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Advances

» Advances: Elliptic Problems Il, Parabolic Problems,
Extensions

1. Elliptic Problems Il

(e) A Posteriori Error Estimation (elements)
(f) General Outputs (non-compliant), Non-symmetric Forms
(Dual Problem, A Posteriori Error Estimation)

2. Parabolic Problems

(a) Problem Statement, Truth Approximation
(b) Reduced Basis Approximation

(c) Offline-Online Computational Procedures
(d) A Posteriori Error Estimation

(e) POD - greedy sampling

3. Possible Extensions

> Stability Factors Approximation
» Non-Coercive Problems
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Advances Elliptic Problems
Parabolic Problems

Last Episode...

Input and Output

> Input parameter pu € D: geometry, material prop., B.C., sources

> Output of interest s(p) = £(u(p)) = f(u(p)): to be evaluated
in real time or many-query contexts

> Field variable u(p) € X: satisfies a p-parametrized PDE

a(u(p),v; p) = f(v) Vv € X
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Advances Elliptic Problems
Parabolic Problems

Last Episode...

Input and Output

>

>

Input parameter u € D: geometry, material prop., B.C., sources

Output of interest s(p) = £(u(p)) = f(u(p)): to be evaluated
in real time or many-query contexts

Field variable u(u) € X: satisfies a p-parametrized PDE

a(u(p),v; p) = f(v) Vv € X

Rapidly convergent global reduced basis (RB) approximations
(Galerkin projection onto a space spanned by solution of governing
PDE at IV selected pt, ..., u%)

Offline/Online computational procedures
(very extensive and parameter independent Offline stage /
inexpensive Online calculations for new 1/O evaluation)
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Advances Elliptic Problems
Extensions Parabolic Problems

A posteriori Error Estimation: Role

» Rapidly convergent global reduced basis (RB) approximations
» Offline/Online computational procedures

» Rigorous a posteriori error estimation procedures
(inexpensive yet sharp bounds for the error in the RB
field-variable and output approximations)
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Advances Elliptic Problems
Parabolic Problems

A posteriori Error Estimation: Role

» Rapidly convergent global reduced basis (RB) approximations
» Offline/Online computational procedures

» Rigorous a posteriori error estimation procedures
(inexpensive yet sharp bounds for the error in the RB
field-variable and output approximations)

OFFLINE

Error bound permits “large” Et¢pain C D,
= rapidly convergent W]"\\,f,
= small dtcomp(pt — sf\vf(u)); and
rigorous assessment |sV (u) — s%(u)|, Ve D.
ONLINE
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Advances Elliptic Problems
Parabolic Problems

A posteriori Error Estimation: Preliminaries

Residual

Define 7: D — (XN) and é: D — XNV
r(vin) = f(v) —a(u(n),vin)
e(m),v)x = r(vsp), Yo € XN ;
then dual norm given by

r(v; )
vexnN ||v]lx

lrC-s)ll(xny =

= llew)llx -

G.Rozza Reduced Basis Approximations: Advances



Advances Elliptic Problems
Parabolic Problems

A posteriori Error Estimation: Preliminaries

Coercivity, Continuity Constants

Introduce coercivity “constants”

a(w,w; p)
9

a®(pu) = inf 7a(w,w;u)

N —
(8% = inf
wexe w|% )

wex®N lw|l%k
for our coercive problems,

oN () > a®(p) > a§ >0, YueD.

Also define continuity “constant,”

) a(w, v; p)
7°(u) = sup sup - o
weke vexe [wllx vllx
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Advances Elliptic Problems
Parabolic Problems

A posteriori Error Estimation: Preliminaries

Coercivity Lower Bound
Require
aMs: D - R

such that
0<ofs(p) <aN(p), VpueD,

and Bt comp (1 — (1))
is [O(1)] independent of N

TA prescription can be found in [ARCME (Sec.10)].
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Advances Elliptic Problems
Parabolic Problems

A posteriori Error Estimators: Error Bounds

Error estimators:

AR () = [le(w)llx/ (o ()2,
AN(p) = ek /o (k) 5

Effectivities:
Bp) = AL W)/ (8) — uN @)l

() = Ax()/ (N (k) — N (W) -
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Advances Elliptic Problems
Parabolic Problems

A posteriori Error Estimators: Error Bounds

Effectivity Results

Proposition 2

For N =1,... T
7o (k)
1 < 95y =< (/v YreD
N app (1)’ ’
(rigor) (sharpness)
7o (1)

1 < nyw) £ —x,~ VRED;

N app(p) ’ ,
recall @ is symmetric and s is “compliant” (£ = f). O

TSimilar results obtain for An (), the error bound in the X norm.
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Advances Elliptic Problems
Parabolic Problems

A posteriori Error Estimators: Error Bounds

Proofs

It follows from a(e(u),v; ) = (é(p),v)x for v = e(p) and
the Cauchy-Schwarz inequality that

eI, < le(lix lle(w)lx (1)
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Advances Elliptic Problems
Parabolic Problems

A posteriori Error Estimators: Error Bounds

Proofs

It follows from a(e(u),v; ) = (é(p),v)x for v = e(p) and
the Cauchy-Schwarz inequality that

eI, < le(lix lle(w)lx (1)

but (o (1)) Jle(m)l|x < a2 (e(w), e(n); 1) = [[le()|l],
and hence from (1) we obtain

el
lle(mllx

st [|le(m)lln < AR (1) or nF (k) 2 1.

