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Abstract
In this chapter we consider Reduced Basis (RB) approximations of

parametrized Partial Differential Equations (PDEs). The the idea behind
RB is to decouple the generation and projection stages (Offline/Online
computational procedures) of the approximation process in order to solve
parametrized PDEs in a fast, inexpensive and reliable way. The RB
method, especially applied to 3D problems, allows great computational
savings with respect to the classical Galerkin Finite Element (FE) Method.
The standard FE method is typically ill suited to (i) iterative contexts like
optimization, sensitivity analysis and many-queries in general, and (ii) real
time evaluation. We consider for simplicity coercive PDEs. We discuss all
the steps to set up a RB approximation, either from an analytical and a
numerical point of view. Then we present an application of the RB method
to a steady thermal conductivity problem in heat transfer with emphasis
on geometrical and physical parameters.

1 Introduction

Any design problem can be summarized in the following statement: Given a phys-
ical process and given a set of suitable parameters, the physical behaviour depends
on finding the optimal values of these parameters in order to obtain a desirable
behaviour of the process.
In this chapter the attention is focused on the designer point of view, but it is
also important to recall that there are many other applications of interest, such as
real time evaluation of the performances of a system or sensitivity analysis with
respect to certain parameters.
The physical process may belong to any field of engineering interest, such as, heat
and mass transfer, elasticity, acoustics, fluid dynamics, electromagnetism, etc., or
even in a broader sense to any quantitative disciplines (e.g., finance, biology, ecol-
ogy and medicine) and their interdisciplinary combinations.
The physical process is analysed in order to find the best mathematical model able
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to describe the behaviour of the system. As model we refer to a system of equa-
tions and/or other mathematical relationships able to “catch” the main properties
of the process and to predict its evolution in time and/or space. In this stage the
engineer introduces all the simplifications that the observation and a subsequent
qualitative analysis suggest to take into account.
The analytical model is then constituted by conservation laws and constitutive
equations. In this work the attention will be focused on models whose conserva-
tion laws are those of continuum mechanics which appears as balance of suitable
quantities (e.g., mass, energy, linear momentum, angular momentum, etc. . . ).
The constitutive relationships come from experimental evidence and depends upon
the essential features of the process itself. The result of the combination of these
conservation laws and constitutive equations is often an equation or a system of
Partial Differential Equations PDEs. This means that in the equations the un-
knowns will appear along with partial derivatives with respect to multiple variables
(temporal or spatial). To solve differential equation it is also necessary, in order
to obtain the closure of the problem, specify a suitable set of boundary/initial
conditions.
Therefore the parameters in the process can be:
• physical, within this category we have:

– coefficient of constitutive equation for the particular physical process
addressed;

– non-dimensional numbers;1

– imposed boundary conditions;

• and geometrical.
The desired behaviour could be a particular performance of the system, such as
an average temperature in a thermal block, a maximum displacement of a loaded
beam, a level of vorticity in a flow-field and so on, depending on the particular
process addressed.
Finally, the optimal configuration of these parameters can be found through an
iterative optimization process in which a suitable cost functional, that depends
upon the particular desired performance, has to be minimized.
To wit, the designer is interested to evaluate iteratively the input-output relation-
ship to estimate the cost functional.
The solution of PDEs by classical discretization methods like finite element, spec-
tral method or finite volume, typically involves thousands (in some cases millions)
of degrees of freedom (DOFs) to obtain a ”good” solution; therefore a single evalu-
ation of the input-output relationship is very expensive and at last, in most cases,
not suitable in a many-query context on which the design strategy is based on.
In this context it is necessary to rely on suitable Reduced Order Modelling ROM
techniques that reduce the computational cost and time. The Reduced Basis (RB)
method is one of the possible options and this memoir focuses on this method
that, as it will be shown, is able to reduce the computational cost of orders of
magnitude. Moreover the RB method is a certified and reliable method because in
addition to an efficient output calculation is able to provide rigorous a-posteriori
error estimators on the “truth” solution2.
An important remark is constituted by the fact that all the procedure is built
upon a reference domain on which a suitable discretization is constructed. Then
there is no need to re-discretize the domain at each iteration, re-building a mesh,

1It is always necessary to write the PDEs in a non-dimensional version in order to highlight

the actual physical dependence on these parameters.
2The discussion on our assumption of ”truth” solution will be given in section1.2.
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or deforming the domain itself in the case of a parameter-dependent geometry.

1.1 Overview on reduced basis method

As already said the RB method is a reduced order method that is able to reduce
the complexity of a system without loss of information or accuracy of the results
thanks to the rigorous error bound provided and by the properties of the Galerkin
projection (Patera and Rozza, 2007; Rozza et al., 2008).
This method does not replace an existing discretization method but “works in
collaboration with it” and upon it.
In this work the discretization method adopted for the applications is the finite
element method (FE): this choice does not constitute a limitation because the RB
method is built upon the user-defined assumption of “truth” solution. The choice
of the correct method able to describe the physical process is demanded to the
user and it will not be considered here.
The basic idea is to start with FE basis of dimension N and then construct a RB
basis whose dimension N is much smaller than the former, so that N << N .
The power of the RB method resides in the splitting of the computational proce-
dures into two parts:

1. an Offline phase,

2. an Online phase,

where the former is N dependent and computed once, whereas the latter is N
dependent and allows a fast, inexpensive and reliable input-output evaluation.
The role played by this decomposition is immediately clear taking in considera-
tion for example an optimization process. The optimal configuration can be found
thanks to an iterative process, in which a PDEs state solution is needed at every
step of iteration. In this context the RB advantage is that the evaluation of the
solution for every step is orders of magnitude smaller; furthermore the real time
evaluation of the PDEs solution is feasible, unlike as in the FE case.
The splitting procedure is possible if the weak formulation of the PDEs can be
expressed in an affine parameter decomposition. This is one of the key-point of the
procedure: all the parametric dependences of the PDEs are actually separated by
the non-parametric part, in order to allow computing the latter just in a reference
domain, whereas the former can be computed several times with a very inexpen-
sive computational burden (Rozza, 2009b).
A graphical sketch of this idea is shown in Figure 1. The RB method is depicted
in the upper figure , whereas the FE classical method is depicted in the lower one.
In the RB sketch it appears that the Offline computational burden that is propor-
tional to KN , where N is the number of degrees of freedom for the FE problem
and K is a positive constant that depends upon many ingredients that will be in
depth discussed in section 3. It is worth to recall that in the RB methodology
the so-called Offline part is very expensive but in a real time or in a many-query
context the most important part is played by the online evaluation of the input-
output relationship which is very inexpensive in the RB methodology.
In addition, by dealing with parametrized equations it is clear that in many
cases it is possible to restrict the attention on a tipically smooth and rather low-
dimensional parametrically induced manifold of the functional space, which is a
set of fields engendered as the input varies over the parameter domain (Patera and
Rozza, 2007; Rozza et al., 2008). In Section 1.2 a more involved discussion over
these concepts will be given, which are the key points the reduced basis method
has been built upon.
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(a) RB method

(b) FE method

Figure 1: RB computational saving

After the motivations and scopes of the RB method, a brief historical per-
spective will be recalled in this section, then in section 2 we will recall some
mathematical generalities and we will provide the abstract formulation for coer-
cive problems.
In section 3 the steps for the generation of the RB approximation spaces for the
solution of parametrized PDEs will be explained. Later, in section 4, the affine
geometry preconditions will be presented focused on the 3D case, necessary to al-
low a fully decoupling between Offline and Online procedures.
In section 5 the RB approximation for a parametrized 3D thermal block will be
addressed, followed by some conclusions and perspectives.

1.2 RB scope and historical perspective

In the past few years, thanks to the increased computational performances it
has been possible to use numerical simulation in the very first steps of design in
several fields.
Unfortunately despite this hardware improvement, the greater part of engineering
problem involves the solution of partial differential equations, furthermore in a
design context the number of solutions for various configurations of attempt can
become very large and eventually excessive. Therefore it is necessary to develop
techniques that are able to reduce the complexity of the system without a loss of
information or accuracy of the results. The RB method is a promising approach
to respond to this need, moreover this method is not only rapid and efficient,
but also provides a reliable solution of partial differential equations thanks to a
certified a-posteriori error bound.
This method provides a useful tool for engineers, in fact thanks to the very low cost
of the input-output relationship evaluation, the design procedure can be enriched
with highly accurate numerical simulation since the very first steps.

The real-time and many-query contexts represent not only computational chal-
lenges but also computational opportunities.
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It is possible to identify two key opportunities that can be gainfully exploited with
RB method (Rozza et al., 2008):

• Opportunity I
In the parametric setting, the attention is restricted to a typically smooth
and rather low-dimensional parametrically induced manifold : the set of fields
engendered as the input varies over the parameter domain; in the case of
single parameter, the parametrically induced manifold is a one-dimensional
filament within the infinite dimensional space which characterizes general so-
lutions to the PDEs. Clearly, generic approximation spaces are unnecessarily
rich and hence unnecessarily expensive within the parametric framework.

• Opportunity II
In the real-time or many-query contexts, in which the premium is on marginal
cost (or equivalently asymptotic average cost) per input-output evaluation,
we can accept greatly increased pre-processing or Offline cost, not admitted
for a single or few evaluations, in exchange for greatly decreased Online (or
deployed) cost for each new/additional input-output evaluation (Rozza et al.,
2008). Clearly, resources allocation typical for single-query investigations
will be far from optimal for many-query and real-time exercises. We shall
review the development of RB methods in terms of these two opportunities.

Opportunity I: A reduced basis discretization is, in brief, a Galerkin projec-
tion on an N-dimensional approximation space that focuses on the parametrically
induced manifold identified in Opportunity I.

(a) Xe space

Figure 2: Parametrically induced
manifold

Initial work (about in 1980s) grew out
of two related streams of inquiry: from the
need for more effective, and perhaps also
more interactive, many-query design eval-
uation (Fox and Miura, 1971) considering
linear structural examples; and from the
need of more efficient parameter continua-
tion methods (Almroth et al., 1978; Noor
and Peters, 1980; Noor, 1978, 1982) con-
sidering nonlinear structural analysis prob-
lems.
Some modal analysis techniques proposed
in the same years (Nagy, 1979) deals with
geometrically nonlinear behaviour and are
closely related to RB notions.
At the very first moment the reduced basis
method arises from the study of nonlinear
elasticity problems. The development of the RB method has been mainly due to
the engineering needs to obtain a very efficient tool in the design context.
The following decade saw further expansion into different applications and classes
of equations (Ito and Ravindran, 1998) dealing also with the control of PDEs
and (Peterson, 1989) applications of reduced order methods to fluid dynamics and
incompressible Navier-Stokes equations. However, in these early methods, the ap-
proximation spaces tended to be rather local and typically rather low dimensional
in parameter (often say a single parameter). In part, this was due to the nature of
the applications taken in account (parametric continuation), but it was also due
to the absence of a-posteriori error estimators and effective sampling procedures.
In fact the absence of this kind of techniques did not allow a certified an accurate
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prediction of the error between the “truth” solution3 and the solution obtained by
the reduced order model; the lack of a rigorous error certification is unacceptable
for example in a safe engineering context, in which the reliability is an imperative.
Much current effort is thus devoted to development of (i) a posteriori error es-
timation procedures, in particular rigorous error bounds for outputs of interest
(Prud’homme et al., 2002a) and (ii) effective sampling strategies, in particular for
higher dimensional parameter domains (Bui-Thanh et al., 2008; Nguyen et al.,
2005; Rozza, 2009a).
The a-posteriori error bounds are of course mandatory for rigorous certification of
any particular reduced basis (Online) output evaluation. However, the error esti-
mators can also play an important role in efficient and effective (greedy) sampling
procedures: the inexpensive error bounds permit us, first, to explore much larger
subsets of the parameter domain in search of most representative or best snap-
shots, and, second, to determine when the basis functions are enough to control
the error within a certified bound.
The most used sampling methods are (i) the Greedy sampling procedure and (ii)
the POD (Proper Orthogonal Decomposition): these two procedures differ under
some aspects that will be discussed in section 3.3. It is worth to anticipate that the
Greedy procedure is optimized for higher dimensions of the parameter space, while
the POD procedure is better suited for one dimensional (typically time) domain
(Atwell and King, 1999; Kunisch and Volkwein, 2003; Ravindran, 2002; Willcox
and Peraire, 2002).

Opportunity II: Early work on the reduced basis method took into considera-
tion the Opportunity II, but without being able to fully decouple the underlying
standard (FE ) discretization.
More precisely, often the Galerkin stiffness equations for the reduced basis sys-
tem were generated by direct appeal to the high dimensional FE representation:
essentially, pre and post multiplying the FE stiffness system by rectangular ba-
sis matrices; as a result the computational saving offered by the model reduction
was not fully exploited Noor (1978); Porsching (1985); Porsching and Lee (1987).
The complete decoupling between the reduced order model and the standard dis-
cretization model is one of the crucial point on which much of the current work
has been devoted at that time.
In this work we will denote with N the computational complexity of the stan-
dard discretization and with N the RB complexity. This opportunity has been
exploited thanks to an Offline/Online procedure that is possible in a context of an
affine parameter dependence of the operators constituting the PDEs; this impor-
tant concept will be recalled in section 2.2.
One of the benefits related to this procedure is shown in Figure 3; it is clear that
in a many-query context, such as an optimization design process, or in a real-time
closed loop control the split allows a much more faster sub-iteration (I/O evalua-
tion), that could not be possible in the classical FE discretization. In fact in the
FE case (Figure 3b) a subiteration involves a cost proportional to N , whereas RB
involves a cost proportional only to N .
The Offline-Online idea is quite self-apparent and it has been treated quite often
(Ito and Ravindran, 1998; Jabbar and Azeman, 2004; Peterson, 1989), nonethe-
less the idea/application of a-posteriori error bound is more involved and recent

3“Truth” here means the assumption of faithfulness achieved with the standard discretization

method, see section 2.3 for further explanation on the hypothesis and on the consequences of

this choice

6



(a) RB procedure

(b) FE procedure

Figure 3: Offline/Online splitting

(Huynh et al., 2007; Prud’homme et al., 2002a,b).
Actually even in the case of a non-affine parameter dependence the development of
the procedure is yet possible, although more complex procedures, that have been
estabilished in the few last years (M. et al., 2004; Grepl et al., 2007), are needed
in order to turn the non-affine form into an approximated affine problem.

