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Abstract

This master thesis aims at using reduced order methods in optimal control applications
governed by parametrized partial differential equations. From the results obtained we will
deduce how much useful reduced methods could be in several scientific and engineering
fields. Optimal control problems are widely exploited in many modeling researches. They
are computationally very demanding. A numerical method capable to reduce the dimen-
sionality of the problem is an indispensable tool for optimization problems, most of all,
in the case where several physical and geometrical configurations have to be considered.
Model order reduction is a way to reduce computational costs of the simulations and,
despite that, to reach precise results. The reduced basis methods allow to solve these
parametrized optimal control problems in a rapid and in an accurate way. Among this
work, we focused our analysis on optimal control problems characterized by quadratic cost
functional to minimize constrained to linear parametric partial differential equations. We
recast them in a saddle-point formulation in order to exploit the consolidated knowledge
of this kind of structure.
The reduced basis method is introduced as a Galerkin projection into reduced spaces, gen-
erated by basis functions chosen through a proper orthogonal decomposition algorithm.
The resolution procedure is divided in two stages: the offline stage, when the basis and
the space are built, and the online where the projection is made and the problem is solved.
The theoretical knowledge on the reduced methods will be applied to several test cases:
they will assert the potentiality of this numerical approach. At the end, the method will
be exploited in the field of environmental marine sciences and engineering. In this specific
context the great versatility of the method will be shown. Two explicative applications
are proposed: a large scale climatological application and a small scale pollutant control
in the Gulf of Trieste. The first one is inserted in forecasting modeling and data assim-
ilation context, the second is about the interest in the safeguard of Gulf of Trieste and
surrounding areas.





Sommario

Questa tesi si propone di utilizzare metodi ridotti per problemi di controllo ottimo para-
metrici vincolati a equazioni alle derivate parziali. I risultati ottenuti ci condurranno a
dedurre quanto questo approccio possa essere utile in vari contesti applicativi negli ambiti
scientifici ed ingegnerisitici. I problemi di controllo ottimo, sebbene molto sfruttati da
varie branche della ricerca scientifica, sono computazionalmente molto complessi, persino
quando non dipendono da parametri. A maggior ragione, nel caso in cui varie configu-
razioni fisiche e/o geometriche fossero presenti, un metodo capace di ridurre la dimension-
alità del problema di ottimizzazione, potrebbe risultare un utile strumento per risparmiare
i costi computazionalii dovuti alla simulazione. Il metodo delle basi ridotte consente di
risolvere in maniera rapida e accurata questa tipologia di problemi parametrizzati. La
nostra analisi si è concentrata maggiormente su problemi di controllo quadratici nel fun-
zionale e lineari nell’equazione di stato. Essi sono stati studiati nella loro formulazione
punto sella, in modo da poter sfruttare le conoscenze teoriche già consolidate per questo
particolare tipo di struttura.
In questo lavoro è introdotto il metodo delle basi ridotte come proiezione di Galerkin in
uno spazio di dimensioni ridotte, generato da funzioni di base scelte in maniera opportuna
tramite l’algoritmo di Proper Orthogonal Decomposition. La procedura computazionale
viene divisa in una fase offline/online: nella prima fase si genera la base, nella seconda si
attua la proiezione e avviene la risoluzione del problema ridotto.
Quanto introdotto teoricamente, verrà poi applicato a diversi casi test per verificarne e
sottolinearne la potenzialità. Infine, per mostrare la grande versatilità del metodo, esso
verrà utilizzato in un campo particolare di applicazione: le scienze e l’ingegneria ambien-
tale in ambito marino. Verranno proposti due esempi: uno di tipo climatologico in grande
scala, dove il controllo viene sfruttato nel contesto di un’eventuale assimilazione dati; il
secondo incentrato sul controllo di un inquinante marino nel Golfo di Trieste. In entrambi
i casi verrà sottolineato quanto il metodo permetta di ottenere soluzioni affidabili rispetto
a quelle ottenute tramite le classiche tecniche di discretizzazione.
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Introduction

This master thesis aims at analysing numerical methods for optimal control problems
governed by parametric Partial Differential Equations (PDEs) involved in environmental
marine applications. Optimal control problems (OCPs) are usually very complex and de-
manding, computationally speaking. Then, the goal of this work is to propose a rapid and
suitable approach based on model order reduction: it allows to solve parametric optimal
control problems (OCP(µµµ)s) in a low dimensional framework. The final ambition is to
compare the performance of the model reduction application with the results obtained
through a full order approach. In this thesis, with a full order solutions we refer to Finite
Element discretization (FE), whereas with model order reduction techniques we indicate
Reduced Basis (RB) approximation. With reduced basis methods, we mean also basis
built by Proper Orthogonal Decomposition (POD).
Among all the work, some theoretical and numerical examples of OCPs and OCP(µµµ)s are
presented, governed by different state equations: from Laplace to Stokes problems, from
advection diffusion to quasi-geostrophic state equations. This thesis is a full breath com-
position, and shows how reduced order methods can be useful tools to exploit, in order
to solve low dimensional optimal control systems, rather than full order optimal control
problems, demanding and costly from the computational point of view.
Even if this thesis wants to analyse RB methods and to apply them in marine environmen-
tal control, the importance of model reduction methods can be underlined in various fields
of knowledge (i.e. see [46, 47, 38]). If we limit to control problems, we can affirm that
they are widespread in several engineering applications (we refer to [15, 59, 64, 54, 16]).
For this reasons we decided to focus on OCPs in a total general framework. The same we
did for Reduced Basis approach: we analysed it in a generic formulation, in order to show
how they remarkably simplify the structure of the problem and how much computational
cost is saved.
In general, in engineering fields, a major issue is represented by the prediction of quantities
in different physical and geometrical configurations: for this reason control problems have
wide spread influence and applications. The several scenarios of optimization models are
described by physical or geometrical parameters, that might change at every evaluation.
In this sense exploiting RB methods will provide accurate solutions in a more rapid way
than high fidelity resolution does. One can analyse different control problems: time depen-
dent, non-linear, distributed, on the boundary, etc. In the applications proposed among
the chapters, we have focused on control problems with quadratic functional to minimize
constrained to linear state equations.
In this thesis, the applications of properly reduced optimal control problems specifically
involve examples in environmental marine science. The interest in this kind of application
is twofold:

1. on one side, the interest is based on the study of how human activities are changing
our planet and how much we have to regard our surroundings. Environmental sci-
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ences and environmental engineering are fields of knowledge that are growing and are
attracting many resources from several applications. The respect and the safeguard
of the environment is a fundamental principle to live in a sustainable way and not
to reach unpleasant life conditions.

2. on the other side the interest is totally and purely mathematical: modeling and
numerical mathematics can afford environmental problems, allow to simulate trends
and to forecast future configurations and, then, to prevent undesirable effects on the
environment and on human beings. Numerical analysis with mathematical modeling
and scientific computing are a great instrument to reach a deep comprehension of
natural phenomena and is adapt to interpret various results. In general, different
configurations and scenarios are given by the use of different parameters. RB meth-
ods perfectly fit in this framework: they are a versatile tool capable to handle really
complex parametric problems and to transform them in low dimensional systems,
reducing the computational time of resolution.

In the final part of the work, the dissertation moves toward a specific analysis of two
examples:

1. an Oceanographic state solution tracking problem, governed by quasi-geostrophic
equation. The interest in this very peculiar example is linked to global forecasting
models and to prevision of future climatological scenarios on the Atlantic Ocean;

2. marine pollutant control related to the Gulf of Trieste and the surrounding areas:
more precisely, we have built a pollutant control problem governed by advection-
diffusion equations and simulate it in the Gulf of Trieste. The significance of this
example lies in the control of the damages that marine pollution can cause to the
seaside, the coast, to flora and fauna population and to inhabitants.

In view of the considerations that we have shown up to this point, we have structured the
thesis in the following way.

Chapter 1
In this chapter the general theoretical formulation of a nonlinear OCP problem is briefly
presented. Firstly, the Lagrangian approach in Banach spaces is discussed, to move toward
the linear quadratic application in Hilbert spaces. Then, the saddle-point formulation for
linear quadratic control is discussed, analysing the well-posedness of the problem. Finally,
some theoretical examples in linear quadratic control problems are shown (the governing
equations considered are Laplace, advection-diffusion and Stokes, respectively).

Chapter 2
The second chapter aims at discussing how an optimal control problem can be numerically
approximated. After a brief introduction on the discretization techniques usually used in
this context, we moved to Galerkin approximation for linear quadratic control problems
into the saddle-point framework. The well-posedness of the discrete problem is discussed:
we focused on elliptic coercive state equations and Stokes equations. Finally some numeri-
cal examples of OCPs are shown: two distributed control problems with Laplace governing
equations and Stokes governing equation, respectively.

Chapter 3
In this chapter reduced basis approximation for PDEs is introduced. The main ideas of
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the method are described, focusing on Proper Orthogonal Decomposition (POD) as a way
to build the reduced space. The Empirical Interpolation Method (EIM) is recalled, since
it is needed in Oceanographic application proposed at the end of this chapter. All we
have shown among this chapter, wil be exploited and adapted to OCP(µµµ) in the following
chapters.

Chapter 4
Here a reduced basis framework for the efficient solution of parametrized linear quadratic
optimal control problems governed by coercive elliptic PDEs and Stokes equations is pro-
vided. The well-posedness of the RB approximation is proved. Finally, some numerical
examples concerning what we treated in the theoretical analysis of the chapter are shown:
some numerical test already faced in chapter 2 are proposed in the reduced version, whereas
a first environmental application of OCP(µµµ) governed by advection-diffusion equation is
presented.

Chapter 5
The final chapter is completely dedicated to Reduced Basis method applied to envi-
ronmental marine sciences. It is divided in two sections containing two different linear
quadratic problems. The first is an Oceanographic climatological OCP(µµµ) governed by
quasi-geostrophic equation. We simulated the results on the Atlantic Ocean. The second
section concerns a pollutant control problem governed by advection diffusion equations.
We formulate the problem in the Gulf of Trieste and study different effects deriving from
different weather conditions.

The simulations reported in this work have been done exploiting different softwares. For
the full order solutions, we used FEniCS (see [45] and for further information visit the
website https://fenicsproject.org/ ). The reduced systems have been built through RBniCS
library. The meshes of the Atlantic Ocean and of the Gulf of Trieste have be obtained
trough Freefem++ (see [32], and visit http://www.freefem.org/ ) and Gmsh (see as a ref-
erence [27], and visit http://gmsh.info/ ).
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Chapter 1

A Theoretical Introduction to
Optimal Control

The aim of this chapter is to briefly introduce optimal control problems, what are their
main features and how they can be formalized from the mathematical point of view. The
following analysis is far to be exhaustive: control is a very wide topic. For those who
want to analyse deeper this subject, we refer to [29, 24, 4]. In this context, an exhaus-
tive discussion would be impossible. It would be far from our aims: we can only give
the taste of how a powerful instrument control is and how well spread its applications
are. These problems are a very challenging task and they had fascinated great scientists
and minds. Furthermore, optimal control problems have a great impact on our life and
they are reaching a certain degree of maturity with deeper studies in mathematics and
engineering. They have several applications in very different fields, from natural science,
environmental purposes, biology modeling, to industrial development and research (see
[42, 18, 64]). We can formulate an Optimal Flow Control problem wherever a canal, an
irrigation structure, a pipeline fluid network, a blood vessel, a dam is. In the following we
will describe the general features of an optimal control problem.