(N (n))2 < el
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Advances Elliptic Problems
Parabolic Problems

A posteriori Error Estimators: Error Bounds

Proofs: Again for v = é(p) in a(e(pn),v; pu) = (é(p),v)x and
the Cauchy-Schwarz inequality we have

el < el e - (2)
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Advances Elliptic Problems
Parabolic Problems

A posteriori Error Estimators: Error Bounds

Proofs: Again for v = é(p) in a(e(pn),v; pu) = (é(p),v)x and
the Cauchy-Schwarz inequality we have

el < el e - (2)

But from continuity |||é(p)]]]p < ('ye(u))% llé(w)]|x, and hence
from (2)

pen — ARG _ o5 ()2 lle(w)llx _
Yo lle@)le el
ofh ()2l _ o ()2 111Gl ()l
lle(ulle(wllx ~ e Mllem)llx -
(o (1) 72 (7° ()2, or
ny (p) < a’ﬁ/]’g,(//”)
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Advances Elliptic Problems
Parabolic Problems

A posteriori Error Estimators: Error Bounds

Since sV (n) — s (1) =
Ille()|1|2, and hence since A% (1) = (AL (1))?

An(m)  (ARMW)?

- en 2
) — NG~ ez~ W) )

ny(p) =
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Advances Elliptic Problems
Parabolic Problems

Offline-Online: |[é(p)]||x
Ingredients: 1. Affine Parameter Dependence

r(vsp) = f(v) —a(un(p),v;pn)
N
= F) = a( X una(w) ¢ vin)

N
= f(v) = 2 unn(p) a5 v p)

n;_l 0
= .f(v) - Zl UNn(p') Zl @q(u) aq(cn’v) .
n= q=
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Advances Elliptic Problems
Parabolic Problems

Offline-Online: |[é(w) || x

Ingredients: 2. Linear Superposition

Q N
(e(p),v)x = f(v)— 2 > 0n) unn(p) a?(¢™,v),

=1n=1
QqN
= é(p) = C+ Zl Zl ©9(p) unn(p) L2,
g=1n=
where (C,v)x = f(v), Voe XN;
(E%,'U)X == _aq(cn,v), VUEXN’

1<n<N,1<q=<Q.
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Advances Elliptic Problems
Extensions Parabolic Problems

Offline-Online: ||é(w)||x

Ingredients: 2. Linear Superposition

Thus [lé(p)|I%

= (c+ S 55 @) unn(p) £2 °).

g=1n=1

Q N
= (C.Ox+ X ¥ O1(n) unn(w)

g=1n=1

Q N , o
2(C, L) x + YooY 09 (p) unn () (L3, £111,')X}'
qg'=1n'=1
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Advances Elliptic Problems
Parabolic Problems

Offline-Online: |[é(w) || x

Computational Procedure

Offline: once, parameter independent
Compute  C, £4, 1< 71 < Nuax, 1< q<Q.

Form/Store (C,C)x, (C,L%)x, (Lg,t:‘,{,)x,

1 S n7n/ S Nmax’
1<q,q <Q.
Complexity depends on IN, Q, and N.
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Advances Elliptic Problems
Parabolic Problems

Offline-Online: |[é(w) || x

Computational Procedure

Online: many times, for each p deployed

Evaluate ||é(p)]|% =

Q N
(C.Ox+ Y ¥ ©%(n) unn(w){

q= ln 1
2(C, £4)x + zl > 07 () wnn (1) (£4. %) x}

— O(Q?%N?).
Complexity depends on IN, Q, but not N.
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Advances Elliptic Problems
Parabolic Problems

A Posteriori Error Estimation: Numerical Example

TBlock-(3, 3): Metrics

Define
Mlax = max AR
ave
n® = max 7 () 3
N, ave HEEtest
max
recall from Proposition 2 uyr = 100
e
1< nfg,max < max M <100.%

HEEtest XL, B ([1,)

TResult for & = (1,...,1); improvement for “multi-inner product.”
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A Posteriori Error Estimation:

Advances

TBlock-(3, 3): Metrics

Effectivities
N

s
N,max

Elliptic Problems
Parabolic Problems

Numerical Example

s s
NN ,ave NN ,max

10
20
30
40
50

2.2036€E + 00

2.0020E — 01
1.5100E — 02
1.2000E — 03
1.0000E — 04

6.7067 31.2850
7.5587 37.3024
12.1138 62.2537
14.4598 73.1151
10.2566 57.5113

TNote penalty for n%; “large” mitigated by rapid convergence A% — 0.

G.Rozza
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Advances Elliptic Problems
Parabolic Problems

Coercivity Lower Bound: Parametric Coercivity "® Method"

If ®I(p) > 0, Vu € D and af(w,w) > 0, Vw € X°,
1<q<Q, a(,-;p) is said to be parametrically coercive.

