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ABSTRACT

This chapter presents an overview of Model Order Reduction – a new paradigm in the field of simulation-
based engineering sciences, and one that can tackle the challenges and leverage the opportunities of modern
ICT technologies. Despite the impressive progress attained by simulation capabilities and techniques,
a number of challenging problems remain intractable. These problems are of different nature, but are
common to many branches of science and engineering. Among them are those related to high-dimensional
problems, problems involving very different time scales, models defined in degenerate domains with
at least one of the characteristic dimensions much smaller than the others, model requiring real-time
simulation, and parametric models. All these problems represent a challenge for standard mesh-based
discretization techniques; yet the ability to solve these problems efficiently would open unexplored
routes for real-time simulation, inverse analysis, uncertainty quantification and propagation, real-time
optimization, and simulation-based control – critical needs in many branches of science and engineering.
Model Order Reduction offers new simulation alternatives by circumventing, or at least alleviating, otherwise
intractable computational challenges. In the present chapter we revisit three of these model reduction
techniques: the Proper Orthogonal Decomposition, the Proper Generalized Decomposition, and Reduced
Basis methodologies.
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1. INTRODUCTION

The human brain consumes 4 watts for performing some tasks for which today’s computers require
the power of several nuclear plants. It is then clear that our computers and algorithms for addressing
the models encountered in science and engineering are definitively suboptimal.

Many problems related to important society needs require fast and accurate solutions, in general
data-driven, of complex models, involving an unimaginable amount of information, in many cases
in real-time and on deployed platforms. Up to now, the solution of complex models has been
addressed by using high performance computing and powerful computing platforms. In the future,
real-time simulation, optimization and control, in science and engineering, will require as much as
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2 ENCYCLOPEDIA OF COMPUTATIONAL MECHANICS

computational power (supercomputing) as possible, and consequently, advances in hardware and
software for high-performance computing will be necessary. But at the same time, there is a need for
a new generation of simulation techniques, beyond high-performance computing or modern solver
approaches (many of them proposed 40 years ago), to improve efficiency or to allow getting results
when other alternatives fail in the above challenging scenarios.

The importance of Dynamic Data-Driven Application Systems (DDDAS) in the forthcoming
decades has been already noticed by the NSF Blue Ribbon Panel on Simulation Based Engineering
Sciences report (Oden et al., 2006), which in 2006 included DDDAS as one of the five core
challenges in the field for the next decade (together with multi-scale simulation, model validation
and verification, handling large data, and visualization). This panel concluded that “Dynamic data-
driven application systems will rewrite the book on the validation and verification of computer
predictions” and that “research is needed to effectively use and integrate data-intensive computing
systems, ubiquitous sensors and high-resolution detectors, imaging devices, and other data-gathering
storage and distribution devices, and to develop methodologies and theoretical frameworks for their
integration into simulation systems.”

1.1. Current-day computational issues

Today many problems in science and engineering remain intractable, in spite of the impressive
progresses attained in modeling, numerical analysis, discretization techniques and computer science
during the last decade. This is because their numerical complexity, or the restrictions imposed by
different requirements (real-time on deployed platforms, for instance) make them unaffordable for
today’s technologies.

We illustrate this point by describing some of these problems:

• The first one concerns models that are defined in high-dimensional spaces, usually encountered
in quantum chemistry describing the structure and mechanics of materials, the kinetic theory
description of complex materials, social dynamics and economic systems, vehicular traffic flow
phenomena, complex biological systems involving mutation and immune competition, crowds
and swarms encountered in congested and panic flows, among many other possibilities; the
chemical modeling in too dilute systems where the concept of concentration cannot be used,
that results in the so-called chemical master equation governing for example cell signaling
and other phenomena in molecular biology. All these models involve D dimensions, D � 3,
that limits the consideration of standard mesh-based discretizations.

• Online control can be carried out following different approaches. The most common one
considers systems as a black box whose behavior is modeled by a transfer function relating
inputs to outputs. This modeling approach that may seem poor has as its main advantage
the possibility of proceeding rapidly due to its simplicity. This compromise between accuracy
and speed was often used in the past and this pragmatic approach has allowed us to control
processes and to optimize them, once the transfer function modeling the system is established.
The establishment of such goal-oriented transfer function is the trickiest point. For this
purpose, it is possible to proceed from a sometimes overly simplified physical model or directly
from experiments (allowing us to extract a phenomenological goal-oriented transfer function)
or from a well-balanced mixture of both approaches. In all cases, the resulting modeling can
only be applied within the framework that served to derive it. However, on one hand, the fine
description of systems requires a sufficiently detailed description of them and, in that case,
traditional goal-oriented simplified modeling becomes inapplicable. On the other hand, actual
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MODEL ORDER REDUCTION 3

physical models result, in general, in complex mathematical objects, nonlinear and strongly
coupled partial differential equations. Such mathematical objects are representing physical
reality up to a certain degree of accuracy. However, the available numerical tools capable of
solving these complex models require the use of powerful computers that can require hours,
days and weeks to solve them. Known as numerical simulation, the resulting output solution is
very rich but is unsuitable for control purposes that require fast responses, often in real-time.

• Many problems in parametric modeling, inverse identification, and process or shape
optimization, usually require, when approached with standard techniques, the direct
computation of a very large number of solutions of the concerned model for particular values
of the problem parameters. When the number of parameters increases such a procedure
becomes intractable.

• Traditionally, Simulation-based Engineering Sciences (SBES) relied on the use of static data
inputs to perform the simulations. These data could be parameters of the model(s) or
boundary conditions. The word static is intended to mean here that these data could not
be modified during the simulation. A new paradigm in the field of Applied Sciences and
Engineering has emerged in the last decade. Dynamic Data-Driven Application Systems
(DDDAS) today constitute one of the most challenging applications of simulation-based
engineering sciences. By DDDAS we mean a set of techniques that allow the linkage of
simulation tools with measurement devices for real-time control of simulations. DDDAS
entails the ability to dynamically incorporate additional data into an executing application,
and in reverse, the ability of an application to dynamically steer the measurement process∗.

• Augmented reality is another area in which efficient (fast and accurate) simulation is urgently
needed. The idea is supplying in real-time appropriate information to the reality perceived
by the user. Augmented reality could be an excellent tool in many branches of science
and engineering. In this context, light computing platforms are appealing alternatives to
heavy computing platforms that in general are expensive and whose use requires technical
knowledge.

• In science and engineering, in its widest sense, there are many causes of variability. The
introduction of such variability, randomness and uncertainty is a priority for the next decade.
Although it was a priority in the preceding decade, many open challenges remain.

While the previous list is by no means exhaustive, it includes a set of problems with no apparent
relationship between them that can however be treated in a unified manner as will be shown in
what follows. Their common ingredient is our lack of capabilities (or knowledge) to solve them
numerically in a direct, traditional but computationally tractable way.

1.2. Fast calculations from a historical perspective

The human being throughout history developed several facilities for giving fast responses to a
variety of questions. Thus, abaci were used 2700 years B.C. in Mesopotamia. However, the initial
arithmetic was rapidly complemented with more complex representations; some of them were the
charts and the nomograms.

The former facilities allowed for fast calculations and data manipulations. Nomograms can be
easily constructed when the mathematical relationships that they express are purely algebraic,

∗http://dddas.org/
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4 ENCYCLOPEDIA OF COMPUTATIONAL MECHANICS

eventually nonlinear. In those cases it was easy to represent some outputs as a function of some
inputs. The calculation of these data representations was performed offline and then used online in
many branches of engineering sciences for design and optimization.

However, the former procedures fail when addressing more complex scenarios. Thus, sometimes
engineers manipulate not properly understood physics and in that case the construction of
nomograms based on a too coarse modelling could be dangerous. In those cases one could proceed
by making several experiments from which defining a sort of experiment-based nomogram. In other
cases the mathematical object to be manipulated consists of a system of complex coupled nonlinear
partial differential equations, whose solution for each possible combination of the values of the
parameters that it involves is simply unimaginable for modern computational availabilities. In
these cases, experiments or expensive computational solutions are performed for some possible
states of the system, from which a simplified model linking the inputs to the outputs of interest is
elaborated. These simplified models have different names: surrogate models, metamodels, response
surface methodologies, etc. Other associated tricky questions include: what is the best sampling
strategy? (Latin hypercube, ...) and what are appropriate interpolation techniques for estimating
the response at an unmeasured position from observed values at surrounding locations? Many
possibilities exist, Kriging being one of the most widely used for interpolating data. All these
techniques allow defining a “numerical or graphical handbook.” One of the earliest and most widely
known within engineering practice is that of Bernoulli (1836).

Recently, model order reduction opened new possibilities. In this chapter we describe three
different model reduction techniques. First, Proper Orthogonal Decomposition (POD) is a general
technique for extracting the most significant characteristics of a system’s behavior and representing
them in a set of “POD basis vectors.” These basis vectors then provide an efficient (typically low-
dimensional) representation of the key system behavior, which proves useful in a variety of ways.
The most common use is to project the system governing equations onto the reduced-order subspace
defined by the POD basis vectors. This yields an explicit POD reduced model that can be solved in
place of the original system. The POD basis can also provide a low-dimensional description in which
to perform parametric interpolation, infill missing or “gappy” data, and perform model adaptation.
There is an extensive literature and POD has seen broad application across fields. Some review of
POD and its applications can be found in Dowell and Hall (2001), Volkwein (2011), and Benner,
Gugercin and Willcox (2015). POD’s foundations and main methodological elements are described
in Section 2.

Another family of model reduction techniques lies in the use of Reduced Basis constructed by
combining a greedy algorithm and “a posteriori” error indicators. As for the POD, the Reduced
Basis method requires some amount offline work, but then the reduced basis model can be used
online for solving different models with control of the solution accuracy, because the availability of
error bounds. When the error is unacceptably high, the reduced basis can be enriched by invoking
a greedy adaption strategy. This technique will be described in detail in Section 3. Useful review
works on the subject are Rozza et al. (2008), Patera and Rozza (2007), Quarteroni et al. (2011),
Manzoni et al. (2012), Rozza (2014), Hesthaven et al. (2015).

Finally, we address in Section 4 techniques based on the use of separated representations, at the
heart of the so-called Proper Generalized Decomposition methods. Such separated representations
are considered when solving at-hand partial differential equations by employing procedures
based on the separation of variables, then they were considered in quantum chemistry for
approximating multidimensional quantum wave-function, e.g. Hartree-Fock and post-Hartree-Fock
methods (Cançes et al., 2003). In the 80s, Pierre Ladeveze proposed the use of space-time separated
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MODEL ORDER REDUCTION 5

representations of transient solutions involved in strongly nonlinear models, defining a non-
incremental integration procedure (Ladeveze, 1985). Later, separated representations were employed
for solving multidimensional models suffering the so-called curse of dimensionality (Ammar et al.,
06; Ammar et al., 07) as well as in the context of stochastic modeling (Nouy, 2007). Then, they
were extended for separating space coordinates making possible the solution of models defined in
degenerated domains, e.g. plate and shells (Bognet et al., 2011; Bognet et al., 2014) as well as for
addressing parametric models where model parameters were considered as model extra-coordinates,
making possible the offline calculation of the parametric solution that can be viewed as a metamodel
or a computational vademecum, to be used online for real time simulation, optimization, inverse
analysis and simulation-based control (see Chinesta, Leygue et al. 2013, for a recent review).

Some recent reviews concerning the PGD can be found in Chinesta et al. (2010b); Chinesta,
Ladeveze and Cueto (2011) or Chinesta, Ammar et al. (2011), as well as in the recently published
primer by Chinesta, Keunings and Leygue (2013).

2. PROPER ORTHOGONAL DECOMPOSITION

2.1. Introduction

The POD is a method to compute a basis that provides a low-dimensional representation of a
high-dimensional system state. POD was introduced for the analysis of turbulent flows by Lumley
(1967), and is closely related to methods used in other fields such as Karhunen-Loéve expansions in
stochastic process modeling (Loéve, 1955; Kosambi 1943), principal component analysis in statistical
analysis (Hotelling, 1933), and empirical orthogonal eigenfunctions in atmospheric modeling (North
et al., 1982). POD basis vectors are computed empirically using sampled data collected over a range
of relevant system dynamics, typically using the method of snapshots, introduced by Sirovich (1991).

Due to its broad applicability to linear and nonlinear systems, the POD has become widely used
in many different application domains. The most common use is to project the system governing
equations onto the reduced-order subspace defined by the POD basis vectors. This yields an explicit
POD reduced model that can be solved in place of the original system. The POD basis can also
provide a low-dimensional description in which to perform parametric interpolation, infill missing
or “gappy” data, and perform model adaptation.

In this section, we first describe computation of the POD basis via the method of snaphots in
Section 2.2. Section 2.3 then discusses construction of a POD reduced model. Section 2.4 describes
dynamic data-driven adaptation of POD reduced models, and Section 2.5 describes the gappy POD.

2.2. Computing the POD basis: Method of snapshots

Consider the general full system model

E(µ)
du

dt
+A(µ)u = f(µ,u), (1)

where u ∈ Rn is the state vector of dimension n and µ ∈ D ⊂ RP is a vector of P parameters. The
full model operators are A(µ) ∈ Rn×n, E(µ) ∈ Rn×n, and f(µ,u) ∈ Rn. We write the full model
as a system of nonlinear ODEs for ease of exposition and to emphasize the general applicability
of the POD methodology, but note that models of interest often (but not always) arise from the
discretization of PDEs.
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6 ENCYCLOPEDIA OF COMPUTATIONAL MECHANICS

For many applications, particular output quantities are of interest and it is the goal of the
model reduction to achieve an accurate mapping between input parameters and these quantities of
interest. We define y ∈ Rq to be the q output quantities of interest, defined by a general mapping
from parameters and states to outputs:

y = h(µ,u). (2)

Next we consider a set of ns snapshots, u1,u2, . . . ,uns
, which are state solutions computed at

different instants in time and/or different parameter values. Here uj = u(tj ;µj) ∈ Rn denotes the

jth snapshot, where tj and µj are respectively the time and parameter values for the jth snapshot.

Define the snapshot matrix U ∈ Rn×ns , which contains the snapshot uj as its jth column. The
(thin) singular value decomposition of U is written

U = XΣY T , (3)

where the columns of the matrices X ∈ Rn×ns and Y ∈ Rns×ns are the left and right singular
vectors of U , respectively. Σ ∈ Rns×ns = diag(σ1, σ2, . . . , σns

), where σ1 ≥ σ2 ≥ . . . ≥ σns
≥ 0, are

the singular values of U , referred to as the POD singular values. The POD basis, V = [v1, . . . ,vr],
is then defined as the r left singular vectors of U that correspond to the r largest POD singular
values. This yields an orthonormal basis.

The POD provides an efficient low-dimensional representation of the snapshot data: among
all orthonormal bases of size r, the POD basis minimizes the least squares error of snapshot
reconstruction,

min
V ∈Rn×r

||U − V V TU ||2F = min
V ∈Rn×r

ns∑
i=1

||ui − V V Tui||22 =

ns∑
i=r+1

σ2
i . (4)

The square of the error in snapshot representation is given by the sum of the squares of the
singular values corresponding to those left singular vectors not included in the POD basis. Thus,
the singular values provide quantitative guidance for choosing the size of the POD basis. A typical
approach is to choose r so that∑r

i=1 σ
2
i∑ns

i=1 σ
2
i

> κ, (5)

where κ is a user-specified tolerance, often taken to be 99.9% or greater. The lefthand side of (5) is
often referred to as the relative “energy” captured by the POD modes.

Since the POD basis is constructed from sampled solutions, the POD method makes no
assumptions about the form of the full model—POD applies to both linear and nonlinear systems,
as well as to parametrically-varying systems. One can also include sensitivity information in the
snapshot set, which may be advantageous in some settings (Hay, Borggaard, and Pelletier, 2009;
Hinze and Volkwein, 2008).

For linear time-invariant (LTI) systems, one may also derive the POD in the frequency domain
(Kim, 1998). In the case of a single-input single-output LTI system, the full model can be written

E
du

dt
+Au = Bµ, y = Cu, (6)

where the parameter is now a scalar µ(t), is time-dependent, and enters only through the forcing
term Bµ, where B ∈ Rn×1 is the input forcing vector (i.e., in the LTI case the matrices A and
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c© 2004 John Wiley & Sons, Ltd.