Optimization or control aims at managing a physical quantity (e.g., flow rate and direc-
tion), or another fluid feature (e.g. temperature, concentration), in order to achieve a
desired state.
The rigorous formulation of this problem needs essentially three elements:

1. an objective, describing what we want to reach through optimization. Mathemati-
cally, it is formalized by an objective (or cost) functional. There are several objectives
used in different applications: flow tracking, prevention (delay) of turbulence and
temperature variations, drag minimization and so on;

2. control variables, to be chosen in order to minimize the objective functional. When
the control variable operates on the domain boundary we are treating a boundary
control (it can represent an injection or a suction of fluid or a heat exchange or a
cooling process). Otherwise, if the control variable acts on the total domain we are
facing a distributed control. Last, we can talk about shape controls if we face domain
design, shape optimization or surface roughness problems (i.e. see [49, 31, 17]);

3. constraints are the last ingredients. Their role is to set conditions on the optimizers.
Constraints characterize the fluid model and they are represented by a set of partial
differential equations. The are also referred as state equations.
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1.1. The Lagrangian Formulation

Putting all together: solve an optimal control means to seek controls fulfilling constraints
and minimizing an objective functional.

In this chapter the abstract formulation of a control problem is introduced. In section 1.1
the Lagrangian Formalism is introduced: existence results are presented and optimality
condition for a generic nonlinear optimal control problem are derived. In section 1.2 we
will refer to a different problem formulation based on a saddle-point approach. Section
1.3 focuses on linear quadratic optimal control problems. Some examples of distributed
control are shown.

1.1 The Lagrangian Formulation

In this section a generic setting for a general steady PDE constrained optimal control
problem is described. The theoretical development of this topics is due to J.L. Lions,
which proved existence and uniqueness of the solution of optimal control problem governed
by elliptic, parabolic and hyperbolic PDEs (see [44, 43]). However, this classical approach
do not straightforwardly handle a wide class of problems: for example, nonlinear optimal
control problems or boundary control problems (see e.g. [23, 56, 13, 14]).
There is also a complementary way to treat this kind of issues: the Lagrangian approach.
Thanks to the definition of a Lagrangian functional, the optimal control problem can be
seen in a constrained minimization formulation: if an optimal solution exists, it will make
the derivative of the Lagrangian functional vanish. For proves and theoretical knowledge
we refer to [29, 37, 35]. Banach and Hilbert Space theory is required (see [8, 75]).
Let us specify the notation used in the following. A capital letter X will indicate a Banach
space. To refer to its dual, the symbol X∗ is used, whereas 〈·, ·〉XX∗ indicates dual pairing
of X and X∗.

1.1.1 The General Problem: Existence Results

First of all, let us discuss existence and uniqueness of solution for a general nonlinear
optimal control problem. Let Y,U be reflexive Banach spaces and Z a Banach space. A
generic optimal control problem (OCP from now on) can be formulated as follows:

min
(y,u)∈Y×U

J(y, u) subject to E(y, u) = 0, u ∈ Uad, y ∈ Yad. (1.1.1)

where J : Y × U → R and E : Y × U → Z are continuous. To be more specific, in
our context J(y, u) represents the so called cost functional, whereas E(y, u) = 0 is the
governing state equation. The subsets Uad ⊆ U and Yad ⊆ Y represent the control space
and the state space, respectively. When Uad ( U it indicates some bounds on the control,
whereas Yad ( Y shows a constrain on the state solution. A problem is said unconstrained
when Uad = U and Yad = Y . The following assumptions have to be considered to prove
existence of an optimal control result:

1. J is sequentially weakly lower semi-continuous,

2. Uad is convex, bounded and closed,

3. Yad is convex and closed,

4. state equation E(y, u) = 0 has a bounded solution operator u ∈ Uad 7→ y(u) ∈ Y

2



1.1. The Lagrangian Formulation

5. E : Y × U → Z is continuous under weak convergence.

Thanks to these hypotheses, the next theorem holds (for the proof we refer to [35, Section
1.5.2]):

Theorem 1.1. If (1)-(5) hold, then an OCP has an optimal solution (y?, u?).

Now that the solution existence is guaranteed, we will focus on solving the OCP.

1.1.2 Adjoint approach for Reduced Problem and Reduced Functional
Derivative

Consider Y, U, Z Banach spaces and the general constrained OCP

min
(y,u)∈Y×U

J(y, u) subject to E(y, u) = 0 u ∈ Uad. (1.1.2)

where J and E have been chosen as cost functional and state equation, respectively. Next
we describe the hypotheses needed to continue our analysis.

Assumptions 1.1. Let Uad be nonempty, closed, bounded and convex. Suppose that J and
E are continuously Frechét differentiable and that the state equation verifies the following
property: for all u ∈ Uad exists a unique y = y(u) in Y . Additionally we assume that
Ey(y(u), u) ∈ L(Y,Z) has a bounded inverse for all u ∈ Uad1.

If one substitutes y(u) to the problem (1.1.2) obtains:

min
u∈U

Ĵ(u) subject to E(y(u), u) = 0 u ∈ Uad. (1.1.3)

This formulation is usually known as the reduced problem2 and Ĵ(u) := J(y(u), u) is
the so called reduced functional. Under assumptions 1.1 the problems (1.1.3) and (1.1.2)
are equivalent. The minimization of Ĵ(u) is essentially based on the reduced functional
derivative Ĵ ′(u). There are typically two ways to represent Ĵ ′(u): sensitivities analysis and
adjoint approach. We will focus on the latter (for sensitivity method theory and examples
see [35, 29]). For our purposes, an expression for y′(u) is needed. It can be derived by
differentiating E(y(u), u) = 0 with respect to u:

Ey(y(u), u)y′(u) + Eu(y(u), u) = 0⇒ y′(u) = −Ey(y(u), u)−1Eu(y(u), u). (1.1.4)

Let us exploit this result to compute

〈Ĵ ′(u), s〉U∗U = 〈Jy(y(u), u), y′(u)s〉Y ∗Y + 〈Ju(y(u), u), s〉U∗U

〈y′(u)∗Jy(y(u), u), s〉Y ∗Y + 〈Ju(y(u), u), s〉U∗U ,

where the apex ∗ indicates the dual variable. From the previous expression one can deduce

Ĵ ′(u) = y′(u)∗Jy(y(u), u) + Ju(y(u), u).

We can deduce that the vector y′(u)∗Jy(y(u), u) is required to compute reduce functional
derivative. From (1.1.4)

y′(u)∗Jy(y(u), u) = −Eu(y(u), u)∗(Ey(y(u), u)−1)∗Jy(y(u), u).
1This assumption ensures that the state solution operator u 7→ y(u) is continuously differentiable.
2From chapter 3 on, with reduced problem we will indicate the Reduced Basis approximation of a

problem.
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This is equivalent to
y′(u)∗Jy(y(u), u) = Eu(y(u), u)∗p(u),

where p(u) ∈ Z∗ is the adjoint state that solves the following adjoint equation:

Ey(y(u), u)∗p(u) = −Jy(y(u), u). (1.1.5)
So finally we obtain a new representation for the reduced functional derivative:

Ĵ ′(u) = Ju(y(u), u) + Eu(y(u), u)∗p(u). (1.1.6)

So Ĵ ′(u) can be computed through two steps:

1. find the adjoint state p = p(u) ∈ Z∗ solving the adjoint equation (1.1.5),

2. compute Ĵ ′(u) via (1.1.6).

1.1.3 Lagrangian Representation and First Order Necessary Conditions

Now we are going to analyse a different way to derive the adjoint equation deduced in the
subsection (1.1.2). To reach our goal let us define L : Y × U × Z∗ → R known as the
Lagrangian Functional

L (y, u, p) = J(y, u) + 〈p, E(y, u)〉Z∗Z ,

where p ∈ Z∗. We assume that hypotheses 1.1 are valid. We know that u 7→ y(u) uniquely.
Substituting y(u) in the Lagrangian functional the following essential equality is reached:

L (y(u), u, p) = J(y(u), u) + 〈p, E(y(u), u)︸ ︷︷ ︸
=0

〉Z∗Z = J(y(u), u) = Ĵ(u). (1.1.7)

Differentiating one obtains

〈Ĵ ′(u), s〉U∗U = 〈Ly(y(u), u, p), y′(u)s〉Y ∗Y + 〈Lu(y(u), u, p), s〉U∗U .

To have an explicit description of the reduced functional derivative, we want to find a
special p = p(u) ∈ Z∗ such that

Ly(y(u), u, p) = 0. (1.1.8)

This equality implies

〈Ly(y(u), u, p), w〉Y ∗Y = 〈Jy(y(u), u), w〉Y ∗Y + 〈p, Ey(y(u), u)w〉Z∗Z
= 〈Jy(y(u), u) + Ey(y(u), u)∗p, w〉Y ∗Y ∀w ∈ Y.

Therefore we choose p = p(u) ∈ Z∗ such that

Ey(y(u), u)∗p = −Jy(y(u), u), (1.1.9)

obtaining the adjoint equation (notice how (1.1.9) and (1.1.5) coincide). For this particular
choice of p = p(u) ∈ Z∗ the adjoint derivative representation can be deduced easily:

Ĵ ′(u) =
(1.1.8)

Lu(y(u), u, p) = Ju(y(u), u) + Eu(y(u), u, p)∗p (1.1.10)

Finally we have a direct representation for Ĵ ′(u) totally equivalent to the one analysed in
subsection 1.1.2, proved by the equality between (1.1.10) and (1.1.6).
Thanks to this description, we are able to handle some results about necessary optimality
conditions. It holds the following theorem (see [35], Theorem 1.48)
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1.2. Saddle-Point Formulation

Theorem 1.2 (Minimum Principle). Let us suppose that assumptions 1.1 are verified. If
u? is a local solution of the reduced problem (1.1.3) then the following inequality holds:

〈Ĵ ′(u?), v − u?〉U∗U ≥ 0, ∀v ∈ Uad. (1.1.11)

Exploiting the derived formulation for Ĵ ′(u?), this statement follows:

Corollary 1.2.1. Let (y?, u?) ∈ Y × Uad be an optimal solution on the reduced problem
(1.1.3). Suppose that assumptions (1.1) hold. Then there exists an adjoint state p? ∈ Z∗
such that the following conditions are verified:

E(y?, u?) = 0,
Ey(y?, u?)∗p? = −Jy(y?, u?)
〈Ju(y?, u?) + Eu(y?, u?)∗p?, v − u?〉U∗U ≥ 0 ∀v ∈ Uad.

(1.1.12)

Using Lagrangian notation the system (1.1.12) is equivalent to:
Lp(y?, u?, p?) = 0
Ly(y?, u?, p?) = 0
〈Lu(y?, u?, p?), v − u?〉U∗U ≥ 0 ∀v ∈ Uad.