In this case: Q
a(w,wip) = 3 O(w)a(w, w)
qg=1
=9 S;’fﬁ’)@qw)a%w,w)
min 2 (1) o1 a
a(w,w
min, o > Z (1) (1, w)
4€[1,Q] GQ(u) E11,Q) 6‘1( )
so also

oN(p) = inf M> min ©9n) _
=ik il © atiie 09(w)
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Reduced basis methods and a
posteriori error estimation
for parametrized PDEs: Advances

PRIMAL-DUAL PROBLEMS
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Advances Elliptic Problems
Parabolic Problems

Problem Generalization: General Output
Consider u € X
a(u,v;p) = f(v), VveX,

and
s(p) = £(u(p))

If a is symmetric and £ = f we revert to compliant case. If not,
with Primal only, we find uny € Wi (Lagrange RB space)

a(un(p),v;pu) = f(v), Vv € Wn,
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Advances Elliptic Problems
Parabolic Problems

Problem Generalization: General Output

Consider u € X
a(u,vip) = f(v), W€ X,
and
s(p) = £(u(p))
If a is symmetric and £ = f we revert to compliant case. If not,
with Primal only, we find uny € Wi (Lagrange RB space)

a(un(p),vspu) = f(v), Vv e Whn,
Then we need
sn(pn) = L(un(p))-
We can readily develop an a posteriori error bound for sn(p):
|s() — sn(p)| < (1€l (xny AN (1)

where .
lle(w)|x

arp(p) .

G.Rozza Reduced Basis Approximations: Advances
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Advances Elliptic Problems
Parabolic Problems

Problem Generalization: Output Error Bounds
Proof: First

a(e(p), vs p) =r(vip) = f(v) — a(un, v, p)
=a(u,v, p) — a(un,v, u) = (é(p),v)x
hence for v = e arp(p)lle(w)|kx < [lé(w)llx|lellx, or

le(u)|lx < el
arp(p)

But then
|s(1) — sn ()| =1€(u(p) — L(un(p))| = |€(e(n))]
LGOI, ( £(v)

lle()llx X

vex ||v]|x

>|I ()llx

€]l Ay
< 1€l x~y An(p) = AN (1)
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Advances Elliptic Problems
Parabolic Problems

Problem Generalization: Primal-Dual

Dual Problem

Find ¥ € X such that

a(v,¥;u) = —L(v), VveX.

Note we no longer assume that a is symmetric, and hence
W £ —u necessarily even if £ = f.

(We still assume that a is coercive and affine, but this case
considers transport-advection-convection terms.)
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Advances Elliptic Problems
Parabolic Problems

Problem Generalization: Primal-Dual

RB Approach Galerkin

Introduce
k — rk
WII\);;,T = span {u(upr) =¢1<k< Np,n} ,

Wit = span {®(uk,),1 <k < Nau},
1 S Np'r S Npr,maxa 1 S Ndu S Ndu,maw

Then up,, € WJI\’,TW,\IINM € W]‘@;u satisfy

a(un,, (1), vip) = f(v), Yve Wy ,
a(v, Un,, (k); p) = —L(v), VYve Wi,
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Advances Elliptic Problems
Parabolic Problems

Problem Generalization: Primal-Dual
And [Patera & Ronquist, Giles & Pierce]

SNpraNdu (IJ’) - 'e(’u’Npr) - Irprr(‘IINdu; l‘l’)

where

PP (03 1) = F(0) — @ty v 1)
r(v;p) = —L(v) — a(v, TN, 1)

Offline-Online is similar to Primal-only, but now we need to do
everything both for Primal and Dual (see following Sampling).
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Advances Elliptic Problems
Parabolic Problems

Problem Generalization: Primal-Dual

A Priori Theory
It is standard that

|S - SNpraNdu| S
C inf  |ju — wP"||x inf || — w||x
wPreWE whnewgs
Proof:
|8 — SNy, Nao| = £(u — un,,,) +7P" (¥, ; 1)
—_———
epPT
= —a(ef", ¥;u) + a(ef”, ¥n,,; 1)
= —a(eP", e™; u).

Then apply continuity and Galerkin optimality to Primal and Dual.
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Advances Elliptic Problems
Parabolic Problems

Problem Generalization: A Posteriori Output Bounds
We can readily derive that

where
AN (1) = |8 (5 )| (xnry AN (1)
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Advances Elliptic Problems
Parabolic Problems

Problem Generalization: A Posteriori Output Bounds
We can readily derive that
P | SAKT SN = Ny, N

where
AN (1) = |8 (5 )| (xnry AN (1)

Proof: we know that

8 — 8Np,Na, = £(u — un,,) + 77" (¥ Ny, ; 1)

= £(eP") + a(eP", Un,,; n) = —r¥(eP"; 1)

So
|S - SNPraNdul S ||Tdu('; IJ/)H(XN)/HGPTHX
< I (s )l xevy An (1)

where recall that ||eP"||x < An(p).
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Advances Elliptic Problems
Parabolic Problems

Problem Generalization: Sampling

The Offline-Online procedure is very similar to before, but now we
evaluate both a Primal and a Dual residual dual norm. We have

dug,. , pr 5 ,
|8 = SN Nau| < (HT (f/Z)H(XN) > (HT (1/Z)H(XN) )
aLB(“) O‘LB(N)
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Advances Elliptic Problems
Parabolic Problems

Problem Generalization: Sampling

The Offline-Online procedure is very similar to before, but now we
evaluate both a Primal and a Dual residual dual norm. We have

[r®e (s ) [ xxaryr \ [ 17P7 Cs ) || (xenvrys
|S - SNpT‘yNdu| S 1/2 1/2
arp(p) arg(p)
Hence if €] ... is the smallest output error desired, we perform a

Primal greedy until (= Npr,maz)

[7P7 (-5 )| (x Ay -
1/2 S V efnam? over Ei):ain'
arp (n)

and a Dual greedy until (= Ngu,mazx)

|| =du

“train*

5 )| (xny <

1/2 =
ars(p)

If (say) the Dual converges much more quickly than the Primal, it would be more efficient to choose

“Npr,maz = 0" and let the Dual do all the work.

