0 t0+∂tcomp

Many-Query Context: ∀ k ∈ IK

{µj → sN k
N (µj),∆

s k
N (µj)}j=1,...,Jev (→∞)

t0 t0+∂tcompJev

G.Rozza Reduced Basis Approximations: Advances



Advances
Extensions

Elliptic Problems
Parabolic Problems

Parabolic RB: Crucial Ingredients

Affine Parameter Dependence

Smooth (P + 1)-Dimensional ManifoldMN K

Galerkin Projection

POD(t)-Greedy(µ) Sampling Procedures

[Haasdonk, Ohlberger, M2AN, 2008 and NRP, Calcolo, 2009]

Stability Factor Estimates, and
A Posteriori Error Bounds

Offline-Online Computational Procedures

G.Rozza Reduced Basis Approximations: Advances



Advances
Extensions

Elliptic Problems
Parabolic Problems

Parabolic RB: Affine Parameter Dependence

Definition: f(v;µ), `(v;µ)

z(w, v;µ) =
Qz∑
q=1

Θq
z(µ) zq(w, v)

where for q = 1, . . . , Qz z : m or a

Θq
z : D → IR, µ-dependent functions ;

zq : Xe ×Xe → IR, µ-independent forms .

3In fact, broadly applicable to many instances of
property and geometry parametric variation.
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Advances
Extensions

Elliptic Problems
Parabolic Problems

Parabolic RB: IT-D ManifoldMN K

We assume

the form a is stable; and

the Θq
m,a(µ), 1 ≤ q ≤ Qm,a, are smooth;

then

MN K ≡ {uN k(µ) | ∀ k ∈ IK, ∀ µ ∈ D}

lies on a smooth (P + 1)-dimensional manifold in XN .

G.Rozza Reduced Basis Approximations: Advances



Parabolic RB
IT-D ManifoldMN K

Reduced Basis Space

XXNN
NN ⊂⊂ spanspan{{uuNN kk((µµmm)),, 11 ≤≤ kk ≤≤ KK,, 11 ≤≤ mm≤≤ MM }}

... ...
causality

“snapshots”

uuNN kk((µµ11))

uuNN kk((µµ))
uuNN kk((µµMM))

kk == 11

kk == KK

XXNN
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Advances
Extensions

Elliptic Problems
Parabolic Problems

Parabolic RB: Galerkin Projection

Given µ ∈ D, ∀ k ∈ IK

evaluate sN k
N (µ) = `(uN k

N (µ);µ)

where uN k
N (µ) ∈ XNN satisfies

m

(
uN k
N (µ)−uN k−1

N (µ)

∆t
, v

)
+ a(uN k

N (µ), v;µ)

= g(tk) f(v;µ), ∀ v ∈ XNN .

3The reduced basis inherits the fixed truth temporal discretization.
G.Rozza Reduced Basis Approximations: Advances



Advances
Extensions

Elliptic Problems
Parabolic Problems

Parabolic RB: POD-Greedy Sampling

Set Z = ∅, S∗ = {µ∗}; [HO]

While N ≤ Nmax,0

{χm, 1 ≤ m ≤M1} = POD({uN (tk, µ∗), ∀ k ∈ K},M1);

Z ← {Z, {χm, 1 ≤ m ≤M1}};
N ← N +M2;

{ζn, 1 ≤ n ≤ N} = POD(Z,N );

XN = span{ζn, 1 ≤ n ≤ N};
µ∗ = arg maxµ∈Ξtrain ∆K

N(µ) tf

S∗ ← {S∗, µ∗};

end.

Set XN = span{ζn, 1 ≤ n ≤ N}, 1 ≤ N ≤ Nmax.

G.Rozza Reduced Basis Approximations: Advances



Advances
Extensions

Elliptic Problems
Parabolic Problems

Parabolic RB: Greedy Sampling - Advantage

Combines optimality/causality features of

(small) POD in time, T

with optimality/high-dimensionality features of

(exhaustive) Greedy in parameter, D;

complexity remains O(N ) + O(ntrain)
— not O(Nntrain).

