Reduced basis methods and a posteriori error estimation for parametrized PDEs: Advances

ERROR BOUNDS

Gianluigi Rozza

Advanced Topics in Numerical Solution of PDEs: Reduced Basis Methods for Computational Mechanics

Advances

- Advances: Elliptic Problems II, Parabolic Problems, Extensions
 - 1. Elliptic Problems II
 - (e) A Posteriori Error Estimation (elements)
 - (f) General Outputs (non-compliant), Non-symmetric Forms (Dual Problem, A Posteriori Error Estimation)
 - Parabolic Problems
 - (a) Problem Statement, Truth Approximation
 - (b) Reduced Basis Approximation
 - (c) Offline-Online Computational Procedures
 - (d) A Posteriori Error Estimation
 - (e) POD greedy sampling
 - 3. Possible Extensions
 - Stability Factors Approximation
 - Non-Coercive Problems

Last Episode...

Input and Output

- lacktriangle Input parameter $\mu \in \mathcal{D}$: geometry, material prop., B.C., sources
- Output of interest $s(\mu) = \ell(u(\mu)) = f(u(\mu))$: to be evaluated in real time or many-query contexts
- lacktriangledown Field variable $u(\mu) \in X$: satisfies a μ -parametrized PDE

$$a(u(\mu), v; \mu) = f(v) \qquad \forall v \in X$$

- Rapidly convergent global reduced basis (RB) approximations (Galerkin projection onto a space spanned by solution of governing PDE at N selected μ^1, \ldots, μ^N)
- ► Offline/Online computational procedures (very extensive and parameter independent Offline stage / inexpensive Online calculations for new I/O evaluation)

Last Episode...

Input and Output

- lacktriangle Input parameter $\mu \in \mathcal{D}$: geometry, material prop., B.C., sources
- Output of interest $s(\mu) = \ell(u(\mu)) = f(u(\mu))$: to be evaluated in real time or many-query contexts
- lacktriangledown Field variable $u(\mu) \in X$: satisfies a μ -parametrized PDE

$$a(u(\mu), v; \mu) = f(v) \qquad \forall v \in X$$

- Rapidly convergent global reduced basis (RB) approximations (Galerkin projection onto a space spanned by solution of governing PDE at N selected μ^1, \ldots, μ^N)
- Offline/Online computational procedures
 (very extensive and parameter independent Offline stage /
 inexpensive Online calculations for new I/O evaluation)

A posteriori Error Estimation: Role

- Rapidly convergent global reduced basis (RB) approximations
- Offline/Online computational procedures
- Rigorous a posteriori error estimation procedures (inexpensive yet sharp bounds for the error in the RB field-variable and output approximations)

OFFLINE

```
Error bound permits "large" \Xi_{\mathrm{train}} \subset \mathcal{D}, \Rightarrow rapidly convergent W_N^{\mathcal{N}}, \Rightarrow small \partial t_{\mathrm{comp}}(\mu \to s_N^{\mathcal{N}}(\mu)); and rigorous assessment |s^{\mathcal{N}}(\mu) - s_N^{\mathcal{N}}(\mu)|, \ \forall \ \mu \in \mathcal{D}.
```


A posteriori Error Estimation: Role

- ► Rapidly convergent global reduced basis (RB) approximations
- Offline/Online computational procedures
- Rigorous a posteriori error estimation procedures (inexpensive yet sharp bounds for the error in the RB field-variable and output approximations)

OFFLINE

Error bound permits "large" $\Xi_{\mathrm{train}} \subset \mathcal{D},$ \Rightarrow rapidly convergent $W_N^{\mathcal{N}},$ \Rightarrow small $\partial t_{\mathrm{comp}}(\mu \to s_N^{\mathcal{N}}(\mu));$ and rigorous assessment $|s^{\mathcal{N}}(\mu) - s_N^{\mathcal{N}}(\mu)|, \ \forall \ \mu \in \mathcal{D}.$

A posteriori Error Estimation: Preliminaries

Residual

Define
$$r\colon \mathcal{D} o (X^\mathcal{N})'$$
 and $\hat{e}\colon \mathcal{D} o X^\mathcal{N}$
$$r(v;\mu) \ \equiv \ f(v) - a(u_N^\mathcal{N}(\mu),v;\mu) \ ,$$
 $(\hat{e}(\mu),v)_X \ = \ r(v;\mu), \ \forall v \in X^\mathcal{N} \ ;$

then dual norm given by

$$||r(\,\cdot\,;\mu)||_{(X^{\mathcal{N}})'} = \sup_{v \in X^{\mathcal{N}}} \frac{r(v;\mu)}{||v||_X}$$

= $||\hat{e}(\mu)||_X$.

A posteriori Error Estimation: Preliminaries

Coercivity, Continuity Constants

Introduce coercivity "constants"

$$lpha^{\mathrm{e}}(\mu) \equiv \inf_{w \in X^{\mathrm{e}}} rac{a(w,w;\mu)}{\|w\|_X^2}, \quad lpha^{\mathcal{N}}(\mu) \equiv \inf_{w \in X^{\mathcal{N}}} rac{a(w,w;\mu)}{\|w\|_X^2} \; ;$$

for our coercive problems,

$$\alpha^{\mathcal{N}}(\mu) \geq \alpha^{\mathrm{e}}(\mu) \geq \alpha^{\mathrm{e}}_0 > 0, \quad \forall \, \mu \in \mathcal{D} \ .$$

Also define continuity "constant,"

$$\gamma^{e}(\mu) = \sup_{w \in X^{e}} \sup_{v \in X^{e}} \frac{a(w, v; \mu)}{\|w\|_{X} \|v\|_{X}}.$$

A posteriori Error Estimation: Preliminaries

Coercivity Lower Bound

Require

$$\alpha_{\operatorname{LB}}^{\mathcal{N}} \colon \mathcal{D} \to \operatorname{I\!R}$$

such that

$$0 < \alpha_{LB}^{\mathcal{N}}(\mu) \le \alpha^{\mathcal{N}}(\mu), \quad \forall \ \mu \in \mathcal{D} \ ,$$

and
$$\partial t_{\mathrm{comp}}(\mu o lpha_{\mathrm{LB}}^{\mathcal{N}}(\mu))$$

is [O(1)] independent of ${\cal N}$.

[†]A prescription can be found in [ARCME (Sec.10)].

Error estimators:

$$\begin{split} \Delta_N^{\mathrm{en}}(\mu) & \equiv & \|\hat{e}(\mu)\|_X / (\alpha_{\mathrm{LB}}^{\mathcal{N}}(\mu))^{1/2} \;, \\ \Delta_N^s(\mu) & \equiv & \|\hat{e}(\mu)\|_X^2 / \alpha_{\mathrm{LB}}^{\mathcal{N}}(\mu) \;; \end{split}$$

Effectivities:

$$\eta_N^{\mathrm{en}}(\mu) \equiv \Delta_N^{\mathrm{en}}(\mu)/|||u^{\mathcal{N}}(\mu) - u_N^{\mathcal{N}}(\mu)|||_{\mu},$$

$$\eta_N^s(\mu) \equiv \Delta_N^s(\mu)/(s^{\mathcal{N}}(\mu) - s_N^{\mathcal{N}}(\mu)).$$

Effectivity Results

Proposition 2 $\begin{aligned} \text{For } N &= 1, \dots \end{aligned} \qquad \dagger \\ 1 &\leq \eta_N^{\text{en}} &\leq \sqrt{\frac{\gamma^{\text{e}}(\mu)}{\alpha_{\text{LB}}^{\mathcal{N}}(\mu)}}, \ \ \forall \ \mu \in \mathcal{D} \ , \\ \text{(rigor)} & \text{(sharpness)} \end{aligned} \\ 1 &\leq \eta_N^s(\mu) \leq \frac{\gamma^{\text{e}}(\mu)}{\alpha_{\text{LB}}^{\mathcal{N}}(\mu)}, \ \ \forall \ \mu \in \mathcal{D} \ ; \end{aligned}$

recall a is symmetric and s is "compliant" ($\ell = f$).

 $[\]overline{}^{\dagger}$ Similar results obtain for $\Delta_N(\mu)$, the error bound in the X norm.

Proofs

It follows from $a(e(\mu),v;\mu)=(\hat{e}(\mu),v)_X$ for $v=e(\mu)$ and the Cauchy-Schwarz inequality that

$$|||e(\mu)|||_{\mu}^{2} \le ||\hat{e}(\mu)||_{X} ||e(\mu)||_{X},$$
 (1)

but $(lpha^\mathcal{N}(\mu))^{rac{1}{2}}\,\|e(\mu)\|_X\leq a^{rac{1}{2}}(e(\mu),e(\mu);\mu)\equiv|||e(\mu)|||_\mu,$ and hence from (1) we obtain

$$(\alpha^{\mathcal{N}}(\mu))^{\frac{1}{2}} \frac{|||e(\mu)|||_{\mu}^{2}}{\|\hat{e}(\mu)\|_{X}} \le |||e(\mu)|||_{\mu}$$

s.t.
$$|||e(\mu)|||_{\mu} \leq \Delta_N^{\mathrm{en}}(\mu)$$
 or $\eta_N^{\mathrm{en}}(\mu) \geq 1$.