(1.1.13)

System (1.1.12) can be written in a weak form with respect to J and E :
〈E(y?, u?), q〉ZZ∗ = 0, ∀q ∈ Z∗

〈Ey(y?, u?)∗p? + Jy(y?, u?), z〉Y ∗Y = 0, ∀z ∈ Y
〈Ju(y?, u?) + Eu(y?, u?)∗p?, v − u?〉U∗U ≥ 0, ∀v ∈ Uad.

(1.1.14)

When Uad = U the latter inequality of (1.1.14) becomes3

〈Ju(y?, u?) + Eu(y?, u?)∗p?, v〉U∗U = 0, ∀v ∈ U.

This conditions will be essential in the following applications of this work (from now on
we will omit the star pedix for the optimal variable).

1.2 Saddle-Point Formulation

In the previous section we constructed optimality system for the general OCP formulation.
When linear quadratic control problems are considered, then the optimality conditions
theory leads to a saddle-point structure. Our problem is recasting in a mixed variational
framework. This different approach is more usual than the classical Lagrangian method
in order to treat linear quadratic optimal controls (i.e. in [33, 53, 64, 66]).
First we will introduce a general saddle-point system setting, focusing on existence and
uniqueness results (see [57, 6, 5]). In a second analysis a connection between general
saddle-point theory and constrained optimization problems is established. Finally some
examples of distributed control will be shown.

3In this case (an unconstrained control problem), equations (1.1.12) can be seen as the Euler Lagrange
system for the Lagrangian functional. Indeed an optimal solution for the OCP (1.1.13) represent a sta-
tionary point of L (·, ·, ·):

∇L (y?, u?, p?)[z, v, q] = 0 ∀(z, v, q) ∈ Y × U × Z∗.
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1.2. Saddle-Point Formulation

1.2.1 Generic Problem Formulation and Existence Result

Let X and Q be two Hilbert Spaces, respectively endowed with the norms ‖·‖X , ‖·‖Q. The
dual spaces X∗ and Q∗ are considered. Let us introduce two continuous bilinear forms
A(·, ·) : X ×X → R and B(·, ·) : X ×Q → R. Now, consider the functionals F : X → R
and G : Q→ R and the following saddle-point problem: find (x, p) ∈ X ×Q such that{

A(x, v) + B(v, p) = 〈F, v〉 ∀v ∈ X,
B(x, q) = 〈G, q〉 ∀q ∈ Q.

(1.2.1)

Now let us define the linear operators A : X → X∗ and B : X → Q∗ respectively derived
from A(·, ·) and B(·, ·) verifying the following relations:

〈Aw, v〉X∗X = A(w, v) ∀w, v ∈ X,
〈Bw, q〉Q∗Q = B(w, q) ∀w ∈ X,∀q ∈ Q.

Let Bt : Q→ X∗ be the transpose operator of B obtained by:

〈Bw, q〉Q∗Q = 〈w,Btq〉X,X∗ ∀w ∈ X,∀q ∈ Q.

So the system (1.2.1) can also be interpreted as:{
Ax+Btp = F in X∗,

Bx = G in Q∗.
(1.2.2)

Now let us consider

X0 = {w ∈ X | B(w, q) = 0, ∀q ∈ Q} = ker(B),

subspace of X. The existence and uniqueness of the solution of this saddle-point problem
derive from the following well-known theorem (see [6] for the proof).
Theorem 1.3 (Brezzi). Assume that the Hilbert spaces X and Q, the functionals F ∈ X∗
and G ∈ Q∗, and the bilinear forms A(·, ·) : X × X → R and B(·, ·) : X × Q → R are
given. Assume that the bilinear forms A(·, ·) : X×X → R and B(·, ·) : X×Q→ R satisfy:

1. A(·, ·) and B(·, ·) are continuous, i.e. there exist γA, γB > 0 such that:

|A(w, v)| ≤ γA‖w‖X‖v‖X ∀w, v ∈ X
and

|B(w, q)| ≤ γB‖w‖X‖q‖Q ∀w ∈ X,∀q ∈ Q;

2. A(·, ·) is weakly coercive on X0, i.e. there exist α0 > 0 such that:

inf
w∈X0

sup
v∈X0

A(w, v)
‖v‖X‖w‖X

≥ α0 > 0 and inf
v∈X0

sup
w∈X0

A(w, v)
‖v‖X‖w‖X

> 0;

3. B(·, ·) satisfies the inf-sup condition

β = inf
q∈Q

sup
w∈X

B(w, q)
‖w‖X‖q‖Q

≥ β0 > 0.

Then there exists a unique solution (x, p) ∈ X ×Q to the problem (1.2.1) for all F ∈ X∗
and G ∈ Q∗. Moreover the following a priori estimates hold:

‖x‖X ≤
1
α0

[
‖f‖X∗ + α0 + γA

β0
‖g‖Q∗

]
,

‖p‖Q ≤
1
β0

[(
1 + γA

α0

)
‖f‖X∗ + γA(α0 + γA)

α0 + β0
‖g‖Q∗

]
.
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1.2. Saddle-Point Formulation

1.2.2 Saddle-Point Structure for Optimization Problems

In subsection (1.2.1) we have analysed the generic structure of a saddle-point problem.
Now we want to focus on the relation between this formulation and constrained linear-
quadratic OCPs.
Let us consider Ω ⊂ Rd an open and bounded domain with Lipschitz boundary Γ = ∂Ω.
Let Y and U be the Hilbert spaces for state and control variable respectively. The Hilbert
observation space will be indicated with Z ⊃ Y . Taking into account another Hilbert
space Q, the linear constraint equation is defined by:

a(y, q) = c(u, q) + 〈G, q〉 ∀q ∈ Q, (1.2.3)

where a(·, ·) : Y ×Q→ R represents the state operator, c(·, ·) : U ×Q→ R describes the
role of the control and G ∈ Q∗ is acting as a forcing term. Given a constant α > 0, the
quadratic objective functional is given by:

J(y, u) = 1
2m(y − yd, y − yd) + α

2 n(u, u), (1.2.4)

where yd ∈ Z is an observation function, m : Z × Z → R is a bilinear form that defines
the objective and n : U × U → R is a bilinear form representing a penalization term for
the control variable. So an OCP problem can be formalized as follows:

min
(y,u)∈Y×U

J(y, u) such that (y, u) ∈ Y × U satisfies (1.2.3). (1.2.5)

Our aim is to recast the problem in a saddle-point framework. In order to reach this
new formulation, let us define X = Y × U . Being x = (y, u) ∈ X and w = (z, v) ∈ X,
we can endow X with the scalar product (x,w)X = (y, z)Y + (u, v)U and with the norm
‖·‖X =

√
(·, ·)X . Now let us consider the bilinear form A(·, ·) : X ×X → R defined as

A(x,w) = m(y, z) + αn(u, v) ∀x,w ∈ X,

and the bilinear form B(·, ·) : X ×Q→ R as:

B(x, q) = a(z, q)− c(v, q) ∀w ∈ X, ∀q ∈ Q.

Finally, let F ∈ X∗ be
〈F,w〉 = m(yd, z) ∀w ∈ X,

and define a new functional as follows:

J (x) = 1
2A(x, x)− 〈F, x〉.

Thanks to these relations we can give a new formulation to the objective functional

J(y, u) = J (x) +M(yd),

where M(yd) = 1
2m(yd, yd) is a constant term that does not give any contribution to the

minimization of J(·, ·). For these reasons, it is now possible give a new formulation to the
problem (1.2.5): find

min
x∈X
J (x) such that B(x, q) = 〈G, q〉 ∀q ∈ Q. (1.2.6)
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The constrained optimization problem (1.2.6) can be recast into an unconstrained opti-
mization problem by defining the Lagrangian functional L(·, ·) : X ×Q→ R as

L (x, p) = J (x) + B(x, p)− 〈G, p〉. (1.2.7)

By deriving with respect to (x, p) ∈ X ×Q we can build a saddle-point structure for the
optimality system: find (x, p) ∈ X ×Q such that{

A(x,w) + B(w, p) = 〈F,w〉 ∀w ∈ X,
B(x, q) = 〈G, q〉 ∀q ∈ Q,

(1.2.8)

where p ∈ Q is the adjoint variable of the constraint equation. Existence and uniqueness
of the solution are guaranteed under the assumptions of theorem 1.3.
What we have shown in this subsection is justified by the following theorem (see [5],
Porposition 1.7):

Theorem 1.4. Assume that the hypotheses of the (Brezzi) theorem 1.3 hold. Furthermore,
let A(·, ·) be a symmetric, nonnegative and coercive bilinear form on X0 with coercivity
constant α0 > 0, i.e.

A(x,w) = A(w, x), A(x, x) ≥ 0 ∀x,w ∈ X, A(x, x) ≥ α0||x||2X ∀x ∈ X0.

Then the problem (1.2.8) is equivalent to the following constrained minimization problem:min
x∈X
J (x) = 1

2A(x, x)− 〈F, x〉

subject to B(x, q) = 〈G, q〉 ∀q ∈ Q.
(1.2.9)

1.3 Linear Quadratic Optimal Control Problems: Theory
and Examples

In this section we will provide a theoretical formalization of linear quadratic OCPs. This
kind of control problems have several applications and are wide spread and studied. This
category includes either elliptic coercive problems (e.g. [54, 59, 58]) or Stokes problems
(e.g [64, 53, 61]). We will be able to interpret the linear quadratic optimality system under
the results of section 1.2, noticing its saddle-point structure (as a reference, see [35]). The
theoretical approach will be enriched by some examples of distributed control problems
with elliptic and Stokes governing equations.

1.3.1 Linear Quadratic Optimal Control Theory

Let us consider a generic linear quadratic unconstrained OCP4:

min
(y,u)∈Y×U

J(y, u) = 1
2‖Qy − yd‖

2
H + α

2 ‖u‖
2
U

subjected to Ay + Cu = f,
(1.3.1)

where Y,U,H are Hilbert spaces, yd ∈ H, f ∈ Y ∗. We are assuming that: A ∈ L(Y, Y ∗)
with a bounded inverse A−1 ∈ L(Y ∗, Y ), C ∈ L(U, Y ∗) and Q ∈ L(Y,H). We will refer
to Q as the observation operator. Under this assumptions theorem 1.1 holds, moreover if

4The problem has a linear state equation, a quadratic objective functional.
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α > 0, the solution is unique (see theorem 1.43 of [35]). Hilbert spaces are reflexive, so
the equality Y = Y ∗∗ holds. Furthermore, we suppose U∗ = U and H∗ = H. Let us set
E(y, u) = Ay + Cu− f , from which Ey(y, u) = A and Eu(y, u) = C.
Furthermore:

〈Jy(y, u), s〉Y ∗Y = (Qy − yd,Qs)H = 〈Q∗(Qy − yd), s〉Y ∗Y ,

where Q∗ ∈ L(H∗, Y ∗). It also holds:

〈Ju(y, u), w〉U∗U = α(u,w)U ,

Let p ∈ Q = Y be the adjoint variable. Thus the variational formulation of the optimality
system reads: 

〈Ay + Cu− f, q〉Y ∗Y = 0 ∀q ∈ Q,
〈A∗p+Q∗(Qy − yd), z〉Y ∗Y = 0 ∀z ∈ Y,
〈αu+ C∗p, v〉U∗U = 0 ∀v ∈ U,

(1.3.2)

or, equivalently: 
Ay + Cu = f,

A∗p = −Q∗(Qy − yd),
αu+ C∗p = 0.