G.Rozza Reduced Basis Approximations: Advances



Advances
Extensions

Elliptic Problems
Parabolic Problems

CRB: Crucial Ingredients - Stability Factor Estimates

Calculation of αLB(µ) : D → IR+. We introduce

σN (µ) = infv∈XN
m(v,v;µ)
||v||2 , ∀µ ∈ D

0 < αLB(µ) ≤ αN (µ), (coercivity constant)

0 < σLB(µ) ≤ σN (µ), (stability factor)

by

Successive Constraint Method (SCM)

Huynh, Rozza, Sen, Patera, A successive constraint linear
optimization method for lower bounds of parametric coercivity and
inf-sup stability constants. Comptes Rendus Mathematique. 2007,
Vol 345, Pages 473-478.

exactly as in elliptic case.
G.Rozza Reduced Basis Approximations: Advances



Advances
Extensions

Elliptic Problems
Parabolic Problems

CRB: Crucial Ingredients - A Posteriori Error Bounds
Formulation

Introduce residual

rk(v;µ) = g(tk) f(v)−m
(
uN k
N (µ)−uN k−1

N (µ)

∆t
, v;µ

)
− a(uN k

N (µ), v;µ), ∀ v ∈ XN , ∀ k ∈ IK ;

and recall αLB(µ) : D → IR+ such that ∀ µ ∈ D,

0 < αLB(µ) ≤ αN (µ) (coercivity constant).

G.Rozza Reduced Basis Approximations: Advances



Advances
Extensions

Elliptic Problems
Parabolic Problems

CRB: Crucial Ingredients - A Posteriori Error Bounds
Formulation

Define

∆k
N(µ) ≡

√
∆t

αLB(µ)σLB(µ)

k∑
k′=1

(
ε2
N(tk′;µ)

)
,

∆s k
N (µ) ≡

(
sup
v∈XN

`(v)
‖v‖

)
∆k
N(µ) ,

where εN(tk;µ) ≡ ‖rk( · ;µ)‖(XN )′ .
Then

‖uN k(µ)− uN k
N (µ)‖L2(Ω) ≤ ∆k

N(µ)† ,

|sN k(µ)− sN k
N (µ)| ≤ ∆s k

N (µ)‡ ,

for all N ∈ IN and all k ∈ IK, µ ∈ D.

In practice we may also consider †L2(0, tf ;X) norms, and ‡primal-dual
techniques.
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Advances
Extensions

Elliptic Problems
Parabolic Problems

CRB: Crucial Ingredients - Offline-Online Procedures

Evaluation µ→ ∀ k ∈ IK

( uN k
N (µ) ), sN k

N (µ) ,

and ∆k
N(µ)

( ‖rk( · ;µ)‖(XN )′, α
LB(µ) — SCM ), ∆s k

N (µ) ,

very similar to (≈ K×) elliptic case.

G.Rozza Reduced Basis Approximations: Advances



Advances
Extensions

Elliptic Problems
Parabolic Problems

Adavances

I Advances: Elliptic Problems II, Parabolic Problems

1. Elliptic Problems II
(e) A Posteriori Error Estimation (elements)
(f) General Outputs (non-compliant), Non-symmetric Forms

(Dual Problem, A Posteriori Error Estimation)

2. Parabolic Problems
(a) Problem Statement, Truth Approximation
(b) Reduced Basis Approximation
(c) Offline-Online Computational Procedures
(d) A Posteriori Error Estimation
(e) POD - greedy sampling

3. Possible Extensions
(a) SCM-Successive Constraint Method

Review paper: RHP[Sec. 10] Ar.Comp.Meth.Eng. Vol.
15, 229–275, 2008
Paper HRSP C.R. Acad.Sci.Paris Vol. 345, 473–478,
2007

G.Rozza Reduced Basis Approximations: Advances



SISSA MathLabCargese 2016, IHP Num. PDEs

Reduced basis methods and a 
posteriori error estimation
for  parametrized PDEs

STABILITY FACTORS: SCM

Gianluigi Rozza
Course on Advanced Topics in Numerical Solution 
of PDEs: Reduced Basis Methods for Computational Mechanics



Advances
Extensions

Stability Factors Lower Bounds
Noncoercive problems

Coercivity Lower Bound†: Objective

Require αNLB : D → IR such that

0 < αNLB(µ) ≤ αN (µ), ∀ µ ∈ D ,

∂tcomp(µ→ αNLB(µ)) is O(1) ,

where

αN (µ) = inf
w∈XN

a(w,w;µ)