Proofs

It follows from $a(e(\mu),v;\mu)=(\hat{e}(\mu),v)_X$ for $v=e(\mu)$ and the Cauchy-Schwarz inequality that

$$|||e(\mu)|||_{\mu}^{2} \le ||\hat{e}(\mu)||_{X} ||e(\mu)||_{X},$$
 (1)

but $(\alpha^{\mathcal{N}}(\mu))^{\frac{1}{2}} \|e(\mu)\|_X \leq a^{\frac{1}{2}}(e(\mu), e(\mu); \mu) \equiv |||e(\mu)|||_{\mu}$, and hence from (1) we obtain

$$(\alpha^{\mathcal{N}}(\mu))^{\frac{1}{2}} \frac{|||e(\mu)|||_{\mu}^{2}}{\|\hat{e}(\mu)\|_{X}} \le |||e(\mu)|||_{\mu}$$

s.t.
$$|||e(\mu)|||_{\mu} \leq \Delta_N^{\mathrm{en}}(\mu)$$
 or $\eta_N^{\mathrm{en}}(\mu) \geq 1$.

Proofs: Again for $v=\hat{e}(\mu)$ in $a(e(\mu),v;\mu)=(\hat{e}(\mu),v)_X$ and the Cauchy-Schwarz inequality we have

$$\|\hat{e}(\mu)\|_X^2 \le \|\hat{e}(\mu)\|_{\mu} \||e(\mu)\|_{\mu} .$$
 (2)

But from continuity $|||\hat{e}(\mu)|||_{\mu} \leq (\gamma^{e}(\mu))^{\frac{1}{2}} ||\hat{e}(\mu)||_{X}$, and hence from (2)

$$\begin{split} \eta_N^{\text{en}} &= \frac{\Delta_N^{\text{en}}(\mu)}{|||e(\mu)|||_{\mu}} \equiv \frac{\alpha_{\text{LB}}^{\mathcal{N}}(\mu))^{-\frac{1}{2}} \|\hat{e}(\mu)\|_X}{|||e(\mu)|||_{\mu}} \equiv \\ \frac{\alpha_{\text{LB}}^{\mathcal{N}}(\mu))^{-\frac{1}{2}} \|\hat{e}(\mu)\|_X^2}{|||e(\mu)|||_{\mu} \|\hat{e}(\mu)\|_X} \leq \frac{\alpha_{\text{LB}}^{\mathcal{N}}(\mu))^{-\frac{1}{2}} |||\hat{e}(\mu)|||_{\mu} \|||e(\mu)|||_{\mu}}{|||e(\mu)|||_{\mu} \|\hat{e}(\mu)\|_X} \leq \\ (\alpha_{\text{LB}}^{\mathcal{N}}(\mu))^{-\frac{1}{2}} (\gamma^{\text{e}}(\mu))^{\frac{1}{2}}, \quad \text{or} \\ \eta_N^{\text{en}}(\mu) \leq \sqrt{\frac{\gamma^{\text{e}}(\mu)}{\alpha^{\mathcal{N}}_{-}}(\mu)} \end{split}$$

Proofs: Again for $v = \hat{e}(\mu)$ in $a(e(\mu), v; \mu) = (\hat{e}(\mu), v)_X$ and the Cauchy-Schwarz inequality we have

$$\|\hat{e}(\mu)\|_X^2 \le \||\hat{e}(\mu)||_{\mu} \||e(\mu)||_{\mu}.$$
 (2)

But from continuity $|||\hat{e}(\mu)|||_{\mu} \leq (\gamma^{e}(\mu))^{\frac{1}{2}} ||\hat{e}(\mu)||_{X}$, and hence from (2)

$$\begin{split} \eta_N^{\text{en}} &= \frac{\Delta_N^{\text{en}}(\mu)}{|||e(\mu)|||_{\mu}} \equiv \frac{\alpha_{\text{LB}}^{\mathcal{N}}(\mu))^{-\frac{1}{2}} \|\hat{e}(\mu)\|_X}{|||e(\mu)|||_{\mu}} \equiv \\ \frac{\alpha_{\text{LB}}^{\mathcal{N}}(\mu))^{-\frac{1}{2}} \|\hat{e}(\mu)\|_X^2}{|||e(\mu)|||_{\mu} \|\hat{e}(\mu)\|_X} \leq \frac{\alpha_{\text{LB}}^{\mathcal{N}}(\mu))^{-\frac{1}{2}} |||\hat{e}(\mu)|||_{\mu} |||e(\mu)|||_{\mu}}{|||e(\mu)|||_{\mu} \|\hat{e}(\mu)\|_X} \leq \\ (\alpha_{\text{LB}}^{\mathcal{N}}(\mu))^{-\frac{1}{2}} (\gamma^{\text{e}}(\mu))^{\frac{1}{2}}, \quad \text{or} \\ \eta_N^{\text{en}}(\mu) \leq \sqrt{\frac{\gamma^{\text{e}}(\mu)}{\alpha_{\text{LB}}^{\mathcal{N}}(\mu)}} \end{split}$$

Since
$$s^{\mathcal{N}}(\mu) - s^{\mathcal{N}}_N(\mu) = |||e(\mu)|||^2_{\mu}$$
, and hence since $\Delta^s_N(\mu) = \left(\Delta^{\mathrm{en}}_N(\mu)\right)^2$

$$\eta_N^s(\mu) \equiv \frac{\Delta_N^s(\mu)}{s^{\mathcal{N}}(\mu) - s_N^{\mathcal{N}}(\mu)} = \frac{\left(\Delta_N^{\text{en}}(\mu)\right)^2}{|||e(\mu)|||_{\mu}^2} = \left(\eta_N^{\text{en}}(\mu)\right)^2.$$
 (3)

Ingredients: 1. Affine Parameter Dependence

$$egin{array}{lll} r(v;\mu) & \equiv & f(v) - a(u_N(\mu),v;\mu) \ & = & f(v) - a\Big(\sum\limits_{n=1}^N u_{Nn}(\mu) \ \zeta^n,v;\mu\Big) \ & = & f(v) - \sum\limits_{n=1}^N u_{Nn}(\mu) \ a(\zeta^n,v;\mu) \ & = & f(v) - \sum\limits_{n=1}^N u_{Nn}(\mu) \sum\limits_{q=1}^Q \Theta^q(\mu) \ a^q(\zeta^n,v) \ . \end{array}$$

Ingredients: 2. Linear Superposition

$$egin{array}{lll} (\hat{e}(\mu),v)_X &=& f(v) - \sum\limits_{q=1}^Q\sum\limits_{n=1}^N \, \Theta^q(\mu) \, u_{Nn}(\mu) \, a^q(\zeta^n,v), \ &\Rightarrow & \hat{e}(\mu) &=& \mathcal{C} + \sum\limits_{q=1}^Q\sum\limits_{n=1}^N \, \Theta^q(\mu) \, u_{Nn}(\mu) \, \mathcal{L}_n^q \; , \ && ext{where} & (\mathcal{C},v)_X &=& f(v), & orall \, v \in X^\mathcal{N}; \ && (\mathcal{L}_n^q,v)_X &=& -a^q(\zeta^n,v), & orall \, v \in X^\mathcal{N}, \ && 1 < n < N, \, 1 < q < Q. \end{array}$$

Ingredients: 2. Linear Superposition

Thus
$$\|\hat{e}(\mu)\|_X^2$$

$$= \left(\mathcal{C} + \sum_{q=1}^Q \sum_{n=1}^N \Theta^q(\mu) \, u_{Nn}(\mu) \, \mathcal{L}_n^q \,, \, \bullet \right)_X$$

$$= \left(\mathcal{C}, \mathcal{C}\right)_X + \sum_{q=1}^Q \sum_{n=1}^N \Theta^q(\mu) \, u_{Nn}(\mu) \Big\{$$

$$2(\mathcal{C}, \mathcal{L}_n^q)_X + \sum_{q'=1}^Q \sum_{n'=1}^N \Theta^{q'}(\mu) \, u_{Nn'}(\mu) \, (\mathcal{L}_n^q, \mathcal{L}_{n'}^{q'})_X \Big\}.$$

Computational Procedure

Offline: once, parameter independent

Compute
$$\mathcal{C}, \ \mathcal{L}_n^q, \quad 1 \leq n \leq N_{\max}, \ 1 \leq q \leq Q.$$

Form/Store
$$(\mathcal{C},\mathcal{C})_X$$
, $(\mathcal{C},\mathcal{L}_n^q)_X$, $(\mathcal{L}_n^q,\mathcal{L}_{n'}^{q'})_X$,
$$1 \leq n,n' \leq N_{\max}, \\ 1 \leq q,q' \leq Q.$$

Complexity depends on N, Q, and $\mathcal{N}.$

Computational Procedure

Online: many times, for each μ

deployed

Evaluate
$$\|\hat{e}(\mu)\|_X^2 =$$

$$\left[\begin{array}{c} (\mathcal{C},\mathcal{C})_X + \sum\limits_{q=1}^Q\sum\limits_{n=1}^N \frac{\Theta^q(\mu)}{M^n(\mu)} u_{Nn}(\mu) \left\{ \\ 2(\mathcal{C},\mathcal{L}_n^q)_X + \sum\limits_{q'=1}^Q\sum\limits_{n'=1}^N \frac{\Theta^{q'}(\mu)}{M^n(\mu)} u_{Nn'}(\mu) \left(\mathcal{L}_n^q,\mathcal{L}_{n'}^{q'}\right)_X \right\} \end{array}\right]$$

$$-O(Q^2N^2).$$

Complexity depends on N, Q, but not \mathcal{N} .