MODEL ORDER REDUCTION 7

E do not depend on µ). The scalar output y is a linear combination of states, as defined by the
output vector C ∈ R1×n.

The frequency-domain formulation of (6) is obtained by considering sinusoidal forcing µ = µ̄eiωt

with frequency ω, leading to the complex frequency-domain equations

(iωE +A) ū = Bµ̄, ȳ = Cū, (7)

where u = ūeiωt and y = ȳeiωt. Thus, another way to generate POD snapshots in the LTI setting
is to sample frequencies ω1, ω2, . . . , ωns and compute the corresponding (complex) snapshots:

ūi = (iωiE −A)−1B, i = 1, 2, . . . , ns. (8)

As discussed in Willcox, Peraire and White (2003), this view of POD shares similarity with the
rational interpolation model reduction methods that employ Krylov subspaces (see Bai (2002),
Freund (2003), Antoulas (2005), Antoulas, Schilders, van der Vorst and Rommes (2008), Beattie
and Gugercin (2010), and Baur et al. (2011)).

In the linear setting, duality between time and frequency domain formulations reveals the
connections between POD and balanced truncation (Lall, 2002; Willcox and Peraire, 2002). In
particular, if the POD snapshots are generated by simulating the system impulse response, one can
interpret the POD as an approximation by quadrature of the reachability Gramian and the POD
basis vectors can be shown to approximate the most reachable modes in the system. Based on this
observation, Willcox and Peraire (2002) proposed an approximate balanced truncation approach
using the POD method of snapshots. The dual (or adjoint) system of (7) is(

iωET +AT
)
z̄ = CT µ̄, ȳ = BT z̄, (9)

where z is the dual state (or adjoint vector). The ith dual snapshot z̄i computed at sample frequency
ωi is then given by

z̄i = (iωiE
T −AT )−1CT . (10)

Just as the standard POD basis vectors can be interpreted as approximating the most reachable
modes in the system, computing a set of dual POD basis vectors using the dual snapshots (10)
extracts the most observable modes in the system. Taking this idea a step further, an appropriate
combination of primal and dual snapshots in a “balanced POD” approximation can be interpreted
as an approximate balanced truncation (Lall, 2002; Willcox and Peraire, 2002; Rowley, 2005).

2.3. POD reduced models

In classical model reduction approaches, POD reduced models are derived and used with an Offline-
Online strategy. The offline phase involves (i) expensive simulations of the full model to generate
the snapshots needed to compute the POD basis, (ii) projection of the full model onto the reduced
subspace defined by the POD basis, and (iii) interpolation or some other strategy to efficiently
represent parametric dependence and/or nonlinear terms. Step (i) was described in Section 2.2;
here we discuss steps (ii) and (iii). The online phase is where the reduced model is employed to
achieve rapid computations.

Derivation of the POD reduced model begins by approximately representing the full state in the
POD basis:

u ≈ V ur, (11)
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8 ENCYCLOPEDIA OF COMPUTATIONAL MECHANICS

where ur ∈ Rr is the reduced state vector containing the POD modal coefficients. Substituting
the approximation (11) into the full model equations leads to a residual, since in general the true
state will not lie exactly in the span of the POD basis. A Galerkin projection imposes orthogonality
between the residual and the POD basis.

We first consider the LTI system (6). The Galerkin projection of the residual leads to the reduced
model

Er
dur
dt

+Arur = Brµ, yr = Crur, (12)

where the reduced model operators are Ar = V TAV ∈ Rr×r, Er = V TEV ∈ Rr×r, Br =
V TB ∈ Rr×1, and Cr = CV ∈ R1×r. yr is the output of the reduced model, which approximates
the full model output y. While a Galerkin projection is the most commonly used, a Petrov-Galerkin
projection is also possible and is desirable in some settings (e.g., to preserve stability). A Petrov-
Galerkin projection requires definition of a left POD basis, W ∈ Rn×r, using, for example, the
balanced POD approach. In this case, the POD reduced model operators become Ar = W TAV ,
Er = W TEV , and Br = W TB (with the same dimensions as above and with Cr unchanged).

In the case of the general nonlinear system (1), one proceeds in the same way to derive the POD
reduced model, yielding the reduced system

Er(µ)
dur
dt

+Ar(µ)ur = fr(µ,ur), (13)

where the nonlinear term is

fr(µ,ur) = V Tf(µ,V ur). (14)

While fr is of reduced dimension, (14) shows that its evaluation requires computations that involve
the large dimension n, making the reduced model expensive to solve. To address this issue, one must
introduce an additional approximation that removes the direct dependence of fr on V ur. The most
successful methods to achieve this combine selective spatial sampling of f with an interpolation
strategy. Among this class of methods, the Missing Point Estimation (Astrid et al., 2008) and Gauss
Newton with approximated tensors (GNAT) (Carlberg et al., 2013) methods both build upon the
gappy POD interpolation method (Everson and Sirovich, 2005), while the Empirical Interpolation
Method (EIM) of Barrault et al. (2004) and its discrete variant, the Discrete Empirical Interpolation
Method (DEIM) of Chaturantabut and Sorensen (2010), conduct interpolation on a low-dimensional
basis for the nonlinear term. We refer to the cited papers for a detailed discussion of these methods.

Similarly, one must address efficient handling of reduced model parametric dependence. Terms in
(13) such as Ar(µ) = V TA(µ)V could prevent the Offline-Online decomposition, since for every
new value of µ one would need to evaluate the full system matrixA(µ) and then project it to obtain
Ar(µ), making the evaluation of the reduced model in the online phase expensive. Strategies to
address this typically involve using one of the interpolation methods mentioned above, possibly
combined with a method that interpolates POD bases computed at different parameter points
(Amsallem and Farhat, 2008). See Benner, Gugercin and Willcox (2015) for an in-depth discussion
of the various ways of handling parametric dependence in reduced models.

Accuracy of POD reduced models is an important question for which rigorous analysis can be
applied in only a limited setting. It is important to note that the error metric (4) applies to the
error in reconstruction of the snapshots, not to the error in solution of the POD reduced model
(i.e., not to the error yr − y). However, derivation of error estimates for POD reduced models are

Encyclopedia of Computational Mechanics. Edited by Erwin Stein, René de Borst and Thomas J.R. Hughes.
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MODEL ORDER REDUCTION 9

possible in some settings, depending on the properties of the underlying full system equations, just
as for the reduced basis method error estimates presented in Section 3.8. See Rathinam and Petzold
(2003), and Hinze and Volkwein (2005) for analysis of the error of POD reduced models.

It is also important to note that the choice of the snapshot set clearly impacts the POD basis
and thus the POD reduced model. Optimal snapshot selection for the case of a time-dependent
system but no parametric dependence is considered in Kunisch and Volkwein (2010), where the
time locations of snapshots are chosen to minimize the error between the POD solution and the
trajectory of the original dynamical system. In many cases the POD is used to create a reduced
model that targets a particular range of system behavior; in those cases, the snapshot set is chosen
based on thorough sampling of the full system model over the desired range of validity of the reduced
model. However, if the system depends on more than two or three parameters, it may not be feasible
to generate snapshots by brute-force sampling. In these cases, one can employ sparse grid sampling
or greedy sampling, described in Sec. 3.6. For example, Bui-Thanh, Willcox and Ghattas (2008)
use greedy sampling to derive a POD reduced model for a thermal problem with 21 parameters.

2.4. Dynamic data-driven adaptation via POD

As mentioned above, classical POD model reduction follows an Offline-Online strategy, where the
reduced model is built once in the offline phase and then used in the online phase. However, in
many applications of interest, data may become available in the online phase. For example, real-
time decision support is one attractive application area for model reduction. The DDDAS paradigm,
discussed in the introduction, is one particular setting where online data are available and could
be used to adapt the reduced model. In real-time decision making in the context of DDDAS, the
involved models and computational methods have to meet two particular requirements. First, a
decision has to be made in real-time (or near real-time) and thus the model runtime must be short.
Second, as the underlying dynamic system changes, the model must adapt to the changed system
by learning from data generated by sensors. The adapted model in turn allows steering of the data
gathering process, which closes the DDDAS loop.

Model reduction offers a solution to the real-time constraint; however, classical model reduction
with the Offline-Online decomposition is contrary to the DDDAS paradigm, which explicitly requires
the dynamic adaptation of the reduced model with the new data received from the sensors during
the online phase. In Peherstorfer and Willcox (2015a), dynamic reduced models are proposed,
which break with the classical but rigid splitting into offline and online phase and allow the
online adaptation of the reduced model. Dynamic reduced models take into account changes in
the underlying system, by directly learning from the data provided by the sensors. To be useful,
this adaptation must be achieved rapidly, without recourse to the computationally expensive full
model.

Consider a system in the context of DDDAS that depends on an observable parameter µ ∈ D
and on a latent parameter η ∈ E . The observable parameter µ describes known properties of the
system, such as material properties and load. In contrast, the latent parameter η describes unknown
properties, such as damage, fatigue, and erosion. The value of the latent parameter is unknown,
except for a nominal latent parameter η0 ∈ E (e.g., “no-damage” state of the system).

Consider a full model that describes a system with observable and latent parameters

Aη(µ)uη(µ) = f(µ). (15)

For ease of exposition, we consider here a full model that is linear in the state uη(µ) but can depend
nonlinearly on the observable µ and latent parameter η. We also consider a steady system (i.e., no
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10 ENCYCLOPEDIA OF COMPUTATIONAL MECHANICS

transient system dynamics, although note that the latent parameter η is permitted to change over
time). In (15), the dependence of the full model operator A and the state u on the latent parameter
is denoted via a subscript, since that parametric dependence is treated differently to the setting
described above for µ. In particular, since the value of η is unknown online, the latent parameter
η cannot be incorporated into a reduced model as just another observable parameter.

We can use the standard POD framework of Sections 2.2 and 2.3 to build a POD basis and
reduced model for the full model (15) defined at the nominal conditions. We denote the nominal
(known) latent parameter by η0. To construct a reduced model for η = η0, the full model is sampled
with respect to the observable parameter at values µ1, . . . ,µm ∈ D and with constant η = η0. This
generates the m snapshots U = [uη0

(µ1), . . . ,uη0
(µm)] ∈ Rn×m. An r-dimensional POD basis

V η0
= [v1, . . . ,vr] ∈ Rn×r is derived from U , and the reduced model

Ãη0
(µ)ũη0

(µ) = f̃η0
(µ) (16)

of the full model (15) is constructed via Galerkin projection. The reduced operator is Ãη0
(µ) ∈

Rr×r, the reduced state is ũη0
(µ) ∈ Rr, and the reduced right-hand side is f̃η0

(µ) ∈ Rr.
The reduced model (16) is only valid for the latent parameter η = η0, and therefore if η changes

to, say, η1 ∈ E , the reduced model (16) becomes obsolete. Recall that we are in the setting of DDDAS
and receive sensor data of the underlying system that informs us (indirectly) about changes in η.
This means that if the latent parameter changes to η = η1, we receive the m′ pieces of sensor data
S = [ûη1

(µm+1), . . . , ûη1
(µm+m′)] ∈ Rn×m′ , where µm+1, . . . ,µm+m′ ∈ D. The sensor samples

ûη1
(µm+i) are approximations of the states uη1

(µm+i) that might be corrupted with noise, for
i = 1, . . . ,m′.

One possibility to adapt the reduced model would be to infer the latent parameter from the sensor
data S using techniques from inverse problems, to assemble the corresponding full model, and,
finally, to construct a new reduced model from scratch; however, this is often computationally too
expensive in the context of real-time decision making and DDDAS. Instead, the dynamic reduced
modeling approach introduced in Peherstorfer and Willcox (2015a) directly adapts the reduced
model with the sensor data, without inferring the latent parameter and without recourse to the full
model.

The adaptation of dynamic reduced models proceeds in two steps. First, the POD basis V η0

is adapted to V η1
. For that, the snapshots in U are replaced by sensor samples in S. Since each

replacement is a rank-1 update to U , the new basis can be computed with runtime costs scaling
only linearly with the number of degrees of freedom n of the full model (Brand, 2006). In the second
step, an additive update δÃη1

(µ) ∈ Rr×r is constructed to obtain the adapted reduced operator

Ãη0
(µ) + δÃη1

. The update δÃη1
(µ) is the solution of the minimization problem

arg min
δÃη1

(µ)∈Rr×r

m+m′∑
i=m+1

∥∥∥(Ãη0
(µ) + δÃη1

(µ)
)
V T
η1
ûη1

(µi)− V T
η1
f(µi)

∥∥∥2

2
, (17)

where ûη1
(µm+1), . . . , ûη1

(µm+m′) ∈ Rr are the sensor samples. If sufficiently many sensor
samples are available, and if the sensor samples are noise-free, then the adapted reduced operator
Ãη0

(µ) + δÃη1
equals the true reduced operator that would be obtained by rebuilding the reduced

model from scratch. The computational procedure derived in Peherstorfer and Willcox (2015a)
splits (17) into r independent minimization problems that can then be solved in parallel.
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MODEL ORDER REDUCTION 11

The dynamic reduced model is adapted directly with the sensor samples. The adaptation avoids
the computational expensive inference of the value of the latent parameter and it avoids the assembly
of the large-scale operator Aη1

(µ) of the full model for the changed latent parameter η1. The
adaptation of a dynamic reduced model can therefore be orders of magnitude faster than rebuilding
a reduced model from scratch.

Similar dynamic data-driven strategies can be used to adapt nonlinear reduced models. The
localized discrete empirical interpolation method (LDEIM) of Peherstorfer et al. (2014) uses machine
learning techniques to construct multiple local DEIM interpolants in the offline phase, each tailored
to a specific system behavior. In the online phase, the method switches between these local
interpolants as the computation proceeds. This keeps the dimension of the local DEIM spaces, and
thus the computational costs, low, while still approximating well a wide range of different system
behaviors. In Peherstorfer and Willcox (2015b), an online adaptive DEIM constructs a reduced
model with POD and the DEIM in the offline phase, and then adapts the DEIM interpolation
points and the basis of the DEIM space with low-rank updates during the online phase. In each
adaptivity step, an update is derived from sparse samples of the full model. The update minimizes
the residual of the DEIM approximation in the Frobenius norm in each step.

2.5. Gappy POD

The gappy POD is a variant of POD that considers missing or “gappy” data. This procedure was
developed by Everson and Sirovich (1995) in the context of facial image reconstruction and was first
applied to reconstruction of PDE solutions in Bui-Thanh, Damodaran and Willcox (2003, 2004).
The gappy POD has also served as the foundation for the nonlinear model reduction methods
of Missing Point Estimation (Astrid et al., 2008) and Gauss Newton with approximated tensors
(GNAT) (Carlberg et al., 2013).

We define a mask vector, which describes for a particular state vector where data are available
and where data are missing. For the state snapshot u, the corresponding mask vector n is defined
as:

ni = 0, if ui is missing

ni = 1, if ui is known,

where ui and ni denote the ith element of the vectors u and n, respectively. Pointwise multiplication
is defined as (n,u)i = niui. The gappy inner product is defined as (u,v)n = ((n,u), (n,v)), and
the induced norm is (‖v‖n)2 = (v,v)n.

Let {vk}rk=1 be the standard POD basis for the snapshot set {uk}mk=1, where all snapshots are
completely known, and the POD basis vectors v are computed as described in Section 2.2. Let g be
another state vector that has some elements missing, with corresponding mask vector n. We wish
to reconstruct the full or “repaired” vector from the incomplete vector g. This setting might arise,
for example, when g represents sensor data that provide sparse measurements of the system state
(e.g., pressure sensors on an aircraft wing), and there is a desire to reconstruct the corresponding
full state information.

The gappy POD defines the intermediate repaired vector g̃ to be a linear combination of r POD
basis vectors,

g̃ =

r∑
i=1

bivi. (18)
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12 ENCYCLOPEDIA OF COMPUTATIONAL MECHANICS

To compute the POD coefficients bi, we minimize the error ε between the original and repaired
vectors, computed over those elements for which data are available:

ε = ‖g − g̃‖2n. (19)

The coefficients bi that minimize the error ε can be found by using the definition (18) and
differentiating (19) with respect to each of the bi in turn. This leads to the linear system of equations

Mb = d, (20)

where

Mij = (vi,vj)n (21)

and

di = (g,vi)n . (22)

Solving equation (20) for b and using (18), defines the intermediate repaired vector g̃. Finally, the
complete g is reconstructed by replacing the missing elements in g by the corresponding repaired
elements in g̃, i.e., set gi = g̃i if ni = 0.