1.3 Problems addressed

This chapter will deal with linear output functional and affinely parametrized
linear coercive PDEs: these problems are relevant to many important applications
in various field of engineering interest.
Although we focuse on these problems, the reduced basis method is much more
general and is able to treat nonaffine problems (Grepl et al., 2007) and parabolic
equations (Atwell and King, 1999).
Furthermore, the RB method may be used for nonlinear equations such as the in-
compressible (quadratically non-linear) Navier-Stokes equations, finally even the
hyperbolic equations are subject of study, there are proofs which demonstrate that
RB approximation and a posteriori error estimation can be applied, although up
to now there are still many issues related to smoothness and stability (Haasdonk
and Ohlberger, 2008; Patera and Ronquist, 2007).
The application chosen in this work deals with thermal conduction in continuum
mechanics and it proves to be a convenient expository vehicle for the methodology
exploitation.

2 Parametrized Elliptic PDEs

In the first part of this section, we will briefly introduce some generalities about
parametric bilinear form, parametric linear functional, coercivity and continuity
constants. In particular the abstract formulation for coercive problem will be re-
ported.

2.1 Parametric operators

In this section, definitions and properties about parametric bilinear and bilin-
ear forms will be introduced.
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The theory presented here is available with further details and explanations in
Patera and Rozza (2007) for the coercive case, in Rozza and Veroy (2006) for the
non coercive case.
The basic concept of functional analysis concerning Cartesian product, functional
norms, bilinear forms and dual spaces are given as known (Quarteroni and Valli,
1997; Yosida, 1971).

Linear and bilinear parametric forms. We first introduce a closed bounded
parameter domain D ⊂ RP with a typical parameter vector, or P−tuple, in D
shall be denoted µ = (µ1, . . . , µP ). We assume that D is suitably regular.
It is now necessary to introduce some definition that resembles the classical defi-
nition for non-parametric linear operators.

Definition 2.1. Let Z be an inner product space over R, b : Z × Z × D → R is
a parametric bilinear form if, for all µ ∈ D, b( · , · ;µ) : Z × Z → R is a bilinear
form, i.e. for any α ∈ R and for any w, v, z ∈ Z:

b(αw + v, z ;µ) = αb(w, z ;µ) + b( v, z ;µ) ∀µ ∈ D

and for any β ∈ R and for any w, v, z ∈ Z:

b(w, βv + z ;µ) = βb(w, v ;µ) + b(w, z ;µ) ∀µ ∈ D.

Definition 2.2. A parametric bilinear form b : Z × Z × D → Ris symmetric if,
for any v, w ∈ Z:

b(w, v ;µ) = b( v, w ;µ) ∀µ ∈ D (1)

A parametric bilinear form b : Z × Z × D → R is skew-symmetric if, for any
v, w ∈ Z:

b(w, v ;µ) = −b( v, w ;µ) ∀µ ∈ D (2)

Starting from the Definition 2.2 it is possible to define the symmetric and the
skew-symmetric part of the bilinear form as it follows:

Definition 2.3. Given a parametric bilinear form, we define:
• the symmetric part of b as:

bS(w, v ;µ) =
1

2
(b(w, v ;µ) + b( v, w ;µ)) (3)

• the skew-symmetric part of b as:

bSS(w, v ;µ) =
1

2
(b(w, v ;µ)− b( v, w ;µ)) . (4)

For the coercive case it is necessary to introduce the definition of the coercivity
of the parametric bilinear form.

Coercivity.

Definition 2.4. We say that a parametric bilinear form b : Z × Z × D → R is
coercive over Z if:

α(µ) = inf
w∈Z

b(w, w ;µ)

||w||2Z
(5)

is positive for all µ ∈ D.

We can define (0 <) α0 = minµ∈D α(µ).
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Continuity. Now it is possible to define the continuity of the parametric bilinear
form in very similar way. We say that:

Definition 2.5. A parametric bilinear form b : Z×Z×D → R is continuous over
Z if:

γ(µ) = sup
w∈Z

sup
v∈Z

b(w, v ;µ)

||w||Z ||v||Z
(6)

is finite for all µ ∈ D.

It is useful to define γ0 = maxµ∈D γ(µ).

Linear parametric form. Similarly as already done with the parametric bilin-
ear form, we recall:

Definition 2.6. Let Z be an inner product space over R. g : Z × D → R is a
parametric linear form if, for all µ ∈ D, and for any w ∈ Z, g( · ;µ) : Z ×D → R
is a linear form. That is, for all α ∈ R, and for any w, v ∈ Z:

g(αw + v ;µ) = αg(w ;µ) + g( v ;µ) ∀µ ∈ D (7)

Continuity. In order to ensure the well posedness of the problem, the continuity
of the parametric linear form is needed. We say that:

Definition 2.7. A parametric linear form g is continuous if, for all µ ∈ D,
g( · ;µ) ∈ Z ′.

Z ′ denotes the dual space, that we recall is the space of all linear bounded func-
tionals over Z. Note that the dual norm of a parametric linear form g, ||g( · ;µ)||Z′ ,
will of course be a (finite) function of µ over D.

Coercivity eigenproblem. We recall here an additional problem which will be
useful in order to evaluate a rigouros error bound as it will be seen in the section
3.5 (Patera and Rozza, 2007; Quarteroni et al., 2000).
It is necessary to introduce an eigenproblem because in the subsequent analysis it
will be useful to recognize that α(µ) (and β(µ) in the non-coercive case) can be
seen as the minimum eigenvalue of a generalized eigenproblem.

It is possible to rewrite (5) replacing the form b with his symmetric part,
denoted with bs:

α(µ) = inf
w∈Z

bs(w, w ;µ)

||w||2Z
(8)

it follows that α(µ) can be expressed as a minimun eigenvalue.
It is useful to introduce the coercivity symmetric (generalized) eigenproblem as-
sociated with the parametric bilinear form b : Z × Z ×D → R.
Given µ ∈ D, find the couple (χ, λ)i(µ) ∈ Z × R, i = 1, . . . ,dim(Z), such that:

bS(χi, v; µ) = νi(χi(µ), v)Z (9)

and
||χi(µ)|| = 1 (10)

of course it will be possible to sort the dim(Z) eigenvalues in ascending order such
that: λ1(µ) < . . . < λdim(Z)(µ).
It simply descends from (9) and (8) that if b is coercive, then α(µ) = λ1(µ) > 0.
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2.2 Affine parametric dependence

The affine parametric dependence of the bilinear form and of the linear func-
tional is one of the most important ingredient in the offline/online decomposition
and of course in the real-time input/output evaluation.
The idea is rather simple: split all the parametric dependent component by those
parametrically independent. In addition we recall also the parametric coercivity
definition.

Affine parametric bilinear forms. With regard to the bilinear parametric
forms the affine dependence states that:

Definition 2.8. A parametric bilinear form b : Z × Z × D → R is affine in the
parameter µ if, for all v, w ∈ Z:

b(w, v;µ) =

Qb∑
q=1

θqb (µ) bq(w, v) ∀µ ∈ D (11)

for some finite, preferably small, Qb.

Here the θqb (µ) : D → R are (tipically very smooth) parameter- dependent
functions, and bq(w, v) : Z × Z → R are parameter-independent bilinear forms.

Parametric coercivity. In the scope of an affine dependence it is useful also
to consider the parametric coercivity of the bilinear form.

Definition 2.9. We say that an affine parametric (coercive) form b : Z×Z×D →
R (definition 2.8) is parametrically coercive if, c ≡ bs (the symmetric part of b)
admits an affine development :

c(w, v;µ) =

Qc∑
q=1

θqc(µ) cq(w, v) ∀µ ∈ D (12)

that satisfies two conditions:

θqc(µ) > 0 ∀w, v ∈ Z, ∀µ ∈ D, 1 ≤ q ≤ Qb (13)

and

cq(v, v) > 0 ∀ v ∈ Z, 1 ≤ q ≤ Qb. (14)

Note that we suppose that each cq(w, v) is symmetric.

Affine parametric linear form. Similarly as done for the bilinear form it is
worth to introduce the affine dependence for a linear bounded functional.

Definition 2.10. We shall say that the parametric linear form g : Z ×D → R is
affine in the parameter if, for any v ∈ Z:

g(v;µ) =

Qg∑
q=1

θqg(µ) gq(v) ∀µ ∈ D (15)

for some finite Qg.
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Once again, here the θqg : Z × D → R are smooth parameter-dependent func-
tions and the gq(v) : Z → R are parameter-independent bounded linear forms.
The affine representations (11) and (15) are not unique, though in general will
exist minimum Qb (in the former case) and Qg (in the latter) terms of expansion
able to describe the forms with an affine development.
Tipically the number of termsQmainly depends on the complexity of the parameter-
dependent geometry. This concept will be treated in the section 4.3 where the
decomposition in the 2D and in the more involved 3D case will be considered.

2.3 Abstract formulation of a coercive parametrized problem

In this section, an abstract problem for coercive elliptic partial differential
equations with affine parameter dependence will be introduced. First the exact
formulation (in weak form) of the problem will be presented, then a finite element
discretization will be introduced in order to build the “truth” space on which the
reduced basis will be built upon.
As mentioned in the introduction, the interest resides in the evaluation of the
solution field and the output that depends on the state equation which is solution
of a PDE.

Exact formulation. Let Ω ∈ Rd, d = 1, 2, 3 be a suitable physical domain with
Lipschitz continuous boundary ∂Ω. Let D ⊂ RP be the parameter domain.
Moreover let Γ, be a boundary measurable segments of ∂Ω, over which we shall
ultimately impose Dirichlet boundary condition on the components of the field
variable. We next introduce a suitable scalar space Y ei , 1 ≤ i ≤ d:

Y ei ≡
{
v ∈ H1(Ω) | v |ΓDi = 0

}
(16)

in general H1
0 (Ω) ⊂ Y e ⊂ H1(Ω). Clearly if Γ = ∂Ω, then Xe ≡ H1

0 .
We then construct the space in which our vector-valued field variable shall reside
as a Cartesian product:

Xe = Y e1 × Y e2 × . . .× Y d1

We equip Xe with an inner product (v, w)Xe , ∀ v, w ∈ Xe and induced norm

||w||Xe =
√

(w,w)Xe , ∀w ∈ Xe; any inner product which induces a norm equiva-

lent to the
(
H1
)d

is admissible.

Problem statement. It is now possible to state the problem in the “exact”
space: let a : Z × Z ×D → R be a continuous coercive parametric bilinear form,
let f : Z ×D → R and l be a parametric linear functional bounded over Xe.
Given µ ∈ D ⊂ RP , find u(µ) ∈ Xe such that

a (ue(µ, v;µ)) = f (v;µ) ∀ v ∈ Xe (17)

and evaluate

se(µ) = l(ue(µ);µ). (18)

Here se(µ) is the output of interest, se(µ) : D → R is the input-output relationship
and l is the linear “output” functional that links the input to the output through
the field variable.
It follows from our hypothesis on a, f and l that the problem has a unique solution
thanks to the Lax-Milgram theorem (Quarteroni et al., 2000; Quarteroni and Valli,
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1997).
Recalling the affine development of the bilinear form and of the linear functional
(section 2.2), it is possible to write the operators in the following form; for any
µ ∈ D:

a(w, v;µ) =

Qa∑
q=1

θqa(µ) aq(w, v) ∀ v, w ∈ Xe (19)

f(v;µ) =

Qf∑
q=1

θqf (µ) fq(v) ∀ v ∈ Xe (20)

l(v;µ) =

Ql∑
q=1

θql (µ) lq(v) ∀ v ∈ Xe (21)

for finite and preferebly small Qa, Qf , Ql. We implicitly assume that the θqa for
1 ≤ q ≤ Qa, θqf for 1 ≤ q ≤ Qf and θql for 1 ≤ q ≤ Ql are simple algebraic
expressions that can be readily evaluated in O(1) operations.

Compliant problem. In this section the problems considered will be “compli-
ant”, i.e. :

1. l( · ;µ) = f( · ;µ)
2. a(w; v;µ) = a(v, w;µ) ∀w, v ∈ Xe

that is the output functional and the load/source functional are the same and the
bilinear form is symmetric (e.g. “compliancy” in linear elasticity). Considering
these two hypotheses the problem (17)-(18) can be rewritten as it follows.
Given µ ∈ D ⊂ RP , find u(µ) ∈ Xe such that

a (ue(µ, v;µ)) = f (v;µ) ∀ v ∈ Xe (22)

and evaluate
se(µ) = f(ue(µ);µ). (23)

Truth approximation. We focus the attention on the “truth” approximation.
The reduced basis approximation will be built upon and the error will be measured
relatives to this assumption of truth.
The role played by this assumption is very important; during the basis assembling
and the error measuring the RB will completely “forget” the error between the
exact solution and the truth-assumption. Then it is necessary to take some caution
in order to ensure that this error remains suitably small for any given µ ∈ D.
For analytical purposes, we assume that the “truth” takes the place of the exact
statement. Standard finite element FE approximation (Quarteroni, 2013) may be
chosen to represent the truth and to measure the error in order to build the RB
basis and evaluate the error bounds for a given new set of parameter input µ.

Galerkin projection. We introduce a family of conforming approximation spaces
XN ⊂ Xe of dimension dim(XN ) = N <∞.
We then associate to our space a set of basis functions φNk ⊂ XN , 1 ≤ k ≤ N , by
construction, any member of XN can be represented by a unique linear combina-
tion of the basis functions φNk ⊂ XN .
Finally, we associate the inner products and induced norms XN is equipped,
denoted by (v, w)XN , ∀ v, w ∈ XN , and induced norm ||w||XN =

√
(w,w)XN ,

∀w ∈ XN .
This inner product, along with those related to the exact space, is explained below.
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Inner product and induced norms. We now define the inner product and
the norm over the space XN and Xe and the energy norm given by the coercive
bilinear form a.
For w, v ∈ Xe, we define respectively the energy inner product and the energy
norm as:

((w, v))µ = a (w, v;µ) ,

|||w|||µ =
√

(w,w)µ, (24)

moreover, for a given µ̄ ∈ D, we define for w, v ∈ Xe the Xe-inner product and
the Xe-norm as:

(w, v)Xe = ((w, v))µ̄ + τ (w, v)L2(Ω) ,

||w||Xe =
√

(w,w)Xe , (25)

where τ is a negative real parameter and(w, v)L2(Ω) =

∫
Ω

w v dΩ.

Remark 1: We note that in order to define our Xe-norm we have chosen a fixed
valued of the parameter µ.
Remark 2: since XN ⊂ Xe, the inner products and the norms defined above are
the same for the space XN .
The choice of µ̄ and τ will affect the quality and efficiency of our reduced basis
a posteriori error estimators, but this will not affect directly our reduced basis
output predictions (Rozza et al., 2008).