A Posteriori Error Estimation: Numerical Example

 TBlock -(3,3): Metrics

Define

$$\begin{array}{rcl} \Delta_{\max}^s & = & \max_{\mu \in \Xi_{\mathrm{test}}} \Delta_N^s(\mu) \; , \\ \\ \eta_{N, \ \underset{\max}{\mathrm{ave}}}^s & = & \max_{\mu \in \Xi_{\mathrm{test}}} \eta_N^s(\mu) \; ; \end{array}$$

recall from *Proposition 2*

$$\mu_r = 100$$

$$1 \leq \eta_{N, ext{max}}^s \leq \max_{\mu \in \Xi_{ ext{test}}} rac{\gamma^{ ext{e}}(\mu)}{lpha_{ ext{LB}}(\mu)} \leq 100 \; .^\dagger$$

 $[\]overline{}^{\dagger}$ Result for $\overline{\mu}=(1,\ldots,1)$; improvement for "multi-inner product."

A Posteriori Error Estimation: Numerical Example

 TBlock -(3,3): Metrics

Effectivities

 $\Delta_{N,\underline{\max}}^s$ $\eta_{N. ext{ave}}^s$ $\eta_{N.\mathrm{max}}^s$ 10 2.2036E + 006.706731.285020 2.0020E - 017.5587 37.3024 30 1.5100E - 0212.1138 62.253740 1.2000E - 0314.4598 73.11511.0000E - 0450 10.256657.5113

[†] Note penalty for η_N^s "large" mitigated by rapid convergence $\Delta_N^s \to 0$.

Coercivity Lower Bound: Parametric Coercivity " Method"

If
$$\Theta^q(\mu)>0$$
, $orall \mu\in\mathcal{D}$ and $a^q(w,w)\geq 0$, $orall w\in X^{\mathrm{e}}$, $1\leq q\leq Q$, $a(\cdot,\cdot;\mu)$ is said to be parametrically coercive.

In this case:
$$a(w,w;\mu) = \sum_{q=1}^Q \Theta^q(\mu) a^q(w,w)$$

$$= \sum_{q=1}^Q \frac{\Theta^q(\mu)}{\Theta^q(\mu')} \Theta^q(\mu') a^q(w,w)$$

$$\geq \min_{q \in [1,Q]} \frac{\Theta^q(\mu)}{\Theta^q(\mu')} \sum_{q=1}^Q \Theta^q(\mu') a^q(w,w)$$

$$\geq \min_{q \in [1,Q]} \frac{\Theta^q(\mu)}{\Theta^q(\mu')} a(w,w;\mu') = \min_{q \in [1,Q]} \frac{\Theta^q(\mu)}{\Theta^q(\mu')} ||w||_X^2$$

so also

$$lpha^{\mathcal{N}}(\mu) \equiv \inf_{w \in X^{\mathcal{N}}} rac{a(w,w;\mu)}{||w||_X^2} \geq \min_{q \in [1,Q]} rac{\Theta^q(\mu)}{\Theta^q(\mu')} = lpha_{LB}^{\mathcal{N}}(\mu).$$

Reduced basis methods and a posteriori error estimation for parametrized PDEs: Advances

PRIMAL-DUAL PROBLEMS

Gianluigi Rozza

Course on Advanced Topics in Numerical Solution of PDEs: Reduced Basis Methods for Computational Mechanics

Problem Generalization: General Output

Consider $u \in X$

$$a(u,v;\mu)=f(v), \quad \forall v\in X,$$

and

$$s(\mu) = \ell(u(\mu))$$

If a is symmetric and $\ell=f$ we revert to compliant case. If not, with Primal only, we find $u_N\in W_N$ (Lagrange RB space)

$$a(u_N(\mu), v; \mu) = f(v), \quad \forall v \in W_N,$$

Then we need

$$s_N(\mu) = \ell(u_N(\mu)).$$

We can readily develop an a posteriori error bound for $s_N(\mu)$:

$$|s(\mu) - s_N(\mu)| \le ||\ell||_{(X^N)'} \Delta_N(\mu)$$

where

$$||u(\mu) - u_N(\mu)||_X \le \Delta_N(\mu) = \frac{||\hat{e}(\mu)||_X}{\alpha_{LB}(\mu)}.$$

Problem Generalization: General Output

Consider $u \in X$

$$a(u,v;\mu)=f(v), \quad \forall v\in X,$$

and

$$s(\mu) = \ell(u(\mu))$$

If a is symmetric and $\ell=f$ we revert to compliant case. If not, with Primal only, we find $u_N\in W_N$ (Lagrange RB space)

$$a(u_N(\mu), v; \mu) = f(v), \quad \forall v \in W_N,$$

Then we need

$$s_N(\mu) = \ell(u_N(\mu)).$$

We can readily develop an a posteriori error bound for $s_N(\mu)$:

$$|s(\mu) - s_N(\mu)| \le ||\ell||_{(X^N)'} \Delta_N(\mu)$$

where

$$||u(\mu)-u_N(\mu)||_X \leq \Delta_N(\mu) = rac{||\hat{e}(\mu)||_X}{lpha_{LB}(\mu)}.$$

Problem Generalization: Output Error Bounds

Proof: First

$$a(e(\mu),v;\mu)=r(v;\mu)=f(v)-a(u_N,v,\mu)$$

$$=a(u,v,\mu)-a(u_N,v,\mu)=(\hat{e}(\mu),v)_X$$
 hence for $v=e$
$$\alpha_{LB}(\mu)||e(\mu)||_X^2\leq ||\hat{e}(\mu)||_X||e||_X, \text{ or }$$

$$||e(\mu)||_X\leq \frac{||\hat{e}(\mu)||}{\alpha_{LB}(\mu)}.$$

But then

$$\begin{split} |s(\mu) - s_N(\mu)| = & |\ell(u(\mu)) - \ell(u_N(\mu))| = |\ell(e(\mu))| \\ = & \frac{|\ell(e(\mu))|}{||e(\mu)||_X} ||e(\mu)||_X \le \underbrace{\left(\sup_{v \in X^{\mathcal{N}}} \frac{\ell(v)}{||v||_X}\right)}_{||\ell||_{(X^{\mathcal{N}})'}} ||e(\mu)||_X \end{split}$$

Dual Problem

Find $\Psi \in X$ such that

$$a(v, \Psi; \mu) = -\ell(v), \quad \forall v \in X.$$

Note we no longer assume that a is symmetric, and hence $\Psi \neq -u$ necessarily even if $\ell = f$.

(We still assume that a is coercive and affine, but this case considers transport-advection-convection terms.)

RB Approach Galerkin

Introduce

$$egin{aligned} W^{pr}_{N_{pr}} &= span\left\{u(\mu^k_{pr}) \equiv \zeta^k, 1 \leq k \leq N_{pr}
ight\}, \ W^{du}_{N_{du}} &= span\left\{\Psi(\mu^k_{du}), 1 \leq k \leq N_{du}
ight\}, \ 1 \leq N_{pr} \leq N_{pr,max}, \qquad 1 \leq N_{du} \leq N_{du,max} \end{aligned}$$

Then
$$u_{N_{pr}}\in W^{pr}_{N_{pr}}, \Psi_{N_{du}}\in W^{du}_{N_{du}}$$
 satisfy
$$a(u_{N_{pr}}(\mu),v;\mu)=f(v),\quad \forall v\in W^{pr}_{N_{pr}},$$

$$a(v,\Psi_{N_{du}}(\mu);\mu)=-\ell(v),\quad \forall v\in W^{du}_{N_{du}},$$

And [Patera & Ronquist, Giles & Pierce]

$$s_{N_{pr},N_{du}}(\mu) = \ell(u_{N_{pr}}) - r^{pr}(\Psi_{N_{du}};\mu)$$

where

$$r^{pr}(v; \mu) = f(v) - a(u_{N_{pr}}, v; \mu)$$

 $r^{du}(v; \mu) = -\ell(v) - a(v, \Psi_{N_{du}}; \mu)$

Offline-Online is similar to Primal-only, but now we need to do everything both for Primal and Dual (see following Sampling).

A Priori Theory

It is standard that

$$|s-s_{N_{pr},N_{du}}| \leq C \left(\inf_{w^{pr}\in W^{pr}_{N_{pr}}}||u-w^{pr}||_X
ight) \left(\inf_{w^{du}\in W^{du}_{N_{du}}}||\Psi-w^{du}||_X
ight)$$

Proof:
$$\begin{split} |s-s_{N_{pr},N_{du}}| &= \underbrace{\ell(u-u_{N_{pr}})}_{e^{pr}} + r^{pr}(\Psi_{N_{du}};\mu) \\ &= -a(e^{pr},\Psi;\mu) + a(e^{pr},\Psi_{N_{du}};\mu) \\ &= -a(e^{pr},e^{du};\mu). \end{split}$$

Then apply continuity and Galerkin optimality to Primal and Dual.

Problem Generalization: A Posteriori Output Bounds

We can readily derive that

$$|s^{\mathcal{N}} - s^{\mathcal{N}}_{N_{pr},N_{du}}| \leq \Delta_N^{s(,nc)}$$
 " $N \equiv N_{pr},N_{du}$ "

where

$$\Delta_N^s(\mu) = ||r_N^{du}(\cdot;\mu)||_{(X^{\mathcal{N}})'}\Delta_N(\mu).$$

Proof: we know that

$$\begin{split} s - s_{N_{pr},N_{du}} &= \ell(u - u_{N_{pr}}) + r^{pr}(\Psi_{N_{du}};\mu) \\ &= \ell(e^{pr}) + a(e^{pr},\Psi_{N_{du}};\mu) = -r^{du}(e^{pr};\mu) \end{split}$$

So

$$|s - s_{N_{pr},N_{du}}| \le ||r^{du}(\cdot;\mu)||_{(X^{\mathcal{N}})'}||e^{pr}||_{X}$$

 $\le ||r^{du}(\cdot;\mu)||_{(X^{\mathcal{N}})'}\Delta_{N}(\mu)$

where recall that $||e^{pr}||_X \leq \Delta_N(\mu)$.