While not discussed here, we also note that if the original snapshot ensemble has incomplete
data, the POD basis vectors can be computed using an iterative gappy approach, see Everson and
Sirovich (1995) and Bui-Thanh, Damodaran and Willcox (2004).

2.6. Summary

POD is a powerful model reduction method, due to its versatility and the wide range of applications
for which it has proven effective. For example, the POD method of snapshots has been used widely
throughout computational fluid dynamics applications such as aeroelasticity (see e.g., Dowell and
Hall, 2001; Lieu, Farhat and Lesoinne, 2006) and flow control (see e.g., Kunisch and Volkwein
(1999); Hinze and Volkwein (2005)). Increases in sensor data availability in systems, combined with
increased on-board computing power, offer new opportunities to dynamically adapt reduced models
and to increase their usefulness in real-time decision-making situations. Early work in dynamic data-
driven adaptation of POD models shows promise and is a productive area to explore further. As
the application of POD model reduction to more complicated systems becomes more widespread,
the question of a priori guarantees of reduced model accuracy and robustness remains an important
open challenge.

3. REDUCED BASIS METHODS

3.1. Introduction

We now consider (hierarchical, Lagrange) reduced basis (RB) approximation and a posteriori error
estimation for linear functional outputs of affinely parametrized elliptic coercive partial differential
equations. These assumptions do not limit the applicability of the methodology to a broader
class of problems. The essential ingredients are: a Galerkin projection onto a low-dimensional
space — dimension reduction; efficient and effective greedy sampling methods for identification of
optimal and numerically stable approximations — rapid convergence; a posteriori error estimation
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procedures — rigorous and sharp bounds for the linear-functional outputs of interest; and Offline-
Online computational decomposition strategies — minimum marginal cost for high performance
in the real-time/embedded (e.g., parameter-estimation, control) and many-query (e.g., design
optimization, multi-model/ scale) contexts. In this overview we describe the basic ideas of reduced
basis approximation methods for rapid and reliable evaluation of input-output relationships in which
the output is expressed as a functional of a field variable that is the solution of an input-parametrized
partial differential equation (PDE). The combination with an efficient a posteriori error estimation
is a key factor for RB methods to be computationally successful.

Parametrized PDEs model several processes that are relevant in applications, such as, e.g.,
unsteady and steady heat and mass transfer, acoustics, and solid and fluid mechanics, but also
electromagnetics or even finance. The input-parameter vector may characterize either the geometric
configuration, some physical properties, or boundary conditions and source terms. The outputs of
interest might be the maximum system temperature, an added mass coefficient, a crack stress
intensity factor, an effective constitutive property, an acoustic waveguide transmission loss, or a
channel flowrate or pressure drop, just to mention a few. Finally, the field variables that connect the
input parameters to the outputs can represent a distribution function, temperature or concentration,
displacement, pressure, or velocity.

The class of problems we consider – the case of linear functional outputs of affinely parametrized
linear elliptic coercive PDEs – is relatively simple, yet relevant to many important applications
in transport (e.g., conduction and convection-diffusion) and continuum mechanics (e.g., linear
elasticity) and proves a convenient expository vehicle for the methodology.

Furthermore, most of the basic concepts introduced in the affine linear elliptic coercive case are
equally crucial — with suitable extension — to more general reduced basis approximation and a
posteriori error estimation methodology, see e.g. reviews already mentioned: Prud’homme et al.
(2002), Rozza et al. (2008), Patera and Rozza (2007), Quarteroni et al. (2011), Rozza (2014),
Hesthaven et al. (2015).

The RB methodology we describe here is motivated by, optimized for, and applied within,
two particular contexts: the real-time context (e.g., parameter-estimation or control ); and the
many-query context (e.g., design optimization or multi-model/scale simulation). Both are crucial
to computational engineering. We note, however, that the RB methods we describe do not replace,
but rather build upon and are measured (as regards accuracy) relative to, a classical discretization
technique (finite element, finite volume, spectral methods, ...): the reduced basis approximates not
the exact solution but rather a “given” finite discretization of (typically) very large dimension Nh.
In short, we pursue an algorithmic collaboration rather than an algorithmic competition with the
classical finite discretization methods.

We provide here a brief outline. In Sec. 3.2 we describe the affine linear elliptic coercive setting;
in Sec. 3.3 we consider classes of piecewise-affine geometry and coefficient parametric variation;
Sec. 3.4 deals with parametric formulation for bilinear and linear forms. Sec. 3.5 is strictly devoted
to reduced basis methodology, in particular in Sec. 3.5.1 we discuss RB Galerkin projection and
optimality; in Sec. 3.6 we describe greedy sampling procedures for optimal space identification; in
Sec. 3.7 we briefly recall the a priori convergence theory of the methodology. In Sec. 3.8 we present
rigorous and relatively sharp a posteriori output error bounds for RB approximations but without
developing here the coercivity-constant lower bounds required by the a posteriori error estimation
procedures. In Sec. 3.9 we make few comments on historical background, current state of the art
and future perspectives of developments for the RB methodology.
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14 ENCYCLOPEDIA OF COMPUTATIONAL MECHANICS

3.2. Linear elliptic coercive affine parametric PDEs

In an abstract form, we consider the following problem: Given µ ∈ D ⊂ RP , for an integer P ≥ 1,
evaluate

se(µ) = L(ue(µ)) , (23)

where ue(µ) ∈ V e(Ω) satisfies

a(ue(µ), v;µ) = F (v) ∀ v ∈ V e . (24)

The superscript e refers to “exact.” Here µ is the input parameter — a P -tuple; D is the parameter
domain — a subset of RP ; se is the scalar output; L is the linear output functional, that is a linear
and bounded functional on V e; ue is the field variable; Ω is bounded spatial domain in Rd (for d = 2
or 3) with Lipschitz boundary ∂Ω; V e is a Hilbert space; and a and F are the bilinear and linear
forms, respectively, associated with our PDE.

We shall exclusively consider second-order elliptic partial differential equations, in which case
V e = H1

ΓD
(Ω) is the subspace of H1

0 (Ω), the one of functions that vanish on the part of ∂Ω where
Dirichlet boundary data are prescribed for ue.

We shall assume that the bilinear form a(·, ·;µ): V e × V e → R is continuous (with continuity
constant γe(µ)) and coercive (with coercivity constant αe(µ)) over V e for all µ in D. We further
assume that F is a bounded linear functional over V e. Under these standard hypotheses on a and
F , (24) admits a unique solution, thanks to Lax-Milgram lemma.

We assume that (i) a is symmetric and furthermore (ii) L = F . The last assumption is made
for simplification and it means that we are in the so called compliant case (Rozza et al., 2008), a
situation occurring quite frequently in engineering problems. Extension to the non-compliant case
in which now a may be non-symmetric and L may be any bounded linear functional over V e is
described in Hesthaven et al., 2015, for example.

We shall make one last assumption, crucial to the enhancement of computational efficiency: the
parametric bilinear form a is affine w.r.t. the parameter µ, by which we mean

a(w, v;µ) =

Q∑
q=1

Θq(µ) aq(w, v) ∀v, w ∈ V e,µ ∈ D . (25)

Here, for q = 1, . . . , Q, Θq : D → R is a µ-dependent function, whereas aq : V e × V e → R is µ-
independent. In actual practice, F may also depend affinely on the parameter: in this case, F (v;µ)
may be expressed as a sum of Qf products of parameter-dependent functions and parameter-
independent bounded linear functionals on V e.

We next proceed to the finite dimensional approximation of problem (24) by any kind of Galerkin
method, for instance the finite element (FE) method: Given µ ∈ D ⊂ RP , evaluate

sNh(µ) = F (uNh(µ))

(recall our compliance assumption: L = F ), where uNh(µ) ∈ V Nh ⊂ V e satisfies

a(uNh(µ), v;µ) = F (v) ∀ v ∈ V Nh . (26)

Here V Nh ⊂ V e is a sequence of FE approximation spaces indexed by dim(V Nh) = Nh. It follows
directly from our assumptions on a, F , and V Nh that (26) admits a unique solution. Our RB field
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and RB output shall approximate, for given Nh, the FE solution uNh(µ) and FE output sNh(µ)
(hence, indirectly, ue(µ) and se(µ)).

We can now define the energy inner product and the energy norm for elements of V e:

(w, v)µ = a(w, v;µ) ∀ w, v ∈ V e , (27)

||w||µ = (w,w)
1/2
µ ∀ w ∈ V e . (28)

Next, for given µ ∈ D and non-negative real τ ,

(w, v)V = (w, v)µ + τ(w, v)L2(Ω) ∀ w, v ∈ V e , (29)

‖w‖V = (w,w)
1/2
V ∀ w, v ∈ V e ,

shall define our V inner product and norm, respectively.

Finally, we can now define more precisely our coercivity and continuity constants (and coercivity
and continuity conditions). In particular, we define the exact and FE coercivity constants as

αe(µ) = inf
w∈V e

a(w,w;µ)

‖w‖2V
, (30)

and

αNh(µ) = inf
w∈V Nh

a(w,w;µ)

‖w‖2V
, (31)

respectively. It follows from the coercivity hypothesis that there exists a positive constant α0 s.t.
αe(µ) ≥ α0 > 0 ∀µ ∈ D, and that αNh(µ) ≥ αe(µ) ∀µ ∈ D. Similarly, we define the exact and FE
continuity constants as

γe(µ) = sup
w∈V e

sup
v∈V e

a(w, v;µ)

‖w‖V ‖v‖V
, (32)

and

γNh(µ) = sup
w∈V Nh

sup
v∈V Nh

a(w, v;µ)

‖w‖V ‖v‖V
, (33)

respectively. It follows from the continuity hypothesis on a that γe(µ) is finite ∀µ ∈ D, and that
γNh(µ) ≤ γe(µ) ∀µ ∈ D.

3.3. Geometric parametrization

We introduce the family of geometric parametric variations consistent with our affine restriction
(25) as a general class of scalar problems that undergo the abstract formulation of Sec. 3.2. For
simplicity, we consider only the scalar case; the vector case permits an analogous treatment.
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16 ENCYCLOPEDIA OF COMPUTATIONAL MECHANICS

3.3.1. Affine geometry precondition. The RB method requires that Ω be a parameter-independent
domain: if we wish to consider linear combinations of pre-computed solutions (also called
“snapshots”), the latter must be defined relative to a common spatial configuration. Thus to permit
geometric variation we must interpret Ω, our parameter-independent reference domain, as the pre-
image of Ωo(µ), the parameter-dependent “actual” or “original” domain of interest. The geometric
transformation will yield variable (parameter dependent) coefficients of linear and bilinear forms in
the reference domain that, under suitable hypotheses to be discussed below, will take the requisite
affine form (25).

We shall assume that, for all µ in D, Ωo(µ) is expressed as a domain decomposition such that

Ωo(µ) = ∪Kdom

k=1 Ω
k

o(µ) , (34)

where the Ωko(µ), 1 ≤ k ≤ Kdom, are mutually non-overlapping open subdomains†,

Ωko(µ) ∩ Ωk
′

o (µ) = ∅, 1 ≤ k < k′ ≤ Kdom . (35)

We now choose a value µref ∈ D and define our reference domain as Ω = Ωo(µref). It immediately
follows from (34) and (35), that

Ω = ∪Kdom

k=1 Ω
k
, (36)

Ωk ∩ Ωk
′

= ∅, 1 ≤ k < k′ ≤ Kdom , (37)

for Ωk = Ωko(µref), 1 ≤ k ≤ Kdom.
We will build our FE approximation on a very fine FE subtriangulation of the coarse domain

decomposition partition. The latter can be called, for simplicity, the RB triangulation of Ω. (Recall
that both the FE and RB approximations are defined over the reference domain.) Note that we
purposely define Kdom with respect to the exact problem, rather than the FE approximation: Kdom

can not depend on the FE subgrid to be meaningful. This FE subtriangulation ensures that the
FE approximation accurately treats the perhaps discontinuous coefficients (arising from property
and geometry variation) associated with the different regions; the subtriangulation also plays an
important role in the generation of the affine representation (25).

We emphasize that the choice of µref only affects the accuracy of the underlying FE approximation
upon which the RB discretization and a posteriori error estimator is built: typically a value of µref

at the “center” of D minimizes distortion and reduces the size Nh of the finite element problem
necessary to yield a given acceptable FE error over D.

We can treat any original domain Ωo(µ) that admits a domain partition (34)–(35) for which
∀µ ∈ D,

Ω
k

o(µ) = T k(Ω
k
;µ), 1 ≤ k ≤ Kdom , (38)

for affine mappings T k(·;µ): Ωk → Ωko(µ), 1 ≤ k ≤ Kdom, that are:
(i) individually bijective (they induce the same subdivision from either side of an interface), and

†Typically the different subdomains correspond to different materials and hence material properties, or more generally
different (discontinuously varying in space) PDE coefficients; however the subdomains may also be introduced for
algorithmic purposes to ensure well-behaved mappings.
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(ii) collectively continuous,

T k(x;µ) = T k′(x;µ) ∀ x ∈ Ω
k ∩ Ω

k′

, 1 ≤ k < k′ ≤ Kdom . (39)

The affine geometry precondition is a necessary condition for affine parameter dependence as defined
in (25).

We now define the bijective affine mappings more explicitly: for 1 ≤ k ≤ Kdom, any µ in D, and
any x ∈ Ωk,

T ki (x;µ) = Cki (µ) +

d∑
j=1

Gki j(µ) xj , 1 ≤ i ≤ d , (40)

for given Ck: D → Rd and Gk: D → Rd×d. We can then define the associated Jacobians

Jk(µ) = |det(Gk(µ))|, 1 ≤ k ≤ Kdom , (41)

where det denotes determinant; note the Jacobian is constant in space over each subdomain. We
further define, for any µ ∈ D,

Dk(µ) = (Gk(µ))−1, 1 ≤ k ≤ Kdom ; (42)

this matrix shall prove convenient in subsequent transformations involving derivatives.
We may interpret our local mappings in terms of a global transformation. In particular, for any

µ ∈ D, the local mappings (38) induce a global bijective piecewise-affine transformation T ( · ;µ):
Ω→ Ωo(µ): for any µ ∈ D,

T (x;µ) = T k(x;µ), k = min
{k′∈{1,...,Kdom} | x∈Ω

k′}
k′; (43)

note the one-to-one property of this mapping (and, hence the arbitrariness of our “min” choice
in (43)) is ensured by the interface condition (39). We can further demonstrate that these global
continuous mappings are compatible with our second-order PDE variational formulation: for any
µ ∈ D, given any wo ∈ H1(Ωo(µ)), w = wo ◦ T ∈ H1(Ω); this ensures that our mapped problem
on the reference domain is of the classical conforming type.

Although this concludes a very basic formal exposition of admissible geometry variations, the
application of these conditions requires familiarity with the scope of the affine mappings (40). In
Sec. 3.4 we discuss the incorporation of these affine mappings into our weak form.

3.4. Parametric bilinear forms

As already indicated, we shall consider here only the scalar case; the vector case, for instance that
arising from linear elasticity, allows an analogous treatment.

3.4.1. Formulation on “original” domain Our problem is initially posed on the “original” domain
Ωo(µ), which we assume realizes the affine geometry precondition as described in the previous
section. We shall assume for simplicity that V e

o (µ) = H1
0 (Ωo(µ)), which corresponds to homogeneous

Dirichlet boundary conditions over the entire boundary ∂Ωo(µ); we subsequently discuss natural
(Neumann and Robin) conditions.
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Given µ ∈ D, we evaluate
se

o(µ) = Fo(ue
o(µ)) ,

where ue
o(µ) ∈ V e

o (µ) satisfies

ao(ue
o(µ), v;µ) = Fo(v) ∀v ∈ V e

o (µ) .

We now place conditions on ao and Fo such that, in conjunction with the affine geometry
precondition, we are ensured an affine expansion of the bilinear form.