Truth problem statement. Now we can state the problem in the truth space
taking the Galerkin projection of the problem (22)-(23); given µ ∈ D ⊂ RP , find
u(µ) ∈ XN such that

a
(
uN (µ), v;µ

)
= f (v;µ) ∀ v ∈ XN (26)

and evaluate
sN (µ) = f(uN (µ);µ). (27)

Coercivity and continuity. We can define precisely the exact and the finite
element approximated coercivity constants respectively, as:

αe(µ) = inf
w∈Xe

b(w, w ;µ)

||w||2Xe
, (28)

αN (µ) = inf
w∈XN

b(w, w ;µ)

||w||2Xe
. (29)

From the coercivity hypothesis, we have that αe(µ) > α0, ∀µ ∈ D; furthermore
from our hypothesis on XN , that is a conforming space, we have that αN (µ) >
αe(µ), ∀µ ∈ D. Than even after the approximation the problem remains coercive.
In the same way, the continuity constants are defined as

γe(µ) = sup
w∈Xe

sup
v∈Xe

b(w, v ;µ)

||w||Xe ||v||Xe
, (30)

γN (µ) = sup
w∈XN

sup
v∈XN

b(w, v ;µ)

||w||XN ||v||XN
, (31)

once again from our hypothesis it follows γe(µ) <∞ and γN (µ) ≤ γe(µ), ∀µ ∈ D.
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Well-posedness. The Galerkin approximation on XN must satisfy the same
conditions that the exact formulation satisfies over Xe. For the particular class of
problems of interest in this section (elliptic coercive PDEs) the Galerkin formula-
tion in fact directly inherits and even improves upon all the good properties of the
exact formulation:

1. The dual norm of f over XN (⊂ Xe) is bounded by the dual norm of f over
Xe;

2. symmetry is preserved;
3. a is coercive over XN with:

αN (µ) ≥ αe(µ) ∀µ ∈ D (32)

4. a is continuos over XN with:

γN (µ) ≤ γe(µ) ∀µ ∈ D (33)

5. the affine expansions for f and a are still valid for w, v restricted to XN ;
6. a still satisfies the two conditions for parametric coercivity (section 2.2);

thus, for any N and associated XN , the Galerkin approximation preserves the
parametrically coercivity and affine compliancy property.

3 RB method for parametrized elliptic coercive PDEs

In this section we will introduce the relevant steps for the generation of the rapidly
convergent global RB approximation spaces for the approximation of the solution
of parametrized coercive elliptic partial differential equations with affine parame-
ter dependence will be explained.
Subsequently it will be possible to introduce the reduced basis approximation
methodology, the sampling strategies and the construction of the reduced spaces.
Then an a-posteriori error bound necessary to achieve an efficient RB sampling it
will be introduced.

3.1 The RB heuristic idea

As described in section 1.2, the RB approach derives from the two opportunities.
In particular regarding the Opportunity I, although uN (µ) is a member of the space
XN of typically very high dimensionN , in fact uN (µ) resides on a low-dimensional
parametrically induced

manifold M≡
{
uN (µ) | µ ∈ D

}
.

In Figure 4 a graphical heuristic idea of the finite dimensional (truth) manifold
XN with the parametrically induced manifoldMN (filament) is shown. The same
idea in the exact infinite dimensional space is depicted in Figure 2.
It is thus wasteful to express the solution u(µ) as an arbitrary member of the
unnecessarily rich space XN ; rather, presuming thatM is sufficiently smooth, we
should represent u(µ) in terms of elements of an ad-hoc manifold much more lower
dimensional (Patera and Rozza, 2007; Rozza et al., 2008).
The RB recipe is very simple (see Figure 5 for a graphical interpretation). The ba-
sic idea is to efficiently chose and computeN solutions or “snapshots” ξN1 , ξ

N
2 , . . . , ξ

N
N ∈

XN and then, for any arbitrary new µ∗ ∈ D, compute the solution uNN (µ∗) asso-
ciated to this parameter thanks to an appropriate combination of the previously
computed snapshots ξNk , k = 1, . . . , N .
Note that ”uNN (µ)” is not redundant; it means that this is the solution in the truth
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(a)

Figure 4: Parametrically induced manifold on XN

(a)

Figure 5: Approximation of uNN (µ∗)

space XN computed along the reduced manifold MN , selecting N snapshots.
In the most part this work, if not specified, when dealing with RB solution we will
always simply write uN (µ) meaning the reduced solution in the truth space.
Now also the Opportunity II (section 1.2) can be understood; starting from the
RB idea it is evident that are needed at least N solutions of the problem on the
N -dimensional truth space.
The RB approach is thus clearly ill-suited to the single-query or few-query situ-
ation; however, in the real-time and many-query context this Offline investment
is readily acceptable in exchange for future asymptotic or Online computational
burden reduction.

3.2 RB spaces and bases

In this section the RB problem formulation in the coercive case is discussed.
We begin introducing the spaces and basis that allow us to build the reduced basis
problem, subsequently the creation of the RB system, the Offline/Online proce-
dure and the a-posteriori error bound will be introduced.
There are different possible choices for the selection of the reduced basis spaces
(Hermite, Lagrange, etc . . .) that will lead ultimately to different reduced order
model (Rozza et al., 2008; Patera and Rozza, 2007; Porsching, 1985; Ito and Ravin-
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dran, 2001). In the following the Lagrange hierarchical spaces used in this work
will be discussed.

Lagrange hierarchical spaces. We introduce a set of linearly independent
functions:

ξn ∈ X, 1 ≤ n ≤ Nmax (34)

where Nmax is the maximum dimension of the RB space, in terms of which we
define the RB approximation spaces:

XN = span {ξn, 1 ≤ n ≤ N} 1 ≤ N ≤ Nmax (35)

where we assume, in order to build a ”reduced basis” that the ξn are somehow
related to the manifold M.
By construction we obtain

XN ⊂ X, dim(XN ) = N, 1 ≤ N ≤ Nmax (36)

moreover, as the same property holds recursively for any nested subset of XN , we
can say that the space X is hierarchical.

Definition 3.1. Given a space X, given Nmax subsets of this space Xn ⊂ X, 1 ≤
n ≤ Nmax, we say that X is a hierarchical (or nested) space if:

X1 ⊂ X2 ⊂ . . . ⊂ XNmax−1 ⊂ XNmax . (37)

The hierarchical property (37), as we shall see, is important in ensuring (mem-
ory) efficiency for the resulting reduced basis approximation.
To introduce the Lagrange (hierarchical) RB recipe, we first define a master
set of parameter points µn ∈ D, 1 ≤ n ≤ Nmax, we then define, for given
N ∈ {1, . . . , Nmax}, the Lagrange parameter samples

SN =
{
µ1, . . . , µN

}
, (38)

that we choose nested in order to build a hierarchical space, that is:

S1 =
{
µ1
}
⊂ S2 =

{
µ1, µ2

}
⊂ . . . ⊂ SNmax

. (39)

The associated Lagrange RB spaces are defined as:

WNN = span
{
uN (µn)

}
, 1 ≤ n ≤ N. (40)

We observe that, by construction, these Lagrange spaces are hierarchical; in fact
the samples SN are nested thanks to the choice (39), then accordingly:

WN1 = span
{
uN (µ1)

}
⊂WN2 = span

{
uN (µ2), uN (µ1)

}
⊂ . . . ⊂WNNmax

(41)

The uN (µn), 1 ≤ n ≤ Nmax are the so-called “snaphots” related to the low di-
mensional manifold MN . As already mentioned in section 3.1, we would expect
to well approximate any member of the manifold thanks to a good combination of
the available snapshots.
In theory, in order to build the RB approximation spaces, it would be necessary
to choose a set of parameter samples that induces a set of linearly independent
snapshots; the greedy sampling, that will be introduced in section 3.3, induces
linear dependent functions as N increases. In fact, if the snapshot chosen WN

contains much of the D induced manifold M, then it will be clear that the new
µN+1 ∈ D will perforce be a combination of this functions.
We therefore pursue a Gram-Schmidt orthogonalization in the ( · , · )X inner prod-
uct to recover an orthonormal well-conditioned set of basis functions in order to
guarantee a good algebraic stability without ill-conditioning (Patera and Rozza,
2007).
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Orthogonal RB bases. To achieve the orthogonalization, we apply the already
mentioned Gram-Schmidt standard orthogonalization (Meyer, 2000). Given the
basis functions ξn, 1 ≤ n ≤ Nmax (34), that in the Lagrange space choice are the
u(µn), 1 ≤ n ≤ Nmax (40), we obtain the set of basis function ζn, 1 ≤ n ≤ Nmax

as:
ζ1 = ξ1/||ξ1||X ;

for n = 2 : Nmax

zn = ξn −
n−1∑
m=1

, (ξn, ζm)X ζm;

ζn = zn/||zn||X ;

end

(42)

As a result of this process we obtain the orthogonality condition:

(ζm, ζn)X = δmn 1 ≤ m,n ≤ Nmax (43)

where δmn is the Kronecker-delta symbol.
Finally we can express our reduced basis spaces XN as:

XN = span {ζn, 1 ≤ n ≤ N} 1 ≤ N ≤ Nmax. (44)

Now any function wN ∈ XN can be expressed as a linear combination of the
reduced base XN as:

wN =

N∑
n=1

wNn ζ
n 1 ≤ N ≤ Nmax (45)

for a unique combination of (RB) coefficients wNn ∈ R, 1 ≤ n ≤ Nmax.

Algebraic representation of RB bases. We now reconsider the orthogonal-
ization process in order to introduce some concepts that will be necessary to build
our RB problem starting from the FE original frame.
If we express our snapshots ξn in terms of FE functions φi, 1 ≤ i ≤ N :

ξn =

N∑
i=1

ξni φi, 1 ≤ n ≤ Nmax, (46)

similarly we may express our RB orthogonalized functions ζn as

ζn =

N∑
i=1

ζni φi, 1 ≤ n ≤ Nmax. (47)

Now, in the two cases above, we sort the FE coefficients in an array

ξn ≡
{
ξn1 ξ

n
2 . . . ξnN

}T
1 ≤ n ≤, Nmax (48)

ζn ≡
{
ζn1 ζn2 . . . ζnN

}T
1 ≤ n ≤ Nmax. (49)

We then introduce the algebraic representation XN ∈ RN×N of the inner prod-
uct ( · , · )X :

XN
ij

=
(
φi, φj

)
XN

1 ≤ i, j ≤ N . (50)
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The orthogonalization process can be now formulated as:

ζ1 = ξ1/

√
ξ1TX ξ1;

for n = 2 : Nmax

zn = ξn −
n−1∑
m=1

,
(
ξnX ζm

)
ζm;

ζn = zn/
√
znTX zn;

end

(51)

Finally it is useful to introduce the “basis” matrices Z ∈ RN×N , 1 ≤ N ≤
Nmax:

ZNj n = ζnj 1 ≤ j ≤ N , 1 ≤ n ≤ N. (52)

This matrices is built in such a way that the nth-column of the matrix is formed by
the vector of FE coefficients ζnNj , 1 ≤ j ≤ N associated to the nth RB function.

Galerkin projection. The projection strategy used in order to obtain the RB
approximation is given by a Galerkin projection, which is arguably the best ap-
proach. We remark that the RB weak formulation has formally the same appear-
ance as the “exact” weak formulation (see equations (17)-(18), section 2.3); in this
case we properly replace the FE truth functional space with the RB approxima-
tion space; in the next Section we will show how to obtain the latter from the
former by means of an algebraic procedure.
The problem states: given µ ∈ D, find uN

(
≡ uNN

)
∈ XN

(
XNN

)
such that

a(uN (µ), v;µ) = f(v;µ) ∀ v ∈ XN (53)

we evaluate
sN (µ) = f(uN (µ)). (54)

From coercivity and continuity hypothesis on a and f , our conforming reduced ba-
sis XNN ⊂ XN , and from our assumption of linear independence of snapshots, the
problem (53)-(54) admits an unique solution (Quarteroni and Valli, 1997; Quar-
teroni, 2013). Thanks to the Galerkin projection, the optimality results subse-
quently discussed holds (Rozza et al., 2008; Patera and Rozza, 2007).

Proposition 3.2. For any µ ∈ D and uN (µ) and sN (µ) satisfying (53)-(54):

|||uN − uNN |||µ = inf
wN∈XNN

|||uN − wN |||µ (55)

||uN − uNN ||X ≤

√
γe(µ)

αe(µ)
inf

wN∈XNN
||uN − wN ||X (56)

as regard the output optimality results, in the compliant case we obtain:

sN − sNN = |||uN − uNN |||2µ
= inf
wN∈XNN

|||uN − wN |||2µ (57)

and furthermore

0 ≤ sN − sNN ≤ γe(µ) inf
wN∈XNN

||uN − wN ||2X , (58)
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where γe(µ) and αe(µ) are the continuity and coercivity constants, respectively
(defined in (6) and (5)) in the exact space. It will be shown that these optimality
results will be used even after, replacing the exact constants with those evaluated
with the reduced space approximation.
It is also necessary to remark from (57) that, in the compliant case, the error on
the output is the square of the error of the field variable: we have the so-called
“square effect”, this is crucial for the input/output accuracy and efficiency of the
method.
Last but not least, sN (µ) is a lower bound for sN , in fact: (i) sN (µ) = a(uN (µ), uN (µ);µ)
is a positive quantity, and (ii) the error in the output is the square of the error of
the field variable (Rozza et al., 2008).

Offline-Online procedures: algebraic formulation. The algebraic formula-
tion for the coercive problem will be explained. The crucial point that will be
treated is the Online/Offline splitting procedure; this procedure will be equipped
with an operation count to highlight the potential computational saving offered
by the RB method.
In order to apply the standard variational procedure to obtain the algebraic for-
mulation of the problem, we first expand uN (µ):

uN (µ) =

N∑
j=1

ujN (µ) (59)

now, inserting the expansion (59) in the problem (53) and choosing v = ζi, 1 ≤
i ≤ N as our test function, we obtain the set of linear algebraic equations

N∑
j=1

a(ζj , ζi;µ)ujN (µ) = f(ζi;µ), 1 ≤ i ≤ N (60)

for the reduced basis coefficients ujN (µ) 1 ≤ i ≤ N .
The output can then be expressed as

sN (µ) =

N∑
j=1

ujN (µ) f(ζj ;µ) (61)

We now express these operations in matrix form; we first introduce the array of
RB basis coefficients uN (µ) as

uN ≡ [uN1
uN2

. . . uNN ] (62)

It follows from (60) that uN ∈ RN satisfies

A
N

(µ)uN (µ) = FN (µ) (63)

whereA
N

(µ) ∈ RN×N is the “stiffness matrix”, and FN (µ) ∈ RN is the “load/source”
array. This quantity are in particular given by:

A
Ni,j

(µ) = a(ζj , ζi;µ) 1 ≤ i, j ≤ N (64)

and
FNi(µ) = f(ζi;µ) 1 ≤ i ≤ N. (65)

Finally, the output can now be expressed as

sN (µ) = FTN uN (66)

It follows from our assumption of linear independence of the snapshots that
the stiffness matrix is symmetric and positive definite.
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Offline-Online. It is now possible, starting from the algebraic problem, to in-
troduce the Offline/Online procedure.
The reduced basis system (63) is clearly of small size, in fact it is an N ×N linear
system that requires O(N3) operation to solve it, plus O(N) operation to obtain
the output from the equation (66).
By appealing to our previous assumption of affine parameter dependence discussed
in section 2.2, from (11) and (15), the stiffness matrix and load/source vector can
be expressed, respectively, as

a(ζm, ζn;µ) =

Qa∑
q=1

θqa(µ) a(ζm, ζn) 1 ≤ m,n ≤ N (67)

and

f(ζn;µ) =

Qf∑
q=1

θqf (µ) f(ζn) 1 ≤ n ≤ N. (68)

The Offline-Online decomposition is now possible.