Problem Generalization: A Posteriori Output Bounds

We can readily derive that

$$|s^{\mathcal{N}} - s^{\mathcal{N}}_{N_{pr},N_{du}}| \leq \Delta_N^{s(,nc)}$$
 " $N \equiv N_{pr},N_{du}$ "

where

$$\Delta_N^s(\mu) = ||r_N^{du}(\cdot;\mu)||_{(X^{\mathcal{N}})'}\Delta_N(\mu).$$

Proof: we know that

$$\begin{split} s - s_{N_{pr},N_{du}} &= \ell(u - u_{N_{pr}}) + r^{pr}(\Psi_{N_{du}};\mu) \\ &= \ell(e^{pr}) + a(e^{pr},\Psi_{N_{du}};\mu) = -r^{du}(e^{pr};\mu) \end{split}$$

So

$$|s - s_{N_{pr}, N_{du}}| \le ||r^{du}(\cdot; \mu)||_{(X^{\mathcal{N}})'}||e^{pr}||_{X}$$

 $\le ||r^{du}(\cdot; \mu)||_{(X^{\mathcal{N}})'}\Delta_{N}(\mu)$

where recall that $||e^{pr}||_X \leq \Delta_N(\mu)$.

Problem Generalization: Sampling

The Offline-Online procedure is very similar to before, but now we evaluate both a Primal and a Dual residual dual norm. We have

$$|s - s_{N_{pr},N_{du}}| \leq \left(\frac{||r^{du}(\cdot;\mu)||_{(X^{\mathcal{N}})'}}{\alpha_{LB}^{1/2}(\mu)}\right) \left(\frac{||r^{pr}(\cdot;\mu)||_{(X^{\mathcal{N}})'}}{\alpha_{LB}^{1/2}(\mu)}\right)$$

Hence if ϵ_{max}^s is the smallest output error desired, we perform a Primal greedy until $(\Rightarrow N_{pr,max})$

$$\frac{||r^{pr}(\cdot;\mu)||_{(X^{\mathcal{N}})'}}{\alpha_{LB}^{1/2}(\mu)} \leq \sqrt{\epsilon_{max}^s}, \quad \text{over } \Xi_{train}^{pr}.$$

and a Dual greedy until $(\Rightarrow N_{du,max})$

$$\frac{||r^{du}(\cdot;\mu)||_{(X^{\mathcal{N}})'}}{\alpha_{LB}^{1/2}(\mu)} \leq \sqrt{\epsilon_{max}^s}, \quad \text{over } \Xi_{train}^{du}.$$

If (say) the Dual converges much more quickly than the Primal, it would be more efficient to choose

Problem Generalization: Sampling

The Offline-Online procedure is very similar to before, but now we evaluate both a Primal and a Dual residual dual norm. We have

$$|s - s_{N_{pr},N_{du}}| \leq \left(\frac{||r^{du}(\cdot;\mu)||_{(X^{\mathcal{N}})'}}{\alpha_{LB}^{1/2}(\mu)}\right) \left(\frac{||r^{pr}(\cdot;\mu)||_{(X^{\mathcal{N}})'}}{\alpha_{LB}^{1/2}(\mu)}\right)$$

Hence if ϵ_{max}^s is the smallest output error desired, we perform a Primal greedy until $(\Rightarrow N_{pr,max})$

$$\frac{||r^{pr}(\cdot;\mu)||_{(X^{\mathcal{N}})'}}{\alpha_{LB}^{1/2}(\mu)} \leq \sqrt{\epsilon_{max}^s}, \quad \text{over } \Xi_{train}^{pr}.$$

and a Dual greedy until $(\Rightarrow N_{du,max})$

$$rac{||r^{du}(\cdot;\mu)||_{(X^{\mathcal{N}})'}}{lpha_{LB}^{1/2}(\mu)} \leq \sqrt{\epsilon_{max}^s}, \quad ext{over } \Xi_{train}^{du}.$$

If (say) the Dual converges much more quickly than the Primal, it would be more efficient to choose " $N_{pr,max}=0$ " and let the Dual do all the work.

Reduced basis methods and a posteriori error estimation for parametrized PDEs: Advances

TIME DEPENDENT PROBLEMS

Gianluigi Rozza

Course on Advanced Topics in Numerical Solution of PDEs: Reduced Basis Methods for Computational Mechanics

Parabolic Problems

Given
$$\mu \in \mathcal{D} \subset {\rm I\!R}^P, \qquad \qquad t \in (0,t_f]$$
 evaluate $s^{\rm e}(t;\mu) = \ell(u^{\rm e}(t;\mu);\mu)$ where $u^{\rm e}(t;\mu) \in X^{\rm e}(\Omega)$ satisfies $m\left(\frac{\partial u^{\rm e}}{\partial t}(t;\mu),v;\mu\right) + a(u^{\rm e}(t;\mu),v;\mu)$ $= q(t) \; f(v;\mu), \quad \forall \; v \in X^{\rm e} \; .$

 $^{^1}$ We assume for simplicity that $u^{
m e}(0;\mu)=u^{
m e}_0=0$. For $t \equiv 0$

Parabolic Problems: Hypotheses

$$a(\,\cdot\,,\cdot\,;\mu)\colon$$
 bilinear, affine in μ , X^{e} -continuous, X^{e} -coercive, † $\forall\,\mu\in\mathcal{D}$ $m(\,\cdot\,,\cdot\,;\mu)\colon$ bilinear, affine in μ , $L^2(\Omega)$ -continuous, $L^2(\Omega)$ -coercive, $\forall\,\mu\in\mathcal{D}$ $f(\,\cdot\,;\mu)\colon$ linear, affine in μ , $L^2(\Omega)$ -bounded, $\forall\,\mu\in\mathcal{D}$ $g(\,\cdot\,)\colon$ $L^2(0,t_f)$ "control" $\ell(\,\cdot\,;\mu)\colon$ linear, affine in μ , $L^2(\Omega)$ -bounded, ℓ

 $^{^{\}dagger}$ In fact, a may satisfy a weak coercivity condition.

Parabolic Problems: FD-FE Approximation - Discretization

FD in time: EB (Euler Backward) or CN (Crank-Nicholson)

$$egin{aligned} \Delta t &= t_f/K \; \Rightarrow \ &t^k &=\; k \Delta t, \; 0 \leq k \; \leq K \; , \; ext{or} \ &\mathbb{\Gamma} &=\; \{t^0, t^1, \ldots, t^K\} \; ; \ &\mathbb{K} &=\; \{1, 2, \ldots, K\} \; . \end{aligned}$$

FE in space: $X^{\mathcal{N}} \in X^{\mathrm{e}}$.

Parabolic Problems: FD-FE Approximation - EB-Galerkin

Given $\mu \in \mathcal{D}$,

$$\forall \, k \in {
m I\!K}$$

evaluate
$$s^{\mathcal{N}\,k}(\mu) = \ell(u^{\mathcal{N}\,k}(\mu);\mu)$$

where $u^{\mathcal{N}\,k}(\mu)\in X^{\mathcal{N}}$ satisfies

$$m\left(\frac{u^{\mathcal{N}k}(\mu) - u^{\mathcal{N}k-1}(\mu)}{\Delta t}, v\right) + a(u^{\mathcal{N}k}(\mu), v; \mu)$$
$$= g(t^k) f(v; \mu), \quad \forall v \in X^{\mathcal{N}}.$$

TRUTH: $s^{\mathcal{N}\,k}(\mu) pprox s^{\mathrm{e}}(t^k;\mu), \ u^{\mathcal{N}\,k}(\mu) pprox u^{\mathrm{e}}(t^k;\mu)$.

Parabolic RB: Rapid Convergence

A reduced basis approximation

$$\forall \, k \in {
m I\!K}$$

$$s_N^{\mathcal{N}\,k}\in {
m I\!R}$$
 and $u_N^{\mathcal{N}\,k}(\mu)\in X_N^{\mathcal{N}}\subset X^{\mathcal{N}}$:

for all $\mu \in \mathcal{D}$,

$$s_N^{\mathcal{N}\,k}(\mu) o s^{\mathcal{N}\,k}(\mu)$$
 and $u_N^{\mathcal{N}\,k}(\mu) o u^{\mathcal{N}\,k}(\mu)$

rapidly as
$$N = \dim(X_N^{\mathcal{N}}) o \infty (= 10 \text{--} 200)$$
. 2

²The reduced basis inherits the *fixed* truth temporal discretization.

Parabolic RB: Rigor & Certainty

A posteriori error bounds $\Delta_N^k(\mu)$ and $\Delta_N^{s\,k}(\mu)$:

$$1 ext{ (rigor)} \leq \ rac{\Delta_N^k(\mu)}{\|u^{\mathcal{N}\,k}(\mu) - u_N^{\mathcal{N}\,k}(\mu)\|} \ \leq C ext{ (sharpness)}$$

and

$$\|\cdot\| \equiv \|\cdot\|_{L^2(\Omega)}$$

$$1 ext{ (rigor)} \leq \frac{\Delta_N^{s\,k}(\mu)}{|s^{\mathcal{N}\,k}(\mu)-s_N^{\mathcal{N}\,k}(\mu)|} \leq C ext{ (sharpness)}$$

for all $N \in {\rm I\! N}$ and all $k \in {\rm I\! K}$, $\mu \in {\cal D}$.