S
€5 aws OVer
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Reduced basis methods and a
posteriori error estimation
for parametrized PDEs: Advances
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Advances Elliptic Problems
Parabolic Problems

Parabolic Problems

Given u € D C IRF, t € (0,ty]
evaluate s®(t; ) = L(u®(t;n); 1)
where u®(t; u) € X () satisfies’
ou®
m<at(t; 1), v u) + a(u®(t; 1), v; p)
=g(@) f(vsp), VveXe.

'We assume for simplicity that u®(0; ) = ug = 0.
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Advances Elliptic Problems
Parabolic Problems

Parabolic Problems: Hypotheses

a(-,-;p): bilinear, affine in pu,
X €-continuous,
Xe-coercive,t YueD

m(-,-;p): bilinear, affine in p,
L2(Q)-continuous,
L2(Q)-coercive, VYV u €D

F(-5p):  linear, affine in p,
L2(9)-bounded, Vu€eD

g(-): L2(0,ty) “control”

£(-3p): linear, affine in p,
L2(2)-bounded,t VueD

TIn fact, @ may satisfy a weak coercivity condition.
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Advances Elliptic Problems
Parabolic Problems

Parabolic Problems:FD-FE Approximation - Discretization

FD in time: EB (Euler Backward) or CN (Crank-Nicholson)

At=ty/K =
tt = kAt, 0<k <K, or
Tr= {tt,...,tK};
K= {1,2,...,K}.

FE in space: XN e xe.

G.Rozza Reduced Basis Approximations: Advances



Advances Elliptic Problems
Parabolic Problems

Parabolic Problems:FD-FE Approximation - EB-Galerkin

Given p € D, VkelK

evaluate sV F () = L(uNF(w); p)

where uN ¥(p) € X satisfies

uN k() —uN k-1
m (00 ) 4 a(u R (), v )

=g(t*) f(v;p), VwveXN.

TRUTH: sV k() ~ s¢(t%; ), uN*(p) = uo(th; p) .
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Advances Elliptic Problems
Parabolic Problems

Parabolic RB: Rapid Convergence

A reduced basis approximation VEkelK
s%k € IR and u'}\\,/k(u) € Xﬁ c XN

for all u € D,
sNE(n) — sNE(p) and u F(p) — wNE(p)

rapidly as N = dim(X]"\\,f) — oo(= 10-200).2

2The reduced basis inherits the fixed truth temporal discretization.
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Advances Elliptic Problems
Parabolic Problems

Parabolic RB: Rigor & Certainty

A posteriori error bounds AX () and ASF(p):

AR (1)
1 (rigor) < N < C (sharpness)
[N E () — iy * ()
and == 2o
Ask
1 (rigor) < () < C (sharpness)

Gy — R0

foral N eINand all k € IK, u € D.
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Advances Elliptic Problems
Parabolic Problems

Parabolic RB: Computational Efficiency

Offline-Online computational strategies: VkeIK
tOffline ~, cost { — st( )} ;
comp l“l' l‘l/ 9
BUT

Otcomp = marginal cost {H Online S%k(ﬂ), A?\Jk(ﬂ)}

depends only on Q and N and K — but not on N3

3We may choose our truth FE discretization very conservatively.
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Advances Elliptic Problems
Parabolic Problems

Parabolic RB: Relevance

Real-Time Context: VkelK

po o= sNE(p), AV (n)

to to+0tcomp

Many-Query Context: VkelK

{pi = sNE(), AN (1)} =1, dev (mo0)

to t0+8tcompJev

G.Rozza Reduced Basis Approximations: Advances



Advances Elliptic Problems
Parabolic Problems

Parabolic RB: Crucial Ingredients

Affine Parameter Dependence
Smooth (P + 1)-Dimensional Manifold MN K
Galerkin Projection

POD(t)-Greedy(p) Sampling Procedures
[Haasdonk, Ohlberger, M2AN, 2008 and NRP, Calcolo, 2009]

Stability Factor Estimates, and
A Posteriori Error Bounds

Offline-Online Computational Procedures
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Advances Elliptic Problems
Parabolic Problems

Parabolic RB: Affine Parameter Dependence

Definition: f(vs ), £(vsp)

z

z(w,vip) = 3. O(p) 29(w,v)

q=1
where forg =1,...,Q. zZ: mora
®1: D —-1IR, p-dependent functions ;

z7: X°®x X° > 1R, p-independent forms .

3In fact, broadly applicable to many instances of
property and geometry parametric variation.
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Advances Elliptic Problems
Parabolic Problems

Parabolic RB: IT-D Manifold MN K

We assume

the form a is stable; and

the ©F (1), 1 < g < Qm,q, are smooth;
then

MNE = [Nk |VE € IK, V u € D}

lies on a smooth (P + 1)-dimensional manifold in X

G.Rozza Reduced Basis Approximations: Advances



Parabolic RB

T-D Manifold MV K

Reduced Basis Space

Rozza G.