In particular, we require ao(·, ·;µ): H1(Ωo(µ))×H1(Ωo(µ))→ R to be expressed as

ao(w, v;µ) =

Kdom∑
`=1

∫
Ωl

o(µ)

[
∂w
∂xo1

∂w
∂xo2

w
]
Ko,` ij(µ)


∂v
∂xo1

∂v
∂xo2

v

 dΩo ,
(44)

where xo = (xo1, xo2) denotes a point in Ωo(µ). Here, for 1 ≤ ` ≤ Kdom, Ko,` : D → R3×3 is
a given symmetric positive definite matrix, which in turn ensures coercivity of our bilinear form;
the upper 2 × 2 principal submatrix of Ko,` is the usual tensor conductivity/diffusivity; the (3, 3)
element of Ko,` represents the identity operator, leading to the mass matrix. The (3, 1), (3, 2) (and
(1, 3), (2, 3)) elements of Ko,` permit first derivative (or convective) terms.

Similarly, we require that Fo: H1(Ωo(µ))→ R can be expressed as

Fo(v) =

Kdom∑
`=1

∫
Ωl

o(µ)

Fo,`(µ)vdΩo ,

where, for 1 ≤ ` ≤ Kdom, Fo,`: D → R.

Formulation on reference domain. We now apply standard techniques to transform the problem
statement over the original domain to an equivalent problem statement over the reference domain:
given µ ∈ D, we find

se(µ) = F (ue(µ)) ,

where ue(µ) ∈ V e = H1
0 (Ω) satisfies

a(ue(µ), v;µ) = F (v) ∀v ∈ V e .

We may then identify se(µ) = se
o(µ) and ue(µ) = ue

o (µ) ◦ T (·;µ).
The transformed bilinear form a can be expressed as

a(w, v;µ) =

Kdom∑
k=1

∫
Ωk

[
∂w
∂x1

∂w
∂x2

w
]
Kkij(µ)


∂v
∂x1

∂v
∂x2

v

 dΩ , (45)

where x = (x1, x2) denotes a point in Ω. Here the Kk : D → R3×3, 1 ≤ k ≤ Kdom, are symmetric
positive definite matrices given by

Kk(µ) = Jk(µ) Gk(µ)Ko,`(µ)(Gk(µ))T , (46)
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for 1 ≤ k ≤ Kdom; the Gk: D → R3×3, 1 ≤ k ≤ Kdom, are given by

Gk(µ) =

 Dk(µ)
0
0

0 0 1

 ; (47)

Jk(µ) and Dk(µ), 1 ≤ k ≤ Kdom, are given by (41) and (42), respectively.
Similarly, the transformed linear form can be expressed as

F (v) =

Kdom∑
k=1

∫
Ωk

Fk(µ)vdΩ .

Here Fk: D → R, 1 ≤ k ≤ Kdom, is given by

Fk = Jk(µ)Fo,`(µ), 1 ≤ k ≤ Kdom .

We note that, in general, the Kk(µ) and Fk(µ), 1 ≤ k ≤ Kdom, will be different for each
subdomain Ωk. The differences can arise either due to coefficient variation, or to geometry variation,
or both. We thus require, as already indicated earlier, that the FE approximation be built upon a
subtriangulation of the RB triangulation: discontinuities in PDE coefficients are thereby restricted
to element edges to ensure rapid convergence; and identification/extraction of the terms in the affine
expansion (25) is more readily effected, as we now discuss.

3.4.2. Affine forms. We focus here on a, though F admits a similar treatment. We simply expand
the form (45) by considering in turn each subdomain Ωk and each entry of the diffusivity tensor
Kkij , 1 ≤ i, j ≤ 3, 1 ≤ k ≤ Kdom. Thus,

a(w, v;µ) = K1
11(µ)

∫
Ω1

∂w

∂x1

∂v

∂x1
dΩ

+K1
12(µ)

∫
Ω1

∂w

∂x1

∂v

∂x2
dΩ + · · ·+KKdom

33 (µ)

∫
ΩKdom

wvdΩ .

(48)

We can then identify each component in the affine expansion: for each term in (48), the pre-factor
represents Θq(µ), while the integral represents aq.

Taking into account the symmetry of the bilinear form, such that only the (1, 1), (1, 2) (= (2, 1)),
(2, 2), and (3, 3) entries of Ko,`(µ) — and hence Kk(µ) — must be accommodated, there are at most
Q = 4K terms in the affine expansion. The Θq(µ) are given by, for the obvious numbering scheme
Θ1(µ) = K1

11(µ),Θ2(µ) = K1
12(µ), . . . ,Θ5(µ) = K2

11(µ), . . . ,ΘQ(µ) = KKdom
33 (µ); the aq(w, v) are

given by

a1(w, v) =

∫
Ω1

∂w

∂x1

∂v

∂x1
dΩ ,

a2(w, v) =

∫
Ω1

∂w

∂x1

∂v

∂x2
dΩ ,

...

a5(w, v) =

∫
Ω2

∂w

∂x1

∂v

∂x1
dΩ ,

...

aQ(w, v) =

∫
ΩKdom

wvdΩ .
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This identification constitutes a constructive proof that the affine geometry precondition and the
property/coefficient variation permitted by (44) do indeed yield a bilinear form which can be
expressed in the requisite affine form (25).

We close with a discussion of generality. In fact, the conditions we provide are sufficient but not
necessary. For example, we can permit affine polynomial dependence on xo in both Ko,k(xo;µ) and
Fo,k(xo;µ) and still ensure an affine development, (25); furthermore, in the absence of geometric
variation, Ko,`(xo;µ) and Fo,`(xo;µ) can take on any “separable” form in x,µ. However, the affine
expansion (25) is by no means completely general: for more complicated parametric dependencies
non-affine techniques held by empirical interpolation methods family (Barrault et al., 2004; Grepl
et al., 2007; Rozza, 2009) must be invoked. In Hesthaven et al. (2015) several variations of empirical
interpolation methods are recalled and compared.

3.5. The reduced basis method

We are eventually ready to illustrate the essence of RB methodology.

3.5.1. Reduced basis approximation and spaces. We assume that we are given a FE approximation
space V Nh of dimension Nh. In order to define a particular reduced basis space, we start by
considering a fixed Nh. We then introduce, given a positive integer Nmax, an associated sequence
of what shall ultimately be reduced basis approximation spaces: for N = 1, . . . , Nmax, XNh

N is a
N -dimensional subspace of V Nh ; we further suppose that

V Nh
1 ⊂ V Nh

2 ⊂ · · ·V Nh

Nmax
⊂ V Nh . (49)

As we shall see, the nested or hierarchical condition (49) is important in ensuring memory efficiency
of the resulting RB approximation. As we will mention in Sec. 3.9, there are several classical RB
proposals — Taylor, Lagrange (Porsching, 1985), and Hermite (Ito and Ravindran, 1998) spaces
— as well as several more recent alternatives — such as Proper Orthogonal Decomposition (POD)
spaces, as introduced in Sec. 2. All of these spaces “focus” in one fashion or another on a low-
dimensional, smooth parametric manifold,MNh = {u(µ)|µ ∈ D}: the set of fields engendered as the
input varies over the parameter domain. In the case of single parameter, the parametrically induced
manifold is a one-dimensional filament within the infinite dimensional space which characterizes
general solutions to the given PDE. Clearly, generic approximation spaces are unnecessarily rich
and hence unnecessarily expensive within the parametric framework. Much of what we present — in
particular, all the discussion of this section related to optimality, discrete equations, conditioning,
and Offline-Online procedures, and all that of Sec. 3.8 related to a posteriori error estimation —
shall be relevant to any of these reduced basis spaces/approximations.

However, some of what we shall present, in particular related to sampling strategies in Sec. 3.6,
is restricted to the particular reduced basis space which shall be our primary focus: the Lagrange
reduced basis spaces (Porsching, 1985), which we denote by WNh

N . In order to define a (hierarchical)

sequence of Lagrange spaces WNh

N , 1 ≤ N ≤ Nmax, we first introduce a master set of parameter
points µn ∈ D, 1 ≤ n ≤ Nmax. We then define, for given N ∈ {1, . . . , Nmax}, the Lagrange
parameter samples

SN = {µ1, . . . ,µN} , (50)

and associated Lagrange RB spaces

WNh

N = span{uNh(µn), 1 ≤ n ≤ N} . (51)
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Figure 1: The “snapshots” uNh(µn), 1 ≤ n ≤ N , on the parametric manifold MNh

We observe that, by construction, these Lagrange spaces WNh

N satisfy (49): the samples (50) are
nested, that is S1 = {µ1} ⊂ S2 = {µ1,µ2} ⊂ · · · ⊂ SNmax

; the Lagrange RB spaces (51) are
hierarchical, that is WNh

1 = span{uNh(µ1)} ⊂WNh
2 = span{uNh(µ1), uNh(µ2)} ⊂ · · · ⊂WNh

Nmax
.

The uNh(µn), 1 ≤ n ≤ Nmax, are often referred to as snapshots of the parametric manifold
MNh . For reasons that will become clear subsequently, these snapshots are more precisely referred
to as retained snapshots. We depict the retained snapshots graphically in Fig. 1. It is clear that,
if indeed the manifold is low-dimensional and smooth (a point we return to later), then we would
expect to well approximate any member of the manifold — any solution uNh(µ) for some µ in D
— in terms of relatively few retained snapshots. However, we must first ensure that we can choose
a good combination of the available retained snapshots (Sec. 3.5.2), that we can represent the
retained snapshots in a stable RB basis and efficiently obtain the associated RB basis coefficients
(Sec. 3.5.3), and finally that we can choose our retained snapshots — in essence, the parameter
sample SNmax

— optimally (Sec. 3.6).

3.5.2. Galerkin projection. For our particular class of equations, Galerkin projection is arguably
the best approach. Given µ ∈ D, evaluate

sNh

N (µ) = F (uNh

N (µ)) ,

where uNh

N (µ) ∈ V Nh

N ⊂ V Nh , indicating here a general RB space (not necessarly a Lagrange space)

with V Nh

N , satisfies

a(uNh

N (µ), v;µ) = F (v) ∀v ∈ V Nh

N . (52)

We emphasize that our ultimate interest is the output prediction: the field variable serves as an
intermediary. We immediately obtain (from Céa’s lemma) the classical optimality result in the
energy norm (28)

||uNh(µ)− uNh

N (µ)||µ ≤ inf
w∈V Nh

N

||uNh(µ)− w||µ ; (53)

in this norm, the Galerkin procedure automatically selects the best combination of snapshots. It is
also readily derived that

sNh(µ)− sNh

N (µ) = ||uNh(µ)− uNh

N (µ)||2µ ; (54)
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the output converges as the square of the energy error. Although this latter result depends critically
on the compliance assumption, extension via adjoint approximations to the non-compliant case is
possible; see Rozza et al., 2008.

We now consider the discrete equations associated with the Galerkin approximation (52). We
must first choose an appropriate basis for our space: incorrect choice of the RB basis can lead
to very poorly conditioned systems; this is immediately apparent in the Lagrange case — if WNh

N

provides rapid convergence then, by construction, the snapshots of (51) will be increasingly co-linear
as N increases. Towards this end, we apply the orthonormalization Gram-Schmidt process in the
(·, ·)V inner product to our snapshots uNh(µn), 1 ≤ n ≤ Nmax, to obtain mutually orthonormal
functions ζNh

n , 1 ≤ n ≤ Nmax: (ζNh
n , ζNh

m )V = δnm, 1 ≤ n,m ≤ Nmax, where δnm is the Kronecker-
delta symbol. We then choose the sets {ζNh

n }n=1,...,N as our bases for WNh

N , 1 ≤ N ≤ Nmax.
We now insert

uNh

N (µ) =

N∑
m=1

uN m(µ)ζNh
m , (55)

and v = ζNn , 1 ≤ n ≤ N , into (52) to obtain the RB algebraic system

N∑
m=1

a(ζNh
m , ζNh

n ;µ) uN m(µ) = F (ζNh
n ), 1 ≤ n ≤ N , (56)

for the RB coefficients uN m(µ), 1 ≤ m ≤ N ; we can subsequently evaluate the RB output prediction
as

sNh

N (µ) =

N∑
m=1

uN m(µ)F (ζNh
m ) . (57)

By using the Rayleigh quotient as done in (4.51), it can be readily proven PR07 that the condition
number of the matrix a(ζNh

m , ζNh
n ;µ), 1 ≤ n,m ≤ N , is bounded by γe(µ)/αe(µ), independently of

N and Nh, owing to the orthogonality of the {ζNh
n } and to (30) and (31).

3.5.3. Offline-Online computational procedure. As anticipated for POD in Sec. 2.3, also the RB
system (56) is nominally of small size: a set of N linear algebraic equations in N unknowns. However,
the formation of the associated stiffness matrix, and indeed the right-hand-side vector, involves
entities ζNh

n , 1 ≤ n ≤ N, associated with our Nh-dimensional FE approximation space. If we must
invoke FE fields in order to form the RB stiffness matrix for each new value of µ the marginal cost
per input-output evaluation µ→ sN (µ) will remain unacceptably large.

Fortunately, we can appeal to affine parameter dependence to construct very efficient Offline-
Online procedures, as we now discuss. In particular, we note that system (56) can be expressed,
thanks to (25), as

N∑
m=1

(
Q∑
q=1

Θq(µ) aq(ζNh
m , ζNh

n )

)
uN m(µ) = F (ζNh

n ), 1 ≤ n ≤ N . (58)

We observe that the ζNh are now isolated in terms that are independent of µ and hence that can
be pre-computed in an Offline-Online procedure.
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In the Offline stage, we first compute the uNh(µn), 1 ≤ n ≤ Nmax, and subsequently the ζNh
n ,

1 ≤ n ≤ Nmax; we then form and store the terms

F (ζNh
n ), 1 ≤ n ≤ Nmax , (59)

and

aq(ζNh
m , ζNh

n ), 1 ≤ n,m ≤ Nmax, 1 ≤ q ≤ Q . (60)

The Offlline operation count depends on Nmax, Q, and Nh.
In the Online stage, we retrieve (60) to form

Q∑
q=1

Θq(µ)aq(ζNh
m , ζNh

n ), 1 ≤ n,m ≤ N ; (61)

we solve the resulting N ×N stiffness system (58) to obtain the uN m(µ), 1 ≤ m ≤ N ; and finally
we access (59) to evaluate the output (57). The Online operation count is O(QN2) to perform the
sum (61), O(N3) to invert (58) — note that the RB stiffness matrix is full, and finally O(N) to
effect the inner product (57). The Online storage (the data archived in the Offline stage) is thanks
to the hierarchical condition (49) only O(QN2

max) + O(Nmax): for any given N , we may extract
the necessary RB N ×N matrices (respectively, N -vectors) as principal submatrices (respectively,
principal subvectors) of the corresponding Nmax ×Nmax (respectively, Nmax) quantities.

The Online cost (operation count and storage) to evaluate µ → sNh

N (µ) is thus independent of
Nh. The implications are two-fold: first, if N is indeed small, we will achieve very fast response
in the real-time and many-query contexts; second, we may choose Nh very conservatively — to
make sure that the error between the exact and FE predictions is very small — without adversely
affecting the Online marginal cost.

We now turn to a more detailed discussion of sampling and (in Section 3.7) convergence in order
to understand how, to a certain extent, why, we can achieve high accuracy for N independent of
Nh and indeed N � Nh.

3.6. Sampling strategies

We first indicate a few preliminaries, then we provide one example of sampling strategies.
Let Ξ be a generic finite sample of points in D that will serve as surrogate for D in the calculation

of errors (and, in Section 3.8, error bounds) over the parameter domain. Typically these samples
are chosen by Monte Carlo methods with respect to a uniform or log-uniform density: Ξ is however
sufficiently large to ensure that the reported results are insensitive to further refinement of the
parameter sample.

Given a function y: D → R, we define

‖y‖L∞(Ξ) = max
µ∈Ξ
|y(µ)| , ‖y‖Lp(Ξ) =

(
|Ξ|−1

∑
µ∈Ξ

|y|p(µ)
)1/p

.