Parabolic RB: Computational Efficiency

Offline-Online computational strategies:

$$\forall\, k\in {
m I\!K}$$

$$t_{
m comp}^{
m Offline} \gg {
m cost} \left\{ \mu
ightarrow s^{{\cal N}\,k}(\mu)
ight\} \, ;$$

BUT

$$\partial t_{
m comp} \equiv ext{marginal cost} \left\{ \mu \stackrel{
m Online}{
ightarrow} s_N^{\mathcal{N}\,k}(\mu), \Delta_N^{s\,k}(\mu)
ight\}$$

depends only on Q and N and K — but not on \mathcal{N} .

³We may choose our truth FE discretization very conservatively. ▶ ← ≧ ▶ → ② ○

Parabolic RB: Relevance

Real-Time Context:

$$\forall \, k \in {
m I\!K}$$

$$\mu \longrightarrow s_N^{\mathcal{N} k}(\mu), \Delta_N^{s k}(\mu)$$
 $t_0 \longrightarrow t_0 + \partial t_{\text{comp}}$

Many-Query Context:

$$\forall k \in \mathbf{I\!K}$$

$$\{\mu_j \longrightarrow s_N^{\mathcal{N}\,k}(\mu_j), \Delta_N^{s\,k}(\mu_j)\}_{j=1,...,J^{\mathrm{ev}}\ (o\infty)}$$
 $t_0 \mapsto t_0 + \partial t_{\mathrm{comp}} J^{\mathrm{ev}}$

Parabolic RB: Crucial Ingredients

Affine Parameter Dependence

Smooth (P+1)-Dimensional Manifold $\mathcal{M}^{\mathcal{N}\,K}$

Galerkin Projection

 $\mathsf{POD}(t) ext{-}\mathsf{Greedy}(\mu)$ Sampling Procedures

[Haasdonk, Ohlberger, M2AN, 2008 and NRP, Calcolo, 2009]

Stability Factor Estimates, and A Posteriori Error Bounds

Offline-Online Computational Procedures

Parabolic RB: Affine Parameter Dependence

Definition:

$$f(v;\mu),\;\ell(v;\mu)$$

$$z(w,v;\mu) = \sum\limits_{q=1}^{Q_z} \; \Theta_z^q(\mu) \; z^q(w,v)$$

where for $q=1,\ldots,Q_z$

$$m$$
 or a

$$egin{array}{ll} \Theta^q_z\colon & \mathcal{D} o \mathrm{I\!R}, & \mu ext{-dependent functions} \ z^q\colon & X^\mathrm{e} imes X^\mathrm{e} o \mathrm{I\!R}, & \mu ext{-independent forms} \ . \end{array}$$

³In fact, *broadly applicable* to many instances of property *and* geometry parametric variation.

Parabolic RB: ${ m I}{ m \Gamma}{ m -}{\cal D}$ Manifold ${\cal M}^{{\cal N}{\cal K}}$

We assume

the form a is stable; and

the
$$\Theta^q_{m,a}(\mu)$$
, $1 \leq q \leq Q_{m,a}$, are smooth;

then

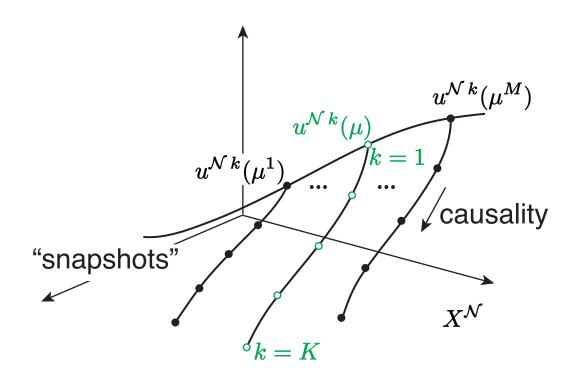
$$\mathcal{M}^{\mathcal{N}K} \equiv \{ u^{\mathcal{N}k}(\mu) \mid \forall k \in \mathbf{I\!K}, \ \forall \ \mu \in \mathcal{D} \}$$

lies on a smooth (P+1)-dimensional manifold in $X^{\mathcal{N}}$.

${\mathbb T}$ - ${\mathcal D}$ Manifold ${\mathcal M}^{{\mathcal N}\,K}$

Parabolic RB

Reduced Basis Space



$$X_N^{\mathcal{N}} \subset \operatorname{span}\left\{u^{\mathcal{N}\,k}(\mu^m), \ 1 \le k \le K, \ 1 \le m \le M\right\}$$

Parabolic RB: Galerkin Projection

Given $\mu \in \mathcal{D}$,

 $\forall k \in \mathbf{I\!K}$

evaluate
$$s_N^{\mathcal{N}\,k}(\mu) = \ell(u_N^{\mathcal{N}\,k}(\mu);\mu)$$

where $u_N^{\mathcal{N}\,k}(\mu)\in X_N^{\mathcal{N}}$ satisfies

$$egin{aligned} m\left(rac{u_N^{\mathcal{N}\,k}(\mu)-u_N^{\mathcal{N}\,k-1}(\mu)}{\Delta t},v
ight) + a(u_N^{\mathcal{N}\,k}(\mu),v;\mu) \ &= g(t^k)\,f(v;\mu), \qquad orall\,v \in X_N^{\mathcal{N}}\,. \end{aligned}$$

³The reduced basis inherits the *fixed* truth temporal discretization. → → → → → →

Parabolic RB: POD-Greedy Sampling

Set
$$\mathcal{Z} = \emptyset, S_* = \{\mu_*\};$$
 [HO]
While $N \leq N_{\max,0}$
 $\{\chi_m, \ 1 \leq m \leq M_1\} = \mathsf{POD}(\{u^{\mathcal{N}}(t^k, \mu_*), \ \forall \ k \in \mathbb{K}\}, M_1);$
 $\mathcal{Z} \leftarrow \{\mathcal{Z}, \{\chi_m, \ 1 \leq m \leq M_1\}\};$
 $N \leftarrow N + M_2;$
 $\{\zeta_n, \ 1 \leq n \leq N\} = \mathsf{POD}(\mathcal{Z}, \mathcal{N});$
 $X_N = \mathrm{span}\{\zeta_n, \ 1 \leq n \leq N\};$
 $\mu_* = \mathrm{arg}\max_{\mu \in \Xi_{\mathrm{train}}} \Delta_N^K(\mu)$ t^f
 $S_* \leftarrow \{S_*, \mu_*\};$

end.

Set $X_N = \operatorname{span}\{\zeta_n, \ 1 \le n \le N\}, \ 1 \le N \le N_{\max}$.

Parabolic RB: Greedy Sampling - Advantage

Combines optimality/causality features of

(small) POD in time, \mathbb{T}

with optimality/high-dimensionality features of

(exhaustive) Greedy in parameter, \mathcal{D} ;

complexity remains $O(\mathcal{N}) + O(n_{ ext{train}})$

— not $O(\mathcal{N}n_{\mathrm{train}})$.

CRB: Crucial Ingredients - Stability Factor Estimates

Calculation of $\alpha^{\mathrm{LB}}(\mu) \colon \mathcal{D} \to \mathrm{I\!R}_+$. We introduce

$$\sigma^{\mathcal{N}}(\mu) = \inf_{v \in X^{\mathcal{N}}} \frac{m(v, v; \mu)}{||v||^2}, orall \mu \in \mathcal{D}$$

$$0 < \alpha^{\mathrm{LB}}(\mu) \le \alpha^{\mathcal{N}}(\mu),$$

(coercivity constant)

$$0 < \sigma^{\mathrm{LB}}(\mu) \le \sigma^{\mathcal{N}}(\mu),$$

(stability factor)

by

Successive Constraint Method (SCM)

Huynh, Rozza, Sen, Patera, *A successive constraint linear optimization method for lower bounds of parametric coercivity and inf-sup stability constants.* Comptes Rendus Mathematique. 2007, Vol 345, Pages 473-478.

exactly as in elliptic case.

CRB: Crucial Ingredients - A Posteriori Error Bounds Formulation

Introduce residual

$$egin{aligned} r^k(v;\mu) &= g(t^k) \ f(v) - m\left(rac{u_N^{\mathcal{N}\,k}(\mu) - u_N^{\mathcal{N}\,k-1}(\mu)}{\Delta t}, v; \mu
ight) \ &- a(u_N^{\mathcal{N}\,k}(\mu), v; \mu), \quad orall \ v \in X^{\mathcal{N}}, \ orall \ k \in \mathrm{I\!K} \ ; \end{aligned}$$

and recall $lpha^{\mathrm{LB}}(\mu) \colon \mathcal{D} o \mathrm{I\!R}_+$ such that $\forall \ \mu \in \mathcal{D}$,

$$0 < \alpha^{\mathrm{LB}}(\mu) \leq \alpha^{\mathcal{N}}(\mu)$$
 (coercivity constant).