Offline: In the offline part we form:
1. the parameter independent matrices Aq

N
∈ RN×N

Aq
Nm,n

= aq(ζm, ζn), 1 ≤ m,n ≤ N, 1 ≤ q ≤ Qa (69)

2. the parameter independent vectors FqN ∈ RN

FqNn = fq(ζn), 1 ≤ n ≤ N, 1 ≤ q ≤ Qf (70)

This operations N -dependent and hence very expensive are computed once.

Online: In the online stage we assemble, for any new µ ∈ D:
1. the RB reduced stiffness matrix A

N
(µ)

A
N

(µ) =

Qa∑
q=1

θqa(µ) Aq
N

(71)

2. the RB reduced load/source vector FN (µ)

FN (µ) =

Qf∑
q=1

θqf (µ) FqN (72)

the operation count is actually N -independent and hence very inexpensive.

Link between FE and RB. Before a detailed discussion over the operation
count, it is necessary to provide the link between the FE and the RB stiffness
matrix and load/source vector; it is worth to remark that this operation will be
completed once in the offline stage.
In particular it can be showed that the former are linked to the latter via the
snapshots matrices Z ∈ RN×N , 1 ≤ N ≤ Nmax.
The stiffness matrix (64) that can be written as:

a(ζm, ζn;µ) =

N∑
j=1

N∑
i=1

ζmj a(φi, φj ;µ) ζni 1 ≤ m,n ≤ Nmax (73)

20



thanks to the definition of the basis matrix Z (52) and the FE development of the
reduced basis functions ζn (47) we may rewrite the stiffness matrix (73) as

A
N

(µ) = ZTA(µ) Z. (74)

In the same way the reduced parametric independent stiffness matrices Aq
N

(71)
are linked to the FE matrices:

Aq
N

= ZTAq Z. (75)

The load/source vectors (66) admit a similar treatment

FN (µ) = ZTF (µ). (76)

finally the parameter independent load/source vector 72 can be written as

FqN = ZTFq(µ) 1 ≤ q ≤ Qf . (77)

Operation count and storage. Thanks to the Offline/Online splitting proce-
dure, we have achieved an Online N -independent stage, hence very inexpensive.
It is necessary to focus on the Offline and Online complexity to quantify the com-
putational reduction provided by the RB method.
We make use of Table 1 to summarize the computational burden requested to
perform: (i) Offline, the RB basis assembling, (ii) Online, a single input/output
evaluation.

part item burden equation

Offline

Z
N

N O(N 3) (52)

Aq

N
QaN A-matvec +QaN

2 XN -inprod (75)

FN Qf N XN -inprod (77)

Online

A
N

QaN
2 (71)

FN Qf N (72)

uN O(N3) (60)

sN N2 (66)

Table 1: Offline/Online: coercive case

In this table we have denoted with “A-matvec” and “XN -inprod”, the matrix-
vector multiplication and the inner product between two vectors ∈ XN , respec-
tively.
As regard the storage we need only to store Aq

Nmax
1 ≤ q ≤ Qa and FqNmax

1 ≤
q ≤ Qf , then extract only the sub-matrices and sub-vectors of desired N thanks
to the hierarchical base property, as explained in (37).

3.3 Sample/space assembling

We now discuss the procedure used to select the snapshots in order to assem-
ble the reduced basis approximation spaces, after a few preliminaries. We then
turn to the Greedy sampling strategy exploited in this chapter (Patera and Rozza,
2007). See also (Huynh et al., 2007; Rozza et al., 2008) for more options sampling
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strategies.
We shall denote by Ξ a finite sample of points in D. These ”test” samples Ξ serve
as surrogates for D in the calculation and presentation of errors over the param-
eter domain. Typically these samples are chosen by Monte Carlo methods with
respect to a uniform or log−uniform density.
Concerning the dimension of the sample, we always ensure that Ξ is sufficiently
large that the reported results are insensitive to further refinement of the param-
eter sample.

Definition 3.3. Given a function y : D → R, we define the L∞(Ξ) and Lp(Ξ)
norms respectively as:

||y||L∞(Ξ) ≡ max
µ∈Ξ
|y(µ)|

||y||Lp(Ξ) ≡

|Ξ|−1
∑
µ∈Ξ

|y(µ)|p
1/p

.

(78)

Definition 3.4. Given a function z : D → XN (or Xe), we define the L∞(Ξ;X)
and Lp(Ξ;X) norms respectively as:

||z||L∞(Ξ;X) ≡ max
µ∈Ξ
|z(µ)|X

||z||Lp(Ξ;X) ≡

|Ξ|−1
∑
µ∈Ξ

||z(µ)||pX

1/p

.

(79)

Here |Ξ| denotes the cardinality of (the finite number of elements in) the test
sample Ξ. We now introduce the Greedy Lagrange spaces, that will be used to
build our RB approximation.

Greedy Lagrange spaces. We have already introduced the concept of Lagrange
spaces (see section 3.2), we now have to extend this idea to Greedy Lagrange
spaces.
We remark that this strategy is not indispensable to build a basic model reduc-
tion, but it is a prerogative of the Reduced Basis method. In fact the Greedy
sampling, we are going to discuss, can be efficiently exploited only combined to an
Offline/Online splitting procedure.
The idea of this strategy is starting with a train sample Ξ

train
, we select N param-

eters µ1, . . . ,µN and, as already seen in section 3.2, we form the reduced basis
space XN as:

XN = span
{
ξn = uN (µn), 1 ≤ n ≤ N

}
. (80)

More precisely, for the Greedy approach, we need a also sharp, rigorous and efficient
bound ∆en

N (µ) for the reduced basis error ||uN (µ)−uN (µ)||X , where uN is our RB
approximation associated with the space XN (Rozza et al., 2008). The superscript
en denotes that the bound is related to the energy norm of the error, other options
are discussed in Patera and Rozza (2007).
To quantify the sharpness and rigour properties, we recall the effectivity of an
error bound.

Definition 3.5. The effectivity of an error bound, denoted by η, is defined as
follows

ηen
N

=
∆en
N

||uN (µ)− uN (µ)||X
(81)
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we require that

1 ≤ ηen
N
≤ ηen

max,UB
∀µ ∈ D, 1 ≤ N ≤ Nmax (82)

where ηen
max,UB

is finite and N independent.

It is possible to show that the inequality (82) is always fullfilled in the RB
method (Rozza et al., 2008). The rigour property is illustrated by the left in-
equality: the error bound ∆en

N (µ) is never smaller than the true error ||uN (µ) −
uN (µ)||X . The sharpness property is illustrated by the right inequality: ∆en

N (µ)
has not to bee much bigger than the true error. Last, efficient means that the
evaluation of ∆en

N (µ) is N independent, thanks to the Offline/Online procedure
that we will show in section 3.4. The last property is crucial in the Greedy pro-
cedure, in fact it permits us to exploit a very large train sample Ξtrain in order to
select the best snapshots to be include in our RB approximation spaces.

Greedy algorithm. We define Nmax, an upper bound for Nmax and εtoll,min

the desired minimum tolerance over the error bound.
Given Ξ

train
, S1 =

{
µ1
}

and X1 = span
{
uN (µ1)

}
,

for N = 2 : Nmax

µN = arg max
µ∈Ξ

train

εN−1 = ∆en
N

(µN )

if εN−1 ≤ εtoll,min

Nmax = N − 1

end

SN = SN−1 ∪ µN

XN = XN−1 + span
{
uN (µN )

}
end

(83)

In the Greedy algorithm the key point is to exploit an approximated (very cheap)
error bound ∆en

N
(µN ) instead of the true error (hence very expensive) ||uN (µ)−

uN (µ)||.
We remark that the Greedy algorithm heuristically minimizes the RB error bound
in L∞(Ξtrain;X) norm (Patera and Rozza, 2007; Rozza et al., 2008): the algorithm
evaluates the error bounds ∀µ ∈ Ξ

train
, then the next snapshot is selected such

that it corresponds to the maximum error bound.

3.4 A-posteriori error bound

A-posteriori error bounds are crucial in the RB methodology. They are impor-
tant for both efficiency and reliability of RB approximations.
As regards efficiency, error bounds play a role in Offline and Online stage. In
the Greedy algorithm for example, the application of error bounds permits larger
training sample at reduced Offline computational cost. Hence, we have a better
accuracy of the reduced basis approximation which can be obtained with a smaller
number N of basis functions, and hence we have a further reduction in the Online
computational cost.
In other words, a posteriori error estimation permits us to control the error thus
allowing us to minimize the computational effort (Patera and Rozza, 2007).
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As regards reliability, our Offline sampling procedures could not be exhaustive
without a Greedy approach. For a large number of parameters P , there would be
a large portion of the parameter space D which would remain unexplored. So, the
error of a large parts of the parameter domain D would be affected by uncertainty.
The a-posteriori error bounds permit to rigorously bound the error for all new
value of parameter µ∗ ∈ D. So we do not lose any confidence in the solution com-
pared to the underlying FE solution while exploiting the rapid predictive power
of the RB approximation.
As mentioned in section 3.3, the a-posteriori error bound must be rigorous (greater
or equal to the true error) for all N and all parameters values in the parameter
domain D. Second, the bound must be reasonably sharp. An overly conservative
error bound can yield inefficient approximations, typically N too large, or subop-
timal engineering results, for example too much big safety margins.
For the coercive case, see Patera and Rozza (2007); Rozza et al. (2008), whereas
for the non-coercive case see Rozza (2009a); Rovas (2003).

Preliminaries. We define the residual r : D →
(
XN

)′
as

r(v;µ) = f(v;µ)− a(uNN (µ, v;µ)) ∀ v ∈ XN (84)

where
(
XN

)′
is the dual space of XN .

We also introduce the function ê : D → XN , the Riesz representation of r(v;µ),
see (Quarteroni, 2013):

(ê(µ), v)X = r (v;µ) ∀ v ∈ XN . (85)

Finally, introducing the real error eN (µ) (≡ e(µ))

e(µ) = uN (µ)− uNN . (86)

Recalling that uN (µ) and uN (µ) satisfies the equations (26) and (53), respec-
tively, we get from (84), (85) that the error e(µ) satisfies the following relation

a(e(µ), v;µ) = r(v;µ) = (ê(µ), v) ∀ v ∈ XN . (87)

We note that for our choice of inner product (25): ê(µ) = e(µ).

We then define the dual norm of r( · ;µ) associated to the dual space
(
XN

)′
:

||r(v;µ)||X′ = sup
v∈X

r(v;µ)

||v||X
= ||ê(µ)||X . (88)

Note that the second equality follows from the Riesz representation theorem. This
definition is crucial for the Offline-Online procedure.
Our aim is to find an approximated lower bound for αN (µ) (5), that is a function
αNLB : D → R such that

1. 0 < αNLB(µ) ≤ αN (µ) ∀µ ∈ D;

2. the evaluation µ→ αNLB should be independent of N .

We will discuss the procedure to evaluate this coercivity lower bound in 3.5.

Error bound estimators. Now we can define our energy, output and relative
output error bound estimators, that are defined respectively as (Patera and Rozza,
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2007; Rozza et al., 2008):

∆en
N (µ) =

||ê(µ)||X
(αLBN (µ))

1/2
, (89a)

∆s
N (µ) =

||ê(µ)||2X
αLBN (µ)

, (89b)

∆s,rel
N (µ) =

||ê(µ)||2X
αLBN (µ) sNN (µ)

=
∆s
N (µ)

sNN (µ)
. (89c)

Effectivity estimators. As already discussed in Section 3.3, associated to each
estimator theres is an effectivity estimator as a measure of the quality of the error
bound estimators and are needed to certify that the RB method is rigorous and
sharp. We introduce the following ones:

ηenN (µ) =
∆en
N (µ)

|||e(µ)|||µ
, (90a)

ηsN (µ) =
∆s
N (µ)

sN (µ)− sNN (µ)
, (90b)

ηen,relN (µ) =
∆s,rel
N (µ)(

sN (µ)− sNN (µ)
)
/sN (µ)

. (90c)

It is can be shown that the effectivities are a measure of the rigor and sharpness
for an error bound.

Proposition 3.6. The following results holds (see Rozza et al. (2008) for the
proof):

1 < ηenN (µ) ≤

√
γe(µ)

αNLB(µ)
, (91)

1 < ηsN (µ) ≤ γe(µ)

αNLB(µ)
, (92)

and finally, with regard to ηen,relN (µ), it can be shown that:

ηen,relN (µ) = (ηenN (µ))2. (93)

Offline-Online procedure. The main component of the error bound is the
computation of the dual norm of the residual ||ê(µ)||X . To develop the Offline-
Online procedure, we introduce the residual expansion, ∀ v ∈ X:

r(v;µ) =

Qf∑
q=1

θqf (µ) fq(v) +

Qa∑
q=1

N∑
n=1

θqa(µ)uNn(µ) aq (ξn, v) . (94)

This expansion directly follows from our affine assumption (11) and from the RB

development uN (µ) =

N∑
n=1

uNn ξn.