‖w‖2X
(≥ αe

0, ∀ µ ∈ D) .†

†We consider symmetric a; extension to non-symmetric a is simple.
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Advances
Extensions

Stability Factors Lower Bounds
Noncoercive problems

Coercivity Lower Bound: Reformulation - Affine Parameter
Dependence

Recall

a(w,w;µ) =
Q∑
q=1

Θq(µ) aq(w,w) ;

hence
αN (µ) = inf

w∈XN
J obj(µ;w)

where

J obj(µ;w) ≡
Q∑
q=1

Θq(µ)
aq(w,w)

‖w‖2X
.

G.Rozza Reduced Basis Approximations: Advances



Advances
Extensions

Stability Factors Lower Bounds
Noncoercive problems

Coercivity Lower Bound: Reformulation - “Pseudo" - Linear
Form

Express
αN (µ) = inf

y∈Y
J obj(µ; y)

where

J obj(µ; y) ≡
Q∑
q=1

Θq(µ) yq

Y =

{
y ∈ IRQ

∣∣ ∃ wy ∈ XN s.t.

yq =
aq(wy, wy)

‖wy‖2X
, 1 ≤ q ≤ Q

}
.

G.Rozza Reduced Basis Approximations: Advances



Advances
Extensions

Stability Factors Lower Bounds
Noncoercive problems

Coercivity Lower Bound: Bounds - Set YLB . . .

Introduce

B = ΠQ
q=1

[
inf

w∈XN

aq(w,w)

‖w‖2X
, sup
w∈XN

aq(w,w)

‖w‖2X

]
CJ =

{
µ1

SCM ∈ D, . . . , µJSCM ∈ D
}

and, given µ ∈ D,

CM,µ
J = {M points in CJ closest to µ} .

†We consider the Successive Constraint Method (SCM). [HRSP]

G.Rozza Reduced Basis Approximations: Advances



Advances
Extensions

Stability Factors Lower Bounds
Noncoercive problems

Coercivity Lower Bound: Bounds - . . . Set YLB . . .

Define YLB(µ; CJ ,M) :

YLB(µ) ≡
{
y ∈ IRQ

∣∣ (I) y ∈ B , and

(II)
Q∑
q=1

Θq(µ′) yq > αN (µ′), ∀ µ′ ∈ CM,µ
J

}
.

Lemma 3.1. Given CJ ⊂ D, M ∈ IN,

Y ⊂ YLB(µ; CJ ,M), ∀ µ ∈ D . 2

G.Rozza Reduced Basis Approximations: Advances



Advances
Extensions

Stability Factors Lower Bounds
Noncoercive problems

Coercivity Lower Bound: Bounds† - . . . Set YLB

Proof : For any y ∈ Y, ∃ wy ∈ XN such that

yq =
aq(wy,wy)

‖wy‖2X
, 1 ≤ q ≤ Q :

inf
w∈XN

aq(w,w)

‖w‖2X
≤ aq(wy,wy)

‖wy‖2X︸ ︷︷ ︸
yq

≤ sup
w∈XN

aq(w,w)

‖w‖2X
; (I)

Q∑
q=1

Θq(µ)
aq(wy,wy)

‖wy‖2X︸ ︷︷ ︸
yq

=
a(wy,wy;µ)

‖wy‖2X

≥ αN (µ), ∀ µ ∈ D . (II)

G.Rozza Reduced Basis Approximations: Advances



Advances
Extensions

Stability Factors Lower Bounds
Noncoercive problems

Coercivity Lower Bound: Bounds - Lower Bound

Let
αNLB(µ; CJ ,M) = min

y∈YLB(µ;CJ ,M)
J obj(µ; y) ;

a linear optimization problem (LP).