XJJ\\,[CSpan{uNk(um), 1<kE<K, 1<m< M}

Certified Reduced-Basis Methods

24




Advances Elliptic Problems
Parabolic Problems

Parabolic RB: Galerkin Projection

Given u € D, VkelK
evaluate sfvf’“(u) = E(u%k(u); )

where u'}\\,/k(u) € X]'Q,f satisfies

Nk _ NEk—1
m (MO ) 4 a(uf ), o)

= g(t*) f(vsp), Vove XN .

3The reduced basis inherits the fixed truth temporal discretization.
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Advances Elliptic Problems
Parabolic Problems

Parabolic RB: POD-Greedy Sampling

Set Z =0,5. = {p«}; [HO]
While N < Nmax,0

{Xm> 1 <m < M1} = POD({u (t*, pa), Vk € K}, My);

Z+ {2, {xm, 1 <m < Mi}}

N < N + My;

{¢ns 1 < n < N} = POD(Z,M);

XN =span{{,, 1 <n < N}

My = arg max,cs,,... AR (1) tf
S < {Su, e };

end.

Set Xy =span{(n, 1 <n < N}, 1 <N < Npax-

G.Rozza Reduced Basis Approximations: Advances



Advances Elliptic Problems
Parabolic Problems

Parabolic RB: Greedy Sampling - Advantage

Combines optimality/causality features of
(small) POD in time, T
with optimality/high-dimensionality features of

(exhaustive) Greedy in parameter, D;

complexity remains O(N') + O (irain)
— not O(N Ngrain).
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Advances Elliptic Problems
Parabolic Problems

CRB: Crucial Ingredients - Stability Factor Estimates
Calculation of a™B(u): D — IR4. We introduce

N (1) = infexn ™RV vy € D

[[v[[?
0 < aB(u) < aN(u), (coercivity constant)
0 < oLB(p) < oN (), (stability factor)

by

Successive Constraint Method (SCM)

Huynh, Rozza, Sen, Patera, A successive constraint linear
optimization method for lower bounds of parametric coercivity and
inf-sup stability constants. Comptes Rendus Mathematique. 2007,
Vol 345, Pages 473-478.

exactly as in elliptic case.
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Advances Elliptic Problems
Parabolic Problems

CRB: Crucial Ingredients - A Posteriori Error Bounds
Formulation

Introduce residual

uN k N1
(i) = g(t%) F(0) — m (FOZET0 4 )

— a(uNE(p),v;p), Yve XN, VkeIK;
and recall aB(p): D — IRy such that V u € D,

0 < a™B(p) < oV (1) (coercivity constant).
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Advances Elliptic Problems
Parabolic Problems

CRB: Crucial Ingredients - A Posteriori Error Bounds
Formulation

Define
AR (p) = m Z (eX (tF5 1))
Ask — Lv) ) Ak
N(N‘) = sup Mol N(N)’
vEXN
where ex (853 1) = (- 1) | ey
Then

JuN* () — uN* ()2 < Ak (u)f,

|sME() — s E()] < AR (W?F
foral N eINandall k € IK, u € D.

In practice we may also consider TL2(0,t; X) norms, and *primal-dual
techniques.
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Advances Elliptic Problems
Parabolic Problems

CRB: Crucial Ingredients - Offline-Online Procedures

Evaluation pp — Vk e K

(uN*m) ), sNEw),

and A’fv(ﬂ)

Cllr*Cs m)llxavys @B (u) —SCM ), ARE(p) ,

very similar to (= K x) elliptic case.
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Advances Elliptic Problems
Parabolic Problems

Adavances

» Advances: Elliptic Problems Il, Parabolic Problems
1. Elliptic Problems Il

(e) A Posteriori Error Estimation (elements)
(f) General Outputs (non-compliant), Non-symmetric Forms
(Dual Problem, A Posteriori Error Estimation)
2. Parabolic Problems
(a) Problem Statement, Truth Approximation
(b) Reduced Basis Approximation
(c) Offline-Online Computational Procedures
(d) A Posteriori Error Estimation
(e) POD - greedy sampling
3. Possible Extensions
(a) SCM-Successive Constraint Method
Review paper: RHP[Sec. 10] Ar.Comp.Meth.Eng. Vol.
15, 229-275, 2008

Paper HRSP C.R. Acad.Sci.Paris Vol. 345, 473-478,
2007
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Stability Factors Lower Bounds
Extensions Noncoercive problems

Coercivity Lower Bound®: Objective

Require a'ﬁ%: D — IR such that

0<ofs(p) <aN(p), VpeD,
Btcomp (1 — affp (1)) is O(1)

where

oN () = inf LW

>af, VpeD).T
wixn w20 THED)

TWe consider symmetric a; extension to non-symmetric a is simple.
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Stability Factors Lower Bounds
Extensions Noncoercive problems

Coercivity Lower Bound: Reformulation - Affine Parameter
Dependence

Recall
a(w,wip) = 5% ©9() at(w,w)
P2
hence
oN(p) = Jnf, TP (5 w)
where
TP (15 w) = z 09(1) “(“’H;")
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Stability Factors Lower Bounds
Extensions Noncoercive problems

Coercivity Lower Bound: Reformulation - “Pseudo" - Linear
Form

Express
N —_ 3 obj
« = inf I (s
(1) vey TP (13 y)

where

_ Q
T°Pi(usy) = Zl ©9(u) yq
q:

y:{yEIRQ‘EIwaXNs.t.
al(wy, wy)

y =
! llwy 1%

,1SQSQ}-
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Stability Factors Lower Bounds
Extensions Noncoercive problems

Coercivity Lower Bound: Bounds - Set Y

Introduce
a?(w,w a?(w, w
B 1—[‘?:1 inf ( ?2 )’ ( ’2 )
wexN  lw|l% wex~  lwll%
Cy

= {wcm € Ds---»1dcm € D}

and, given u € D,

ch* = {M points in Cj closest to u} .