Moreover, we have from (87) that:

(ê(µ), v)X =

Qf∑
q=1

θqf (µ) fq(v) +

Qa∑
q=1

N∑
n=1

θqa(µ)uNn(µ) aq (ξn, v) . (95)
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Consequently, defining

(Cq, v)X = fq(v) 1 ≤ q ≤ Qf (96a)

(Lqn, v)X = −aq(ξn, v) 1 ≤ q ≤ Qa, 1 ≤ n ≤ N (96b)

we can write

ê(µ) =

Qf∑
q=1

θqf (µ) Cq +

Qa∑
q=1

uNn(µ) θqa(µ)Lqn. (97)

We remark that (96a) and (96b) are parameter-independent Poisson-like problems,
hence Cq and Lqn are computed Offline. We thus obtain

||ê(µ)||X =

Qf∑
q=1

θqf (µ) Cq +

Qa∑
q=1

N∑
n=1

θqa(µ)unN (µ)Lqn,


X

=

Qf∑
q=1

Qf∑
q′=1

θqf (µ)θq
′

f (µ)
(
Cq, Cq

′
)
X

+

+

Qa∑
q=1

N∑
n=1

θqa(µ)uNn

2

Qf∑
q′=1

θqa(µ)θq
′

f (µ)
(
Lqn, Cq

′
)
X

+

+

Qa∑
q′=1

N∑
n′=1

θq
′

a

(
Lqn,L

q′

n′

)
X

 . (98)

The Offline-Online procedure is clear. In the Offline stage, we first compute Cq, 1 ≤
q ≤ Qf and Lqn, 1 ≤ q ≤ Qa, 1 ≤ n ≤ N , then we compute and store the
quantities: (

Cq, Cq
′
)
X

1 ≤ q ≤ Qf , 1 ≤ q′ ≤ Qf (99)

(Lqn, Cq)X 1 ≤ q ≤ Qa, 1 ≤ q′ ≤ Qf (100)

(Lqn,Lq)X 1 ≤ q ≤ Qa, 1 ≤ q ≤ Qa (101)

In the Online stage we evaluate the expression 98 which consists in a sum.
The computational cost to perform this evaluation is:

n2Q2
a + 2nQaQf + nQ2

f ,

(102)

so it is N independent, hence very inexpensive.

3.5 Successive constraint method

We now discuss the successive constraint method (SCM ). This tool enables the
construction of lower (and upper) bounds for the coercivity (and inf-sup stabil-
ity) constants (5), required in a posteriori error analysis of RB approximations:
Without risk of a global comprehension loss, the reader can go to proposition 3.7.
The method, based on an Offline-Online strategy, reduces the Online calculation
to a small Linear Programming problem: the objective is a parametric expansion
of the underlying Rayleigh quotients, the constraints reflect stability information
at optimally selected parameter points. The state of the art method is presented
in Huynh et al. (2007), see also Rozza et al. (2008).
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Coercive case. We define

Y ≡
{
y = (y1 . . . yQa) ∈ RQa | ∃wy ∈ XN s.t. yq =

aq(wy, wy)

||w||
X
N

, 1 ≤ q ≤ Qa

}
. (103)

We further define the objective function F : D × RQa → R as

F (y;µ) =

Qa∑
q=1

θqa(µ) yq. (104)

We may then write our coercivity constant as

αN (µ) = min
y∈Y

F (y;µ). (105)

We next introduce a constraint box that is the set of all the feasible value for y,
defined as

B =

Qa∏
q=1

{
σq−, σ

q
+

}
=

Qa∏
q=1

{
inf

w∈XN
aq (w,w)

||w||2
XN

, sup
w∈XN

aq (w,w)

||w||2
XN

}
. (106)

We also introduce the two parameter sets S and P, that will be used to define the
stability and positivity constraint, respectively:

S = {s1 ∈ D, . . . , sk ∈ D} , (107)

P = {p1 ∈ D, . . . , pk ∈ D} . (108)

Moreover, for any finite-dimensional subset ofD (= S or P), we denote with SM,µ
(
or PM,µ

)
the set of M points closest to4 µ in S (or P).
If M > |S| , (or > |P|)5, then SM,µ = |S|

(
or PM,µ = P

)
.

Lower and Upper bound. For given S ⊂ D, Mα ∈ N (stability constraints),
M

+
∈ N (positivity constraints), we define the lower bound set as

YLB(S;µ) ≡

{
y ∈ B |

Qa∑
q=1

θqa(µ′)yq ≥ αN (µ′), ∀µ′ ∈ SMα,µ;

Qa∑
q=1

θqa(µ′)yq ≥ 0, ∀µ′ ∈ PM+,µ

}
. (109)

Furthermore we define the upper bound set as

YUB(S) ≡ {y?(µ)(sk), 1 ≤ k ≤ |S|} (110)

for

y?(µ) ≡ arg min
y∈Y

F (y;µ). (111)

4In the Euclidean norm
5We recall that | · | denotes the cardinality of a finite set of elements
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Finally we obtain the coercivity lower and upper bound as

αLB(S;µ) = min
y∈YLB(y;S)

F (y;µ), (112)

αUB(S;µ) = min
y∈YUB(S)

F (y;µ). (113)

It is possible to show that the lower/upper bounds provided above, effectively bound
the coercivity constant, the subsequent result holds:

Proposition 3.7. Given S, P and Mα ∈ N, M+ ∈ N

αLB(S;µ) ≤ αN (µ) ≤ αUB(S;µ) ∀µ ∈ D (114)

The proof can be found in Huynh et al. (2007); Rozza et al. (2008).

We expect that if S is sufficiently large, then
1. y?(µ) will be sufficiently close to a member of YUB to provide a good upper

bound ;
2. the stability and positivity constraints in YLB will sufficiently restrict y to

provide a good lower bound.

SCM algorithm. We now present the algorithm to exploit the evaluation of the
coercivity constant.
The task of the SCM is – given a sample train Ξ

SCM
=
{
µ1

SCM
, . . . ,µ

n
SCM

SCM

}
of

dimension |Ξ
SCM
| = n

SCM
– to select Greedy parameters in Ξ

SCM
and construct the

sets Sk =
{
s1 = µ1

SCM
∪ . . . ∪ sKmax

= µKmax
SCM

}
. We now introduce the algorithm.

We define Mα, M+, P and a tolerance εSCM ∈ ] 0, 1 [ , then we set KS = 1 and
choose S1 =

{
s1 = µ1

SCM

}
arbitrarily, then

while max
µ∈Ξ

SCM

[
αUB(S;µ)− αLB(S;µ)

αUB(S;µ)

]
> ε

SCM

sK+1 = arg max
µ∈Ξ

SCM

[
αUB(S;µ)− αLB(S;µ)

αUB(S;µ)

]
SK+∞ = SK ∪ sK+1

K = K + 1

end

Kmax = K

(115)

Normally we set εSCM ≈ 0.75 which is a crude lower bound but with a little effect
on error bounds, (Huynh et al., 2007).

Offline-Online procedure. We note that to compute the arg max we must
solve a linear optimization problem or Linear Program (LP), for the lower bound
αLB(µ) (112).
In the coercive case, the lower bound LP ’s contains:
• design variables

1. Qa variables, y = {y1, . . . , yQa};• constraints
1. 2Qa bounding boxes for y ∈ B;
2. Mα stability constraints;
3. M+ positivity constraints.

It is clear that the operation count for the Online stage µ→ αLB(µ) is independent
of N .
Nonetheless we first must determine our set S and obtain the αN (sk), 1 ≤ k ≤
|S| (≡ KS), by an Offline Greedy SCM algorithm.
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Offline: In the Offline stage, we have to construct the set B (once) and then:

1. evaluate αN (sk);

2. evaluate y?(sk);

3. form YLB;

4. perform a lower bound LP ’s to evaluate αLB(sk).

The first three quantities of course depends on N , nonetheless it is important to
remark that there are no cross terms O (n

SCM
×N ).

Online: In the Online stage, given a new value µ we have to perform a lower
bound LP ’s (LP) to evaluate αLB(µ). This Online stage is hence independent on
N .
In the table 2 we summarize the computational cost to evaluate the Offline/Online
stage of the SCM :

part item complexity equation

Offline

B 2Qa-eigenproblems over XN (106)

αN (sk) Kmax-eigenproblems over XN (109)

y?(sk) KmaxQa-inner product (111)

YLB N QaKmax (109)

αLB(sk) nSCM Kmax LP ’s of “size” O (2Qa + Mα + M+) (112)

Online αLB(µ) 1 LP ’s of “size” O (2Qa + Mα + M+) (72)

Table 2: Offline/Online: SCM

3.6 Choice of the truth approximation

It would be preferable to build the RB approach directly upon the exact solu-
tion, but this is not in general possible. As indicated earlier, the RB approximation
shall be built upon and reduced basis error will be measured relative to a ”truth”
Galerkin FE approximation. Therefore it is necessary to choose properly the un-
derlying discretization.

Choice of N . In order to obtain a satisfying reduced basis model able to describe
in an accurate way the exact behavior of the physical process, it is necessary to
chose the discretization properly; that is in order to minimize the underlying error
between exact solution and the truth approximation.
Let uRB(µ) be the RB solution of the problem and uN (µ) the finite element
solution, than the error is the sum of (at least) two terms:

||ue(µ)− uRB(µ)|| = ||ue(µ)− uN (µ)||︸ ︷︷ ︸
neglected

+ ||uN (µ)− uN (µ)||︸ ︷︷ ︸
considered

. (116)

The minimization of the second addendum is a task delagated to the reduced basis
method, on the contrary the minimization of the first is not related to the method.
Because of this, it is necessary to provide a feasible “starting point”. This can be
achieved thanks to the choice of a discretization method able to describe correctly
the problem.
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We shall require that our family of truth subspaces XN satisfies the approximation
condition:

max
µ∈D

inf
w∈XN

||u(µ)− w||Xe → 0 as M→∞. (117)

The choice of a finite element approximation automatically fulfill this requirement
because the method is strongly consistent (Quarteroni and Valli, 1997; Quarteroni,
2013); thus for sufficiently large N , it is possible to approximate ue(µ) and se(µ)
arbitrarily closely.
In particular we define the difference εN between the exact solution and the ap-
proximation as:

εN = max
µ∈D
||u(µ)− uN (µ)||Xe

N→∞−→ 0. (118)

In general, N must be chosen rather large to achieve a reasonable engineering
accuracy εN .
In 3D problems the complexity is higher since there is greater variability of the
solution field as the parameters changes. Therefore it is necessary to discretize
the problem so that for any possible combination of the parameters the accuracy
is kept under a safe tolerance. In fact it is worth to recall that the RB Offline
representation has to be built over a unique truth representation for all µ ∈ D;
the truth approximation is “frozen” in the RB methodology. The choice of the
optimum (or at least of a suitable) truth solution is not trivial, nevertheless it is
possible to verify a-posteriori if the discretization is enough rich to seize all the
geometrical and physical complexity of the problem.

4 Geometrical parametrization

In this section we will introduce how to handle a domain which is parameter de-
pendent.
The RB method described in section 3 requires that Ω is parameter independent:
if we wish to consider linear combinations of snapshots, these snapshots must be
defined relative to a common spatial configuration (domain) .
Then to allow geometrical variations, we must express Ω, our parameter indepen-
dent domain, as the pre-image of Ωo, the original (actual, deformed) parameter
dependent domain (Rozza et al., 2008).
The geometrical transformation will yield variable (parameter-dependent) coef-
ficients in the reference-domain linear and bilinear forms that, under suitable
hypotheses to be discussed below, will take at the end the requisite affine form
(11).

4.1 Affine parametric precondition

We now introduce a domain decomposition:

Ωo(µ) =

Kdom⋃
k=1

Ωko(µ) (119)

where the Ωko(µ) are mutually non overlapping subdomains, that is for any µ ∈ D

Ωko(µ) ∩ Ωk
′

o (µ) = 0 1 ≤ k, k′ ≤ Kdom, k 6= k′.

This coarse domain decomposition will be denoted RB discretization.
We now choose a parameter of reference µref ∈ D and define our reference domain
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as Ωr ≡ Ω(µref).
We will never omit the pedix script beside the domain Ω we are dealing with,
to avoid any confusion between the parameter dependent original domain Ωo(µ)
(sometimes for brevity, just Ωo) and the parameter independent reference domain
Ωr.
We will build our FE approximation on a very fine FE subtriangulation of the
coarse RB decomposition.
This FE subtriangulation ensures that the FE approximation accurately treats
the perhaps discontinuous coefficients (that could arise from property and geome-
try variation) associated with the different subdomains. The subtriangulation also
plays an important role in the generation of the affine representation.
The choice of µref has to be done in an optimal way to reduce both Offline and
Online computational effort.
Tipically the reference domain shall be built choosing a µref at the ”center” of our
parameter domain D in order to minimize the distorsion and consequently reduce
the requisite N .

We now state our Affine Geometry Precondition. We can treat any original
domain Ωo(µ), that admits a domain decomposition (119), for which, ∀µ ∈ D

Ωr = T aff,k(Ωo(µ)k;µ) (120)

for affine mappings T aff,k( · ;µ) : Ωo(µ) → Ωr, 1 ≤ k ≤ Kdom, that satisfy two
requisites:

1. individually bijective;
2. collectively continuos (interface condition), that is, given two different sub-

domains denoted with k and k′, ∀xo ∈ Ωko(µ) ∩ Ωk
′

o , holds the following
condition

T aff,k(xo;µ) = T aff,k′(xo;µ). (121)

We have depicted the idea of the affine transformation in Figure 6. Of course,

Figure 6: A 3D affine transformation

thanks to the requested bijective property, we can replace this definition with the
forward version taking the inverse of T aff committing any crime.
The Affine Geometry Precondition is a necessary condition for affine parameter
dependence as defined in (11).
Note that we purposely define Kdom with respect to the exact problem, rather
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than the FE approximation: Kdom is not depending on N .
We now give a more explicit representation of the affine transformation T aff, to
better understand how this geometry precondition will be exploited.
We state that, for 1 ≤ k ≤ Kdom, for any µ ∈ D and for all xo ∈ Ωko(µ), the affine
transformation is defined as follows:

xr = T aff,k
i (xo;µ) = Caff,k

i (µ) +

d∑
j=1

Gaff,k
ij (µ) xo, 1 ≤ i ≤ d (122)

for given Caff,k(µ) : D → Rd and Gaff,k(µ) : D → Rd×d, that are called the affine
mapping coefficients; we recall that d is the spatial dimension of the problem,
hence in our case d = 3.
The affine transformation is thus the superposition of a translation Caff(µ), that
do not modify the shape of the domain, and a deformation Gaff(µ) that can be
a dilation/contraction or a shear. It is worth to remark that, in this work, the
transformation must depends only upon the parameter µ.

A more general transformation, that involves a spatial coordinates dependence,
is not considered in the framework of this thesis. This kind of transformation called
“nonaffine” has been recently adopted in the context of the RB methodology (M.
et al., 2004; Rozza, 2009a). The non-affine representation of the geometry arises
from the so-called free form deformation techniques, which are very well suited,
for example, for shape optimizations of complex geometries (Manzoni et al., 2012;
Lassila and Rozza, 2010) and (Rozza and Manzoni, 2010).
The basic idea is that, thanks to an highly specialized technique, the so-called
empirical interpolation (EIM ), it is possible to approximate a nonaffine tranfor-
mation thanks to a superposition of different affine transformations.
Nonetheless this results has been established in a 2D context, the extension to the
3D case in still under investigation.