(1.3.3)

Remark 1.3.1. Another way to reach this same result is trough the Lagrangian functional

L (y, u, p) = 1
2(Qy − yd,Qy − yd)H + α

2 (u, v)U + 〈p,Ay + Cu− f〉Y Y ∗ .

Thanks to the assumptions made, the optimality system (1.3.2) can be built from the
derivative of L (·, ·, ·) with respect to the three variables (y, u, p) ∈ Y × U × Y :

〈Lp(y, u, p), q〉Y ∗Y = 0,
〈Ly(y, u, p), z〉Y ∗Y = 0,
〈Lu(y, u, p), v〉U∗U = 0.

(1.3.4)

1.3.2 Linear Quadratic Optimal Control Examples

In this section we will present some illustrative examples of distributed control. The first
one is governed by a Laplace equation, the second one by an advection-diffusion state
equation and the last one is described by a governing Stokes equation.

Example 1.3.2.1 (Distribuited OCP governed by Laplace equation). In this example
we will show a distributed linear quadratic OCP governed by the Laplace equation. Let
us consider an open, bounded domain Ω ⊂ Rd, where d = 1, 2, 3. The boundary ∂Ω is
supposed to be sufficiently regular (Lipschitz). The mathematical formalization of the
problem reads:

min
(y,u)∈Y×U

J(y, u) = 1
2

∫
Ω

(y − yd)2dΩ + α

2

∫
Ω
u2dΩ,

such that
{
−∆y = f + u in Ω,
y = 0 on ∂Ω,

(1.3.5)
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where yd and f are two given functions of L2(Ω), Y = H1
0 (Ω), U = L2(Ω), Y ∗ = H−1(Ω)

and H = L2(Ω). Thanks to the boundary conditions and integration by parts, the weak
formulation of the state equation reads: find y ∈ Y such that

a(y, q) = c(u, q) + (f, q)L2 , ∀q ∈ Y,

where a(·, ·) : Y × Y → R and c(·, ·) : U × Y → R are bilinear forms defined by:

a(y, q) =
∫

Ω
∇y · ∇q dΩ,

c(u, q) =
∫

Ω
uq dΩ.

For fixed u ∈ U , the existence and uniqueness of the solution of the state equation is
guaranteed by the Lax-Milgram lemma5. We can refer to the optimal control formulation
introduced in (1.3.1) thanks to the operators related to the bilinear forms. The bilinear
form a(·, ·) induces the operator A ∈ (Y, Y ∗) satisfying 〈Ay, q〉Y ∗Y = a(y, q), whereas to
the bilinear form c(·, ·) is associated to the operator C ∈ L(U, Y ∗) such that 〈Cu, q〉Y ∗Y =
c(u, q). In this particular case the observation operator Q ∈ L(Y,H) is the identity,
indeed Qy = y. Under this operational framework, the state equation can be read as
Ay − Cu − f = 0. Let us compute the dual operators A∗, C∗ and Q∗. It is quite simple,
since the forms are symmetric. Let us begin with the operator A induced by the bilinear
form a(·, ·). In general find the adjoint operator of A ∈ L(Y, Y ∗) means to find A∗ ∈
L(Y ∗∗, Y ∗) = L(Y, Y ∗) such that:

〈As, q〉Y ∗Y = 〈s,A∗q〉Y Y ∗ ∀s, q ∈ Y. (1.3.6)

So, integrating by parts, thanks to the divergence theorem and under the assumptions
q = 0 on ∂Ω and s = 0 on ∂Ω. we reach

〈As, q〉Y ∗Y = −
∫
∂Ω
∇sq · n +

∫
Ω
∇s · ∇q dΩ

=
q∈Y

∫
Ω
∇s · ∇q dΩ = a(s, q) = a(q, s) = 〈Aq, s〉Y ∗Y .

For this reason A = A∗ and, similarly, C = C∗ and Q = Q∗. So, taken the adjoint variable
p ∈ Y , we can build the adjoint equation:{

−∆p = −(y − yd) in Ω,
p = 0 on ∂Ω,

and optimality system as seen in (1.3.3):
Ap = −(y − yd)
αu− Cp = 0
Ay − Cu− f = 0.

(1.3.7)

5 We illustrate the lemma without proof. As a reference we propose [60, Chapter 5].

Lemma 1.1. Let V be and Hilbert space, let a(·, ·) : V × V → be and F (·) : V → R be a continuous
coercive bilinear form and a continuous linear functional respectively. So there exists a unique solution for
the following problem: find u ∈ V such that

a(u, v) = F (v) ∀v ∈ V.

10



1.3. Linear Quadratic Optimal Control Problems: Theory and Examples

We can express it in the equivalent weak form:
〈Ay − Cu− f, q〉Y ∗Y = 0 ∀q ∈ Y,
〈Ap, z〉Y ∗Y = −(y − yd, z)L2 ∀z ∈ Y,
(αu, v)L2 = 〈Cp, v〉U∗U ∀v ∈ U.

(1.3.8)

or, in the notation of the bilinear forms:
a(y, q) = c(u, q) + (f, q)L2 ∀q ∈ Y,
a(p, z) = −(y − yd, z)L2 ∀z ∈ Y,
(αu, v)L2 = c(p, v) ∀v ∈ U.

(1.3.9)

All these optimality systems can be obtained considering the derivative with respect to
(y, u, p) of the Lagrangian functional introduced in remark 1.3.1:

L (y, u, p) = 1
2(y − yd, y − yd)L2 + α

2 (u, u)L2 + a(y, p)− c(u, p)− (f, q)L2 .

Now we underline the saddle-point structure of the optimality system (1.3.9). It can be
rewritten in the following way:

(y, z)L2 +a(z, p) = (yd, z)L2 ∀z ∈ Y,
+α(u, v)L2 −c(v, p) = 0 ∀v ∈ U,

a(y, q) −c(u, q) = (f, q)L2 ∀q ∈ Y.

Example 1.3.2.2 (Distribuited advection-diffusion OCP). Let us consider a bit more
complex example of distributed linear quadratic OCP. In this case the system is governed
by an advection-diffusion equation. The problem is formalized as follows:

min
(y,u)

J(y, u) = 1
2

∫
ΩOBS

(y − yd)2 dΩOBS + α

2

∫
ΩOBS

u2 dΩOBS ,

such that


−div(ν∇y) + βββ · ∇y = f + u in Ω,
y = 0 on ΓD,

ν
∂y

∂n
= 0 on ΓN .

(1.3.10)

Let Ω be an open, bounded and regular domain, with Lipschitz boundary ∂Ω that verifies
ΓD ∪ ΓN = ∂Ω and ΓD ∩ ΓN = ∅. The observation domain ΩOBS ⊂ Ω is open. The
control term is u ∈ L2(Ω). The source term f ∈ L2(Ω) is given. The given diffusivity
term ν = ν(x) > 0 in Ω. The diffusivity term is considered in L∞(Ω). Also the advective
field βββ = βββ(x) in L2(Ω) × L2(Ω) is given. We impose homogeneous Dirichlet boundary
conditions on the inlet boundary of the advection field ΓD = {x ∈ ∂Ω : βββ · n(x) < 0},
where n(x) is the unit outward normal vector on ∂Ω, whereas we impose homogeneous
Neumann conditions on the outlet boundary of the advection field ΓN . We consider
Y = H1

ΓD(Ω) = {y ∈ H1(Ω) : y|ΓD = 0}, U = L2(Ω), H = L2(Ω), Y ∗ = H−1(Ω) and
yd ∈ L2(Ω) is given. Let us begin our analysis from the weak formulation of the state
equation. It reads: find y ∈ Y such that

a(y, q) = c(u, q) + (f, q)L2 , ∀q ∈ Y,

11
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where the bilinear forms a(·, ·) : Y ×Y → R and c(·, ·) : U×Y → R are defined respectively
as

a(y, q) =
∫

Ω
(ν∇y · ∇q + βββ · ∇yq) dΩ,

c(u, q) =
∫

Ω
uq dΩ,

thanks to integration by parts and boundary conditions.
For existence an uniqueness of the state equation we refer to [57, Chapter 12].
To compute the adjoint operators it is useful to rewrite a(·, ·) = a1(·, ·) + a2(·, ·) where:

a1(s, q) = −
∫

ΓD
ν∇sq · n−

∫
ΓN

ν∇sq · n +
∫

Ω
ν∇s · ∇q dΩ

a2(s, q) =
∫

Ω
βββ · ∇sq dΩ.

Let us indicate by A1 ∈ L(Y, Y ∗) and A2 ∈ L(Y, Y ∗) the linear operators induced by
a1(·, ·) and a2(·, ·) respectively. The linear operator A ∈ L(Y, Y ∗) induced by the bilinear
form a(·, ·) (notice that this time a(·, ·) is not symmetric) is given by the sum of A1 and
A2. As in example (1.3.2.1) we want to verify:

〈As, y〉Y ∗Y = 〈s,A∗y〉Y Y ∗ .

Let us act on A1. Assume that q = 0 on ∂Ω. Furthermore, we also know that ν ∂s
∂n

= 0
on ∂Ω. This reduces

〈A1s, q〉Y ∗Y = a1(s, q) =
∫

Ω
ν∇s · ∇q dΩ.

Now, integrating by parts and using the divergence theorem, we obtain:

〈A1s, q〉Y ∗Y =
∫

ΓD
s∇q · n +

∫
ΓN

s∇q · n−
∫

Ω
s∆q dΩ

=
s∈H1

ΓD
(Ω)

∫
ΓN

s∇q · n−
∫

Ω
s∆q dΩ.

Let us focus on A2. Integrating by parts and applying the divergence theorem, we reach
the following equality:

〈A2s, q〉Y ∗Y =
∫

ΓD
βββqs · n +

∫
ΓN
βββqs · n−

∫
Ω

div(βββq)s dΩ

=
s∈H1

ΓD
(Ω)

∫
ΓN
βββqs · n−

∫
Ω

div(βββq)s dΩ.

Finally,
〈As, q〉Y ∗Y = 〈A1s, q〉Y ∗Y + 〈A2s, q〉Y ∗Y

=
∫

ΓN
s(∇q + βββq) · n−

∫
Ω
s∆q dΩ−

∫
Ω

div(βββq)s dΩ.

To obtain the adjoint equality (1.3.6) we have to assume a new boundary condition for
the adjoint problem, that is ∂q

∂n
+ βββ · nq = 0. So the adjoint equation has the following

form:

12
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−div(ν∇p+ βββp) = −χOBS(y − yd) in Ω,
p = 0 on ΓD,
∂p

∂n
+ βββ · np = 0 on ΓN ,

(1.3.11)

where p ∈ Y is the adjoint variable and χOBS the characteristic function of ΩOBS . Let
C ∈ L(U, Y ∗) be the linear operator induced by c(·, ·) and Q ∈ L(Y,H) the identical
observation operator. In this case we can exploit the symmetric assumption of example
(1.3.2.1) and C = C∗ and Q = Q∗. Let us define

a∗(s, q) =
∫

Ω
(ν∇s · ∇q)−

∫
Ω

div(βββq)s dΩ;

so the optimality system can reads:
a(y, q) = c(u, q) + (f, q)L2 ∀q ∈ Y,
a∗(z, p) = −(y − yd, z)L2(ΩOBS) ∀z ∈ Y,
(αu, v)L2(ΩOBS) = c(v, p) ∀v ∈ U.