TWe consider the Successive Constraint Method (SCM). [HRSP]
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Stability Factors Lower Bounds
Extensions Noncoercive problems

Coercivity Lower Bound: Bounds - ...Set Vi ...

Define Y (p;Cy, M)
YB(p) = {y € IR® ‘ (I) y € B,and

Q
1) > ©(u')yq > oN(p'), V' € C]JW}'
q=1

Lemma 3.1. GivenCy C D, M € IN,

Y CVie(p;Cy, M), VueD.
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Stability Factors Lower Bounds
Extensions Noncoercive problems

Coercivity Lower Bound: Bounds' - ...Set Vg

Proof: Forany y € Y, 3wy € XN such that

yg =) 1<q<Q:

Ty 1%
. q q q
infpip < S < sup i (1)
weXN x vlilx weXN x
—_————
Yq
Q q .
(oL al(wy,wy) _  a(wy,wy;p)
2, @1 Ty g o T

Yq
> oN(p), VpeD. (II)
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Stability Factors Lower Bounds
Extensions Noncoercive problems

Coercivity Lower Bound: Bounds - Lower Bound

Let

N _ s obj
o w;Cy, M) = min I (s :
LB( s CJ ) yEVLE (1:Cs, M) J ( ay) ’

a linear optimization problem (LP).
Proposition 3.2. Given Cy C D, M € IN,
ofs(p) < aN(p), VpeD.

Proof:
N _ . obj
o = min  J°°I(u;
ue(K) yEVLB (1) (139)
< min J°P (u;y) Lemma 3.1: Y C ViB
yey
= oM.
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Stability Factors Lower Bounds
Extensions Noncoercive problems

Coercivity Lower Bound: Bounds - Set Yusp

Define
Yus(u; Csy M) = {y*(w') | ' € T}

where

y*(pn) = arg inf TP (us5y) ;
yey

cleary Yup C Y .
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Stability Factors Lower Bounds
Extensions Noncoercive problems

Coercivity Lower Bound: Bounds - Upper Bound

Let

o (13 €, M) = ey iin, TP (s y) 5

a simple enumeration exercise.

Proposition 3.3. Given C; C D, M € IN,
o (1) > N (), VpeD.
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Stability Factors Lower Bounds
Extensions Noncoercive problems

Coercivity Lower Bound: Greedy Selection: Cjy Procedure

Given Eirain(SCM), escm € [0, 1], M

N N
. o p;Cy)—ox w;C
While max U ’Af) .CLB( : J)} > escMm:
HEE¢train aUB(M’ J)
N N
J+1 [aUB(u;CJ)—aLB(u;CJ)
= arg max ;
Hscm g pemx g (1:Cr) ’
_ J+1 |
Cit1 = CrUngcm s
J +— J+1;

end. Set Jpax = J .
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Stability Factors Lower Bounds
Extensions Noncoercive problems

Coercivity Lower Bound: Greedy Selection: Cjy Convergence

If a is parametrically coercive,
@q([Jz) > 07 v ne D ’
al(w,w) > 0, Vwe X, 1<¢g<Q,

J = 1 suffices to ensure a’]}g(,u) >0, VuenD.

Generally, continuity of ®* ensures finite Jyax such that tolerance
is satisfied: but Jmax(P)?
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Stability Factors Lower Bounds
Extensions Noncoercive problems

Coercivity Lower Bound: Offline-Online Procedure - Offline

In Greedy, perform
Jmax LP(Q’ M) :> CJmax ;

2Q + Jpmax eigenproblems’ over XV
= (T) Band (I1) {oV (1) | ' C Cipae} = V1B 3

Jmax @Q inner products over XN = YuB -

TEigenproblems efficiently treated by Lanczos method.
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Stability Factors Lower Bounds
Extensions Noncoercive problems

Coercivity Lower Bound: Offline-Online Procedure - Online

Given p € D, perform

M
sort over C gy, = Cy " 5

(M + 1) Q evaluations p/ — O (p')
M look-ups ! — oV (i) ;

LP (Q, M) — ai(p) .
Cost independent of N .
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Stability Factors Lower Bounds
Extensions Noncoercive problems

Advances

» Advances: Elliptic Problems Il, Parabolic Problems

1. Elliptic Problems Il

(e) A Posteriori Error Estimation (elements)
(f) General Outputs (non-compliant), Non-symmetric Forms
(Dual Problem, A Posteriori Error Estimation)

2. Parabolic Problems

(a) Problem Statement, Truth Approximation
(b) Reduced Basis Approximation

(c) Offline-Online Computational Procedures
(d) A Posteriori Error Estimation

(e) POD - greedy sampling

3. Possible extensions
(a) Stability Factors

(b) Non-Coercive Problems

G.Rozza Reduced Basis Approximations: Advances
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Stability Factors Lower Bounds
Extensions Noncoercive problems

Noncoercive Problems: Inf-Sup Elements - Supremizer

We are given a bilinear form a : X' x X2 — R. Then

B inf alw, v)
. = mI sup -——————————
inf-sup weX1? ’UEsz ||1U||X1||U||X2,

we can also say that for any w € X! there exists a v* in X2 (the
inner supremizer) such that

a(w, v*(w)) 2 Bllwl||x:|v*|| x2.