Here |Ξ| denotes the cardinality of the test sample Ξ. Given a function z : D → V Nh (or V e), we
then define

‖z‖L∞(Ξ;V ) = max
µ∈Ξ
‖z(µ)‖V , ‖z‖Lp(Ξ;V ) −

(
|Ξ|−1

∑
µ∈Ξ

‖z(µ)‖pV
)1/p

.
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We denote the particular samples which shall serve to select our RB space — or train our RB
approximation — by Ξtrain. The cardinality of Ξtrain will be denoted |Ξtrain| = ntrain. We note
that although the test samples Ξ serve primarily to understand and assess the quality of the RB
approximation and a posteriori error estimators, the train samples Ξtrain serve to generate the RB
approximation. The choice of ntrain and Ξtrain thus have important Offline and Online computational
implications.

We now illustrate a sample strategy particular to RB Lagrange spaces. The method can be viewed
as a heuristic (more precisely, sub-optimal) solution to the L∞(Ξtrain;X) optimization problem
analogous to the L2(Ξtrain;X) POD optimization problem (Sec. 2).

We are given Ξtrain and Nmax, as well as S1 = {µ1}, WNh Greedy
1 = span{uNh(µ1)}. In actual

practice we may set Nmax either directly, or indirectly through a prescribed error tolerance. Then,
for N = 2, . . . , Nmax, we find

µN = arg max
µ∈Ξtrain

∆N−1(µ) ,

set SN = SN−1 ∪ {µN}, and update WNh Greedy
N = WNh Greedy

N−1 ∪ span{uNh(µN )}. As we shall
describe in detail in Section 3.8, ∆N (µ) is a sharp, asymptotically inexpensive a posteriori error
bound for ‖uNh(µ)− uNh

N (µ)‖V .
Roughly, at iteration N this algorithm, called greedy Lagrange RB algorithm, appends to the

retained snapshots that particular candidate snapshot — over all candidate snapshots uNh(µ),
µ ∈ Ξtrain — which is predicted by the a posteriori error bound to be the least well approximated
by the RB prediction associated to WNh Greedy

N−1 .
An analogous greedy procedure can be developed also in the energy norm (Rozza et al. , 2008)

to build WNh Greedy,en
N , being this norm particularly relevant in the compliant case, since the error

in the energy norm is directly related to the error in the output (see Section 3.5.2).

3.7. Convergence of RB approximations

In this section we illustrate some convergence results for problems depending on one or several
parameters.

3.7.1. A priori convergence theory: single parameter case. We present from Maday et al. (2002a),
Maday et al. (2002b), Patera, Rozza (2007) an a priori theory for RB approximations associated
with specific non-hierarchical Lagrange spaces WNh ln, 1 ≤ N ≤ Nmax, given by

WNh ln
N = span{uNh(µnN ), 1 ≤ n ≤ N} , (62)

for the parameter points given by

µnN = µmin exp

{
n−1
N−1 ln

(
µmax

µmin

)}
, 1 ≤ n ≤ N, 1 ≤ N ≤ Nmax . (63)

We denote the corresponding RB approximation by uNh ln
N .

The a priori theory described below suggests that the spaces (62) — which we shall denote
“equi-ln” spaces — contain certainly optimality properties, though we shall observe that the more
automatic greedy sample selection procedure do as just as well (and perhaps even better for larger
N). We note the analysis presented here in fact is relevant to a large class of single parameter
coercive problems. If we consider a simple thermal block problem presented in Maday et al. (2002a)
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Figure 2: Schematic of the RB approximation process

with the single parametric conductivity in only one of the two sub-blocks and the parameter domain
D = [µmin, µmax] = [1/

√
µr,
√
µr], we have the following result:

Proposition: given general data F , we obtain that for any N ≥ 1 + Cµr
, and for all µ ∈ D,

||uNh(µ)− uNh ln
N (µ)||µ

||uNh(µ)||µ
≤ exp

{
− N − 1

Cµr

}
, (64)

where Cµr
= [2e lnµr] and [ ] returns the smallest integer greater than or equal to its real argument.

Note we can directly derive from (64) and (54) a bound on the relative (compliant) output error.
The proof is a “parameter” version of the standard (finite element) variational arguments, see

Patera and Rozza (2007). In particular, we first invoke (53); we then take as our candidate w
a high-order polynomial interpolant in the parameter µ of uNh(µ); we next apply the standard
Lagrange interpolant remainder formula; finally, we appeal to an eigenfunction expansion to bound
the parametric (sensitivity) derivatives and optimize the order of the polynomial interpolant. For
the complete proof and more considerations, see Patera and Rozza (2007). We note that the RB
convergence estimate (64), relative to the model problem we have considered, relies on parameter
smoothness and not on the FE grid (through Nh); the exponent in the convergence rate depends
on N and logarithmically on µr.

3.7.2. Multiparametric convergence. As already highlighted in the previous section, the key to RB
convergence in higher parameter dimensions is the role of the PDE and field variable in determining
appropriate sample points and combinations of snapshots. We illustrate the process schematically
in Fig. 2: the RB field approximation, via the PDE residual, yields the error bound; the error
bound, in turn, facilitates the greedy selection of good sample points; the Galerkin projection then
provides the optimal combination of retained snapshots; finally, the RB output approximation —
application of the output functional — inherits the good properties of the RB field variable (54).
The Greedy sample points are quite non-intuitive and very far from the obvious (and inefficient)
uniform distribution. In general, however, we do observe clustering near the boundaries of D, as we
might expect from classical approximation theory.

The computational success of the (implicit) complicated process described by Figure 2 is in fact
also responsible for the failure, at present, to provide any general a priori convergence theory:
we can not construct an “optimal” approximant (like the piecewise polynomial interpolant in FE
error analysis) since a priori we can neither predict an efficient sample nor construct an effective
parametric interpolant.

We can anticipate that for a good set of points and from Galerkin a good combination of
retained snapshots, we should obtain rapid convergence: uNh(µ) ∈ V Nh — the field we wish to
approximate by the RB method — perforce resides on the parametrically induced low-dimensional,
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smooth manifoldMNh = {uNh(µ)|µ ∈ D}‡; the essential role of parametric smoothness — already
exploited in Sec. 3.7.1 for the single-parameter case — was identified in Fink and Rheinboldt (1983)
and Porsching (1985). However, the fact that a good set of points (and hence a good Lagrange
RB space) must exist, and that the greedy algorithm will identify any good set of points is a
topic of current research, see also Buffa et al. (2012), De Vore et al. (2013), Lassila et al. (2012),
Chen et al. (2014). Note in all cases we consider RB approximations associated with the spaces

WNh

N = WNh Greedy,en
N .

A last remark about the spatial dimensionality which plays little role in RB convergence: it follows
that the relative efficiency of the RB approach — relative to direct FE evaluation — increases with
increasing spatial dimension (see, for example, Rozza et al., 2008).

3.8. A posteriori error estimation

Effective a posteriori error bounds for the quantity of interest — our output — are crucial both
for the efficiency and the reliability of RB approximations. As regards efficiency (related to the
concept of “adaptivity” within the FE context), error bounds play a role in both the Offline and
Online stages. In the greedy algorithm of Sec. 3.6, the application of error bounds (as surrogates for
the actual error) permits significantly larger training samples Ξtrain ⊂ D at greatly reduced Offline
computational cost. These more extensive training samples in turn engender RB approximations
which provide high accuracy at greatly reduced Online computational cost. The error bounds
also serve directly in the Online stage — to find the smallest RB dimension N that achieves the
requisite accuracy — to further optimize Online performance. In short, a posteriori error estimation
allows control of the error which in turn permits reduction of the computational effort. We should
emphasize that a posteriori output error bounds are particularly important for RB approximations.
First, RB approximations are ad hoc: each problem is different as regards discretization. Second,
RB approximations are typically pre-asymptotic concerning the convergence error: we will choose
N quite small — before any “tail” in the convergence rate. Third, the RB basis functions can not
be directly related to any spatial or temporal scales: physical intuition is of little value. And fourth
and finally, the RB approach is typically applied in the real-time context: there is no time for Offline
verification; errors are immediately manifested and often in deleterious ways. There is, thus, even
greater need for a posteriori error estimation in the RB context than in the much more studied FE
context.

The motivations for error estimation in turn place requirements on our error bounds. First, the
error bounds must be rigorous — valid for all N and for all parameter values in the parameter
domain D: non-rigorous error “indicators” may suffice for adaptivity, but not for reliability. Second,
the bounds must be reasonably sharp: an overly conservative error bound can yield inefficient
approximations (N too large) or suboptimal engineering results (unnecessary safety margins); design
should be dictated by the output and not the output error. And third, the bounds must be very
efficient : the Online operation count and storage to compute the RB error bounds — the marginal
or asymptotic average cost — must be independent of Nh. Error bounds could also be developed
for the gradient of the solution, for example for velocity and pressure in potential flows (Rozza,

‡As regards smoothness, we note that for Θq ∈ C∞(D), 1 ≤ q ≤ Q, it can be shown under our coercivity, continuity,

and affine hypotheses of Sec. 3.2 that ‖DσuNh (µ)‖X is bounded by a constant C|σ| (independent of Nh) for all
µ ∈ D; here DσuNh (µ) refers to the σ multi-index derivative of uNh with respect to µ.
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2011).

3.8.1. Preliminaries. The central equation in a posteriori theory is the error residual relationship
(see Sec. 4.6.2). In particular, it follows from the problem statements for uNh(µ), (26), and uNh

N (µ),

(52), that the error eNh(µ) = e(µ) = uNh(µ)− uNh

N (µ) ∈ V Nh satisfies

a(e(µ), v;µ) = r(v;µ) ∀ v ∈ V Nh . (65)

Here r(v;µ) ∈ (V Nh)′, the dual space to V Nh , is the residual,

r(v;µ) = F (v;µ)− a(uNh

N (µ), v;µ) ∀ v ∈ V Nh . (66)

(65) directly follows from the definition (66), F (v;µ) = a(uNh(µ), v;µ), ∀ v ∈ V Nh , bilinearity of
a, and the definition of e(µ).

It shall prove convenient to introduce the Riesz representation of r(v;µ) (see Theorem 2.1):
ê(µ) ∈ V Nh satisfies

(ê(µ), v)V = r(v;µ) ∀ v ∈ V Nh . (67)

We can thus also write the error residual equation (65) as

a(e(µ), v;µ) = (ê(µ), v)V ∀ v ∈ V Nh . (68)

It also follows that

‖r( · ;µ)‖(V Nh )′ = sup
v∈V Nh

r(v;µ)

‖v‖V
= ‖ê(µ)‖V ; (69)

the evaluation of the dual norm of the residual through the Riesz representation theorem is central
to the Offline-Online procedures developed in Section 3.8.3 below.

We recall the definition of the exact and FE coercivity constants, (30) and (31), respectively.
We shall require a lower bound to the coercivity constant αNh(µ), αNh

LB : D → R, such that

(i) 0 < αNh

LB(µ) ≤ αNh(µ) ∀µ ∈ D, and (ii) the Online computational time to evaluate µ→ αNh

LB(µ)
is independent of Nh. In Section 3.8.4 we summarize a basic methodology (Huynh et al., 2007) to
construct the requisite lower bound. The general case is addressed in Hesthaven et al., 2015.

3.8.2. Error bounds We define error estimators for the energy norm and output as

∆en
N (µ) = ‖ê(µ)‖V

/
(αNh

LB(µ))1/2 ,

and
∆s
N (µ) = ‖ê(µ)‖2V

/
αNh

LB(µ) ,

respectively. We next introduce the effectivities associated with these error estimators as

ηen
N (µ) = ∆en

N (µ)
/
||uNh(µ)− uNh

N (µ)||µ ,

and
ηsN (µ) = ∆s

N (µ)
/

(sNh(µ)− sNh

N (µ)) ,

respectively.
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Clearly, the effectivities are a measure of the quality of the proposed estimator: for rigor, we
shall insist upon effectivities ≥ 1; for sharpness, we desire effectivities as close to unity as possible.
It has been reported for example in Rozza et al., 2008 and Patera and Rozza, 2007 that for any
N = 1, . . . , Nmax, the effectivities satisfy

1 ≤ ηen
N (µ) ≤

√
γe(µ)

αNh

LB(µ)
∀ µ ∈ D , (70)

1 ≤ ηsN (µ) ≤ γe(µ)

αNh

LB(µ)
∀ µ ∈ D . (71)

Similar results can be obtained for ∆N (µ), the a posteriori error bound in the V norm.

It is important to observe that the effectivity upper bounds, (70) and (71), are independent of
N , and hence stable with respect to RB refinement . Furthermore, it is sometimes possible (see
Sec. 3.8.4) to provide a rigorous lower bound for αNh

LB(µ) that depends only on µ: in this case we
obtain an upper bound for the effectivity which is not only independent of N but also independent
of Nh, and hence stable with respect to FE refinement .

3.8.3. Offline-online computational procedure The error bounds of the previous section are of no
utility without an accompanying Offline-Online computational approach.

The computationally crucial component of all the error bounds of the previous section is ‖ê(µ)‖V ,
the dual norm of the residual.

To develop an Offline-Online procedure for the dual norm of the residual we first expand the
residual (66) according to (55) and (25):

r(v;µ) = F (v)− a(uNh

N (µ), v;µ)

= F (v)− a
( N∑
n=1

uNn(µ) ζNh
n , v;µ

)
= F (v)−

N∑
n=1

uNn(µ) a(ζNh
n , v;µ)

= F (v)−
N∑
n=1

uNn(µ)
Q∑
q=1

Θq(µ) aq(ζNh
n , v) .

(72)

If we insert (72) in (67) and apply linear superposition, we obtain

(ê(µ), v)V = F (v)−
Q∑
q=1

N∑
n=1

Θq(µ) uNn(µ) aq(ζNh
n , v) ,

or

ê(µ) = C +

Q∑
q=1

N∑
n=1

Θq(µ) uNn(µ) Lqn ,

where C ∈ V Nh , (C, v)V = f(v) ∀ v ∈ V Nh , and Lqn,∈ V Nh satisfies (Lqn, v)V = −aq(ζNh
n , v)

∀ v ∈ V Nh , 1 ≤ n ≤ N , 1 ≤ q ≤ Q.
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c© 2004 John Wiley & Sons, Ltd.



MODEL ORDER REDUCTION 29

We thus obtain

‖ê(µ)‖2V

= (C, C)V +
Q∑
q=1

N∑
n=1

Θq(µ) uNn(µ)
{

2(C,Lqn)V +
Q∑
q′=1

N∑
n′=1

Θq′(µ) uNn′(µ) (Lqn,Lq
′

n′)V

}
,

(73)

from which we can directly calculate the requisite dual norm of the residual through (69).
The Offline-Online decomposition is now clear. In the Offline stage we form the parameter-

independent quantities. In particular, we compute the FE solutions C,Lqn, 1 ≤ n ≤ Nmax, 1 ≤ q ≤ Q,

and form/store (C, C)V , (C,Lqn)V , (Lqn,Lq
′

n′)V , 1 ≤ n, n′ ≤ Nmax, 1 ≤ q, q′ ≤ Q. Note that a single
matrix factorization suffices to obtain all 1 + QNmax FE solutions. The Offline operation count
depends on Nmax, Q, and Nh.

In the Online stage, given any “new” value of µ and therefore Θq(µ), 1 ≤ q ≤ Q, uN n(µ),

1 ≤ n ≤ N we simply retrieve the stored quantities (C, C)V , (C,Lqn)V , (Lqn,Lq
′

n′)V , 1 ≤ n, n′ ≤ N ,
1 ≤ q, q′ ≤ Q, and then evaluate the sum (73). The Online operation count, and hence also the
marginal cost and asymptotic average cost, is O(Q2N2) and is independent of Nh.§ Note that with
hierarchical spaces the necessary quantities for any N ∈ {1, . . . , Nmax} can be simply extracted
from the corresponding quantities for N = Nmax.

3.8.4. Lower bounds for the coercivity constant. As introduced in Sec. 3.8, our a posteriori error
analysis of reduced basis approximations to affinely parametrized partial differential equations
requires a lower bound for the coercivity constant or a more general stability factor (inf-sup) in
non-coercive problems (Hesthaven et al., 2015)

In essence, the discrete parametrized coercivity constant (31) is a generalized minimum eigenvalue
(Patera and Rozza, 2007). There are many classical techniques for the estimation of minimum
eigenvalues or minimum singular values.