CRB: Crucial Ingredients - A Posteriori Error Bounds Formulation

Define

$$egin{array}{lll} \Delta_N^k(\mu) &\equiv & \sqrt{rac{\Delta t}{lpha^{\mathrm{LB}}(\mu)\sigma^{\mathrm{LB}}(\mu)}} \sum\limits_{k'=1}^k \left(arepsilon_N^2(t^{k'};\mu)
ight)\,, \ \Delta_N^{s\,k}(\mu) &\equiv & \left(\sup_{v\in X^{\mathcal{N}}}rac{\ell(v)}{\|v\|}
ight)\Delta_N^k(\mu)\;, \ && ext{where } arepsilon_N(t^k;\mu) \equiv \|r^k(\,\cdot\,;\mu)\|_{(X^{\mathcal{N}})'}\;. \end{array}$$

Then

$$\begin{split} \|u^{\mathcal{N}\,k}(\mu) - u_N^{\mathcal{N}\,k}(\mu)\|_{L^2(\Omega)} & \leq & \Delta_N^k(\mu)^\dagger \;, \\ |s^{\mathcal{N}\,k}(\mu) - s_N^{\mathcal{N}\,k}(\mu)| & \leq & \Delta_N^{s\,k}(\mu)^\ddagger \;, \\ & \text{for all } N \in {\rm I\! N} \text{ and all } k \in {\rm I\! K}, \; \mu \in \mathcal{D}. \end{split}$$

In practice we may also consider ${}^{\dagger}L^2(0,t_f;X)$ norms, and ‡ primal-dual techniques.

CRB: Crucial Ingredients - Offline-Online Procedures

Evaluation $\mu \to \qquad \forall \, k \in {\rm I\!K}$ $(\ u_N^{\mathcal N k}(\mu)\), \ s_N^{\mathcal N k}(\mu)\ ,$ and $\Delta_N^k(\mu)$ $(\ \|r^k(\,\cdot\,;\mu)\|_{(X^{\mathcal N})'}, \ \alpha^{\rm LB}(\mu) - {\rm SCM}\), \ \Delta_N^{sk}(\mu)\ ,$

very similar to $(\approx K \times)$ elliptic case.

Adavances

► Advances: Elliptic Problems II, Parabolic Problems

- Elliptic Problems II
 - (e) A Posteriori Error Estimation (elements)
 - (f) General Outputs (non-compliant), Non-symmetric Forms (Dual Problem, A Posteriori Error Estimation)
- 2. Parabolic Problems
 - (a) Problem Statement, Truth Approximation
 - (b) Reduced Basis Approximation
 - (c) Offline-Online Computational Procedures
 - (d) A Posteriori Error Estimation
 - (e) POD greedy sampling
- 3. Possible Extensions
 - (a) SCM-Successive Constraint Method
 Review paper: RHP[Sec. 10] Ar.Comp.Meth.Eng. Vol. 15, 229–275, 2008
 Paper HRSP C.R. Acad.Sci.Paris Vol. 345, 473–478, 2007

Reduced basis methods and a posteriori error estimation for parametrized PDEs

STABILITY FACTORS: SCM

Gianluigi Rozza

Course on Advanced Topics in Numerical Solution of PDEs: Reduced Basis Methods for Computational Mechanics

Coercivity Lower Bound†: Objective

Require $lpha_{\mathrm{LB}}^{\mathcal{N}} \colon \mathcal{D} o \mathbf{I\!R}$ such that

$$\begin{split} 0 < \alpha_{\mathrm{LB}}^{\mathcal{N}}(\mu) & \leq \alpha^{\mathcal{N}}(\mu), \quad \forall \ \mu \in \mathcal{D} \ , \\ \partial t_{\mathrm{comp}}(\mu \to \alpha_{\mathrm{LB}}^{\mathcal{N}}(\mu)) \ \text{is} \ O(1) \ , \end{split}$$

where

$$lpha^{\mathcal{N}}(\mu) = \inf_{w \in X^{\mathcal{N}}} \; rac{a(w,w;\mu)}{\|w\|_X^2} \;\;\; (\geq lpha_0^{
m e}, \; orall \; \mu \in \mathcal{D}) \; .^\dagger$$

 $^{^{\}dagger}$ We consider symmetric a; extension to non-symmetric a is simple.

Coercivity Lower Bound: Reformulation - Affine Parameter Dependence

Recall

$$a(w,w;\mu) = \sum\limits_{q=1}^Q \Theta^q(\mu) \ a^q(w,w) \ ;$$

hence

$$\alpha^{\mathcal{N}}(\mu) = \inf_{w \in X^{\mathcal{N}}} \mathcal{J}^{\text{obj}}(\mu; w)$$

where

$$\mathcal{J}^{ ext{obj}}(\mu;w) \equiv \sum\limits_{q=1}^Q \; \Theta^q(\mu) \; rac{a^q(w,w)}{\|w\|_X^2} \; .$$

Coercivity Lower Bound: Reformulation - "Pseudo" - Linear Form

Express

$$lpha^{\mathcal{N}}(\mu) = \inf_{y \in \mathcal{Y}} \, \mathcal{J}^{ ext{obj}}(\mu; y)$$

where

$$\mathcal{J}^{ ext{obj}}(\mu;y) \equiv \sum\limits_{q=1}^Q \, \Theta^q(\mu) \, y_q$$
 $\mathcal{Y} = \left\{ y \in \mathrm{I\!R}^Q \, ig| \, \exists \, w_y \in X^\mathcal{N} \, ext{s.t.}
ight.$ $y_q = rac{a^q(w_y,w_y)}{\|w_y\|_Y^2}, \, 1 \leq q \leq Q
ight\}.$

Coercivity Lower Bound: Bounds - Set $\mathcal{Y}_{\mathrm{LB}}$. . .

Introduce

$$egin{array}{lcl} \mathcal{B} &=& \Pi_{q=1}^Q \left[\inf_{w \in X^{\mathcal{N}}} rac{a^q(w,w)}{\|w\|_X^2}, \sup_{w \in X^{\mathcal{N}}} rac{a^q(w,w)}{\|w\|_X^2}
ight] \ \mathcal{C}_J &=& \left\{ \mu_{ ext{SCM}}^1 \in \mathcal{D}, \ldots, \mu_{ ext{SCM}}^J \in \mathcal{D}
ight\} \ \end{array}$$
 and, given $\mu \in \mathcal{D}$,

 $\mathcal{C}_I^{M,\mu} = \{M \text{ points in } \mathcal{C}_I \text{ closest to } \mu\}$.

[†]We consider the Successive Constraint Method (SCM). [HRSP]

Coercivity Lower Bound: Bounds - . . . Set $\mathcal{Y}_{\mathrm{LB}}$. . .

Define $\mathcal{Y}_{\mathrm{LB}}(\mu; \mathcal{C}_J, M)$:

$$\mathcal{Y}_{\mathrm{LB}}(\mu) \equiv \Big\{ y \in \mathrm{I\!R}^Q \ \big| \ (\mathrm{I}) \ \ y \in \mathcal{B} \ , ext{and}$$
 $(\mathrm{II}) \ \sum\limits_{q=1}^Q \ \Theta^q(\mu') \ y_q > lpha^{\mathcal{N}}(\mu'), \ orall \ \mu' \in \mathcal{C}_J^{M,\mu} \Big\}.$

Lemma 3.1. Given $C_J \subset \mathcal{D}, M \in \mathbb{N}$,

$$\mathcal{Y} \subset \mathcal{Y}_{\mathrm{LB}}(\mu; \mathcal{C}_J, M), \ \forall \ \mu \in \mathcal{D}$$
.

Coercivity Lower Bound: Bounds † - . . . Set $\mathcal{Y}_{\mathrm{LB}}$

Proof: For any $y \in \mathcal{Y}, \; \exists \; w_y \in X^\mathcal{N}$ such that

$$y_{q} = \frac{a^{q}(w_{y}, w_{y})}{\|w_{y}\|_{X}^{2}}, \quad 1 \leq q \leq Q:$$

$$\inf_{w \in X^{\mathcal{N}}} \frac{a^{q}(w, w)}{\|w\|_{X}^{2}} \leq \underbrace{\frac{a^{q}(w_{y}, w_{y})}{\|w_{y}\|_{X}^{2}}}_{y_{q}} \leq \sup_{w \in X^{\mathcal{N}}} \frac{a^{q}(w, w)}{\|w\|_{X}^{2}}; \quad \text{(I)}$$

$$\sum_{q=1}^{Q} \Theta^{q}(\mu) \underbrace{\underbrace{\frac{a^{q}(w_{y}, w_{y})}{\|w_{y}\|_{X}^{2}}}_{y_{q}} = \frac{a(w_{y}, w_{y}; \mu)}{\|w_{y}\|_{X}^{2}}$$

$$\geq \alpha^{\mathcal{N}}(\mu), \quad \forall \ \mu \in \mathcal{D}. \quad \text{(II)}$$

Coercivity Lower Bound: Bounds - Lower Bound

Let

$$\alpha_{\mathrm{LB}}^{\mathcal{N}}(\mu; \mathcal{C}_J, M) = \min_{y \in \mathcal{Y}_{\mathrm{LB}}(\mu; \mathcal{C}_J, M)} \, \mathcal{J}^{\mathrm{obj}}(\mu; y) \; ;$$

a linear optimization problem (LP).