We can now define the associated Jacobians:

Jaff,k(µ) =
∣∣det

(
Gaff,k(µ)

)∣∣ , 1 ≤ k ≤ Kdom, (123)

which are constants in space over each subdomain. We further define, for any
µ ∈ D

Daff,k(µ) = Gaff,k(µ), (124)

this matrix shall prove convenient in subsequent derivative transformations, as we
will see in section 4.3.
We may interpret our local mappings in terms of a global transformation. In
particular, for any µ ∈ D, the local mapping (120) induces a global bijective
piecewise-affine mapping T aff : Ωo(µ)→ Ωr, such that:

T aff(xo;µ) = T aff,k(xo;µ), k = min
k′∈{1,...,Kdom} |x∈Ωk′o (µ)

(125)

note the one-to-one property of this mapping (and, hence the arbitrariness of our
min choice in (125)) is ensured by the interface condition (121).
In the following section the creation of an affine mappings will be discussed, sub-
sequently the treatment of the parametric geometry dependence will be exploited
thanks to an operative example.

4.2 Affine mappings construction

For simplicity we now consider a single subdomain, nonetheless the extension
to the multi-subdomains case is readily obtainable as we will see.
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As we consider a single subdomain in this section, we shall suppress the subdomain
superscript for clarity of exposition. The procedure, in the 2D case, is explained
in Rozza et al. (2008), in this work it has been extended to the more general 3D
case.
In the 3D case (d = 3, see equation 122) the affine mapping coefficients are
Caff(µ) ∈ R3 and Gaff(µ) ∈ R3×3, that is we have 3 + 9 = 12 unknows to find in
order to entirely define the affine transformation.
Under our assumption that the mapping is invertible, we know that the Jacobian
Jaff of (123) is strictly positive and that the derivative transformation matrix Daff

of (124) is well defined.

Then the mapping coefficient can be identified by the relationship between
4 non-planar parametrized image points ∈ Ωo(µ), denoted with zo(µ) and the
corresponding 4 pre-image points ∈ Ωr, denoted with zr

6:
z1
o(µ)

z2
o(µ)

z3
o(µ)

z4
o(µ)

 =


{
z1
o1 , z

1
o2 , z

1
o3

}{
z2
o1 , z

2
o2 , z

2
o3

}{
z3
o1 , z

3
o2 , z

3
o3

}{
z4
o1 , z

4
o2 , z

4
o3

}
 ,


z1
r

z2
r

z3
r

z4
r

 =


{
z1
r1 , z

1
r2 , z

1
r3

}{
z2
r1 , z

2
r2 , z

2
r3

}{
z3
r1 , z

3
r2 , z

3
r3

}{
z4
r1 , z

4
r2 , z

4
r3

}
 .

In particular, for given µ ∈ D, the application of (122) to the selected nodes yields
to:

zmri = Caff
i +

3∑
j=1

G
m

ij z
m

oj , 1 ≤ i ≤ 3, 1 ≤ m ≤ 4, (126)

The (126) provides a system made of 12 equations, by which to determine the 12
mapping coefficients. If we choose at least two coplanar points, than the system
is singular.
To be more explicit, we provide a matricial representation of equation 126:

Baffcaff = vaff. (127)

Where the matrix B ∈ R12×12 summarizes the coefficients of the linear system,
that depends upon the coordinates of the ”original” points:

Baff =



 I3×3

  z1
o 0 0

0 z1
o 0

0 0 z1
o


 I3×3

  z2
o 0 0

0 z2
o 0

0 0 z2
o


 I3×3

  z1
o 0 0

0 z2
o 0

0 0 z3
o




(128)

6Here we denote with the superscript one of the 4 point considered, whereas the subscript

indicates one of the 3 the components (x, y, z) of the spatial coordinates.
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moreover caff ∈ R12×1 is the array of unknows (i.e. the mapping coefficients)
sorted as shown in (129); finally vaff ∈ R12×1 is the array of known terms, that
depends upon the coordinates of the reference points:

caff =



C
aff

1

C
aff

2

C
aff

3

G
aff

11

G
aff

12

G
aff

13

G
aff

21

G
aff

22

G
aff

23

G
aff

31

G
aff

32

G
aff
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, vaff =


z1
r

z2
r

z3
r

z4
r

 . (129)

The mapping coefficients can be easily found solving the linear system (127) as it
follows:

caff = Baff−1
vaff. (130)

The solution of the system requires 123 operation, negligible if compared to the
previously discussed basis assembling cost.

Single domain mapping. We now use an example to illustrare the procedure.
We will use as test case the transformation depicted in Figure 7.

With regard to the figure 7, we choose as geometrical parameters µ = {µ2, µ3, µ1} =
{2, 3, 4}, in addition to simplify we choose dr = do(µ), hence we can use a local
system attached to the first node (z1

∗).
Now, exploiting the procedure showed in section 4.2, we can build the system (127)
by which we obtain the mapping coefficients.

C
aff

1

C
aff

2

C
aff

3

G
aff

11

G
aff

12

G
aff

13

G
aff

21

G
aff

22

G
aff

23

G
aff

31

G
aff

32

G
aff

33



=





1 0 0 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 0 0
1 0 0 µ1 0 0 0 0 0 0 0 0
0 1 0 0 0 0 µ1 0 0 0 0 0
0 0 1 0 0 0 0 0 0 µ1 0 0
1 0 0 µ1 0 µ3 0 0 0 0 0 0
0 1 0 0 0 0 µ1 0 µ3 0 0 0
0 0 1 0 0 0 0 0 0 µ1 0 µ3

1 0 0 µ1 µ2 µ3 0 0 0 0 0 0
0 1 0 0 0 0 µ1 µ2 µ3 0 0 0
0 0 1 0 0 0 0 0 0 µ1 µ2 µ3





−1 

0
0
0
1
0
0
1
0
1
1
1
1



. (131)

Then solving the system (131) we obtain:

Caff(µ) =

 0
0
0

 , Gaff(µ) =

 1
µ1

0 0

0 1
µ2

0

0 0 1
µ3

 . (132)

The Jacobian of the transformation (123) is Jaff(µ) = 1
µ1µ2µ3

= 1
12 .

We remark that the Jacobian of a transformation can be seen as the ratio between
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Figure 7: Affine transformation construction
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the final and initial volumes on which the deformation takes place.
In order to verify the affine transformation we apply the transformation to each
nodes of the original domain and, the affine mapping should trace back the cor-
responding nodes on the reference domain:

z1 Gaff

{
0
0
0

}
=

{
0
0
0

}
, z2 Gaff

 µ
1

0
0

 =

 1
0
0

 ,

z3 Gaff

 µ
1

0
µ

3

 =

 1
0
1

 , z4 Gaff

 µ
1

µ
2

µ
3

 =

 1
1
1

 .

(133)

We remark that in this simple test case the transformation is “diagonal” be-
cause we are deforming the domain by mean of a simple dilation. In the case
of a shear deformation for example, we would have even the extradiagonal terms
(Rozza et al., 2008).

Global affine mappings. Exploited the case of a single domain, we need to
extend the procedure to a multi-subdomain case. We will make use of an example
sketched in Figure 8. We have two adjacent subdomains denoted with Ω1

∗ and

Figure 8: Global affine mappings

Ω2
∗. The first domain can be deformed along the x-axes thanks to the parameter

denoted with µ1, all the other dimensions are held fixed.
The procedure is quite similar, we just need in addition to satisfy the global con-
tinuity condition (121). A way to satisfy it, is to use a unique system of reference
for the different subdomains.
In this way the procedure described in section 4.2 will implicitly provide the suit-
able translation Caff(µ) to satisfy the interface condition.
Using the procedure for the two domains we obtain the following results:

Caff
1 (µ) =

 0
0
0

 , Gaff

1
(µ) =

 1
µ1

0 0

0 1 0
0 0 1

 ,
Caff

2 (µ) =

 2− µ1

0
0

 , Gaff

2
(µ) =

 1 0 0
0 1 0
0 0 1

 . (134)

We now take two adjacent nodes (denoted with Po in the Figure 8) on the original
domains; if the global mappings satisfies the interface condition, applying the two
different affine transformation at the node, we will obtain again two adjacent nodes
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(Pr) on the reference domain:

T aff
1 (Po(µ),µ) = Caff

1 +Gaff

1
{µ1, 2, 1}T = {2, 2, 1} = Pr,

T aff
2 (Po(µ),µ) = Caff

2 +Gaff

2
{µ1, 2, 1}T = {2, 2, 1} = Pr.

The node Po is identically projected into Pr thanks to the two different affine
transformations, hence the continuity of the global mapping is satisfied.

4.3 Linear and bilinear forms

We now focus on the transformations that we have to operate on the weak
forms that arise from our system of partial differential equations, if our domain
Ωo(µ) allows the affine geometry precondition described in the previous section.
We will use a simple scalar coercive 3D problem to show how to exploit the
geometry parametric dependence of the domain.
The procedure is discussed in the 2D case in Rozza et al. (2008); Rozza (2009a).

Formulation on the original domain. The problem is initially posed on the
original domain Ωo(µ). We shall assume for simplicity that Xe

0(µ) = H1
0 (Ω0(µ)),

which corresponds to homogeneous Dirichlet boundary conditions over the entire
boundary ∂Ωo(µ). Given µ ∈ D, find ueo(µ) ∈ Xe

0(µ) such that:

ao(u
e
o(µ), v;µ) = fo(v;µ), ∀ v ∈ Xe

0(µ) (135)

then evaluate
seo(µ) = fo(u

e
o(µ)). (136)

We now place conditions on ao and fo such that, in conjunction with the affine
geometry precondition, we are ensured an affine expansion of the bilinear form
(11).
We require that ao( · , · ;µ) : H1

0 (Ωo(µ))×H1
0 (Ωo(µ))→ R can be expressed as:

ao(w, v;µ) =

=

Kdom∑
k=1

∫
Ωko(µ)

{
∂w

∂xo1

∂w

∂xo2

∂w

∂xo3
w

}
Kkoij (µ)



∂w

∂xo1
∂w

∂xo2
∂w

∂xo3
w


dΩko (137)

where xo = {xo1 , xo2 , xo3} denotes a point in Ωo(µ); and where for 1 ≤ k ≤ Kdom,
Kk
o

: D → R4×4 is a given symmetric positive definite matrix (which in turn ensures
coercivity of our bilinear form):

Kk
o

=


 R3×3

  R3×1

[
R1×3

] [
R1×1

]
 (138)

the upper 3×3 principal submatrix of Kk
o

represent the usual diffusion/conductivity
tensor, the element (4, 4) represent the identity tensor (mass matrix or a reaction
term), finally the elements Kk

o1:3,3
and Kk

o3,1:3
, that we set to zero because we are
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dealing with symmetric operators, represent the first derivative operators ( i.e.
convective terms).
Similarly we require that fo : H1

o (Ωo(µ))→ R can be expressed as

fo(v;µ) =

Kdom∑
k=1

∫
Ωko(µ)

Fko v dΩko . (139)

In this case we have assumed that the linear functional is only due to volume force,
a similar treatment is possible in the case of Dirichlet non-homogeneus condition
and/or non-homogeneus Neumann condition.

Formulation on reference domain. We now apply standard techniques to
transform the problem over the original domain to an equivalent problem over the
reference domain.
Given µ ∈ D, find ue(µ) ∈ Xe ≡ H1

0 (Ω) such that:

a(ue, v;µ) = f(v;µ) ∀ v ∈ Xe (140)

then evaluate
se(µ) = f(ue(µ)). (141)

We may then identify the relations between the output and the solution field, in
the original and in the reference domain:

se(µ) = seo(µ)

ue(µ) = ueo(µ) ◦ T aff( · ;µ).
(142)

The transformed bilinear form a, can be expressed as:

a(w, v;µ) = (143)

∫
Ωkr

{
∂w

∂xr1

∂w

∂xr2

∂w

∂xr3
w

}
Kkij(µ)



∂w

∂xr1
∂w

∂xr2
∂w

∂xr3
w


dΩkr (144)

where xr = {xr1 , xr2 , xr3} denotes a point in Ωr and where K‖r : D → R4×4, 1 ≤
k ≤ Kdom are symmetric positive definite matrices.
To obtain this matrices we first need to find the relation between the derivative
operator written in the original domain and the corresponding operator written in
the original domain. In particular, we have that

∂ ·
∂xoi

=
∂xrj
∂xoi

∂ ·
∂xrj

= Gaff
ij (µ)

∂ ·
∂xoi

= Daff(µ)
∂ ·
∂xoi

. (145)

The definition (124) of the derivatives operator Daff,k is now clear; the matrices

Gaff,k automatically provide the relation between the derivatives operator in the
original and in the reference domain.
Moreover, since we are acting a change of variable xo → xr in the integral (137),
recalling the equation (123), we get

dΩo(µ) = det(Gaff(µ)
−1

)dΩr =
(
Jaff,k(µ)

)−1
. (146)
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It follows that, considering the equations (145)-(146), the relation between Kk
o
(µ)

and K
r
(µ) can be written as

Kk
r
(µ) =

(
Gk(µ)

)T
Kk
o
(µ) Gk(µ)

(
Jaff,k(µ)

)−1
1 ≤ k ≤ Kdom (147)

where we have defined Gk(µ) : D → R4×4, 1 ≤ k ≤ Kdom as

Gk(µ) =

[
Daff,k(µ) 03×1

01×3 1

]
. (148)

Similarly, the transformed linear form can be expressed as

f(v;µ) =

Kdom∑
k=1

∫
Ωkr

Fk(µ) v dΩkr . (149)

Here Fk(µ) : D → R, 1 ≤ k ≤ Kdom is given by:

Fk(µ) = Fko
(
Jaff,k(µ)

)−1
1 ≤ k ≤ Kdom. (150)

We note that, in general, the Kk(µ), F(µ), will be different for each subdo-

main Ωk, 1 ≤ k ≤ Kdom. The differences can be due to property variation (e.g. a
diffusivity of a particular subdomain) or to geometry variation (e.g. a character-
istic dimension of the physical problem), or both.
We thus require, as already indicated earlier, that the FE approximation be built
upon a subtriangulation of the RB discretization: discontinuities in PDEs coeffi-
cients are therefore restricted to element faces.
In this way, the boundary elements chosen for the RB triangulation will delimit
a very well defined region of space (our RB subdomains), on which we assume
that the parameters will be constants in space. This allows a simpler identifica-
tion/extraction of the terms in the affine expansion (11), as we now discuss.