Proposition 3.2. Given CJ ⊂ D, M ∈ IN,

αNLB(µ) ≤ αN (µ), ∀ µ ∈ D . 2

Proof :
αNLB(µ) = min

y∈YLB(µ)
J obj(µ; y)

≤ min
y∈Y
J obj(µ; y) Lemma 3.1: Y ⊂ YLB

= αN (µ) .
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Advances
Extensions

Stability Factors Lower Bounds
Noncoercive problems

Coercivity Lower Bound: Bounds - Set YUB

Define

YUB(µ; CJ ,M) = {y?(µ′) | µ′ ∈ CM,µ
J }

where

y?(µ) = arg inf
y∈Y
J obj(µ; y) ;

clearly YUB ⊂ Y .

G.Rozza Reduced Basis Approximations: Advances



Advances
Extensions

Stability Factors Lower Bounds
Noncoercive problems

Coercivity Lower Bound: Bounds - Upper Bound

Let
αNUB(µ; CJ ,M) = min

y∈YUB(µ;CJ ,M)
J obj(µ; y) ;

a simple enumeration exercise.

Proposition 3.3. Given CJ ⊂ D, M ∈ IN,

αNUB(µ) ≥ αN (µ), ∀ µ ∈ D . 2

G.Rozza Reduced Basis Approximations: Advances



Advances
Extensions

Stability Factors Lower Bounds
Noncoercive problems

Coercivity Lower Bound: Greedy Selection: CJ Procedure

Given Ξtrain(SCM), εSCM ∈ [0, 1], M

While max
µ∈Ξtrain

[
αNUB(µ;CJ)−αNLB(µ;CJ)

αNUB(µ;CJ)

]
> εSCM :

µJ+1
SCM = arg max

µ∈Ξtrain

[
αNUB(µ;CJ)−αNLB(µ;CJ)

αNUB(µ;CJ)

]
;

CJ+1 = CJ ∪ µJ+1
SCM ;

J ← J + 1 ;

end. Set Jmax = J .

G.Rozza Reduced Basis Approximations: Advances



Advances
Extensions

Stability Factors Lower Bounds
Noncoercive problems

Coercivity Lower Bound: Greedy Selection: CJ Convergence

If a is parametrically coercive,

Θq(µ) > 0, ∀ µ ∈ D ,

aq(w,w) ≥ 0, ∀ w ∈ X, 1 ≤ q ≤ Q ,

J = 1 suffices to ensure αNLB(µ) > 0, ∀ µ ∈ D.

Generally, continuity of Θ. ensures finite Jmax such that tolerance
is satisfied: but Jmax(P )?

G.Rozza Reduced Basis Approximations: Advances



Advances
Extensions

Stability Factors Lower Bounds
Noncoercive problems

Coercivity Lower Bound: Offline-Online Procedure - Offline

In Greedy, perform

Jmax LP(Q,M)⇒ CJmax ;

2Q+ Jmax eigenproblems† over XN

⇒ (I) B and (II) {αN (µ′) | µ′ ⊂ CJmax} ⇒ YLB ;

Jmax Q inner products over XN ⇒ YUB .

†Eigenproblems efficiently treated by Lanczos method.
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Advances
Extensions

Stability Factors Lower Bounds
Noncoercive problems

Coercivity Lower Bound: Offline-Online Procedure - Online

Given µ ∈ D, perform

sort over CJmax ⇒ C
M,µ
Jmax

;

(M + 1)Q evaluations µ′ → Θ.(µ′) ;

M look-ups µ′ → αN (µ′) ;

LP (Q,M) → αNLB(µ) .

Cost independent of N .

G.Rozza Reduced Basis Approximations: Advances



Advances
Extensions

Stability Factors Lower Bounds
Noncoercive problems

Advances

I Advances: Elliptic Problems II, Parabolic Problems

1. Elliptic Problems II

(e) A Posteriori Error Estimation (elements)
(f) General Outputs (non-compliant), Non-symmetric Forms

(Dual Problem, A Posteriori Error Estimation)

2. Parabolic Problems

(a) Problem Statement, Truth Approximation
(b) Reduced Basis Approximation
(c) Offline-Online Computational Procedures
(d) A Posteriori Error Estimation
(e) POD - greedy sampling

3. Possible extensions

(a) Stability Factors
(b) Non-Coercive Problems

G.Rozza Reduced Basis Approximations: Advances
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Advances
Extensions

Stability Factors Lower Bounds
Noncoercive problems

Noncoercive Problems: Inf-Sup Elements - Supremizer

We are given a bilinear form a : X1 ×X2 → R. Then

β inf-sup = inf
w∈X1

sup
v∈X2

a(w, v)

||w||X1||v||X2

;

we can also say that for any w ∈ X1 there exists a v∗ in X2 (the
inner supremizer) such that

a(w, v∗(w)) ≥ β||w||X1||v∗||X2.