Proposition 3.2. Given
$$C_J \subset \mathcal{D}, M \in \mathbb{I}\mathbb{N}$$
,

$$\alpha_{LB}^{\mathcal{N}}(\mu) \leq \alpha^{\mathcal{N}}(\mu), \ \forall \ \mu \in \mathcal{D} \ .$$

Proof:

$$egin{array}{lll} lpha_{\mathrm{LB}}^{\mathcal{N}}(\mu) &=& \min_{y \in \mathcal{Y}_{\mathrm{LB}}(\mu)} \,\, \mathcal{J}^{\mathrm{obj}}(\mu;y) \ &\leq & \min_{y \in \mathcal{Y}} \,\, \mathcal{J}^{\mathrm{obj}}(\mu;y) & \quad \text{Lemma 3.1: } \mathcal{Y} \subset \mathcal{Y}_{\mathrm{LB}} \ &=& \,\, lpha^{\mathcal{N}}(\mu) \,\,. \end{array}$$

Coercivity Lower Bound: Bounds - Set $\mathcal{Y}_{\mathrm{UB}}$

Define

$$\mathcal{Y}_{\mathrm{UB}}(\mu; \mathcal{C}_J, M) = \{ y^\star(\mu') \mid \mu' \in \mathcal{C}_J^{M,\mu} \}$$

where

$$y^{\star}(\mu) = \arg \inf_{y \in \mathcal{Y}} \mathcal{J}^{\text{obj}}(\mu; y) ;$$

clearly $\mathcal{Y}_{\mathrm{UB}} \subset \mathcal{Y}$.

Coercivity Lower Bound: Bounds - Upper Bound

Let

$$lpha_{\mathrm{UB}}^{\mathcal{N}}(\mu; \mathcal{C}_J, M) = \min_{y \in \mathcal{Y}_{\mathrm{UB}}(\mu; \mathcal{C}_J, M)} \ \mathcal{J}^{\mathrm{obj}}(\mu; y) \ ;$$

a simple enumeration exercise.

Proposition 3.3. Given
$$\mathcal{C}_J \subset \mathcal{D}, \ M \in \mathbb{I}\mathbb{N},$$

$$\alpha_{\mathrm{UB}}^{\mathcal{N}}(\mu) \geq \alpha^{\mathcal{N}}(\mu), \ \forall \ \mu \in \mathcal{D} \ .$$

Coercivity Lower Bound: Greedy Selection: \mathcal{C}_J Procedure

Coercivity Lower Bound: Greedy Selection: C_J Convergence

If a is parametrically coercive,

$$J=1$$
 suffices to ensure $lpha_{\mathrm{LB}}^{\mathcal{N}}(\mu)>0, \; orall \; \mu\in\mathcal{D}$.

Generally, continuity of Θ [•] ensures finite J_{\max} such that tolerance is satisfied: but $J_{\max}(P)$?

Coercivity Lower Bound: Offline-Online Procedure - Offline

In Greedy, perform

$$J_{\max} \operatorname{LP}(Q,M) \Rightarrow \mathcal{C}_{J_{\max}}$$
; $2Q + J_{\max}$ eigenproblems † over $X^{\mathcal{N}}$ \Rightarrow (I) \mathcal{B} and (II) $\{\alpha^{\mathcal{N}}(\mu') \mid \mu' \subset \mathcal{C}_{J_{\max}}\} \Rightarrow \mathcal{Y}_{\operatorname{LB}}$; $J_{\max} Q$ inner products over $X^{\mathcal{N}} \Rightarrow \mathcal{Y}_{\operatorname{UB}}$.

[†]Eigenproblems efficiently treated by Lanczos method.

Coercivity Lower Bound: Offline-Online Procedure - Online

Advances

► Advances: Elliptic Problems II, Parabolic Problems

- Elliptic Problems II
 - (e) A Posteriori Error Estimation (elements)
 - (f) General Outputs (non-compliant), Non-symmetric Forms (Dual Problem, A Posteriori Error Estimation)
- 2. Parabolic Problems
 - (a) Problem Statement, Truth Approximation
 - (b) Reduced Basis Approximation
 - (c) Offline-Online Computational Procedures
 - (d) A Posteriori Error Estimation
 - (e) POD greedy sampling
- 3. Possible extensions
 - (a) Stability Factors
 - (b) Non-Coercive Problems

Reduced basis methods and a posteriori error estimation for parametrized PDEs: Advances

NON-COERCIVE PROBLEMS

Gianluigi Rozza

Course on Advanced Topics in Numerical Solution of PDEs: Reduced Basis Methods for Computational Mechanics

We are given a bilinear form $a:X^1 imes X^2 o \mathbb{R}$. Then

$$eta_{ ext{ inf-sup}} = \inf_{w \in X^1} \sup_{v \in X^2} rac{a(w,v)}{||w||_{X^1}||v||_{X^2}};$$

we can also say that for any $w \in X^1$ there exists a v^* in X^2 (the inner supremizer) such that

$$a(w, v^*(w)) \ge \beta ||w||_{X^1} ||v^*||_{X^2}.$$

Note that $\beta \geq 0$ (if β is negative, just switch sign of v), however it is not necessarily true that $\beta > 0$.

We introduce the inner supremizing operator $T:X^1 \to X^2$ as the following linear operator:

$$(Tw, v)_{X^2} = a(w, v), \qquad \forall v \in X^2;$$

why is v=Tw the supremizer of $a(w,v)/||v||_{X^2}$? Note

$$a(w,Tw)=(Tw,Tw)_{X^2}, \qquad \qquad w ext{ given},$$

so for v=Tw

$$\frac{a(w,v)}{||v||_{X^2}} = \frac{||Tw||_{X^2}^2}{||Tw||_{X^2}} = ||Tw||_{X^2}.$$

But by Cauchy-Schwarz inequality, for any $v \in X^2$

$$\frac{a(w,v)}{||v||_{X^2}} = \frac{(Tw,v)_{X^2}}{||v||_{X^2}} \leq \frac{||Tw||_{X^2}||v||_{X^2}}{||v||_{X^2}} \leq ||Tw||_{X^2},$$

which proves the result.

Note Tw is simply our $v^*(w)$ of earlier. Hence, for any $w \in X^1$,

$$a(w,Tw) \ge \beta ||w||_{X^1} ||Tw||_{X^2}.$$

We can also develop an alternative expansion for β :

$$\beta = \inf_{w \in X^1} \frac{\left(\sup_{v \in X^2} \frac{a(w,v)}{||v||_{X^2}}\right)}{||w||_{X^1}} \stackrel{(v = Tw)}{=} \inf_{w \in X^1} \frac{||Tw||_{X^2}}{||w||_{X^1}},$$

or

$$\beta^2 = \inf_{w \in X^1} \frac{(Tw, Tw)_{X^2}}{||w||_{X^1}^2}$$

which is in fact a Rayleigh quotient.

Noncoercive Problems: Abstract Problem - Approximation

Find $u(\mu) \in X$ such that

$$a(u(\mu),v;\mu)=f(v) \qquad orall \ v\in X$$

and

$$s(\mu) = \ell(u(\mu)),$$

where $\beta(\mu) > 0$, $\forall \mu \in \mathcal{D}$, with

$$\beta(\mu) = \inf_{w \in X} \sup_{v \in X} \frac{a(w, v; \mu)}{||w||_X ||v||_X}.$$

Noncoercive Problems: Abstract Problem - Approximation

We further assume that $a(\cdot,\cdot;\mu)$ is affine,

$$a(w,v;\mu) = \sum_{q=1}^Q \Theta^q(\mu) a^q(w,v).$$

We now denote our supremizer as $T^{\mu}: X \to X$, where

$$(T^{\mu}w, v)_X = a(w, v; \mu), \quad \forall v \in X$$

Note from our affine assumption it follows that

$$T^{\mu}w=\sum_{q=1}^{Q}\Theta^{q}(\mu)T^{q}w,$$

where
$$(T^q w, v)_X = a^q(w, v), \quad \forall \ v \in X.$$

We assume we are given two subspaces $ilde X^1\subset X$, $ilde X^2\subset X$. Then $ilde u(\mu)\in ilde X^1$ satisfies

$$a(\tilde{u}(\mu),v,\mu)=f(v),\quad\forall v\in \tilde{X}^2,$$

and

$$\tilde{s}(\mu) = \ell(\tilde{u}(\mu)).$$

We define

$$ilde{eta}(\mu) = \inf_{w \in ilde{X}^1} \sup_{v \in ilde{X}^2} rac{a(w,v;\mu)}{||w||_X ||v||_X}$$

Our supremizer operator is then given by $ilde{T}^{\mu}: ilde{X}^1 o ilde{X}^2$

$$(ilde{T}^{\mu}w,v)_X=a(w,v;\mu), \quad orall v\in ilde{X}^2.$$

It follows that, for any $w \in ilde{X}^1$,

$$a(w, \tilde{T}^{\mu}w; \mu) \geq \tilde{eta}(\mu)||w||_X|||T^{\mu}w||_X$$

We pursue here just a Primal approximation, however we can readily extend the approach to a Primal-Dual formulation as described for coercive problems.

Noncoercive Problems: Approximation - A Priori Theory

We know that

$$a(u(\mu), v; \mu) = f(v), \quad \forall v \in X$$

$$a(\tilde{u}(\mu), v; \mu) = f(v), \quad \forall v \in \tilde{X}^2$$

and hence

$$a(u-\tilde{u},v;\mu)=0, \quad \forall v\in \tilde{X}^2(\subset X)$$

which is the usual (Petrov-)Galerkin orthogonality relationship.