Affine form. We focus here on a, though f admits a similar treatment. We
simply expand the transformed form on the reference domain, by considering in
turn each subdomain Ωkr and each entry of the diffusivity/conductivity tensor
Kij , 1 ≤ ij ≤ 4, 1 ≤ k ≤ Kdom.
Thus the affine form (144) can be written as follows:

a(w, v;µ) =K1
11

∫
Ω1
r

∂w

∂xr1

∂v

∂xr1
dΩ1

r + . . .

. . .+ Kkij︸︷︷︸
θqa(µ)

∫
Ωkr

∂w

∂xri

∂v

∂xrj
dΩkr︸ ︷︷ ︸

aq(w,v)

+ . . .

. . .+KKdom
44

∫
Ω
Kdom
r

w v dΩKdom
r . (151)

We can then identify each component in the affine expansion: for each term in 151
the pre-factor of the integral represents θqa(µ), whereas the integral represents the
parameter independent matrices Aq = aq(w, v).
For a better understanding of what we have just obtained, we can have a look
to the equation (69), in which we were building the RB system in the coercive
case. The parameter independent matrices Aq can be now exploited even in the
general case of geometric parameter dependence, thanks to the geometric affine
precondition.
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Affine expansion terms count. In the most general scalar case, the number
of affine expansion terms can be (at most) Qa = 4 × 4 × Kdom. Exploiting the
symmetry of the bilinear form, hence of the tensor Kk, only Qa = 10 × Kdom

terms are needed. In fact since Kkij = Kkji, i 6= j, the pre-factor associated to these
integrals can be assembled together.
We first consider the 6 differents entries of the simmetric tensor K of the first
subdomain, then the second subdomain and so on. Hence, the θqa(µ) and the
associated parametric independent matrices are given by Table 3.

q θqf (µ) Fq

1 K11

∫
Ω1
r

∂w

∂xr1

∂v

∂xr1
dΩ1

r

2 K1
12

∫
Ω1
r

∂w

∂xr1

∂v

∂xr2
dΩ1

r

7 K2
11

∫
Ω2
r

∂w

∂xr1

∂v

∂xr1
dΩ2

r

Qa KKdom
11

∫
Ω
Kdom
r

w v dΩKdom
r

Table 3: θq(µ)−functions and parameter independent matrices

Dealing with the vectorial case, the number of affine expansion terms can be
Qa = 9 × 9 ×Kdom. Therefore it is crucial, in order to reduce the RB computa-
tional cost that depends on Qa (see Table 3), to minimize the number of terms of
the affine expansion.

5 Thermal problem

In this section we will exploit the creation of our RB example in the 3D case
dealing with a scalar elliptic coercive problem.
We deal with a steady conduction thermal problem, assuming that the thermal
conductivity K is represented by a positive definite matrix; then the unknown
is the field of temperature, that we will denote with u(x;µ) ∈ R. This class of
problem, although rather simple, is able to describe a wide range of continuum
mechanics problems, see for example Arpaci (1966).
We mention, for instance, the study of the performance of an heat sink designed
for the thermal management of high-density electronic components, the design
of an insulated coverage of a building to reduce the energetic consumption, the
control of the temperature within an engine shaft to prevent thermal stresses or
deformation, etc. . .
Another notable application can be the non-destructive testing of mechanical com-
ponents or the identification of an inclusion within a casting steel; in short, despite
the simple mathematical fomrulation, this case is more than a mathematical ab-
straction.

5.1 Problem description

We now briefly introduce the Thermal Block problem, henceforth we will refer
to this case with the “TB” label.

40



Physical problem. The problem of a steady-conduction is considered here in a
cubic domain.
We want to evaluate the thermal field in a non-isotropic conductive block, with an
heat flux q imposed on a face of the cube, with regard to a reference environmental
temperature taken on the opposite face and assuming that the other faces are
insulated. The cube has an anisotropic conductivity due to an inclusion of different
materials within the piece.
Dealing for example with the material science, the inclusion can be (Walker, 1993):

1. a deficiency of material, a hole due to gas bubble present within the casting
during solidification, or due to a fatigue crack;

2. an inhomogeneity of the material, due to an unbalancing of concentration of
the alloyants.

Therefore, in order to seize the behavior of such a phenomena, the RB parametric
approach is very well suited. The thermal problem, in the 2D frame, has been
treated in Rozza et al. (2008); Patera and Rozza (2007) and Huynh et al. (2007).
The output of interest is the average temperature of the heated face.
Now we formulate the problem into the mathematical setting.

Analytical problem. The equation that describes the field of temperature is
represented by the Fourier equation in which the time derivative will be neglected
thanks to the hypothesis of a steady state problem (no transient effect considered)
as well as the volume force that will be considered negligible.

5.2 Parameters

Due to the nature of the inclusion, its shape and dimension can vary arbitrarily,
hence we introduce some geometric parameters in order to describe it. It is im-
portant to remark that, due the fact that the parametrized geometry should allow
an affine geometric precondition (discussed in section 4), we restrict our attention
to a parallelepiped inclusion.
In particular, with regard to the Figure 9, we have assumed that the cubic block
can vary its dimension along the three axis by means of a set of parameters
µ = {µ4, µ5, µ6}. In addition we have chosen other three parameters, denoted by
µ = {µ1, µ2, µ3} to parametrize the position of the inclusion. The solid is sketched
as 3× 3× 3 cubic blocks, the central block (subdomain Ω14 in our scheme) repre-
sents the inclusion.
Each block, due to the parametric geometry dependence of the inclusion and to
the hypothesis required by an affine geometry (Section 4.1), is subjected to a ge-
ometrical parametric dependence. Each sub-block is considered isotropic. The
conductivity constant for the central sub-block (inclusion) is another parameter,
denoted by µ7, whereas for the other sub-blocks the conductivity is the unity (ref-
erence). We now summarize the parameters and the parameter domain chosen to
describe our TB problem as:

• the dimension and the position of the inclusion, that can be described by 6
parameters, that are 3 translations and 3 dimensions. The parameters µ1:6

are shown in Figure 9.
The parameter domain for the geometrical quantities is:

D
geom

=
[
µ

min

1 , µ
max

1

]
× . . .×

[
µ

min

6 , µ
max

6

]
= [0.5, 1.45]× . . .× [0.5, 1.45] , (152)

• the conductivity coefficient of the inclusion, denoted with µ7.
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Figure 9: TB domain decomposition

The parameter domain for this physical quantity is:

D
physics

=
[
µ

min

7 , µ
max

7

]
= [0.1, 10] . (153)

The parameter domain is therefore given by µ ∈ D ∈ RP=7, such that:

D = Dgeom ×Dphysics

= [0.5, 1.45]× . . .× [0.5, 1.45]× [0.1, 10] .

Boundary conditions. Concerning the boundary conditions (Figure 10), a non-
homogeneus Neumann boundary condition is imposed on Γ6 representing a heat
flux, an homogeneus Dirichlet boundary condition is imposed on Γ1 representing
the imposition of a temperature (adimensional, i.e. environmental temperature),
whereas on the other external faces of the cube Γ2:5 homogeneus Neumann condi-
tions has been chosen, representing insulation of the walls. Finally, on the internal
faces we have assumed continuity of temperature and fluxes.

5.3 TB Problem formulation

Original domain. We introduce the analytical formulation of the governing
PDEs on the original domain. The equation which describes the field of temper-
ature, within the hypothesis described in section 5, is the following:

−∇ ·
(
K
o
∇ou

)
= 0 in Ωo(µ)

u = 0 on Γo1(µ)
∂u

∂n
= q on Γo6(µ)

(154)

Multiplying the equation by a suitable test function v such that v ∈ Xe ≡{
v ∈ H1

0 (Ω)| v|ΓD = 0
}

and integrating over the domain Ω we obtain:∫
Ωo(µ)

−∇o ·
(
K
o
∇ou

)
v dΩo = 0. (155)
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Figure 10: TB boundary conditions

The domain Ωo is the original domain on which the PDE is defined. The whole
domain Ωo(µ) is decomposed (section 4.1) in Kdom non-overlapping subdomains
such that:

Ωo(µ) =

K27⋃
k=1

Ωko(µ),

in addition, recalling the Green Theorem for the laplacian, (Quarteroni, 2013):∫
Ω

∆u v dΩ =

∫
Ω

∇u · ∇v dΩ−
∫
∂Ω

∂u

∂n
v dγ

the equation (155) becomes

27∑
k=1

∫
Ωko

−K
o
∇ou · ∇ov dΩko +

27∑
k=1

∫
∂Ωko

K
o

∂u

∂n
v ∂Ωko = 0.

Thanks to the functional space chosen, the boundary terms vanish on the face
on which we have imposed a zero temperature (on Γ1 → v = 0). The boundary
terms relatives to Γ2:5 vanish because we have imposed an homogeneus Neumann
condition (on Γ2:5 → ∂u/∂n = 0).
The internal faces contributes disappear thanks to the continuity of temperature
and fluxes. Then the only remaining boundary term is the one relative to the face
Γ6 on which we have imposed an heat flux q.
Therefore, the equation (156) can be simplified as:

27∑
k=1

∫
Ωko

K
o
∇ou · ∇ov dΩko =

∫
Γo6

K
o

∂u

∂n
v dΓo6 . (156)

Replacing the Neumann boundary condition (154):

K
o
∇ou · n = K

o

∂u

∂n
= q

in the weak formulation (156), we finally obtain:

27∑
k=1

∫
Ωko

K
o
∇ou · ∇ov dΩko =

∫
Γo6

q v dΓo6 . (157)
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Introducing the bilinear form

a(u, v;µ) =

27∑
k=1

∫
Ωko

K
o
∇ou · ∇ov dΩko (158)

and the linear functional

f(v;µ) =

∫
Γo6

q v dΓo6 , (159)

we can restate the problem (157) as: find u ∈ Xe(Ωo(µ)), such that

a(u, v;µ) = f(v;µ) ∀v ∈ Xe(Ωo(µ)). (160)

The coercivity and the continuity of the bilinear form a and the continuity
of the functional f can be proved. Then the Lax-Milgram theorem ensures the
existence and uniqueness of the solution, see Quarteroni (2013).

Reference domain. In this section we apply standard techniques to transform
the problem statement over the original domain to an equivalent problem fomru-
lated over reference domain.
We shall be ultimately able to write the problem in an affine formulation (11), to
exploit the crucial Offline/Online computational splitting procedure. In order to
obtain the problem formulation (160) on the reference domain, we need to evaluate
the affine transformation for each subdomain Ωko(µ) ∈ Ωo(µ), tracing back the
derivatives operator and all the geometric parameter dependent quantities to the
reference domain by the recipe provided in section 4.3.
In order to build the affine decomposition, we must compute the affine mappings
for each subdomain T aff,k( · ;µ) : Ωo(µ)→ Ωr, 1 ≤ k ≤ 27, in order to evaluate:

1. the Jacobian Jaff,k(µ), 1 ≤ k ≤ 27 (123)

Jaff,k(µ) =
∣∣∣det

(
Gaff,k(µ)

)∣∣∣ ;
2. the derivatives operator Daff,k(µ) (equation 124)

Daff,k(µ) = Gaff,k(µ);

We will not present in detail the procedure to obtain the affine transformation for
all the subdomains, we refer the reader to the section 4.2 for a detailed abstract
explanation. In this section we just provide the results in Table 4.
We remark that the matrices Gaff,k(µ), 1 ≤ k ≤ 27 are diagonal thanks to the
particular choice of the geometric parameters. Once the affine mappings have
been computed, we are able to rewrite the weak formulation 160 into the reference
domain.

Bilinear forms. Recalling the bilinear form defined in (158), we recall the def-
inition of the conductivity tensor K

r
given in (147) (section 4.3). Due to the

isotropic nature of the material, for each subdomain Ωkr , 1 ≤ k ≤ 27, we need
to extract three different affine terms, corresponding to the three different entries
of the conductivity tensor, hence we would have 27 × 3 = 81 terms in our affine
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sub Gaff
11 Gaff

22 Gaff
33 Caff

1 Caff
2 Caff

3

Ω1 1/µ1 1/µ2 1/µ3 0 0 0

Ω2 1/µ1 1/µ2 1/µ6 0 0 1− µ3
Ω3 1/µ1 1/µ2 1/(3− µ6 − µ3) 0 0 2− µ6 − µ3
Ω4 1/µ1 1/µ4 1/µ3 0 1− µ1 0

Ω5 1/µ1 1/µ4 1/µ6 0 1− µ1 1− µ3
Ω6 1/µ1 1/µ4 1/(3− µ6 − µ3) 0 1− µ1 2− µ6 − µ3
Ω7 1/µ1 1/(3− µ5 − µ2) 1/µ3 0 2− µ5 − µ1 0

Ω8 1/µ1 1/(3− µ5 − µ2) 1/µ6 0 2− µ5 − µ1 1− µ3
Ω9 1/µ1 1/(3− µ5 − µ2) 1/(3− µ6 − µ3) 0 2− µ5 − µ1 2− µ6 − µ3
Ω10 1/µ5 1/µ2 1/µ3 1− µ2 0 0

Ω11 1/µ5 1/µ2 1/µ6 1− µ2 0 1− µ3
Ω12 1/µ5 1/µ2 1/(3− µ6 − µ3) 1− µ2 0 2− µ6 − µ3
Ω13 1/µ5 1/µ4 1/µ3 1− µ2 1− µ1 0

Ω14 1/µ5 1/µ4 1/µ6 1− µ2 1− µ1 1− µ3
Ω15 1/µ5 1/µ4 1/(3− µ6 − µ3) 1− µ2 1− µ1 2− µ6 − µ3
Ω16 1/µ5 1/(3− µ5 − µ2) 1/µ3 1− µ2 2− µ5 − µ1 0

Ω17 1/µ5 1/(3− µ5 − µ2) 1/µ6 1− µ2 2− µ5 − µ1 1− µ3
Ω18 1/µ5 1/(3− µ5 − µ2) 1/(3− µ6 − µ3) 1− µ2 2− µ5 − µ1 2− µ6 − µ3
Ω19 1/(3− µ4 − µ1) 1/µ2 1/µ3 2− µ4 − µ2 0 0

Ω20 1/(3− µ4 − µ1) 1/µ2 1/µ6 2− µ4 − µ2 0 1− µ3
Ω21 1/(3− µ4 − µ1) 1/µ2 1/(3− µ6 − µ3) 2− µ4 − µ2 0 2− µ6 − µ3
Ω22 1/(3− µ4 − µ1) 1/µ4 1/µ3 2− µ4 − µ2 1− µ1 0

Ω23 1/(3− µ4 − µ1) 1/µ4 1/µ6 2− µ4 − µ2 1− µ1 1− µ3
Ω24 1/(3− µ4 − µ1) 1/µ4 1/(3− µ6 − µ3) 2− µ4 − µ2 1− µ1 2− µ6 − µ3
Ω25 1/(3− µ4 − µ1) 1/(3− µ5 − µ2) 1/µ3 2− µ4 − µ2 2− µ5 − µ1 0

Ω26 1/(3− µ4 − µ1) 1/(3− µ5 − µ2) 1/µ6 2− µ4 − µ2 2− µ5 − µ1 1− µ3
Ω27 1/(3− µ4 − µ1) 1/(3− µ5 − µ2) 1/(3− µ6 − µ3) 2− µ4 − µ2 2− µ5 − µ1 2− µ6 − µ3

Table 4: TB affine mappings

development. We obtain:

a(w, v;µ) =

27∑
k=1

∫
Ωkr

K
r
(µ)∇u · ∇v dΩkr

=

∫
Ω1
r

µ2µ3

µ1

∂u

∂xr1

∂v

∂xr1
+
µ1µ3

µ2

∂u

∂xr2

∂v

∂xr2
+
µ1µ2

µ3

∂u

∂xr3

∂v

∂xr3
dΩ1

r + . . .