Note that 3 > 0 (if 3 is negative, just switch sign of v), however
it is not necessarily true that 3 > 0.
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Stability Factors Lower Bounds
Extensions Noncoercive problems

Noncoercive Problems: Inf-Sup Elements - Supremizer

We introduce the inner supremizing operator T' : X1 — X2 as
the following linear operator:

(Tw,v) x2 = a(w,v), Yv € Xz;

why is v = T'w the supremizer of a(w, v)/||v||x27 Note
a(w, Tw) = (Tw, Tw) x2, w given,
so for v = Tw

a(w,v) _ [|Tw|%,

p— = ||Tw .
Tollxe — NITwllxs 1T wllxe
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Stability Factors Lower Bounds
Extensions Noncoercive problems

Noncoercive Problems: Inf-Sup Elements - Supremizer

But by Cauchy-Schwarz inequality, for any v € X?2

a(w,v) _ (Tw,v)x> _ ||[Tw]||x>][|v| x>

|lv]| x2 lollx= — |[v]]x2

< ITwl|x=,
which proves the result.

Note T'w is simply our v*(w) of earlier. Hence, for any w € X1,

a(w, Tw) 2 B|w||x1||Tw|| x>
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Stability Factors Lower Bounds
Extensions Noncoercive problems

Noncoercive Problems: Inf-Sup Elements - Supremizer

We can also develop an alternative expansion for 3:

a(w,v)
) SUPveX? ol 2 ) (v=Tw) ., . |[Twl||x2
B = inf = L1 Sl
weX? ||w|| x1 weX! ||w]|x1
or
Tw, Tw
,32: inf ( ’ 2)X2
weX!  ||w||%

which is in fact a Rayleigh quotient.
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Stability Factors Lower Bounds
Extensions Noncoercive problems

Noncoercive Problems: Abstract Problem - Approximation

Find u(p) € X such that

a(u(p),vip) = f(v) VwveX

and
s(p) = £(u(p)),
where B3(n) > 0, Y € D, with

a(w,v; )
B(p) = inf sup —————
weX yeX ||w||X||”||X
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Stability Factors Lower Bounds
Extensions Noncoercive problems

Noncoercive Problems: Abstract Problem - Approximation

We further assume that a(-, - p) is affine,

Q
a(w,v;p) = Y O (p)al(w,v).

q=1
We now denote our supremizer as TH : X — X, where

(THw,v)x = a(w,v; p), Vve X
Note from our affine assumption it follows that

Q
THw = Z O (pu)Tw,
q=1
where (T9w, v)x = a%(w,v), VoveX.
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Stability Factors Lower Bounds
Extensions Noncoercive problems

Noncoercive Problems: Approximation - Petrov-Galerkin

We assume we are given two subspaces X1 C X,X2C X. Then
w(pn) € X1 satisfies

a(a(p),v,p) = f(v), Vve Xz,

and
5(p) = €(a(p))-
We define

~ a(w,v;
B(pn) = inf sup M
weX! e X2 llw||x|lv]|x
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Stability Factors Lower Bounds
Extensions Noncoercive problems

Noncoercive Problems: Approximation - Petrov-Galerkin

Our supremizer operator is then given by TH : X1 5 X2
(T“'w,v)x =a(w,v;p), Yv € X2,

It follows that, for any w € X1,
a(w, T#w; ) > B(w)||wl|x|| THw]|x

We pursue here just a Primal approximation, however we can
readily extend the approach to a Primal-Dual formulation as
described for coercive problems.
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Stability Factors Lower Bounds
Extensions Noncoercive problems

Noncoercive Problems: Approximation - A Priori Theory

We know that
a(u(p),vip) = f(v), YweX

a(@(p),vip) = f(v), Yoe X?

and hence
a(u —@,v;p) =0, Vo€ X3(C X)

which is the usual (Petrov-)Galerkin orthogonality relationship.
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Stability Factors Lower Bounds
Extensions Noncoercive problems

Noncoercive Problems: Approximation - A Priori Theory

We can write, for any w € X1,

Blla — @||x||T" (@ — ®)||x < a(@ — b, T(& — ®); p)
= a((@ — @) + (u — @), T" (@ — w); n)
N
(T* must be member of X2, hence can not use stabler T)
= a(u — @, (@ — @); )
< Allu — @||x || T (@ — )| x

SO ~
|la —w||x < EHu_ || x,

and hence
llu —a||x < inf (|lu—®llx +||a —@||x)
weX1!
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Stability Factors Lower Bounds
Extensions Noncoercive problems

Noncoercive Problems: Approximation - A Priori Theory

Note it is not necessarily the case that 3 > 3 or even 3 > 0 (5’
may tend to zero as X1, X2 are refined);

in this sense, noncoercive problems are much more difficult than
coercive problems.

We observe that approximation is provided by X1 and stability
(through 3 ) by X2.
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Stability Factors Lower Bounds
Extensions Noncoercive problems

Noncoercive Problems: RB Approximation - Galerkin

X'=X*=Wxn
Introduce
Wn = span {u(ug,p), 1<n< N}, 1< N < Nomas-
Then un () € Wiy satisfies
a(un(p),vsp) = f(v), Vv e Wy,

and
sn(p) = £(un(p))-
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Stability Factors Lower Bounds
Extensions Noncoercive problems

Noncoercive Problems: RB Approximation - Galerkin

If we define
a(w,v; p)
Bn) = inf sup S
weWN vewy ||w||x||v]|x’
then
llu —unl||x < (1+ —) inf ||lu— wn||x

NwGW

(and |s — s | < |[€]|(xny |lu — un||x).