Note that β ≥ 0 (if β is negative, just switch sign of v), however
it is not necessarily true that β > 0.

G.Rozza Reduced Basis Approximations: Advances



Advances
Extensions

Stability Factors Lower Bounds
Noncoercive problems

Noncoercive Problems: Inf-Sup Elements - Supremizer

We introduce the inner supremizing operator T : X1 → X2 as
the following linear operator:

(Tw, v)X2 = a(w, v), ∀v ∈ X2;

why is v = Tw the supremizer of a(w, v)/||v||X2? Note

a(w, Tw) = (Tw, Tw)X2, w given,

so for v = Tw

a(w, v)

||v||X2

=
||Tw||2X2

||Tw||X2

= ||Tw||X2.
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Advances
Extensions

Stability Factors Lower Bounds
Noncoercive problems

Noncoercive Problems: Inf-Sup Elements - Supremizer

But by Cauchy-Schwarz inequality, for any v ∈ X2

a(w, v)

||v||X2

=
(Tw, v)X2

||v||X2

≤
||Tw||X2||v||X2

||v||X2

≤ ||Tw||X2,

which proves the result.

Note Tw is simply our v∗(w) of earlier. Hence, for any w ∈ X1,

a(w, Tw) ≥ β||w||X1||Tw||X2.

G.Rozza Reduced Basis Approximations: Advances



Advances
Extensions

Stability Factors Lower Bounds
Noncoercive problems

Noncoercive Problems: Inf-Sup Elements - Supremizer

We can also develop an alternative expansion for β:

β = inf
w∈X1

(
supv∈X2

a(w,v)
||v||X2

)
||w||X1

(v=Tw)
= inf

w∈X1

||Tw||X2

||w||X1

,

or

β2 = inf
w∈X1

(Tw, Tw)X2

||w||2
X1

which is in fact a Rayleigh quotient.

G.Rozza Reduced Basis Approximations: Advances



Advances
Extensions

Stability Factors Lower Bounds
Noncoercive problems

Noncoercive Problems: Abstract Problem - Approximation

Find u(µ) ∈ X such that

a(u(µ), v;µ) = f(v) ∀ v ∈ X

and
s(µ) = `(u(µ)),

where β(µ) > 0, ∀µ ∈ D, with

β(µ) = inf
w∈X

sup
v∈X

a(w, v;µ)

||w||X ||v||X
.
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Advances
Extensions

Stability Factors Lower Bounds
Noncoercive problems

Noncoercive Problems: Abstract Problem - Approximation

We further assume that a(·, ·;µ) is affine,

a(w, v;µ) =

Q∑
q=1

Θq(µ)aq(w, v).

We now denote our supremizer as Tµ : X → X, where

(Tµw, v)X = a(w, v;µ), ∀ v ∈ X

Note from our affine assumption it follows that

Tµw =

Q∑
q=1

Θq(µ)T qw,

where (T qw, v)X = aq(w, v), ∀ v ∈ X.
G.Rozza Reduced Basis Approximations: Advances



Advances
Extensions

Stability Factors Lower Bounds
Noncoercive problems

Noncoercive Problems: Approximation - Petrov-Galerkin

We assume we are given two subspaces X̃1 ⊂ X,X̃2 ⊂ X. Then
ũ(µ) ∈ X̃1 satisfies

a(ũ(µ), v, µ) = f(v), ∀v ∈ X̃2,

and
s̃(µ) = `(ũ(µ)).

We define

β̃(µ) = inf
w∈X̃1

sup
v∈X̃2

a(w, v;µ)

||w||X ||v||X

G.Rozza Reduced Basis Approximations: Advances



Advances
Extensions

Stability Factors Lower Bounds
Noncoercive problems

Noncoercive Problems: Approximation - Petrov-Galerkin

Our supremizer operator is then given by T̃µ : X̃1 → X̃2

(T̃µw, v)X = a(w, v;µ), ∀v ∈ X̃2.