Noncoercive Problems: Approximation - A Priori Theory

We can write, for any $ilde{w} \in ilde{X}^1,$

$$\tilde{\beta}||\tilde{u} - \tilde{w}||_{X}||\tilde{T}^{\mu}(\tilde{u} - \tilde{w})||_{X} \leq a(\tilde{u} - \tilde{w}, \tilde{T}^{\mu}(\tilde{u} - \tilde{w}); \mu)$$

$$= a((\tilde{u} - \tilde{w}) + (u - \tilde{u}), \underbrace{\tilde{T}^{\mu}(\tilde{u} - \tilde{w})}_{}; \mu)$$

 $(T^{\mu}$ must be member of $ilde{X}^2$, hence can not use stabler $T^{\mu})$

$$= a(u - \tilde{w}, \tilde{T}^{\mu}(\tilde{u} - \tilde{w}); \mu)$$

$$\leq \gamma ||u - \tilde{w}||_{X} ||\tilde{T}^{\mu}(\tilde{u} - \tilde{w})||_{X}$$

SO

$$|| ilde{u}- ilde{w}||_X \leq rac{\gamma}{ ilde{eta}}||u- ilde{w}||_X,$$

and hence

$$||u- ilde{u}||_X \leq \inf_{ ilde{w} \in ilde{X}^1} (||u- ilde{w}||_X + || ilde{u} - ilde{w}||_X)$$

Noncoercive Problems: Approximation - A Priori Theory

Note it is not necessarily the case that $\tilde{\beta} \geq \beta$ or even $\tilde{\beta} > 0$ ($\tilde{\beta}$ may tend to zero as \tilde{X}^1, \tilde{X}^2 are refined);

in this sense, noncoercive problems are much more difficult than coercive problems.

We observe that approximation is provided by \tilde{X}^1 and stability (through $\tilde{\beta}$) by \tilde{X}^2 .

$$\tilde{X}^1 = \tilde{X}^2 = W_N$$

Introduce

$$W_N = span\left\{u(\mu_{pr}^n), 1 \leq n \leq N
ight\}, \quad 1 \leq N \leq N_{max}.$$

Then $u_N(\mu) \in W_N$ satisfies

$$a(u_N(\mu), v; \mu) = f(v), \quad \forall v \in W_N,$$

and

$$s_N(\mu) = \ell(u_N(\mu)).$$

If we define

$$eta_N(\mu) \equiv \inf_{w \in W_N} \sup_{v \in W_N} rac{a(w,v;\mu)}{||w||_X ||v||_X},$$

then

$$||u - u_N||_X \le (1 + \frac{\gamma}{\beta_N}) \inf_{w_N \in W_N} ||u - w_N||_X$$

(and $|s - s_N| \le ||\ell||_{(X^N)'}||u - u_N||_X$).

In practice this often works very well. In theory, however, it is not in general possible to ensure $\beta_N \geq \beta(\mu)$ and thus in principle we could (though typically do not) observe $\beta_N \to 0$ as $N \to \infty$.

$$\tilde{X}^1=W_N, \tilde{X}^2=V_N^\mu$$

Introduce

$$W_N = span\left\{u(\mu_{pr}^n), 1 \le n \le N\right\}, 1 \le N \le N_{max}$$

and

$$V_N^\mu = span\left\{T^\mu u(\mu_{pr}^n), 1 \leq n \leq N\right\}, 1 \leq N \leq N_{max}$$

Note V_N^{μ} is parameter dependent.

Then $u_N(\mu) \in W_N$ satisfies

$$a(u_N(\mu),v;\mu)=f(v), \quad \forall v\in V_N^\mu,$$

and

$$s_N(\mu) = \ell(u_N(\mu)).$$

If we define

$$eta_N(\mu) \equiv \inf_{w \in W_N} \sup_{v \in V_N^\mu} rac{a(w,v;\mu)}{||w||_X||v||_X},$$

then

$$||u-u_N||_X \leq \left(1+rac{\gamma}{eta_N}
ight) \inf_{w_N \in W_N} ||u-w_N||_X,$$

(and
$$|s-s_N| \leq ||\ell||_{(X^{\mathcal{N}})'}||u-u_N||_{X}.)$$

But in this case we can show that $\beta_N(\mu) \geq \beta(\mu), \forall \mu \in \mathcal{D}$. To wit

$$eta_N(\mu) \geq \inf_{w \in W_N} rac{a(w, T^\mu w; \mu)}{||w||_X ||T^\mu w||_X} \qquad T^\mu : X^\mathcal{N} o X^\mathcal{N}$$

since for any $w\in W_N, T^\mu w\in V_N^\mu$. But $a(w,T^\mu w;\mu)=(T^\mu w,T^\mu w)_X$ and hence

$$eta_N(\mu) = \inf_{w \in W_N} rac{||T^\mu w||_X}{||w||_X} \geq \inf_{w \in X} rac{||T^\mu w||_X}{||w||_X} = eta(\mu),$$

given that $W_N \subset X$.

Hence this Petrov-Galerkin scheme is guaranteed to be stable. Re Offline-Online, we note that if

$$W_N = span \{ \zeta^n, 1 \le n \le N \}$$

then

$$V_N^\mu = span \left\{ \sum_{q=1}^Q \Theta^q(\mu) T^q \zeta^n, 1 \leq n \leq N
ight\}$$

and hence

$$a(u_N(\mu), v; \mu) = \cdots$$

$$a\left(\sum_{j=1}^N u_{Nj}(\mu)\zeta^j, \sum_{q'=1}^Q \Theta^{q'}(\mu)T^{q'}\zeta^i; \mu\right)1 \leq i \leq N$$

stored

$$\sum_{j=1}^{N} \left(\sum_{q=1}^{Q} \sum_{q'=1}^{Q} \Theta^{q}(\mu) \Theta^{q'}(\mu) \ \overrightarrow{a^{q}(\zeta^{j}, T^{q'}\zeta^{i})} \right) u_{Nj}(\mu)$$

$$1 \leq i \leq N$$
 $O(Q^2N^2)$ Online operations.

(not particular onerous since there is already a $O(Q^2N^2)$ operation associated with a posteriori error bound.)

Noncoercive Problems: RB Approximation -A Posteriori Error Estimation

We know that

$$a(u - u_N, v; \mu) = r(v; \mu), \forall v \in X$$

= $(\hat{e}(\mu), v)_X, \forall v \in X$

where

$$r(v;\mu) = f(v) - a(u_N, v; \mu)$$

Here u_N can be either our Galerkin or Petrov-Galerkin approximation.

Noncoercive Problems: RB Approximation -A Posteriori Error Estimation

It thus follows that

$$egin{aligned} eta(\mu)||u-u_N||_X||T^{\mu}(u-u_N)||_X &\leq \ a(u-u_N,T^{\mu}(u-u_N);\mu) &= \ &= (\hat{e}(\mu),T^{\mu}(u-u_N))_X \ &\leq ||\hat{e}(\mu)||_X||T^{\mu}(u-u_N)||_X \end{aligned}$$

or

$$||u-u_N||_X \leq \frac{||\hat{e}(\mu)||_X}{eta(\mu)}$$

Noncoercive Problems: RB Approximation -A Posteriori Error Estimation

Thus, for $\beta_{LB}(\mu)$ a positive lower bound for $\beta(\mu)$, and

$$\Delta_N(\mu) \equiv rac{||\hat{e}(\mu)||_X}{eta_{LB}(\mu)},$$

we obtain

$$||u-u_N||_X \leq \Delta_N(\mu)$$

(and also $|s-s_N| \leq ||l||_{(X^{\mathcal{N}})'} \Delta_N(\mu)$: a Primal-Dual approach / result is also possible).

Re Offline-Online, the calculation of $||\hat{e}(\mu)||_X$ is identical to the coercive case. It only remains to construct $\beta_{LB}(\mu)$ by the SCM.

Noncoercive Problems: RB Approximation -SCM for $oldsymbol{eta}_{LB}(\mu)$

We recall that

$$eta^2(\mu) = \inf_{w \in X^{\mathcal{N}}} \frac{(T^{\mu}w, T^{\mu}w)_X}{||w||_X^2}$$

but since a is affine,

$$\beta^2(\mu) = \inf_{w \in X^{\mathcal{N}}} \sum_{q=1}^Q \sum_{q'=1}^Q \Theta^q(\mu) \Theta^{q'}(\mu) \frac{(T^q w, T^{q'} w)_X}{||w||_X^2}$$

$$=\inf_{w\in X^{\mathcal{N}}}\sum_{q=1}^{Q}\sum_{q'=q}^{Q}(2-\delta_{qq'})\Theta^{q}(\mu)\Theta^{q'}(\mu)\frac{(T^{q}w,T^{q'}w)_{X}}{||w||_{X}^{2}}$$

Noncoercive Problems: RB Approximation -SCM for $eta_{LB}(\mu)$

Hence

$$\beta^2(\mu) = \underbrace{\inf_{w \in X^{\mathcal{N}}} \sum_{q=1}^{\hat{Q}} \hat{\Theta}^q(\mu) \frac{\hat{a}^q(w,w)}{||w||_X^2}}_{\text{apply standard SCM}}$$

where

$$egin{aligned} (2-\delta_{q'q''})\Theta^{q'}(\mu)\Theta^{q''}(\mu) & \hat{\Theta}^q(\mu) \ 1 \leq q' < q'' \leq Q & 1 \leq q \leq \hat{Q} \equiv rac{Q(Q+1)}{2} \ & rac{1}{2}\left((T^{q'}w,T^{q''}v)_X+(T^{q'}v,T^{q''}w)_X
ight) \ & 1 \leq q' < q'' \leq Q \ & \hat{a}^q(w,v) \ & 1 \leq q \leq \hat{Q} \equiv rac{Q(Q+1)}{2} \end{aligned}$$