In practice this often works very well. In theory, however, it is not
in general possible to ensure By > B(p) and thus in principle we
could (though typically do not) observe By — 0 as N — oo.
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Stability Factors Lower Bounds
Extensions Noncoercive problems

Noncoercive Problems: RB Approximation - Petrov-Galerkin

X' =Wy, X2 =V}

Introduce
Wi = span {u(up,),1 <n < N}, 1< N < Nya
and

VE = span {T“u(u;}r), 1<n< N} 1< N < Nonas

Note VI is parameter dependent.
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Stability Factors Lower Bounds
Extensions Noncoercive problems

Noncoercive Problems: RB Approximation - Petrov-Galerkin

Then un () € Wiy satisfies

a(un(p),v;p) = f(v), Yo e Vg,

and
If we define
Bn(n) = inf sup (VR
weWn ’UEVﬁ ||’w||X||'U||X
then

7Y .
u—u < (14— inf U — w
= unllx < (14 50 ) | inf, llu = wnllx.

(and [s — sn| < [[£l[(xayllu — unlx )
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Stability Factors Lower Bounds
Extensions Noncoercive problems

Noncoercive Problems: RB Approximation - Petrov-Galerkin

But in this case we can show that Bn () > B(p),Vu € D.
To wit
a(w, THw; p)

: N N
Bn(p) > inf T : XV - X
weWwn ||w||x||THw||x

since for any w € Wy, THw € V}. But
a(w, THFw; p) = (THw, THw) x and hence

I 7wl x || T#wl|x
Brn(p) = inf T X >
wewn [lwllx — wex [lwllx

= B(w),

given that Wy C X.
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Stability Factors Lower Bounds
Extensions Noncoercive problems

Noncoercive Problems: RB Approximation - Petrov-Galerkin

Hence this Petrov-Galerkin scheme is guaranteed to be stable.
Re Offline-Online, we note that if

Wy = span {¢",1 < n < N}

then
Q
V& =span{ > ©1(WT"1<n< N
q=1
and hence
a(un (1), v3 ) = -+
N . Q .
al > uni(w)¢?, Y O (WT¢pn|1<i<N
Jj=1 q'=1
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Stability Factors Lower Bounds
Extensions Noncoercive problems

Noncoercive Problems: RB Approximation - Petrov-Galerkin

stored

N Q Q ) —_—
ST Y 04w)e (n) at(¢d, T cz>> wnj ()
j=1

q=1q¢'=1

~~

1<i< N O(Q?N?) Online operations.

(not particular onerous since there is already a O(Q%N?)
operation associated with a posteriori error bound.)

G.Rozza Reduced Basis Approximations: Advances



Stability Factors Lower Bounds
Extensions Noncoercive problems

Noncoercive Problems: RB Approximation -A Posteriori
Error Estimation

We know that
a(u —un,vip) =r(v;p),Vo € X

= (é(p),v)x,Vv € X
where
r(vsp) = f(v) — a(un, v; p)

Here upn can be either our Galerkin or Petrov-Galerkin
approximation.
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Stability Factors Lower Bounds
Extensions Noncoercive problems

Noncoercive Problems: RB Approximation -A Posteriori
Error Estimation

It thus follows that

B(w)|lu — un||x||TH(u — un)llx <
a(u—un, T*(u —un);p) =
= (é(p), T"(u —un))x
< el x 1T (u — un)||x

or

lle() | x
llu —un||x < W
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Stability Factors Lower Bounds
Extensions Noncoercive problems

Noncoercive Problems: RB Approximation -A Posteriori
Error Estimation

Thus, for BLe(p) a positive lower bound for 3(p), and

lle(u) |l x
A = AR
~ (k) Bre(w)
we obtain
[lu —un||x < An(n)

(and also |s — sn| < [|I]|(x~)y An(p): a Primal-Dual approach
/ result is also possible).

Re Offline-Online, the calculation of ||é(u)||x is identical to the
coercive case. It only remains to construct B (p) by the SCM.
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Stability Factors Lower Bounds
Extensions Noncoercive problems

Noncoercive Problems: RB Approximation -SCM for

Brs(w)

We recall that
(T”w, T“w)X

|lw]l%

2 — . f
B(n) = inf
but since a is affine,

(T9w, T w) x

B*(w) = inf Z Z O(1)O7 (1)

q=1¢'=1 || ||X

(T9w, T w) x
inf S 3" (2 - G0y () T
’wGX g=1q'=¢q H ||X
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Stability Factors Lower Bounds
Extensions Noncoercive problems

Noncoercive Problems: RB Approximation -SCM for

Brs(w)

Hence A
Q X
. A al(w,w)
B () = inf, S @9(u) L)
o 2 ]|
apply standard SCM
where
(2- 5q’q”)®q,(ﬂ)®q1l(ﬂ) — ©7(p)
1< <q"<Q 1<q< Q=29

1 /’ 24 4 17
2 ((Tq w, T v)x + (T7v, T w)X)
1<¢ <q¢"<Q
dq(w,v)

1<q¢< Q=29
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