(1.3.12)

Example 1.3.2.3 (Distribuited OCP governed by Stokes equation). In this final example
we consider distributed OCP with a Stokes state equation. The problem is formulated in
the following way:

min
(v,p,u)

J(v, p,u) = 1
2

∫
Ω
|v− vd|2dΩ + α

2

∫
Ω
|u|2dΩ,

such that


−ν∆v +∇p = u in Ω,
div(v) = 0 in Ω,
v = 0 on ∂Ω.

(1.3.13)

The domain Ω ⊂ R2 is open, bounded and regular. The given constant ν represents the
kinematic viscosity, v ∈ V := H1

0 (Ω)×H1
0 (Ω) is the velocity field and

p ∈ P := L2
0(Ω) =

{
r ∈ L2(Ω) :

∫
Ω
r = 0

}

represents the pressure. In this case we consider V ∗ = H−1(Ω) × H−1(Ω) and P ∗ = P .
Now let us consider Y = V × P as the space of the state variable y = (v, p) and U =
L2(Ω) × L2(Ω) is the space of the control variable u. The dual space is Y ∗ = V ∗ × P ∗.
In order to build the weak formulation of the state equation, we define the bilinear forms
a(·, ·) : V × V → R, b(·, ·) : V × P → R and c(·, ·) : V × V → R as follows:

a(v,φφφ) = ν

∫
Ω
∇v · ∇φφφ dΩ, b(v, p) = −

∫
Ω

div(v)p dΩ, c(u,φφφ) =
∫

Ω
u ·φφφ dΩ.

So the weak formulation for the state equation is: find y = (v, p) such that{
a(v,φφφ) + b(φφφ, p) = c(u,φφφ) ∀φφφ ∈ V
b(v, ξ) = 0 ∀ξ ∈ P.

(1.3.14)

For fixed uuu ∈ U , the state equation admits a unique solution. Indeed the Stokes problem
(1.3.14) can be seen as a saddle-point problem satisfying the assumptions of (Brezzi)

13



1.3. Linear Quadratic Optimal Control Problems: Theory and Examples

Theorem 1.3 (for the proof see [57, Chapter 16]). In this case the Lagrangian functional
derivative is used to derive the optimality system of the control problem. Let us define
the Lagrangian functional:

L (v, p,u,w, q) = 1
2(v− vd,v− vd)L2 + α

2 (u,u)L2 + a(v,w) + b(w, p)− c(u,w) + b(v, q).

To obtain the optimality system we assume the derivatives of L (·, ·, ·) with respect to
(v, p,u,w, q) ∈ V × P × U × V × P must vanish. For this kind of problem the system
(1.3.4) reads: 

a(v,φφφ) + b(φφφ, p) = c(u,φφφ) ∀φφφ ∈ V,
b(v, ξ) = 0 ∀ξ ∈ P,
a(ψψψ,w) + b(ψψψ, q) = (v− vd,ψψψ)L2 ∀ψψψ ∈ V,
b(w, π) = 0 ∀π ∈ P,
α(u, τττ)L2 = c(τττ ,w) ∀τττ ∈ U.

(1.3.15)

We report below the nested saddle-point structure of this control problem:



(v,ψψψ)L2 a(ψψψ,w) +b(ψψψ, q) = (vd,ψψψ)L2 ∀ψψψ ∈ V,
b(w, π) = 0 ∀π ∈ P,

+α(u, τττ)L2 −c(τττ ,w) = 0 ∀τττ ∈ U,
a(v,φφφ) +b(φφφ, p) −c(u,φφφ) = 0 ∀φφφ ∈ V,
b(v, ξ) = 0 ∀ξ ∈ P.
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Chapter 2

Numerical Approximation and
Methods for Optimal Control
Problems

In this chapter, our purpose is to illustrate what is a numerical approximation for an
optimal control problem (OCP) and what are the methods that can be used to solve the
optimality conditions system. While in the previous chapter we performed a very theoret-
ical analysis of control problems, in this chapter we will focus on the numerical features of
an OCP. We will translate the notions presented in Chapter 1 under the field of Computa-
tional Fluid Dynamics (CFD). As we have specified in the previous chapter, Fluid Control
is an old field of research that fascinated scientists in many fields and from any time. Now,
with the development of new computational technologies, fluid control is studied under
this new point of view. For the last 30 years, there has been a large use of computational
method to understand fluid behaviour under optimization using sophisticated and very
expensive simulations. These kind of simulations need a consistent numerical approxima-
tion and a smart resolution method for the optimality system. Numerical methods for
fluids are essential in many engineering applications. The need of control simulations and,
consequently, their numerical approximations and the related solving methods, arise in
hydrodynamics, physiological flow studies, aerodynamics, shape optimization, geophysical
sciences and environmental engineering (e.g see [14, 42, 49, 64, 18, 72, 73, 51, 71, 48, 58]).
In this work we will follow a classical Galerkin method based on a Finite Element dis-
cretization to reach a good approximation of our fluid state and control variables. In order
to transform the control problem into a discrete control problem there are essentially two
discretization techniques, that now we will briefly introduce (see [57, 22, 29]):

1. discretize-then-optimize. In this approach we discretize the state equation and,
subsequently, we solve the control. This method is represented by the following
pattern

MODEL → DISCRETIZATION → CONTROL;

2. optimize-then-discretize. Through this second strategy, first the continuous
control problem is formalized and then we proceed with the discretization of the
equations of the optimality system. The process is described by the next scheme:

MODEL → CONTROL → DISCRETIZATION.
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Now let us talk about solving methods. It is convenient refer to the abstract OCP formu-
lation:

min
(y,u)

J(y, u) subject to E(y, u) = 0,

where y and u are respectively the state and the control variable constrained to a general
state equation E(y, u) = 0. To solve an optimization problem of this kind there are usually
two ways:

1. iterative method. It is based on the minimization of the reduced functional Ĵ(u) =
J(y(u), u) where y(u) derives from the solution operator u 7→ y(u) (i.e. see [35, 70,
57]);

2. one-shot method. Based on the direct resolution of the optimality system (i.e. see
[67, 69]).

Let us present what we are going to treat in this Chapter. In section 2.1 we will deeply anal-
yse the discretization techniques usually exploited in control problems. The discretization
theory for saddle-point problems is described. Some examples in linear quadratic OCPs
are shown. Section 2.2 is about the numerical methods to solve an OCP. The iterative
method is shortly treated, while the one shot approach is presented more extensively. Fi-
nally, in section 2.3, some numerical example of distributed control are provided. They
are solved by the one-shot method.

2.1 Discretization Techniques for Optimal Control Prob-
lems

The computational study of control problems is based on simulations and on the inter-
pretation of their results. At the base of simulations there is a discrete optimal control
problem. A control problem is a very complex issue to treat. One of the main character-
istic of an OCP is the interaction of the various components of the system: to discretize
a control problem can unexpectedly be a difficult task.
The aim of this section is to introduce the concept of discretization of a control problem.
First of all the two approaches discretize-then-optimize and optimize-then-discretize are
clarified (as a reference see [57, 53, 64]). Then we will analyse Galerkin approximation,
stabilization and convergence of the saddle-point formulation (see [57, paragraph 16.3.3])
and some applications in linear quadratic OCPs (see [57, 58]).

2.1.1 Two approaches: discretize-then-optimize or optimize-then-discretize

Let us focus our attention on how to appropriate discretize an OCP. Let y ∈ Y and u ∈ U
be the state and the control variable, respectively. Let us indicate our state equation as
E(y, u) = 0. To better fix the ideas, we will describe our control problem in the following
way: find u ∈ Uad ⊂ U such that

J(y(u), u) ≤ J(y(v), v) ∀v ∈ Uad, (2.1.1)

where J : Y × U → R is a prescribed cost functional and the minimization is subjected
to E(y(u), u) = 0. There are at least two methods to follow in order to discretize and to
solve numerically the problem (2.1.1).
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1. Discretize-then-Optimise (see [57, 22, 29])
In this kind of approach, first Uad and the state equation are discretized, obtaining
respectively the discrete space Uad,h and the new discrete state equation:

Eh(yh(uh), uh) = 0, (2.1.2)

where h is a parameter that indicates the dimension of the mesh elements. We
suppose that for h → 0 the discrete problem converges to the continuous one. In
this way, if the induction of Uad,h and if the equation (2.1.2) is correct, we expect to
obtain a discrete state yh(uh) from all the discrete admissible control uh. So we can
formulate the problem (2.1.1) in a discrete version: find u ∈ Uad,h such that

J(yh(uh), uh) ≤ J(yh(vh), vh) ∀vh ∈ Uad,h, (2.1.3)

subject to Eh(yh(uh), uh) = 0.
This a natural way to discretize and solve a control problem: first the state equation
is discretized and then we obtain the discretized control model.

2. Optimise-then-Discretize (see [57, 22, 29])
There is another way to proceed. We can consider the state equation E(y, u) = 0 and
the problem (2.1.1) to characterize the optimal state and control variables in terms
of the optimality system. As introduced in chapter 1, we know that the continuous
optimality system is of the form:

E(y, u) = 0,
Ey(y, u)∗p = −Jy(y, u),
Eu(y, u)∗p = −Ju(y, u).

(2.1.4)

where p = p(u) is the adjoint variable associated to y and u. At this point we can
discretize and solve numerically (2.1.4).

The two different approaches do not always lead to the same results: for some problems
is preferable the first strategy (usually optimal design problems), for others the second
one. Which way to use depends substantially from the specific control problem we are
considering: i.e. the first approach is to prefer in optimal design problems, while could
lead to erroneous results in optimal control problems involving vibrations and waves (i.e
see [36, 76, 49, 77]).

2.1.2 Galerkin Approximation, Stability and Convergence for Saddle-
Point Problems.

We are going to analyse the Galerkin approximation for the saddle-point structure, that
is common to all the linear quadratic OCPs. Let us recall the structure of a saddle-
point problem [53, 54]. Let X and Q be two Hilbert spaces, respectively endowed with
the norms || · ||X and || · ||Q. Let us consider X∗ and Q∗, the continuous bilinear forms
A(·, ·) : X × X → R and B(·, ·) : X × U → R and the two linear functionals F ∈ X∗

and G ∈ Q∗. The saddle-point problem formulation (as introduced in (1.2.1)) reads: find
(x, p) ∈ X ×Q such that {

A(x, v) + B(v, p) = 〈F, v〉 ∀v ∈ X,
B(x, q) = 〈G, q〉 ∀q ∈ Q.

(2.1.5)
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We can introduce the Galerkin approximation of the abstract problem (2.1.5). Let XN
and QN be two finite dimensional subspaces of the spaces X and Q, respectively. In this
work these discrete spaces are considered as Finite Element spaces, but the dissertation
has value for a general discrete space.
The Galerkin Finite Element approximation of the problem (2.1.5) is: find (xN , pN ) ∈
XN ×QN such that{

A(xN , vN ) + B(vN , pN ) = 〈F, vN 〉 ∀vN ∈ XN ,
B(xN , qN ) = 〈G, qN 〉 ∀qN ∈ QN .