. . .+

∫
Ω3
r

(
−µ2(µ3 + µ6 − 3)

µ1

∂u

∂xr1

∂v

∂xr1
+

−µ1(µ3 + µ6 − 3)

µ2

∂u

∂xr2

∂v

∂xr2
− µ1µ2

µ3 + µ6 − 3

∂u

∂xr3

∂v

∂xr3

)
dΩ3

r + . . .

. . .+ θ81
a (µ)

∫
Ω27
r

∂u

∂xr3

∂v

∂xr3
dΩ27

r (161)

Linear functional. In this case the parametric linear functional (159) arises
from an inhomogeneous Neumann boundary condition. This case has not been
treated in section 4.3. In order to cast the integral of equation (159) into the
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reference domain, we proceed as follows:

f(v;µ) =

∫
Γo6 (µ)

q v dΓo6(µ)

=

∫
Γr6

q v
∣∣∣(Gaff,k(µ)

)−1 · et
∣∣∣ dΓr6︸ ︷︷ ︸

dΓo6

, (162)

where et denotes the tangential unit vector and k indicates the indexes of the
subdomains to which the face Γr6 belong. In particular, with regard the chosen
subdomain enumeration (Figure 9), we see that Γr6 is given by

Γr6 =

6⋃
k=1

Γkr6 .

(163)

Therefore the linear functional can be rewritten in an affine development as:

f(v;µ) =

∫
Γ1
r6

µ2µ3 q v dΓ1
r6 +

∫
Γ2
r6

µ1µ6 q v dΓ2
r6 + . . .

. . .+

∫
Γ6
r6

−µ5 (µ3 + µ6 − 3) q v dΓ6
r6 + . . .

. . .+θ9
f (µ)

∫
Γ9
r6

q v dΓ9
r6 . (164)

The affine decomposition is now clear and we have

a(u, v;µ) =

81∑
1

θqa(µ)aq(u, v),

f(v;µ) =

9∑
1

θqf (µ)fq(v),

where the θ-functions are the parameters dependent terms which appear in the
bilinear form (161) and in the linear functional (164) expressed in the reference
domain.
Since the geometric parameter dependence is quite involved, we will present only
few results from our set of theta functions θqa(µ), 1 ≤ q ≤ 81, θqf (µ), 1 ≤ q ≤ 9
in Tables 5a and 5b. In the same tables we present also the definition of the
µ−independent bilinear forms.

5.4 Results and visualization

We now present the results obtained by RB approximation for the 3D thermal
block example.
First we will give some informations about the FE approximation concerning the
mesh, the basis function chosen.
Then we will focus on the results obtained with the SCM algorithm (section 3.5)
for the error bounds calculations, then we will present the convergence of the
Greedy procedure (section 3.3).
Finally we will present the output evaluation for particular combinations of the
parameters, along with the certified a-posteriori error bound, to prove that the RB
approximation is reliable and efficient.
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q θqa(µ) Aq

1
µ2µ3

µ1

∫
Ω1
r

∂u

∂xr1

∂v

∂xr1
dΩ1

r

2
µ1µ3

µ2

∫
Ω1
r

∂u

∂xr2

∂v

∂xr2
dΩ1

r

5
µ1µ3

µ2

∫
Ω1
r

∂u

∂xr2

∂v

∂xr2
dΩ1

r

9
µ2µ6

µ1

∫
Ω2
r

∂u

∂xr2

∂v

∂xr2
dΩ2

r

14
µ1µ6

µ5

∫
Ω5
r

∂u

∂xr2

∂v

∂xr2
dΩ5

r

27
µ1(µ2 + µ5 − 3)

µ3 + µ6 − 3

∫
Ω9
r

∂u

∂xr3

∂v

∂xr3
dΩ9

r

40
µ5µ6µ7

µ4

∫
Ω14
r

∂u

∂xr1

∂v

∂xr1
dΩ14

r

60 −µ2(µ1 + µ4 − 3)

µ6

∫
Ω20
r

∂u

∂xr3

∂v

∂xr3
dΩ20

r

70
µ5(µ3 + µ6 − 3)

µ1 + µ4 − 3

∫
Ω24
r

∂u

∂xr1

∂v

∂xr1
dΩ24

r

78
(µ2 + µ5 − 3)(µ1 + µ4 − 3)

µ6

∫
Ω26
r

∂u

∂xr3

∂v

∂xr3
dΩ26

r

(a) TB θqa(µ)-functions

q θqf (µ) Fq

1 µ1µ3

∫
Γ1
r6

q v dΓ1
r6

2 µ1µ3

∫
Γ2
r6

q v dΓ2
r6

3 µ2µ6

∫
Γ3
r6

q v dΓ3
r6

6 −µ5(µ3 + µ6 − 3)

∫
Γ6
r6

q v dΓ6
r6

9 (µ2 + µ5 − 3)(µ3 + µ6 − 3)

∫
Γ9
r6

q v dΓ9
r6

(b) TB θqf (µ)-functions

Table 5: TB θ(µ)-functions
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FE discretization on the reference domain. We represent in Figure 11 the
reference domain upon we assemble FE components.
In the figure 11 we also report the properties of the mesh and the basis functions
chosen to discretize the TB problem.

Figure 11: TB reference domain discretization

Matrices assembling. We now assemble the parameter independent matrices
(Tables 5a and 5b) needed by the RB procedure.
In Figure 12 we depict a graphical view of the matrices assembling.
We consider the matrix A20, looking at Table 5a we note that the only subdomain

that plays a role in the building of the parameter independent matrix is Ω9
r, see

Figure 12a. In Figure 12b we depict the matrix pattern.

(a) subdomain Ω7
r (b) A20

Figure 12: In figure 12b we have depicted the contributes of the local A20 matrix
(•) to the global stiffness matrix (•).

SCM algorithm. For the SCM algorithm (section 3.5) we have took a sample
train ΞSCM of size nSCM = 3000, a tolerance εSCM = 0.7, Mα = 16, M+ = 0 and
|P| = 200.
In Figure 13a we show the αLB (−) and the αUB (−) for each element of the
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sample train Ξ
SCM

of the first iteration K = 1, whereas in Figure 13b we depict
the same quantities for the last iteration K = Kmax = 4 of the SCM algorithm. It
is evident that the upper and lower bound for the parametric coercivity constant
are converging to the exact value and restricting the possible gap between the
lower and upper bound. Convergence for this problem is quite fast, see Gelsomino
and Rozza (2011); Rozza et al. (2008).

(a) TB : First iteration of the SCM (b) TB : Last iteration of the SCM

Figure 13: TB SCM algorithm

Greedy algorithm. We present the results for the Greedy algorithm (section
3.3), during the RB aseembling procedure.
Here, we have chosen a sample train Ξ

train
of size is n

train
= 3000, the tolerance is

εtoll,min = 0.9 · 10−3 and the maximum size of the RB space is taken Nmax = 100.
We have chosen to minimize the absolute error bound in energy norm ∆en

N (µ)
(section 3.4). In Figure 15a we have represented the error bound ∆en

N (µ) for
1 ≤ N ≤ Nmax. We can see that the error is monotonically decreasing. Moreover,
just few basis ≈ 40 (versus ≈1500 FE DOFs) are needed to obtain a maximum er-
ror bound ≤ 10−2 on the temperature field for all the samples in Ξ

train
. We remark

that this result holds despite a large variation of either physical (the conductivity)
and geometrical (the dimension and the position of the central block) parameters.
In Figure 15b we have depicted a subset of the parameters µ = (µ2, µ5, µ6), auto-
matically selected by the Greedy algorithm as representative snapshots. The error
bounds help us to save also Offline computational cost since the evaluation of the
error bounds during the Greedy procedure is very inexpensive. It is possible to see
that the algorithm often select parameters near to the bounds (upper and lower) of
the parameters domain. In fact the more the parameters are chosen distant from

Figure 14: Greedy selection for parameter µ4 and µ5
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the “center” of the set, the most the reference domain is deformed by means of the
geometrical parameters. These phenomena will perforce increase the error bound,
therefore the Greedy algorithm will preferably choose this outer parameters, being
based on the worst case scenario.
This aspect can be better seen, looking at the Figure 14, we can see that the
geometrical parameters chosen are always in the outer part of the domain, where
it is evident a clustering phenomena. In this figure, the dimension of the markers
are proportional to the maximum error bound at the K-th Greedy iteration.

(a) Error bound ∆en
N (µ)

(b) Parameters distribution

Figure 15: TB Greedy results

Output. Since the output is the average of the temperature on the face Γ6 of
the domain, then we are dealing with a compliant case (see section 2.3). In fact
we have that:

sN (µ) = f(uN ;µ). (165)

Since we have 7 parameters, we decided to fix some parameters and add relation-
ship between others to obtain a graphical visualization of the output.
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In particular we have chosen to vary the parameters µ5 and µ4, i.e. the x and y
dimension of the inclusion. In addition we have introduced the following relation-
ships:

µ1 =
3− µ4

2
;

µ2 =
3− µ5

2
;

µ3 = 1;

µ6 = 1;

µ7 = 1.

In Figure 16a we depict the tenmperature output obtained with the RB method,
in Figure 16b we depict the error bound ∆s

N (µ) on the output between the FE
and the RB method.
We can see that the output estimated error is under 8 ·10−5, hence the error on the
output is effectively bounded by the square of the error on the solution field (we
recall that in the Greedy we have set ∆en

N (µ) ≤ εtoll,min = 0.9 · 10−3, ∀µ ∈ Ξtrain).
We remark that this result follows from our assumption of compliance, enabling
the so called square effect (57).
In Figure 16c we have depicted the ratio between the computational time needed to
evaluate the output in the FE (denoted with tsFE(µ)) and in the RB case (tsRB(µ))
for a large test sample. We can see that the RB method provides a computational
time saving of two order of magnitude with respect to the ordinary FE method.

Visualization. We now report the visualization of some representative RB so-
lutions. On the upper figures, we show the solution for different value of the
parameters µ. On the lower figures, we represent the pointwise error between the
RB approximations and the FE solution.
In the first example, Figure 17, we show the solution on the reference domain. In
the second example, Figure 18, we show the solution field after selecting a generic
combination of parameters in the parameter domain D. In the first case, thanks
to the absence of geometrical distortion, we obtain a smaller error bound on the
solution.

6 Summary and conclusions

We have presented the RB method for coercive scalar problems. First, we have
introduced the fundamentals of the RB method for parametrized coercive elliptic
PDEs: (i) the affine decomposition to enable an Offline/Online splitting proce-
dure, (ii) the a-posteriori error estimates to efficiently create the RB Greedy space
(Offline) and inexpensive and rigorous error bounds for the RB solution and out-
put (Online). In order to obtain an affine representation of the parametrized linear
and bilinear forms we exploited an affine geometry precondition. We presented the
applications of the RB method to a steady thermal conductivity problem in heat
transfer.
We obtained a good and rapid convergence of either the SCM and the Greedy al-
gorithm. Hence we experimentally proved that the RB method is very well suited
to efficiently approximate also 3D problems with a rather involved parameter de-
pendence, either physical and geometrical.
The Offline stage is quite expensive in the 3D context, nonetheless the very inex-
pensive and rigorous Online stage renders invaluable the worth of the RB method
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in many engineering field of interests: optimization, control, sensitivity analysis
and real-time context.
In fact by the RB method we obtained (Online) a computational saving of at least
two order of magnitude with respect to the FE approximation in the thermal ap-
plication, corroborating other results (Gelsomino and Rozza, 2011) dealing with
3D coercive problems.

Different branches of the research field related to the RB method are dealing
nowadays with a plenty of different problems and different contexts: the study of
potential flows (Rozza, 2011), thermal problems, (Rozza et al., 2009b,a), hemody-
namics and biomedical devices optimization (Manzoni et al., 2012), the study of
nonlinear equations such as the Navier-Stokes problem, (Deparis and Rozza, 2009),
the development of RB approximation in parabolic (Nguyen et al., 2010) and hy-
perbolic equations (Nguyen et al., 2009). Unfortunately, the affine parametrization
of a geometry, is not enough flexible for some purposes, e.g. the shape-optimization
of a vessel in a hemodynamic context or the design of an air intake in an aerody-
namic context. Hence in the few last years, new techniques based on the so-called
free form deformation has been re-invented in cooperation with the RB method
(Manzoni et al., 2012; Lassila and Rozza, 2010; Rozza and Manzoni, 2010) in the
shape optimization field.
A possible and remarkable upgrade of this work would be to enrich the 3D geomet-
rical parametrization with free-shape techniques to improve the power of reduced
order methods in the engineering context.
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(a) TB output s(µ)

(b) TB error bound ∆s
N (µ)

(c)
tsFE(µ)

tsRB(µ)

Figure 16: TB output results
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(a) Solution field: ∆en
N (µ) ≤ 2.3 · 10−3

(b) Pointwise error: uN (µ)− uN (µ)

Figure 17: Example of representative solution for the TB problem and pointwise
error for µ = {1, 1, 1, 1, 1, 1, 1}
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(a) Deformed domain

(b) Error bound: ∆en
N (µ) ≤ 6.3 · 10−3

(c) Pointwise error: uN (µ)− uN (µ)

Figure 18: Example of representative solution and pointwise error for µ =
{0.7, 0.7, 0.7, 1.3, 1.3, 1.3, 0.05}
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