It follows that, for any w ∈ X̃1,

a(w, T̃µw;µ) ≥ β̃(µ)||w||X || Tµw||X

We pursue here just a Primal approximation, however we can
readily extend the approach to a Primal-Dual formulation as
described for coercive problems.
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Noncoercive Problems: Approximation - A Priori Theory

We know that

a(u(µ), v;µ) = f(v), ∀v ∈ X

a(ũ(µ), v;µ) = f(v), ∀v ∈ X̃2

and hence

a(u− ũ, v;µ) = 0, ∀v ∈ X̃2(⊂ X)

which is the usual (Petrov-)Galerkin orthogonality relationship.
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Noncoercive Problems: Approximation - A Priori Theory
We can write, for any w̃ ∈ X̃1,

β̃||ũ− w̃||X ||T̃µ(ũ− w̃)||X ≤ a(ũ− w̃, T̃µ(ũ− w̃);µ)

= a((ũ− w̃) + (u− ũ), T̃µ(ũ− w̃)︸ ︷︷ ︸;µ)

(Tµ must be member of X̃2, hence can not use stabler Tµ)

= a(u− w̃, T̃µ(ũ− w̃);µ)

≤ γ||u− w̃||X ||T̃µ(ũ− w̃)||X
so

||ũ− w̃||X ≤
γ

β̃
||u− w̃||X ,

and hence

||u− ũ||X ≤ inf
w̃∈X̃1

(||u− w̃||X + ||ũ− w̃||X)

(1 +
γ

β̃
) inf
w∈X̃1

||u− w̃||X
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Noncoercive Problems: Approximation - A Priori Theory

Note it is not necessarily the case that β̃ ≥ β or even β̃ > 0 (β̃
may tend to zero as X̃1, X̃2 are refined);

in this sense, noncoercive problems are much more difficult than
coercive problems.

We observe that approximation is provided by X̃1 and stability
(through β̃ ) by X̃2.
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Noncoercive Problems: RB Approximation - Galerkin

X̃1 = X̃2 = WN

Introduce

WN = span
{
u(µnpr), 1 ≤ n ≤ N

}
, 1 ≤ N ≤ Nmax.

Then uN(µ) ∈WN satisfies

a(uN(µ), v;µ) = f(v), ∀v ∈WN ,

and
sN(µ) = `(uN(µ)).
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Noncoercive Problems: RB Approximation - Galerkin

If we define

βN(µ) ≡ inf
w∈WN

sup
v∈WN

a(w, v;µ)

||w||X ||v||X
,

then

||u− uN ||X ≤ (1 +
γ

βN
) inf
wN∈WN

||u− wN ||X

(and |s− sN | ≤ ||`||(XN )′||u− uN ||X).
In practice this often works very well. In theory, however, it is not
in general possible to ensure βN ≥ β(µ) and thus in principle we
could (though typically do not) observe βN → 0 as N →∞.
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Noncoercive Problems: RB Approximation - Petrov-Galerkin

X̃1 = WN , X̃
2 = V µ

N

Introduce

WN = span
{
u(µnpr), 1 ≤ n ≤ N

}
, 1 ≤ N ≤ Nmax

and

V µ
N = span

{
Tµu(µnpr), 1 ≤ n ≤ N

}
, 1 ≤ N ≤ Nmax

Note V µ
N is parameter dependent.
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Noncoercive Problems: RB Approximation - Petrov-Galerkin

Then uN(µ) ∈WN satisfies

a(uN(µ), v;µ) = f(v), ∀v ∈ V µ
N ,

and
sN(µ) = `(uN(µ)).