(2.1.6)

Similarly to the continuous case we can define the space:

XN0 = {wN ∈ XN : B(wN , qN ) = 0, ∀q ∈ QN }.

Even if QN ⊂ Q and XN ⊂ X, in general XN0 * X0. Now we want to provide a discrete
version of the (Brezzi) theorem (1.3) (for the proof see [57], Cap.16), that gives us a result
well-posedness of the problem (2.1.6).

Theorem 2.1 (Brezzi). Assume that the Hilbert spaces X and Q, the functionals F ∈ X∗
and G ∈ Q∗, and the bilinear forms A(·, ·) : X × X → R and B(·, ·) : X × Q → R are
given. Let XN and QN be two finite dimensional subspaces of X and Q respectively.
Furthermore, assume that A(·, ·) is continuous on XN ×XN and B(·, ·) is continuous on
XN ×QN . Assume that the bilinear form A(·, ·) is weakly coercive on XN0 , i.e.

inf
xN∈XN0

sup
wN∈XN0

A(xN , wN )
||xN ||X ||wN ||X

≥ αN and inf
wN∈XN0

sup
xN∈XN0

A(xN , wN )
||xN ||X ||wN ||X

> 0.

Moreover, suppose that B(·, ·) satisfies the discrete inf-sup condition

inf
qN∈QN

sup
wN∈XN

B(wN , qN )
||wN ||X ||qN ||Q

≥ βN > 0.

Then, for all h > 0, the problem (2.1.6) has a unique solution (xN , pN ). Furthermore, the
following inequalities hold:

||xN ||X ≤
1
αN

[
||F ||∗X + αN + γA

βN
||G||Q∗

]
,

||pN ||Q ≤
1
βN

[(
1 + γA

αN

)
||F ||∗X + γA(αN + γA)

βN + αN
||G||Q∗

]
.

Finally, if (x, p) ∈ X×Q denotes the unique solution of the problem (2.1.5), the following
error estimate holds:

||x− xN ||X + ||p− pN ||Q ≤ C
(

inf
wN∈XN

||x− wN ||X + inf
qN∈QN

||p− qN ||Q

)
,

where C := C(αN , βN , γA, γB), so C is independent from N .

Remark 2.1.1. In subsection 1.2.2 we have analysed how a linear quadratic OCP can
be read in a saddle-point framework. So the general Brezzi’s Theorem 2.1 also holds for
the linear quadratic OCPs. This is the reason why the well posedness of a discrete linear
quadratic OCP depends on the fulfillment of its assumptions.
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Let us focus on the algebraic structure of the system associated to (2.1.6). The dimension
of XN and QN are respectively indicated with NX and NQ. Let us define the basis of the
finite spaces XN and QN with:

{ϕj ∈ XN }NXj=1 {ψk ∈ QN }
NQ
k=1.

Now we can rewrite the solution (xN , pN ) ∈ XN ×QN as:(
xN =

NX∑
j=1

xjϕj(x), pN =
NQ∑
k=1

pkψk(x)
)
.

if the basis functions are chosen as test functions for the problem (2.1.6), one can define
A ∈ RNX×NX , B ∈ RNQ×NX ,F ∈ RNX and G ∈ RNQ as follows:

Aij = A(ϕi, ϕj), Bml = B(ϕl, ψm), Fk = 〈F,ϕk〉, Gs = 〈G,ψs〉.

From those quantities, we can build the following linear system, with a block structure:(
A BT

B 0

)(
x
p

)
=
(

F
G

)
, (2.1.7)

where (x)i = xi and (p)k = pk. Thanks to the Galerkin approximation, the OCP problem
(1.2.9) has the following algebraic formulation:

minimize 1
2xTAx− FTx subject to Bx = G. (2.1.8)

2.1.3 Approximation of Linear Quadratic OCPs Governed by Elliptic
Coercive State Equation

Our purpose is to study the Galerkin approximation of linear quadratic control governed
by elliptic coercive state equations. We want to describe them in the framework proposed
in section 1.2.1 and analyse the discretize model illustrated in subsection 2.1.2. As usual
we consider Y and U , the state and the control space, respectively. The state and the
control variables will be indicated with y and u. In this case U = U(ω), where ω ⊂ Ω
or ω ⊂ ∂Ω. Furthermore, we assume that Ω is a open, bounded domain with a regular
boundary ∂Ω such that ΓN ∩ ΓD = ∅, while ΓN ∪ ΓD = ∂Ω. Moreover, let Q = Y be the
adjoint space and let H be the observation space (we can observe the total domain or the
boundary, or a part of them).
Let us define the OCP problem as follows:

min
(y,u)∈Y×U

J(y, u) = 1
2 ||Qy − yd||

2
H + α

2 n(u, u)

a(y, q) = c(u, q) + 〈G, q〉Q∗Q ∀q ∈ Q = Y,

(2.1.9)

where, n(·, ·) : U × U → R is a bilinear form linked to the penalization of the control
variable, α > 0 is a given constant, yd ∈ H and Q ∈ L(Y,H).
In order to recast the problem (2.1.9) in a saddle-point formulation (2.1.5) we have to
make the following assumptions.
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Assumptions 2.1. Suppose:

1. a(·, ·) : Y ×Y → R is continuous and strongly coercive, i.e. there exist two constants
γa > 0 and αa > 0 such that:

|a(s, r)| ≤ γa||s||Y ||r||Y ∀s, r ∈ Y and a(s, s) ≥ αa||s||2Y ∀s ∈ Y,

2. the bilinear form c(·, ·) : U × Y → R is symmetric and continuous, i.e. there exists
a constant γc > 0 such that:

|c(v, q)| ≤ γc||v||U ||q||Y ∀v ∈ U , ∀q ∈ Y,

3. the bilinear form n(·, ·) : U × U → R is symmetric, coercive and continuous, i.e.
there exist two constants γn > 0 and αn > 0 such that:

n(v, w) ≤ γn||v||U ||w||U ∀v, w ∈ U and n(v, v) ≥ αn||v||2U ∀v ∈ U.

Let us define X = Y × U endowed with the scalar product (x,w)X = (y, z)Y + (u, v)U ,
where x = (y, u) ∈ X and w = (z, v) ∈ X. Let A(·, ·) : X × X → R be a bilinear form
defined as follows

A(x,w) = (Qy,Qz)H + αn(u, v).

Furthermore, let us consider B(·, ·) : X × Y → R a bilinear form such that

B(w, q) := a(z, q)− c(v, q).

To recast the OCP problem (2.1.9) we also need the Riesz isomorphism ΛH : H → H∗

and the adjoint operator of Q that we will indicate as Q∗ ∈ L(H∗, Y ∗). Finally, we can
define F = (Q∗ΛHyd, 0) ∈ X∗ and reach this new formulation:min

x∈X
J (x) = 1

2A(x, x)− 〈F , x〉

B(x, q) = 〈G, q〉 ∀q ∈ Y.
(2.1.10)

our purpose is to establish an equivalence between the problems (2.1.9),(1.2.9) and the
following one: {

A(x,w) + B(w, p) = 〈F ,w〉 ∀w ∈ X
B(x, q) = 〈G, q〉 ∀q ∈ Y.

(2.1.11)

To do that, we have to prove the hypotheses of theorem 1.4, exploiting assumptions 2.1.

Lemma 2.1. The bilinear forms A(·, ·) and B(·, ·) verify the hypotheses of Theorem 1.4.

Proof. The bilinear form A(·, ·) is trivially symmetric and nonnegative.

1. The bilinear form A(·, ·) is continuous on X ×X. Indeed:

|A(x,w)| ≤ ||Qy||H ||Qz||H + α||u||U ||v||U ≤ ||Q||2||y||H ||z||H + α||u||U ||v||U
≤ (||Q||2 + α)||x||X ||w||X .
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2. The bilinear form B(·, ·) is continuous on X × Y :

|B(w, q)| ≤ |a(z, q)|+ |c(v, q)| ≤ γa‖z‖Y ‖q‖Y + γc‖v‖U‖q‖Y
≤ (γa + γc)‖w‖X‖q‖Y .

3. The bilinear form A(·, ·) is strongly coercive on

X0 = {w ∈ X : B(w, q) = 0, ∀q ∈ Y }

. Let us consider w ∈ X0 ⇒ B(w, q) = 0⇒ a(z, q) = c(v, q) ∀q ∈ Y. So it holds:

αa‖z‖2Y ≤ a(z, z) = c(v, z) ≤ γc‖v‖U‖z‖Y ⇒ ‖v‖U ≥
αa
γc
‖z‖Y .

This leads to:

A(w,w) = ||Qz||2H + α‖v‖2U = ||Qz||2H + α

2 ‖v‖
2
U + α

2 ‖v‖
2
U

≥ ||Qz||2H + αα2
a

2γ2
c

‖z‖2Y + α

2 ‖v‖
2
U

≥ α0(‖z‖2Y + ‖v‖2U ) = α0‖w‖2X ,

where α0 = α

2 max
{

1, α
2
a

γ2
c

}
.

4. The bilinear form B(·, ·) verifies the inf-sup condition:

sup
w∈X,
w 6=0

B(w, q)
‖w‖X

= sup
(z,v)∈Y×U,
(z,v)6=(0,0)

a(z, q)− c(v, q)√
‖z‖2Y + ‖v‖2U

≥
(z,v)=(q,0)

a(q, q)
‖q‖Y

≥
Y=Q

αa‖q‖Q > 0.

From assumptions 2.1, Theorem 1.3, Theorem 1.4 and Lemma 2.1, the following Proposi-
tion holds.

Proposition 2.1. The OCP (1.2.9) has a unique solution given by (x, p) ∈ X×Y , solution
of the saddle-point problem (2.1.11).

Now we are allowed to analyse the Galerkin approximation of the saddle-point problem
(2.1.11). So, we can consider the two finite dimensional subspace XN ⊂ X and QN =
Y N ⊂ Y. Specifically, XN = Y N × UN , with Y N ⊂ Y and UN ⊂ U. The discrete version
of problem (2.1.9) reads: find (xN , pN ) ∈ XN × Y N such that:{

A(xN , wN ) + B(wN , pN ) = 〈F,wN 〉 ∀wN ∈ XN ,
B(xN , qN ) = 〈G, qN 〉 ∀qN ∈ QN .

(2.1.12)

Our proposal is to verify the hypothesis of Theorem 2.1: it guarantees the well-posedness
of the problem (2.1.12).

Lemma 2.2. Thanks to the assumption that QN = Y N , the bilinear forms A(·, ·) and
B(·, ·) satisfy the hypothesis of theorem 2.1.
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Proof. The main issue is to prove that assumptions 2.1 are also valid in the discrete
version of the OCP. Let us focus our attention on the bilinear form a(·, ·): the continuity
on Y N ×QN (= Y N ) is naturally inherited, while a general QN could lead to the loss of
the strong coercivity. Thanks to the assumption QN = Y N , the strong coercivity on Y N

follows from the strong coercivity on Y . It analogously holds for c(·, ·) and n(·, ·). The
final result follow the same arguments of lemma 2.1.