An approach to the construction of lower bounds for coercivity (and, in the non-coercive case,
inf-sup stability) constants is the Successive Constraint Method (SCM) introduced in Huynh et al.
(2007). The method — based on an Offline-Online strategy relevant in the many-query and real-
time context — reduces the Online (real-time) calculation to a small Linear Program for which the
operation count is independent of Nh, see, for basic details, Rozza et al. (2008). Quarteroni et al.
(2011) and Hesthaven et al. (2015) provide a generalization to other classes of problems, the latter
contains also a comparison with simpler methodologies (like the θ-method, see Rozza, 2005).

3.9. Historical background, state of the art, extensions and perspectives

We provide some background and perspectives for RB methods. As we have seen, RB discretization
is, in brief, a Galerkin projection on an N -dimensional approximation space. Initial work grew out
of two related streams of inquiry: from the need for more effective, many-query design evaluation
(Fox and Miura, 1971) and from the need for more efficient parameter continuation methods for

§It thus follows that the a posteriori error estimation contribution to the cost of the greedy algorithm of Section 3.6 is
O(QNmaxNh

·) +O(Q2N2
maxNh) +O(ntrainQ

2N3
max): we may thus choose Nh and ntrain independently (and large).

Encyclopedia of Computational Mechanics. Edited by Erwin Stein, René de Borst and Thomas J.R. Hughes.
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nonlinear problems depending on a parameter (Almroth et al. 1978; Noor et al., 1980; Noor, 1981;
Noor, 1982; Noor et al., 1984).

These early approaches were soon extended to (i) general finite-dimensional systems as well
as certain classes of PDEs (and ODEs), see Barrett and Reddien (1995), Fink and Rheinboldt
(1983), Lee (1991), Noor et al. (1984), Porsching and Lee (1987), Rheinboldt (1981), Rheinboldt
(1993), and (ii) a variety of different reduced basis approximation spaces — in particular Taylor
and Lagrange (Porsching, 1985) and more recently Hermite expansions (Ito and Ravindran, 1998).
Further extensions were concerned with different applications and classes of equations, especially
fluid dynamics with the incompressible Navier-Stokes equations, see for example, Peterson (1989).

In these early methods, the approximation spaces were rather local and typically low-dimensional
in parameter (often a single parameter). This was primarily due to the absence of a posteriori error
estimators and effective sampling procedures. Indeed, in more global, higher-dimensional parameter
domains the ad hoc reduced basis predictions “far” from any sample points can not necessarily be
trusted, and hence a posteriori error estimators are crucial to reliability. Moreover, sophisticated
sampling strategies for parameters are crucial to convergence and computational efficiency.

Much current effort is thus devoted to development of (i) a posteriori error estimation procedures
and in particular rigorous error bounds for outputs of interest, and (ii) effective sampling strategies
in particular for many parameter case. The a posteriori error bounds are of course indispensable
for rigorous certification of any particular reduced basis output prediction. However, the error
estimators can also play an important role in efficient and effective sampling procedures: the
inexpensive error bounds allow one first, to explore much larger subsets of the parameter domain
in search of most representative or best “snapshots,” and second, to determine when we have just
enough basis functions.

We note here that greedy sampling methods are similar in objective to more well-known POD
methods of Sec. 2. Both have been widely applied in the (multi -dimensional) parameter domain.
POD techniques can be even combined within the parametric RB context, see Haasdonk and
Ohlberger (2008), Nguyen et al. (2008). A brief comparison of greedy and POD approaches —
computational cost and performance — is reported in Patera and Rozza (2007), and Rozza et. al.
(2008).

The reduced basis approach can also be readily applied to the more general case of affine linear
elliptic non-coercive problems (see, for example, Quarteroni et al., 2011; Hesthaven et al., 2015).
The special issues associated with saddle-point problems, in particular the Stokes equations of
incompressible flow, have been addressed in Rozza and Veroy (2007), Gerner and Veroy (2012), and
Rozza et al. (2013).

The exploration of the “parameter + time” framework in the context of affine linear parabolic
PDEs — such as the heat equation and the convection-diffusion equation — is explained in Grepl
and Patera (2005) and review work by Quarteroni et al. (2011), and in the book by Hesthaven et
al. (2015).

The reduced basis methodology, in both the elliptic and parabolic cases, can also be extended
to problems with non-affine parametric variation. The strategy consists of reducing the nonaffine
operator and data to approximate affine form, and then apply the methods developed for affine
operators described in this section. However, this reduction must be done efficiently in order to
avoid a proliferation of parametric functions and a corresponding degradation of Online response
time. This extension is based on the already previously mentioned empirical interpolation method
Barrault et al. (2004): a collateral RB space for the nonaffine coefficient functions; an interpolation
system that avoids costly (Nh-dependent) projections; and several a posterior error estimators.
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A review for empirical interpolation method within the context of RB treatment of elliptic and
parabolic PDEs with nonaffine coefficient functions is considered in the book Hesthaven et al.
(2015); the resulting approximations preserve the usual Offline-Online efficiency — the complexity
of the Online stage is independent of Nh.

The reduced basis approach and associated Offline-Online procedures can be applied without
serious computational difficulties to quadratic nonlinearities (Veroy et al., 2003a, Canuto et al.,
2009), for example, but not limited, to the stationary incompressible Navier-Stokes equations:
suitable stable approximations are considered in Nguyen et al. (2005), Veroy and Patera (2005),
Quarteroni and Rozza (2007), Deparis and Rozza (2009). For a more complete overview of current
developments see the focus introduction (Chapter 1) in Hesthaven et al. (2015), and references
therein, especially for current approaches to multiscale and multiphysics problems, applications
to domain decomposition, data assimilation, optimal control, inverse problems and uncertainty
quantification, as well as more complex (geometrical) parametrizations. Needless to say, these are
fast growing research areas in which substantial progresses are already undergoing for the coming
years.

4. PROPER GENERALIZED DECOMPOSITION

4.1. Motivation

Most of the existing model reduction techniques proceed by extracting a suitable reduced basis
and then projecting on it the problem solution. Thus, the reduced basis construction precedes its
use in the solution procedure, and one must be careful on the suitability of a particular reduced
basis when employed for representing the solution of a particular problem. This issue disappears
if the approximation basis is constructed at the same time that the problem is solved. Thus, each
problem has its associated basis in which its solution is expressed. One could consider few terms in
its approximation, leading to a reduced representation, or all the terms needed for approximating the
solution up to a certain accuracy level. The Proper Generalized Decomposition (PGD), described
in general terms in the next section, proceeds in this manner.

When calculating the transient solution of a generic problem u(x, t) we usually consider a given
basis of space functions Ni(x), i = 1, · · · , N , the so-called shape functions within the finite element
framework, and approximate the problem solution as

u(x, t) ≈
N∑
i=1

ai(t)Ni(x), (74)

that implies a space-time separated representation where the time-dependent coefficients ai(t) are
unknown at each time (when proceeding incrementally) and the space functions Ni(x) are given
”a priori”, e.g. polynomial basis. POD and Reduced Bases methodologies consider a reduced basis
φi(x) for approximating the solution instead of using the generic functions Ni(x). The former are
expected to be more suitable for approximating the problem at-hand. Thus, it results

u(x, t) ≈
R∑
i=1

bi(t)φi(x), (75)
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where in general R � N . Again (75) represents a space-time separated representation where
the time-dependent coefficient must be calculated at each time during the incremental solution
procedure.

Inspired from these results one could consider the general space-time separated representation

u(x, t) ≈
N∑
i=1

Xi(x) · Ti(t), (76)

where now neither the time-dependent functions Ti(t) nor the space functions Xi(x) are ”a priori”
known. Both will be computed on-the-flight when solving the problem.

As soon as one postulate that the solution of a transient problem can be expressed in the separated
form (76) whose approximation functions Xi(x) and Ti(t) will be determined during the problem
solution, one could make a step forward and assume that the solution of a multidimensional problem
u(x1, · · · , xd) could be found in the separated form

u(x1, x2, · · · , xd) ≈
N∑
i=1

X1
i (x1) ·X2

i (x1) · · ·Xd
i (xd), (77)

and even more, expressing the 3D solution u(x, y, z) as a finite sum decomposition involving lower
dimensional functions

u(x, y, z) ≈
N∑
i=1

Xi(x) · Yi(y) · Zi(z), (78)

or

u(x, y, z) ≈
N∑
i=1

Xi(x, y) · Zi(z), (79)

and the solution of a parametric problem u(x, t, p1, · · · , p℘) as

u(x, t, p1, · · · , p℘) ≈
N∑
i=1

Xi(x) · Ti(t) ·
℘∏
k=1

P ki (pk). (80)

The performances of all these separated representations are quite impressive in many cases,
however, the key point when considering such separated representations lies in the algorithm to be
used for calculating the different functions that they involve: Ti(t), Xi(x), Pi(p). Both questions
will be addressed in this section.

4.2. Illustrating the simplest separated representation constructor

In order to illustrate the simplest procedure for constructing the separated representation we
consider the one-dimensional heat transfer equation involving the temperature field u(x, t)

∂u

∂t
− k∂

2u

∂x2
= f, (81)

defined in the space-time domain Ω = Ωx × Ωt = (0, L) × (0, τ ]. The diffusivity k and source
term f are assumed constant. We specify homogeneous initial and boundary conditions, i.e.
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c© 2004 John Wiley & Sons, Ltd.



MODEL ORDER REDUCTION 33

u(x, t = 0) = u(x = 0, t) = u(x = L, t) = 0. More details and more complex scenarios can be
found in Chinesta, Keunings and Leygue (2013).

The weighted residual form of (81) reads∫
Ωx×Ωt

u∗
(
∂u

∂t
− k∂

2u

∂x2
− f

)
dx dt = 0, (82)

for all suitable test functions u∗.
Our objective is to obtain a PGD approximate solution in the separated form

u(x, t) ≈
N∑
i=1

Xi(x) · Ti(t). (83)

We do so by computing each term of the expansion at each step of an enrichment process, until
a suitable stopping criterion is met.

4.2.1. Progressive construction of the separated representation.
At enrichment step n, the n− 1 first terms of the PGD approximation (83) are known:

un−1(x, t) =

n−1∑
i=1

Xi(x) · Ti(t). (84)

We now wish to compute the next term Xn(x) · Tn(t) to get the enriched PGD solution

un(x, t) = un−1(x, t) +Xn(x) · Tn(t) =

n−1∑
i=1

Xi(x) · Ti(t) +Xn(x) · Tn(t). (85)

One must thus solve a non-linear problem for the unknown functions Xn(x) and Tn(t) by means
of a suitable iterative scheme. The simplest strategy consists of an alternated direction fixed point
algorithm.

At enrichment step n, the PGD approximation un,p obtained at iteration p is given by

un,p(x, t) = un−1(x, t) +Xp
n(x) · T pn(t). (86)

Starting from an arbitrary initial guess T 0
n(t), the alternating direction strategy computes Xp

n(x)
from T p−1

n (t), and then T pn(t) from Xp
n(x). These non-linear iterations proceed until reaching a fixed

point within a user-specified tolerance ε, i.e.

‖Xp
n(x) · Y pn (y)−Xp−1

n (x) · Y p−1
n (y)‖ < ε, (87)

where ‖·‖ is a suitable norm. The enrichment step n thus ends with the assignments Xn(x)← Xp
n(x)

and Tn(t)← T pn(t).
The enrichment process itself stops when an appropriate measure of error E(n) becomes small

enough, i.e E(n) < ε̃. One can apply different stopping criteria discussed in Ammar et al. (2010);
Ladeveze and Chamoin (2011); Moitinho (2013); Chinesta, Keunings and Leygue (2013) and Nadal
et al. (2015).

Let us look at one particular alternating direction iteration at a given enrichment step.
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4.2.2. Alternating direction strategy.
Each iteration of the alternating direction scheme consists in the following two steps:

• Calculating Xp
n(x) from T p−1

n (t).

At this stage, the approximation is given by

un(x, t) =

n−1∑
i=1

Xi(x) · Ti(t) +Xp
n(x) · T p−1

n (t), (88)

where all functions but Xp
n(x) are known. The simplest choice for the weight function u∗ in

(82) is

u∗(x, t) = X∗n(x) · T p−1
n (t), (89)

which amounts to consider a Galerkin formulation of the diffusion problem. Introducing (88)
and (89) into (82), we obtain∫

Ωx×Ωt

X∗nT
p−1
n

(
Xp
n

dT p−1
n

dt
− kd

2Xp
n

dx2
T p−1
n

)
dx dt =

−
∫

Ωx×Ωt

X∗nT
p−1
n

n−1∑
i=1

(
Xi
dTi
dt
− kd

2Xi

dx2
Ti

)
dx dt

+

∫
Ωx×Ωt

X∗nT
p−1
n f dx dt. (90)

As all functions of time t are known, we can evaluate the following integrals:

αx =
∫

Ωt

(
T p−1
n (t)

)2
dt

βx =
∫

Ωt
T p−1
n (t)

dT p−1
n (t)

dt
dt

γxi =
∫

Ωt
T p−1
n (t)Ti(t) dt

δxi =
∫

Ωt
T p−1
n (t)

dTi(t)

dt
dt

ξx =
∫

Ωt
T p−1
n (t) f dt

. (91)

Equation (90) then takes the form∫
Ωx

X∗n

(
−kαx d

2Xp
n

dx2
+ βxXp

n

)
dx =

∫
Ωx

X∗n

n−1∑
i=1

(
kγxi

d2Xi

dx2
− δxi Xi

)
dx +

∫
Ωx

X∗nξ
x dx. (92)

This defines a one-dimensional boundary value problem (BVP), which is readily solved by
means of a standard finite element method to obtain an approximation of the function Xp

n.
As another option, one can go back to the associated strong form

−kαx d
2Xp

n

dx2
+ βxXp

n =

n−1∑
i=1

(
kγxi

d2Xi

dx2
− δxi Xi

)
+ ξx, (93)

Encyclopedia of Computational Mechanics. Edited by Erwin Stein, René de Borst and Thomas J.R. Hughes.
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and then solve it using any suitable numerical method, such as finite differences for example.
The strong form (93) is a second-order differential equation for Xp

n due to the fact that the
original diffusion equation (81) involves a second-order x-derivative of the unknown field u.
The homogeneous Dirichlet boundary conditions Xp

n(x = 0) = Xp
n(x = L) = 0 are readily

specified with either weak or strong formulations.

• Calculating T pn(t) from the just-computed Xp
n(x).

The procedure mirrors what we have just done. It suffices to exchange the roles played by
the relevant functions of x and t. The current PGD approximation reads

un(x, t) =

n−1∑
i=1

Xi(x) · Ti(t) +Xp
n(x) · T pn(t), (94)

where all functions are known except T pn(t). With the weighting function

u∗(x, t) = Xp
n(x) · T ∗n(t), (95)

the weighted residual form (82) becomes∫
Ωx×Ωt

Xp
nT
∗
n

(
Xp
n

dT pn
dt
− kd

2Xp
n

dx2
T pn

)
dx dt =

−
∫

Ωx×Ωt

Xp
nT
∗
n

n−1∑
i=1

(
Xi
dTi
dt
− kd

2Xi

dx2
Ti

)
dx dt

+

∫
Ωx×Ωt

Xp
nT
∗
n f dx dt. (96)

Since all functions of x are known, we can perform the following integrals

αt =
∫

Ωx
(Xp

n(x))
2
dx

βt =
∫

Ωx
Xp
n(x)

d2Xp
n(x)

dx2
dx

γti =
∫

Ωx
Xp
n(x)Xi(x) dx

δti =
∫

Ωx
Xp
n(x)

d2Xi(x)

dx2
dx

ξt =
∫

Ωx
Xp
n(x) f dx

. (97)

Equation (96) then becomes∫
Ωt

T ∗n

(
αt
dT pn
dt
− kβtT pn

)
dt =

∫
Ωt

T ∗n

n−1∑
i=1

(
−γti

dTi
dt

+ kδtiTi

)
dt +

∫
Ωt

T ∗nξ
t dt. (98)
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c© 2004 John Wiley & Sons, Ltd.