If we define

βN(µ) ≡ inf
w∈WN

sup
v∈V µN

a(w, v;µ)

||w||X ||v||X
,

then

||u− uN ||X ≤
(

1 +
γ

βN

)
inf

wN∈WN

||u− wN ||X ,

(and |s− sN | ≤ ||`||(XN )′||u− uN ||X .)
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Noncoercive Problems: RB Approximation - Petrov-Galerkin

But in this case we can show that βN(µ) ≥ β(µ), ∀µ ∈ D.
To wit

βN(µ) ≥ inf
w∈WN

a(w, Tµw;µ)

||w||X ||Tµw||X
Tµ : XN → XN

since for any w ∈WN , T
µw ∈ V µ

N . But
a(w, Tµw;µ) = (Tµw, Tµw)X and hence

βN(µ) = inf
w∈WN

||Tµw||X
||w||X

≥ inf
w∈X

||Tµw||X
||w||X

= β(µ),

given that WN ⊂ X.
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Noncoercive Problems: RB Approximation - Petrov-Galerkin

Hence this Petrov-Galerkin scheme is guaranteed to be stable.
Re Offline-Online, we note that if

WN = span {ζn, 1 ≤ n ≤ N}

then

V µ
N = span


Q∑
q=1

Θq(µ)T qζn, 1 ≤ n ≤ N


and hence

a(uN(µ), v;µ) = · · ·

a

 N∑
j=1

uNj(µ)ζj,

Q∑
q′=1

Θq′(µ)T q
′
ζi;µ

 1 ≤ i ≤ N
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Noncoercive Problems: RB Approximation - Petrov-Galerkin

stored

N∑
j=1

 Q∑
q=1

Q∑
q′=1

Θq(µ)Θq′(µ)
︷ ︸︸ ︷
aq(ζj, T q

′
ζi)

)
︸ ︷︷ ︸

uNj(µ)

1 ≤ i ≤ N O(Q2N2) Online operations.

(not particular onerous since there is already a O(Q2N2)
operation associated with a posteriori error bound.)
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Noncoercive Problems: RB Approximation -A Posteriori
Error Estimation

We know that

a(u− uN , v;µ) = r(v;µ), ∀v ∈ X

= (ê(µ), v)X ,∀v ∈ X

where
r(v;µ) = f(v)− a(uN , v;µ)

Here uN can be either our Galerkin or Petrov-Galerkin
approximation.
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Noncoercive Problems: RB Approximation -A Posteriori
Error Estimation

It thus follows that

β(µ)||u− uN ||X ||Tµ(u− uN)||X ≤

a(u− uN , Tµ(u− uN);µ) =

= (ê(µ), Tµ(u− uN))X

≤ ||ê(µ)||X ||Tµ(u− uN)||X
or

||u− uN ||X ≤
||ê(µ)||X
β(µ)
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Noncoercive Problems: RB Approximation -A Posteriori
Error Estimation

Thus, for βLB(µ) a positive lower bound for β(µ), and

∆N(µ) ≡
||ê(µ)||X
βLB(µ)

,

we obtain
||u− uN ||X ≤ ∆N(µ)

(and also |s− sN | ≤ ||l||(XN )′∆N(µ): a Primal-Dual approach
/ result is also possible).
Re Offline-Online, the calculation of ||ê(µ)||X is identical to the
coercive case. It only remains to construct βLB(µ) by the SCM.
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Noncoercive Problems: RB Approximation -SCM for
βLB(µ)

We recall that

β2(µ) = inf
w∈XN

(Tµw, Tµw)X

||w||2X

but since a is affine,

β2(µ) = inf
w∈XN

Q∑
q=1

Q∑
q′=1

Θq(µ)Θq′(µ)
(T qw, T q

′
w)X

||w||2X

= inf
w∈XN

Q∑
q=1

Q∑
q′=q

(2− δqq′)Θq(µ)Θq′(µ)
(T qw, T q

′
w)X

||w||2X
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Noncoercive Problems: RB Approximation -SCM for
βLB(µ)

Hence

β2(µ) = inf
w∈XN

Q̂∑
q=1

Θ̂q(µ)
âq(w,w)

||w||2X︸ ︷︷ ︸
apply standard SCM

where

(2− δq′q′′)Θq′(µ)Θq′′(µ)
1 ≤ q′ < q′′ ≤ Q 7−→ Θ̂q(µ)

1 ≤ q ≤ Q̂ ≡ Q(Q+1)
2

1

2

(
(T q

′
w, T q

′′
v)X + (T q

′
v, T q

′′
w)X

)
1 ≤ q′ < q′′ ≤ Q

7−→
âq(w, v)

1 ≤ q ≤ Q̂ ≡ Q(Q+1)
2
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