The last result and Theorem 2.1 prove the next Proposition.

Proposition 2.2. The saddle-point problem (2.1.12) has a unique solution (xN , pN ) ∈
XN × Y N .

2.1.4 Approximation of OCPs Governed by Stokes State Equations

The aim of this subsection is to analyse an OCP problem governed by Stokes equation.
We will focus on its saddle-point structure and on its Galerkin approximation. We will
specifically face this kind of problem

min
(v,p,u)

J(v, p,u) = 1
2

∫
Ω
|v− vd|2dΩ + α

2

∫
Ω
|u|2dΩ,

such that


−ν∆v +∇p = u in Ω,
div(v) = 0 in Ω,
v = 0 on ∂Ω.

(2.1.13)

Let Ω be a bounded, open regular domain and let ∂Ω be its boundary. Let us specify
functional spaces and variables involved. We consider V = H1

0 (Ω)×H1
0 (Ω) and v,vd ∈ V

as the velocity variable. The variable p ∈ P = L2(Ω) represent the state pressure. The
control space is U = L2(Ω)× L2(Ω) and the control variable u ∈ U . The state variable is
(v, p) ∈ Y = V × P , whereas the adjoint state variable is indicated with (w, q) ∈ Q = Y .
As in Example 1.3.2.3, we reach weak formulation:{

a(v,φφφ) + b(φφφ, p) = (u,φφφ)L2 ∀φφφ ∈ V
b(v, ξ) = 0 ∀ξ ∈ P,

(2.1.14)

where
a(v,φφφ) = ν

∫
Ω
∇v · ∇φφφ dΩ, b(v, p) = −

∫
Ω
pdiv(v) dΩ.

Let us define the usual product space X = Y ×U , and let x = ((v, p),u) and λλλ = ((ψψψ, π), τττ)
elements of X. We consider the following bilinear form A(·, ·) : X ×X → R:

A(x,λλλ) :=
∫

Ω
v ·ψψψ dΩ + α

∫
Ω

u · τττ dΩ. (2.1.15)

Now let (φφφ, ξ) ∈ Q = Y . We define the bilinear form B(·, ·) : X × Y → R as follows:

B(x, (φφφ, ξ)) := a(v,φφφ) + b(φφφ, p) + b(v, ξ)− c(u,φφφ). (2.1.16)

Given F = ((vd, 0),0) we can reformulate the problem (2.1.13):min
x∈X
J (x) = 1

2A(x,x)− 〈F,x〉,

B(x, (φφφ, ξ)) = 0 ∀(w, q) ∈ Y.
(2.1.17)
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Our purpose is to prove assumption of Theorem 1.4 to reach the equivalence between the
OCP (2.1.13) and the saddle-point framework: find (x, (w, q)) ∈ X × Y such that{

A(x,λλλ) + B(λλλ, (w, q)) = 〈F,λλλ〉 ∀λ ∈ X,
B(x, (φφφ, ξ)) = 0 ∀(φφφ, ξ) ∈ Y.

(2.1.18)

Notice that the state Stokes equation is a mixed variational problem and so the system
(2.1.14) has the features of a weakly coercive problem. Let us define A(·, ·) : Y × Y → R
in the following way:

A((v, p), (φφφ, ξ)) = a(v,φφφ) + b(φφφ, p) + b(v, ξ).

Since a(·, ·) and b(·, ·) fulfill the hypotheses of theorem 1.3, the continuity and the weak
coercivity of A(·, ·) can be shown (see [5]). We can exploit the Nečas - Babuška theorem
to ensure the uniqueness of the solution for the state equation. Let us enunciate the it:

Theorem (Nečas). Let us consider two Hilbert spaces V and W , let F (·) be a continuous
linear functional on W . Let A(·, ·) : V ×W → R be a bilinear form verifying:

1. continuity, i.e. there exists CA > 0 such that

|A(u,w)| ≤ CA‖u‖V ‖w‖W ∀u ∈ V,∀w ∈W,

2. weak coercivity, i.e. there exists a constant β > 0 such that:

inf
v∈V

sup
w∈W

A(v, w)
‖v‖V ‖w‖X

≥ β and inf
w∈W

sup
v∈V

A(v, w)
‖v‖V ‖w‖X

> 0.

Then, the problem
A(u,w) = F (w) ∀w ∈W

has a unique solution and it also holds:

‖u‖V ≤
1
β
‖F‖W ∗ .

What is important for our purpose is the weak coercivity of A(·, ·), in particular there
exists βA > 0 such that:

inf
(v,p)∈Y

sup
(φφφ,ξ)∈Y

A((v, p), (φφφ, ξ))
‖(v, p)‖Y ‖(φφφ, ξ)‖Y

≥ βA > 0.

We have all the ingredients to prove the following statement:

Lemma 2.3. The bilinear forms A(·, ·) and B(·, ·) verify the hypotheses of Theorem 1.4.

Proof. Let us consider let x = ((v, p),u),λλλ = ((ψψψ, π), τττ) ∈ X. To reach our proposal, the
following scalar products are used:

((v, p), (ψψψ, π))Y = (v,ψψψ)H1 + (p, π)L2 ,

(u, τττ)U = (u, τττ)L2 ,

(x,λλλ) = ((v, p), (ψψψ, π))Y + (u, τττ)U .

The bilinear form A(·, ·) is trivially symmetric and nonnegative.
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1. The bilinear form A(·, ·) is continuous on X ×X. Indeed:

|A(x,λλλ)| ≤ ||v||H1 ||φφφ||H1 + α||u||L2 ||τττ ||L2

≤ (1 + α)||x||X ||λλλ||X .

2. The bilinear form B(·, ·) is continuous on X × X. We can affirm that thanks to
the continuity of a(·, ·) and b(·, ·) and exploiting Poincaré inequality, which reads as
follows: let Ω ⊂ Rn be a bounded domain, then there exists a constant C > 0 such
that

‖v‖L2(Ω) ≤ C||∇v||L2(Ω) ∀v ∈ H1
0 (Ω), (2.1.19)

moreover it holds:

‖v‖L2(Ω) ≤ Ĉ||v||H1(Ω).

So, we can reach our goal as follows:

|B(x, (φφφ, ξ))| = |a(v,φφφ) + b(φφφ, p) + b(v, ξ)− c(u,φφφ)|
≤ γa‖v‖H1‖φφφ‖H1 + γb‖φφφ‖H1‖p‖L2 + γb‖v‖H1‖ξ‖L2 + ‖u‖L2‖φφφ‖L2

≤ γa‖v‖H1‖φφφ‖H1 + γb‖φφφ‖H1‖p‖L2 + γb‖v‖H1‖ξ‖L2 + C‖u‖L2‖φφφ‖H1

≤ (γa + 2γb + C)‖x‖X‖(φφφ, ξ)‖Y .

3. The bilinear form A(·, ·) is strongly coercive on

X0 = {x ∈ X : B(x, (φφφ, ξ)) = 0, ∀(φφφ, ξ) ∈ Y }.

Notice that x = ((v, p),u) ∈ X0 if and only if

a(v,φφφ) + b(φφφ, p) + b(v, ξ) = (u,φφφ)L2 ∀(φφφ, ξ) ∈ Y.

Let us consider (φφφ, ξ) = (v, ξ). To continue in our purpose, we need to refer to
Cauchy-Schwarz inequality: let V be an inner product space, then

|(v, w)V | ≤ ‖v‖V ‖w‖V ∀v, w ∈ V.

So, thanks to the Poincaré and the Cauchy-Schwarz inequalities it holds:

ν‖∇v‖2L2 + 2b(v, p) = (u,v)L2 ≤ C‖u‖L2‖∇v‖L2 ,

and we can derive:

‖u‖L2 ≥
ν

C
‖∇v‖L2 + 2b(v, p)

C‖∇v‖L2
. (2.1.20)

Now let us prove the strong coercivity of A(·, ·) on X0, assuming that βb > 0 is the
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inf-sup constant of b(·, ·):

A(x,x) = ‖v‖2L2 + α‖u‖2L2 = ‖v‖2L2 + α

2 ‖u‖
2
L2 + α

2 ‖u‖
2
L2

≥ ‖v‖2L2 + α

2
ν2

C2 ‖∇v‖2L2 + α

2
4b(v, p)2

C2‖∇v‖2L2
+ α

2 ‖u‖
2
L2

≥ min
{

1, α2
ν2

C2

}
︸ ︷︷ ︸

ĉ

‖v‖2H1 +
2αβ2

b ‖v‖2H1‖p‖2L2

C2(‖∇v‖2L2 + ‖v‖2L2)
+ α

2 ‖u‖
2
L2

≥ ĉ‖v‖2H1 +
2αβ2

b ‖p‖2L2

C2 + α

2 ‖u‖
2
L2

≥ min
{
c0,

2αβ2
b

C2 ,
α

2
}

︸ ︷︷ ︸
α0

[
‖v‖2H1 + ‖p‖2L2 + ‖u‖2L2

]

= α0‖x‖2X ∀x ∈ X0.

4. The bilinear form B(·, ·) verifies the inf-sup condition:

sup
x∈X, x 6=0

B(x, (w, q))
‖x‖X

= sup
(v,p),u)∈X, (v,p),u) 6=0

A((v, p), (w, q))− (u,w)L2√
‖(v, p)‖2Y + ‖u‖2U

≥
u=0

sup
(v,p)∈Y, (v,p)6=0

A((v, p), (w, q))√
‖(v, p)‖2Y

≥ βA‖(w, q)‖Y .

From theroems 1.3 and 1.4 and Lemma 2.3 we can state the following:

Proposition 2.3. The OCP problem (2.1.13) has a unique solution given by (x, (w, q)) ∈
X × Y solution of the saddle-point problem (2.1.18).

Now we are we can consider the Galerkin approximation of the saddle-point problem
(2.1.18). So, we can consider the two finite dimensional subspace XN ⊂ X and QN =
Y N ⊂ Y. Specifically, XN = Y N × UN , with Y N ⊂ Y and UN ⊂ U. The Galerkin
approximation of the problem (2.1.18) reads: find (xN , (wN , qN )) ∈ XN × Y N such that{

A(xN ,λλλN ) + B(λλλN , (wN , qN )) = 〈F,λλλN 〉 ∀λλλN ∈ XN ,
B(xN , (φφφN , ξN )) = 0 ∀(φφφN , ξN ) ∈ Y N .

(2.1.21)

Our proposal is to verify the hypothesis of Theorem 2.1: it guarantees the well-posedness
of the problem (2.1.21). A necessary condition is that Y N ⊂ Y must be inf-sup stable
for the Stokes system (2.1.14), i.e. let V N ⊂ V and PN ⊂ P be the discrete spaces of
velocity and pressure, respectively and Y N = V N × PN , then V N and PN has to verify
the inf-sup condition:

inf
ξN∈PN

sup
φφφN∈V N

b(φφφ, ξ)
‖φφφ‖H1‖ξ‖L2

≥ βNb > 0. (2.1.22)
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Lemma 2.4. Thanks to the assumption of the inf-sup stability of Y N and assuming that
QN = Y N , the bilinear forms A(·, ·) and B(·, ·) satisfy the hypotheses of theorem (2.1).