36 ENCYCLOPEDIA OF COMPUTATIONAL MECHANICS

We have thus obtained an initial value problem (IVP) for the function T pn . The weighted
residual form (98) can be solved by means of any stabilized finite element scheme (e.g
discontinuous Galerkin). The associated strong form reads

αt
dT pn
dt
− kβtT pn =

n−1∑
i=1

(
−γti

dTi
dt

+ kδtiTi

)
+ ξt. (99)

Since the original diffusion equation involves a first-order derivative of u with respect to t, we
have thus obtained a first-order ordinary differential equation for T pn . Any classical numerical
technique can be used to solve it. The initial condition T pn(t = 0) = 0 is readily specified with
either weak or strong form.

4.2.3. The numerical analysis viewpoint.
There exist several approaches to the numerical analysis of PGD methods. They combine the

existence of a best approximation and a greedy algorithm (Ammar, Chinesta and Falco, 2010).
A first theoretical study by Le Bris et al. (2009) addressed symmetric elliptic problems and its
connection to greedy algorithms from nonlinear approximation theory deeply analyzed by De Vore
(1996). In Figueroa and Suli (2011) the authors extend the convergence analysis of the pure greedy
and orthogonal greedy algorithms considered in Le Bris et al. (2009) to the technically more
complicated case where the Laplace operator is replaced by a high-dimensional Ornstein-Uhlenbeck
operator with unbounded drift.

General elliptic problems were considered in Falco and Nouy (2011). The extension of these results
to non-linear symmetric coercive problems was considered by Cancès et al. (2011) that also contains
specific results when the algorithm is applied to finite-dimensional problems. Current research tracks
include for example the extension of the convergence analysis to non-symmetric problems and the
analysis of the rate of convergence for non-linear equations. Falco and Nouy (2012) provide a
mathematical analysis of a family of progressive and updated PGDs for a particular class of convex
optimization problems in reflexive tensor Banach spaces. These results leaded to a generalization of
the concept of Singular Value Decomposition (SVD), concretely, a constrained version of the SVD
is proposed in Nouy and Falco (2011).

Despite these advances accomplished in the mathematical foundations of PGD-based techniques,
most questions concerning the optimality of the constructed separated representations, the
convergence of the constructor for non-symmetric and/or nonlinear operators and errors bounds,
among many other issues, remain open (Cancès et al. 2013; Falco et al. 2013).

Other important source of theoretical questions is the relationship between the time-dependent
PGD framework and the time-dependent Dirac-Frenkel variational method first used by Dirac in
1930. This method plays a similarly fundamental role for the time-dependent Schrodinger equation
as the Rayleigh-Ritz variational principle for the Schrodinger eigenvalue problem (see Lubich 2008,
and Ehrlacher 2014).

4.3. Non-incremental versus incremental time integrations

It is useful to reflect on the considerable difference between the above PGD strategy and traditional,
incremental time integration schemes. Indeed, the PGD allows for a non-incremental solution of
time-dependent problems. Let Qn denote the number of non-linear iterations of the alternating
direction algorithm required to compute the new term Xn(x) · Tn(t) at enrichment step n. Then,
the entire PGD procedure to obtain the N -term approximation (83) involves the solution of a total
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of Q = (Q1 + · · ·+QN ) decoupled, one-dimensional boundary and initial value problems. The BVP’s
are defined over the space domain Ωx, and their computational complexity scales with the size of
the one-dimensional mesh used to discretize them. The IVP’s are defined over the time interval
Ωt, and their complexity is usually negligible compared to that of the BVP’s, even when extremely
small time steps are used for their discretization.

This is vastly different from a standard, incremental solution procedure. If P is the total number
of time steps for the complete simulation, i.e. P = τ/∆t, an incremental procedure involves the
solution of a BVP in Ωx at each time step, i.e. a total of P BVP’s. This can be a very large number
indeed, as the time step ∆t must be chosen small enough to guarantee the stability of the numerical
scheme. In the case of 3D transient problems the CPU time savings when using PGD could be in
some cases of many orders of magnitude.

Space-time separated representations were considered in the works of Ladeveze from the 80s
and constitute one of the key bricks of the nonlinear and non-incremental solver called LArge
Time INcrement method – LATIN – (Ladeveze, 1985; Ladeveze, 1989; Ladeveze, 1999). During
the past three decades, many works were successfully accomplished by the Cachan group around
P. Ladeveze, to improve the space-time separated representation and its applicability in complex
nonlinear problems involving large displacements (Ladeveze, 1996; Boucard et al., 1997), large size
multi-scale models (Ladeveze et al., 2010; Neron and Ladeveze, 2010), homogenization (Ladeveze
and Nouy, 2003; Nouy and Ladeveze, 2004; Cremosi et al., 2013), domain decomposition (Blanze et
al., 1996; Champaney et al., 1997; Ladeveze and Dureisseix, 1998; Ladeveze et al., 2007), problems
involving parameter variability (Boucard and Ladeveze, 1999), multiphysics (Dureisseix et al., 2003,
2003b; Neron and Dureisseix, 2008, 2008b), among many others topics. Recently, Heyberger et al.
(2013) and Neron et al. (2015), adapted the standard LATIN formalism for addressing parametric
models.

Dynamics in the medium frequency range was another topic widely considered by the Cachan
group for long time, where space-time representations were replaced by space-frequency descriptions
(not fully separated) within the so-called TVCR techniques (Riou et al. 2013, Barbarulo, Ladeveze
et al. 2014; Barbarulo, Riou et al. 2014).

Other than the prolific contribution of the Cachan group to space-time (and its space-frequency
counterpart) separated representations, these representations were also considered in other works.
Thus, Boucinha et al. (2013, 2014) proposed the use space-time representations for solving
dynamical problems formulated in a displacement - velocity mixed framework and where advanced
separated representation constructors where considered. In Ammar et al. (2015) authors propose
a space-time representation within the PGD framework applied to the integral formulation of
viscoelastic behaviors. The issue related to multiple scales in time was addressed in Ammar et al.
(2011) and Chinesta et al. (2010) where multi-time separated representations and advanced coupling
strategies were respectively proposed. Other works focusing in time multi-scale were considered in
Hammoud et al. (2014). Space-time separated representations were considered in the solution of fluid
flow problems in Aghighi et al. (2013) and Leblond and Allery (2014). A real-time solid dynamics
approach was proposed in Gonzalez et al. (2014) based on the use of a parametric solution involving
initial conditions. Different constructors of the space-time separated representation were analyzed
by Nouy (2010). In Bonithon et al. (2011) the PGD was introduced within the boundary element
method framework avoiding the use of a space-time kernels, and then enhancing the discretization
efficiency. The LATIN nonlinear solver combined with separated representations was also considered
in Giacoma el al. (2015) for treating contact problems. Electromagnetic models were addressed in
Henneron and Clenet (2013, 2015).
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On the other hand fully separated space-frequency with a parametric approach was employed in
the linear and nonlinear case in Modesto et al. (2015) and Germoso et al. (2015). In Aguado et al.
(2015) space-frequency representations were extended for treating parametric parabolic problems
and were combined with the reciprocity principle for attaining real-time performances in the case
of moving thermal loads.

4.4. Space separation

Sometimes the spatial domain Ω, assumed three-dimensional, can be fully or partially separated,
and consequently it can be expressed as Ω = Ωx ×Ωy ×Ωz or Ω = Ωxy ×Ωz respectively. The first
decomposition is related to hexahedral domains whereas the second one is related to plate, beams
or extruded domains. We consider below both scenarii

• The spatial domain Ω is partially separable. In this case the separated representation writes:

u(x, z, t) ≈
N∑
i=1

Xi(x) · Zi(z) · Ti(t), (100)

where x = (x, y) ∈ Ωxy, z ∈ Ωz and t ∈ Ωt. Thus, iteration p of the alternated directions
strategy at a given enrichment step n consists of:

1. Solve in Ωxy a two-dimensional BVP to obtain function Xp
n,

2. Solve in Ωz a one-dimensional BVP to obtain function Zpn,
3. Solve in Ωt a one-dimensional IVP to obtain function T pn .

The complexity of the PGD simulation scales with the two-dimensional mesh used to solve
the BVP’s in Ωxy, regardless of the mesh and the time step used in the solution of the BVP
and the IVP’s defined in Ωz and Ωt for calculating functions Zi(z) and Ti(t).

• The spatial domain Ω is fully separable. In this case the separated representation writes:

u(x, y, z, t) =

N∑
i=1

Xi(x) · Yi(y) · Zi(z) · Ti(t). (101)

Iteration p of the alternated directions strategy at a given enrichment step n consists of:

1. Solve in Ωx a one-dimensional BVP to obtain function Xp
n,

2. Solve in Ωy a one-dimensional BVP to obtain function Y pn ,
3. Solve in Ωz a one-dimensional BVP to obtain function Zpn,
4. Solve in Ωt a one-dimensional IVP to obtain function T pn .

The cost savings provided by the PGD are potentially phenomenal when the spatial domain
is fully separable. Indeed, the complexity of the PGD simulation now scales with the one-
dimensional meshes used to solve the BVP’s in Ωx, Ωy and Ωz, regardless of the time step
used in the solution of the decoupled IVP’s in Ωt.
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Even when the domain is not fully separable, a fully separated representation could be considered
by using appropriate geometrical mappings or by immersing the non-separable domain into a fully
separable one. The interested reader can refer to Gonzalez et al. (2010) and Ghnatios, Xu et al.
(2015).

In-plane-out-of-plane separated representations are particularly useful for addressing the solution
of problems defined in plate (Bognet et al. 2012), shell (Bognet et al. 2014) or extruded domains
(Leygue et al. 2013). A parametric 3D elastic solution of beams involved in frame structures was
proposed in Bordeu et al. (2015). The same approach was extensively considered in structural
plate and shell models in Gallimard et al. (2013), Vidal et al. (2012, 2013, 2014, 2014b, 2015)
and Pruliere (2014). Space separated representations where enriched with discontinuous functions
for representing cracks in Giner et al. (2013), delamination in Metoui et al. (2014) and thermal
contact resistances in Chinesta et al. (2014). Domain decomposition within the separated space
representation was accomplished in Nazeer et al. (2014) and localized behaviors were addressed by
using superposition techniques in Ammar, Chinesta and Cueto (2011).

The in-plane-out-of-plane decomposition was then extended to many other physics: thermal
models were considered in Chinesta et al. (2014); squeeze flows of Newtonian and non Newtonian
fluids in laminates in Ghnatios, Chinesta and Binetruy (2015); flows in stratified porous media
in Chinesta, Ammar et al. (2011) an nonlinear viscoplastic flows in plate domains in Canales et
al. (2015). A full space decomposition was also efficiently applied for solving the Navier-Stokes
equations in the lid driven cavity problem in Dumon et al. (2011, 2013, 2013b).

4.5. Multidimensional models

Consider a problem defined in a high-dimensional space of dimension d for the unknown field
u(x1, · · · , xd). Here, the coordinates xi denote any usual coordinate (scalar or vectorial) related to
space, time and/or any conformational coordinate.

We seek a solution for u(x1, · · · , xd) ∈ Ω1 × · · · × Ωd. The PGD yields an approximate solution
in the separated form:

u(x1, · · · , xd) ≈
N∑
i=1

X1
i (x1) · · ·Xd

i (xd) =

N∑
i=1

d∏
j=1

Xj
i (xj) (102)

If M nodes are used to discretize each coordinate, the total number of PGD unknowns is N ·M ·d
instead of the Md degrees of freedom involved in standard mesh-based discretizations. Thus, the
high-dimensional solution is computed by solving a number of low-dimensional problems alleviating
the so-called curse of dimensionality involved in high-dimensional models.

Separated representations within the PGD framework were applied for solving the
multidimensional Fokker-Planck equation describing complex fluids within the kinetic theory
framework in Ammar et al. (2006, 2007). The solution procedure was extended to non-linear kinetic
theory descriptions of more complex molecular models in Mokdad et al. (2007). In Leonenko and
Phillips (2009) authors considered multi-bead-spring models but use a spectral approximation for
representing all the functions involved in the finite sums decomposition. A deeper analysis of non-
linear and transient models was considered in Ammar, Normandin et al. (2010). Complex fluid
models were coupled with complex flows in Pruliere et al. (2009) and Mokdad et al. (2010) opening
very encouraging perspectives and pointing out the necessity of defining efficient stabilizations.
A first tentative of convective stabilization was proposed in Gonzalez et al. (2013). Finally, in
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c© 2004 John Wiley & Sons, Ltd.



40 ENCYCLOPEDIA OF COMPUTATIONAL MECHANICS

Chinesta et al. (2007) the PGD was applied for solving the stochastic equation within the Brownian
Configuration Field framework.

Multidimensional models encountered in the finer descriptions of matter (ranging from quantum
chemistry to statistical mechanics descriptions) were revisited in Ammar et al. (2008). The
multidimensional chemical master equation was solved in Ammar et al. (2012) and the Langer’s
equation governing phase transitions in Lamari et al. (2012).

4.6. Parametric solutions

This section illustrates how parameters of different nature become coordinates. The problems
considered are quite simplistic but the same rationale was considered for solving more complex
problems reported at the end of the present section. We consider three type of parameters: (i)
parameters related to the model; (ii) parameters related to initial and boundary conditions; and
(iii) geometrical parameters defining the space-time domain in which the model is defined.

4.6.1. Model parameters as extra-coordinates.
We consider the parametric heat transfer equation

∂u

∂t
− k∆u− f = 0, (103)

with homogeneous initial and boundary conditions. Here (x, t, k) ∈ Ωx × Ωt × Ωk. The scalar
conductivity k is here viewed as a new coordinate defined in the interval Ωk. Thus, instead of
solving the thermal model for different discrete values of the conductivity parameter, we wish to
solve only once a more general problem. For that purpose we consider the weighted residual form
related to Eq. (103):∫

Ω×Ωt×Ωk

u∗
(
∂u

∂t
− k∆u− f

)
dx dt dk = 0. (104)

The PGD solution is sought in the form:

u(x, t, k) ≈
N∑
i=1

Xi(x) · Ti(t) ·Ki(k). (105)

At iteration n < N the solution un(x, t, k) reads

un(x, t, k) =

n∑
i=1

Xi(x) · Ti(t) ·Ki(k), (106)

and the new trial function un+1(x, t, k) is searched according to

un+1(x, t, k) = un(x, t, k) +Xn+1(x) · Tn+1(t) ·Kn+1(k), (107)

with the test function u? given by

u?(x, t, k) = X?(x) · Tn+1(t) ·Kn+1(k) +Xn+1(x) · T ?(t) ·Kn+1(k)+

Xn+1(x) · Tn+1(t) ·K?(k). (108)
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By introducing the trial and test functions, Eqs. (107) and (108) respectively, into the weak
form, Eq. (104), and using an appropriate linearization, functions Xn+1(x), Tn+1(t) and Kn+1(k)
are calculated. When considering the simplest linearization strategy, the alternated directions fixed
point algorithm, the following steps are repeated until reaching convergence:

• With T p−1
n+1 (t) and Kp−1

n+1 given at the previous iteration of the non linear solver (arbitrarily
initialized at the first iteration: T 0

n+1(t) and K0
n+1(k)), all the integrals in Ωt × Ωk are

performed, leading to a boundary value problem involving Xp
n+1(x).

• With Xp
n+1(x) just calculated and Kp−1

n+1 given at the previous iteration of the non linear
solver, all the integrals in Ωx×Ωk are performed, leading to an one-dimensional initial value
problem involving T pn+1(t).

• With Xp
n+1(x) and T pn+1 just updated, all the integrals in Ωx ×Ωt are performed, leading to

an algebraic problem involving Kp
n+1(k).

• The convergence of the fixed point schema is checked.

4.6.2. Boundary conditions as extra-coordinates.
For the sake of simplicity we first consider the steady state heat equation

∇ · (K · ∇u(x)) + f(x) = 0, (109)

with x ∈ Ω ⊂ R3, subjected to the boundary conditions:{
u(x ∈ Γd) = ug
(−K · ∇u) |x∈Γn · n = qg · n = qg

, (110)

with K the conductivity tensor and n the outwards unit vector defined in the domain boundary
Γn, with ∂Ω ≡ Γ = Γd ∪ Γn and Γd ∩ Γn = ∅.

In what follows we consider the simplest scenario that consists of constant Neumann and Dirichlet
boundary conditions. More complex and general situations were addressed in Chinesta, Leygue et
al. (2013), where non constant boundary and initial conditions were addressed.

• Neumann boundary condition as extra-coordinate.

First, imagine that we are interested in knowing the model solution for values of the heat
flux qg ∈ Iq = [q−g , q

+
g ]. We could consider the given heat flux as an extra-coordinate and

then solving only once the resulting 4D heat equation for calculating the general parametric
solution u(x, qg). For this purpose the solution is sought in the separated form

u(x, qg) ≈
N∑
i=1

Xi(x) · Qi(qg). (111)

In order to enforce the prescribed Dirichlet boundary condition u(x ∈ Γd) = ug the simplest
procedure consists of choosing the first functional couple X1(x)·Q1(qg) in order to ensure that
u1(x ∈ Γd, qg) = X1(x ∈ Γd)·Q1(qg) = ug. Thus, the remaining terms of the finite sum Xi(x),
i > 1, will be subjected to homogeneous essential boundary conditions, i.e. Xi(x ∈ Γd) = 0.
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In order to use the approximation (111) we start by considering the weak form related to Eq.
(109), that writes: Find u(x) ∈ H1(Ω), verifying u(x ∈ Γd) = ug, such that∫

Ω

∇u∗ · (K · ∇u) dx =

∫
Γn

u∗ (K · ∇u) · n dx +

∫
Ω

u∗ f(x) dx, (112)

is verified ∀u∗ ∈ H1(Ω), with u∗(x ∈ Γd) = 0.
By introducing the Neumann condition (110) into (112) it results∫

Ω

∇u∗ · (K · ∇u) dx = −
∫

Γn

u∗ qg dx +

∫
Ω

u∗ f(x) dx. (113)

For using the approximation (111) we must consider the extended-weak form defined in the
domain Ω× Iq∫

Ω×Iq
∇u∗ · (K · ∇u) dx dqg = −

∫
Γn×Iq

u∗ qg dx dqg+

∫
Ω×Iq

u∗ f(x) dx dqg. (114)

By assuming at iteration n:
un(x, qg) =

n−1∑
i=1

Xi(x) · Qi(qg) +Xn(x) · Qn(qg) =

un−1(x, qg) +Xn(x) · Qn(qg)
u∗ = X∗(x) · Qn(qg) +Xn(x) · Q∗(qg).

. (115)

Now the double iteration described in the previous section, one for enriching the separated
representation and the second one for solving the non-linear problem arising at each
enrichment iteration, is performed in order to calculate the solution separated representation.

• Dirichlet boundary condition as extra-coordinate.

Now we consider that we are interested in considering the solution of model (109) for any
value of ug in (110) in a certain interval Iu = [u−g , u

+
g ]. For this purpose we consider the

function ϕ(x) continuous in Ω such that ∆ϕ ∈ L2(Ω) and ϕ(x ∈ Γd) = 1. Thus, we can
define the change of variable (Gonzalez et al. 2010)

u(x) = v(x) + ug ϕ(x), (116)

that allows rewriting Eqs. (109) and (110) as:

∇ · (K · ∇v(x)) + ug (K · ∇ϕ(x)) + f(x) = 0, (117)

subjected to the boundary conditions:{
v(x ∈ Γd) = 0
(−K · ∇v) |x∈Γn

· n = ug (K · ∇ϕ) |x∈Γn
· n + qg,

(118)
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that results in the weak form∫
Ω

∇v∗ · (K · ∇v) dx = −
∫

Ω

ug ∇v∗ · (K · ∇ϕ) dx +

∫
Ω

v∗ f(x) dx−

∫
Γn

v∗ qg dx−
∫

Γn

v∗ ug (K · ∇ϕ) · n dx. (119)

We can now introduce ug as extra-coordinate, searching the solution in the separated form:

v(x, ug) ≈
N∑
i=1

Xi(x) · Ui(ug), (120)

that needs for the extended weak-form∫
Ω×Iu

∇v∗ · (K · ∇v) dx dug =

−
∫

Ω×Iu
ug ∇v∗ · (K · ∇ϕ) dx dug +

∫
Ω×Iu

v∗f(x) dx dug−

∫
Γn×Iu

v∗ qg dx dug −
∫

Γn×Iu
v∗ ug (K · ∇ϕ) · n dx dug, (121)

on which the alternated directions fixed point algorithm applies again to calculate the
parametric solution (120).

4.6.3. Parametric domains.
For the sake of clarity and without loss of generality we are addressing in this section the transient

one-dimensional heat equation

∂u

∂t
= k

∂2u

∂x2
+ f, (122)

with t ∈ Ωt = (0,Θ], x ∈ Ωx = (0, L), constant conductivity k and source term f and homogeneous
initial and boundary conditions, i.e. u(x = 0, t) = u(x = L, t) = u(x, t = 0) = 0.

The associated space-time weak form reads∫
Ωx×Ωt

u∗
∂u

∂t
dx dt = −

∫
Ωx×Ωt

k
∂u∗

∂x

∂u

∂x
dx dt+

∫
Ωx×Ωt

u∗ f dx dt. (123)

If we are interested in computing the solution u(x, t) in many domains of length L ∈ ΩL =
[L−, L+] and for many time intervals of length Θ ∈ ΩΘ = [Θ−,Θ+], more than solving the model
for many possible choice in order to define a meta-model, it is preferable to compute the parametric
solution by considering L and Θ as extra-coordinates. However, Eq. (123) does not involve an
explicit dependence on the extra-coordinates L and Θ, both defining the domain of integration. In
order to explicit this dependence, we consider the coordinate transformation{

t = τ Θ, τ ∈ I = [0, 1]
x = λ L, λ ∈ I = [0, 1]

. (124)
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In this case the weak form (123) reads:∫
I×I

u∗
∂u

∂τ
L dλ dτ = −

∫
I×I

k
∂u∗

∂λ

∂u

∂λ

Θ

L
dλ dτ +

∫
I×I

u∗fLΘ dλ dτ, (125)

that allows calculating the parametric solution u(τ, λ, L,Θ) by considering the separated
representation

u(λ, τ, L,Θ) ≈
N∑
i=1

Xi(λ) · Ti(τ) · Li(L) · Ti(Θ), (126)

and the extended weak form∫
I×I×ΩL×ΩΘ

u∗
∂u

∂τ
L dλ dτ dL dΘ = −

∫
I×I×ΩL×ΩΘ

k
∂u∗

∂λ

∂u

∂λ

Θ

L
dλ dτ dL dΘ+

∫
I×I×ΩL×ΩΘ

u∗fLΘ dλ dτ dL dΘ. (127)

4.6.4. Related works.
This kind of parametric modelling was widely addressed in a panoply of applications, where

material parameters (Pruliere et al., 2010; Ammar, Normandin and Chinesta, 2010; Lamari et al.,
2010; Bognet et al., 2012; Aghighi et al., 2015; Beringhier and Gigliotti, 2015), initial conditions
(Gonzalez et al., 2012, 2014), boundary conditions (Ghnatios et al., 2011, 2012; Niroomandi et
al., 2013; Gonzalez et al., 2015) and parameters defining the geometry (Leygue and Verron, 2010;
Nouy, 2011; Ammar et al., 2014; Zlotnik et al., 2015) were considered extra-coordinates within the
PGD framework. All these parametric solutions were successfully employed for performing real time
simulations (e.g. surgical simulation involving haptic devices addressing contact, cutting, ), material
homogenization, real-time process optimization, inverse analysis and simulation-based control. They
where also employed in dynamic data driven application systems. Vitse et al. (2014) adopted the
just referred espace-time-parameter separated representation for constructing parametric solutions.

For the treatment of the non-linearities involved in the works just referred, the separated
representation constructors were combined with numerous nonlinear solvers ranging from the
most standard ones (fixed point, Newton, ...) to less standard approaches based on the LATIN,
Asymptotic Numerical Method (e.g. Niroomandi et al., 2013; Leygue et al., 2012, among many
others) or the Discrete Empirical Interpolation Method (Chinesta, Leygue et al., 2013).

In the context of stochastic modeling, Proper Generalized Decomposition was introduced
in Nouy (2007) for the uncertainty quantification and propagation. The interpretation of the
separated representation constructor as a generalized eigenproblem allowed to define dedicated
algorithms inspired from solution techniques for classical eigenproblems (Nouy, 2008). In this
context deterministic and stochastic contributions were separated, making the PGD a promising
alternative to traditional methods for uncertainty propagation as discussed in Nouy and Le Maitre
(2009). PGD has also been extended to stochastic nonlinear problems in Nouy (2009). More recently,
the PGD has been successfully applied to the solution of high dimensional stochastic parametric
problems, with the introduction of suitable hierarchical tensor representations and associated
algorithms (Nouy, 2010b).
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4.7. Concluding remarks

Even if noticeable progresses have been accomplished in PGD concerning its mathematical
foundations, the numerical technology and its applications, many issues persist and are being
deeply investigated. Among them we can cite the robust and efficient separated representation
constructor (first attempts in this direction were considered in Nouy, 2010; Billaud-Friess et al.,
2014), stabilized formulation implying advection or mixed formulation, nonlinear multi-parametric
problems (strongly nonlinear and involving tens or hundreds of parameters), parametric models
defined in evolving domains, localized behaviors and the numerical analysis of non symmetric and
nonlinear operators.

5. CONCLUSIONS

In this chapter we revisited the state of the art and the most recent developments of three families of
model reduction techniques: POD, RB and PGD, respectively. It can be highlighted the exponential
growth in recent years of several scientific contributions dealing with the broad topic, and also the
gradual transfer from academic problems to those ones of interest in science and technology. Model
reduction techniques appear nowadays as an appealing route for solving more and more complex
models but in a fast and cheap way, many times and in real time by making use of deployed
computing platforms. These features allow democratizing numerical simulation that could be no
more restricted to big research centers of industries and universities, thus enhancing and speeding
innovation.

Despite of the significant progresses accomplished in recent years, the remaining issues are still
consequent, requiring intensive work and new ideas for addressing more and more complex models,
circumventing the remaining issues described in this chapter and demonstrating the robustness of
the applied methodologies.
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C. Le Bris, T. Lelièvre, Y. Maday, Results and questions on a nonlinear approximation approach
for solving high-dimensional partial differential equations, Constructive Approximation, 30,
621–651, 2009.

C. Leblond, C. Allery. A priori space-time separated representation for the reduced order modeling
of low Reynolds number flows. Computer Methods in Applied Mechanics and Engineering,
274, 264-288, 2014.

G.M. Leonenko, T.N. Phillips. On the solution of the Fokker-Planck equation using a high-order
reduced basis approximation. Computer Methods in Applied Mechanics and Engineering
199/1-4, 158-168, 2009.

A. Leygue, E. Verron. A first step towards the use of Proper General Decomposition method for
structural optimization. Archives of Computational Methods in Engineering, 17/4, I465-472,
2010.

A. Leygue, F. Chinesta, M. Beringhier, T.L. Nguyen, J.C. Grandidier, F. Pasavento, B. Schrefler.
Towards a framework for non-linear thermal models in shell domains. International Journal of
Numerical Methods for Heat and Fluid Flow, 23/1, 55-73, 2013.

Ch. Lubich. From Quantum to Classical Molecular Dynamics: Reduced Models and Numerical
Analysis. European Mathematical Society, 2008.

S. Metoui, E. Pruliere, A. Ammar, F. Dau, I. Iordanoff. The proper generalized decomposition for
the simulation of delamination using cohesive zone model. International Journal for Numerical
Methods in Engineering, 99/13, 1000-1022, 2014.

D. Modesto, S. Zlotnik, A. Huerta. Proper Generalized Decomposition for parameterized Helmholtz
problems in heterogeneous and unbounded domains: application to harbor agitation. Computer
Methods in Applied Mechanics and Engineering, In press.

J.P. Moitinho de Almeida. A basis for bounding the errors of proper generalised decomposition
solutions in solid mechanics. International Journal for Numerical Methods in Engineering,
94/10, 961-984, 2013.

B. Mokdad, E. Pruliere, A. Ammar, F. Chinesta. On the simulation of kinetic theory models of
complex fluids using the Fokker-Planck approach. Applied Rheology, 17/2, 26494, 1-14, 2007.

B. Mokdad, A. Ammar, M. Normandin, F. Chinesta, J.R. Clermont. A fully deterministic micro-
macro simulation of complex flows involving reversible network fluid models. Mathematics and
Computer in Simulation, 80, 1936-1961, 2010.

E. Nadal, A. Leygue, F. Chinesta, M. Beringhier, J.J. Rodenas, F.J. Fuenmayor. A separated
representation of an error indicator for the mesh refinement process under the Proper
Generalized Decomposition framework. Computational Mechanics, 55/2, 251-266, 2015.

Encyclopedia of Computational Mechanics. Edited by Erwin Stein, René de Borst and Thomas J.R. Hughes.
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J.-C. Passieux, P. Ladeveze, D.Néron, A scalable time-space multiscale domain decomposition
method: Adaptive time scale separation, Computational Mechanics, 46/4, 621-633, 2010.

E. Pruliere, A. Ammar, N. El Kissi, F. Chinesta. Recirculating flows involving short fiber
suspensions: Numerical difficulties and efficient advanced micro-macro solvers. Archives of
Computational Methods in Engineering, State of the Art Reviews, 16, 1-30, 2009.

E. Pruliere, F. Chinesta, A. Ammar. On the deterministic solution of multidimensional parametric
models by using the Proper Generalized Decomposition. Mathematics and Computers in
Simulation, 81, 791-810, 2010.

E Pruliere. 3D simulation of laminated shell structures using the Proper Generalized Decomposition.
Composite Structures 117, 373-381, 2014.

H. Riou, P. Ladeveze, L. Kovalevsky. The Variational Theory of Complex Rays: An answer to the
resolution of mid-frequency 3D engineering problems. J Sound Vib., 332, 1947-1960, 2013.

P. Vidal, L. Gallimard, O. Polit. Composite beam finite element based on the Proper Generalized
Decomposition. Computers & Structures, 102, 76-86, 2012.

P. Vidal, L. Gallimard, O. Polit. Proper Generalized Decomposition and layer-wise approach for
the modeling of composite plate structures. International Journal of Solids and Structures,
50/14-15, 2239-2250, 2013.

P. Vidal, L. Gallimard, O. Polit. Explicit solutions for the modeling of laminated composite plates
with arbitrary stacking sequences Composites Part B - Engineering, 60, 697-706, 2014.

P. Vidal, L. Gallimard, O. Polit. Shell finite element based on the Proper Generalized Decomposition
for the modeling of cylindrical composite structures. Computer & Structures, 132, 1-11, 2014b.

P. Vidal, L. Gallimard, O. Polit. Assessment of variable separation for finite element modeling of
free edge effect for composite plates Composite Structures, 123,19-29, 2015.

M. Vitse, D. Neron, P.A. Boucard. Virtual charts of solutions for parametrized nonlinear equations.
Computational Mechanics, 54/6, 1529-1539, 2014.

S. Zlotnik, P. Diez, D. Modesto and A. Huerta. Proper Generalized Decomposition of a geometrically
parametrized heat problem with geophysical applications. International Journal for Numerical
Methods in Engineering, In press.

B.O. Almroth, P. Stern, F.A. Brogan. Automatic choice of global shape functions in structural
analysis. AIAA Journal 16, 525–528, 1978.

M. Barrault, N.C. Nguyen, Y. Maday, A.T. Patera. An “empirical interpolation” method:
Application to efficient reduced-basis discretization of partial differential equations. C. R.
Acad. Sci. Paris, Série I. 339, 667–672, 2004.

A. Barrett, G. Reddien. On the reduced basis method. Z. Angew. Math. Mech. 75(7), 543–549,
1995.

A. Buffa, Y. Maday, A. T. Patera, C. Prud’homme, and G. Turinici, A priori convergence of the
greedy algorithm for the parametrized reduced basis method, ESAIM Math. Model. Numer.
Anal., 46, pp. 595–603, 2012.

Encyclopedia of Computational Mechanics. Edited by Erwin Stein, René de Borst and Thomas J.R. Hughes.
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