Proof. The continuity of the bilinear forms a(·, ·) and b(·, ·) is inherited from the original
functional space. Also the coercivity properties of a(·, ·) derives directly from the parent
spaces. Assuming QN = Y N and the inf-sup stability of Y N it is possible to state that
there exists an βNA > 0 such that:

inf
(vN ,pN )∈Y N

sup
(φφφN ,ξN )∈Y N

A((vN , pN ), (φφφN , ξN ))
‖(vN , pN )‖Y ‖(φφφN , ξN )‖Y

≥ βNA > 0.

Once considered these features, we can proceed as we did in lemma 2.3.

From Theorem 2.1 and Lemma 2.4 we can derive the following result.

Proposition 2.4. Assuming that hypothesis of Lemma 2.4 are verified, then there exists
a unique solution (xN , (wN , qN )) ∈ XN × Y N for the saddle-point problem (2.1.21).

2.2 Numerical Resolution: One-Shot Approach

In this section numerical methods to solve OCP are discussed. To better understand what
we are going to analyse, let us consider an OCP in abstract form. As usual, the state
variable is indicated by y, the control variable by u. The general problem is the following:

min
(y,u)

J(y, u) subject to E(y, u) = 0, (2.2.1)

where E(y, u) = 0 is a generic state equation. As specified in the introduction of this
chapter, there are two ways to numerically solve a OCP: the iterative method (i.e. see
[35, 70, 57]) or the one-shot method (i.e. see [67, 69]). We will focus our attention on
the latter one. This method has been used for all the applications treated in this work.
We are going to analyse the application of this method to linear quadratic OCPs, specifi-
cally. Two examples are proposed: the first is an OCP governed by the Laplace equation,
the second is an OCP with Stokes state equations.

2.2.1 One-Shot Approach for Linear Quadratic OCPs

Suppose that we are facing a Galerkin approximation of the linear quadratic OCP (1.2.9).
As specified in Remark 2.1.1, the discrete version of a linear quadratic OCP reads as:

minimize 1
2xTAx− FTx subject to Bx = G. (2.2.2)

The optimality conditions of problem (2.1.8) is of the form already described in (2.1.7):(
A BT

B 0

)(
x
p

)
=
(

F
G

)
. (2.2.3)

Example 2.2.1.1 (OCP governed by the Laplace equation). In this simple example a
one-shot approach is applied to an OCP for the Laplace equation on an open, bounded,
regular domain Ω. The problem is the same analysed in Example 1.3.2.1. Let Y = H1

0 (Ω)
be the state space, U = L2(Ω) the control space. The state and the control variables are
y ∈ Y and u ∈ U , respectively. The weak formulation of this problems has the following
form:
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min
(y,u)∈Y×U

J(y, u) = 1
2

∫
Ω

(y − yd)2 dΩ + α

2

∫
Ω
u2 dΩ

such that a(y, q) = (u, q)L2 + (f, q)L2 ∀q ∈ Y,
(2.2.4)

where a(s, r) =
∫

Ω
∇s · ∇r dΩ. In this particular case the weak adjoint equation is:

a(z, p) = −(y − yd, z)L2 ∀z ∈ Y.

Let {T N } be a triangulation over Ω, that is, we can consider a discrete domain

ΩN = int
(⋃

K
K∈T N

)
,

where K is a triangle of T N . In a Finite Element approximation Y N = Y ∩ Xr
N and

UN = U ∩Xr
N , where

Xr
N = {vN ∈ C0(Ω) : vN |K ∈ Pr, ∀K ∈ T N }.

and Pr represents the space of polynomials of degree at most equal to r. Now let us
consider Y N ⊂ Y and UN ⊂ U as the FE discretization of the state and the control space,
respectively. The discretization of the OCP problem (2.2.4) reads:

min
(yN ,uN )∈Y N×UN

J(yN , uN ) = 1
2

∫
Ω

(yN − yd)2 dΩ + α

2

∫
Ω

(uN )2 dΩ

such that a(yN , qN ) = (uN , qN )L2 + (f, qN )L2 ∀q ∈ Y N .
(2.2.5)

Let y and u be the coefficient of yN and uN expressed in terms of the nodal basis for Y N
and UN , respectively. We can analyse the algebraic formulation of the discrete problem
(2.2.5):

min
(yN ,uN )∈Y N×UN

J(y,u) = 1
2yTMy− yTMyd + α

2 uTMu + 1
2ydMyd

such that Ky = Mu + f .
(2.2.6)

where K is the stiffness matrix derived from the bilinear form a(·, ·) and M is the mass
matrix associated to the functional.
In this framework, it is simple to obtain the discretized adjoint equation:

KTp = −M(y− yd).

We now show the connection between this specific example and the general formulation
(2.2.3): (

A BT

B 0

)(
x
p

)
=
(

F
G

)
,

where

A =
(
M 0
0 αM

)
, B =

(
K −M

)
, x =

(
y p

)T
, G = f , F =

(
Myd 0

)T
.

Now we are able to build the optimality system exploiting the block structure:M 0 KT

0 αM −M
K −M 0


y

u
p

 =

Myd
0
f

 .
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Example 2.2.1.2 (OCP governed by the Stokes equations). This example faces a one-
shot approach applied to an OCP governed by Stokes equations on an open, bounded,
regular domain Ω. This case recalls the example 1.3.2.3: v ∈ V := H1

0 (Ω)×H1
0 (Ω) is the

velocity field,

p ∈ P := L2
0(Ω) =

{
r ∈ L2(Ω) :

∫
Ω
r = 0

}

represents the pressure and u ∈ U := L2(Ω) × L2(Ω) is the distributed control variable.
The main difference is the presence of the desired pressure pd ∈ P . The constants α > 0
and δ > 0 are penalization terms in the cost functional.

min
(v,p,u)

J(v, p,u) = 1
2

∫
Ω
|v− vd|2dΩ + δ

2

∫
Ω
|p− pd|2dΩ + α

2

∫
Ω
|u|2dΩ,

such that


−ν∆v +∇p = u + f in Ω,
div(v) = 0 in Ω,
v = 0 on ∂Ω.

(2.2.7)

Now we can consider the FE discretization of the spaces: V N ⊂ V , PN ⊂ P , UN ⊂ U .
We are going to indicate with (vvv,ppp,uuu) the coefficients of the discrete variables expressed in
terms of the nodal basis for V N , PN , UN . The discretization of the OCP (2.2.7) is given
by:

min
(yN ,uN )∈Y N×UN

J(vvv,ppp,uuu) = 1
2v
vvTMvvvv − vvvTMvvvvd + δ

2p
ppTMpppp − δpppTMppppd +

+ α

2u
uuTMvuuu+ 1

2v
vvTdMvvvvd + δ

2p
ppTdMppppd,

such that
{
ASvvv +BT

Sppp = Mvvvuuu+ fff

BSvvv = 0,

(2.2.8)

where AS is the stiffness matrix associated to the Laplace operator, BS is the matrix
representing the divergence operator. Here, Mv and Mp are the mass velocity matrix and
the mass pressure matrix, respectively. To build the optimality system, let www and qqq be the
adjoint velocity and the adjoint pressure, respectively. The optimality system reads:

Mv 0 0 AS BT
S

0 δMp 0 BS 0
0 0 αMv −Mv 0
AS BT

S −Mv 0 0
BS 0 0 0 0




vvv
ppp
uuu
www
qqq

 =


Mvvvvd
δMppppd

0
f
0

 . (2.2.9)

The system can be expressed through the aggregated variables V,U,W. V is the ag-
gregated velocity-pressure variable, U represents the control variable, whereas W is the
aggregated adjoint variable. The optimality system can be formulated in the following
way: M 0 K

0 αMv −ET
K −E 0


V

U
W

 =

fa
0
fs

 , (2.2.10)

where

M =
(
Mv 0
0 δMp

)
, K =

(
AS BT

S

BS 0

)
, E =

(
Mv

0

)
, V =

(
v
p

)
, fa =

(
Mvvvvd
δMppppd

)
. fs =

(
f
0

)
.
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2.3. Numerical Results

The system (2.2.10) can be rewritten under a saddle-point formulation as:(
A BT

B 0

)(
X
W

)
=
(

F
G

)
, (2.2.11)

where

A =
(
M 0
0 αMv

)
, B =

(
K −E

)
, X =

(
V
U

)
.

2.3 Numerical Results

In this section we will illustrate the numerical results associated to the examples pre-
sented in subsection 2.2.1. The two experiments deal with an OCP governed by a Laplace
equation (test case proposed in [16]) and an OCP with Stokes state equations (a slightly
modified test case proposed in [78]). The simulations have been implemented in FEniCS
(see [45], for further informations one can refer to https://fenicsproject.org), exploiting the
one-shot method. For the approximation a FE Galerkin optimize-then-discretize method
is used.

2.3.1 OCP Governed by Laplace Equation

We show numerical results for the OCP introduced in Example 2.2.1.1, focusing on a
solution tracking. Let us consider Ω = (0, 1)2. The control is distributed over Ω. The
problem has the following strong formulation:

min
(y,u)∈Y×U

J(y, u) = 1
2

∫
Ω

(y − yd)2 dΩ + α

2

∫
Ω
u2 dΩ,

such that
{
−∆y = u+ f in Ω,
y = 0 on ∂Ω,

(2.3.1)

where U = L2(Ω), Y = H1
0 (Ω) and f = 0. In Figure 2.3.1.1 a plot of the desired state

yd = 10x1(1− x1)x2(1− x2) is given. For the FE discretization the space P1 is used.

Figure 2.3.1.1: Desired state yd.
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2.3. Numerical Results

We solved the OCP for α = 10−5. The Optimal state and the control variable are presented
in figure 2.3.1.2. In this case the objective functional reaches J = 2.32 · 10−4. Then, we
have repeated the same experiment with α = 10−2 as a penalization term. This time, the
cost functional is J = 4.39 · 10−2. The numerical results for the optimal state and control
are reported in figure 2.3.1.3.
Finally, in figure 2.3.1.4 the difference between the optimal state and the desired state is
shown, respectively for α = 10−2 and α = 10−5. In the first case the maximum absolute
value reached is 4.9 · 10−1, while in the second case we have a 5.58 · 10−3.

Figure 2.3.1.2: Left: optimal state; right: control. The penalization term is α = 10−5, the
functional J = 2.32 · 10−4

Figure 2.3.1.3: Left: optimal state; right: control. The penalization term is α = 10−2. the
functional J = 4.39 · 10−2.
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2.3. Numerical Results

Figure 2.3.1.4: Left: difference between optimal state and state desired, α = 10−2; right:
difference between optimal state and state desired, α = 10−5.

2.3.2 OCP Governed by Stokes Equations

We show numerical results for the OCP introduced in Example 2.2.1.2, focusing only on
a velocity tracking. Let us consider Ω = (0, 1)2. The control is distributed over Ω. The
problem has the following strong formulation:

min
(y,u)∈Y×U

J(v, p,u) = 1
2

∫
Ω
|v− vs|2 dΩ + α

2

∫
Ω
|u|2 dΩ,

such that


−ν∆v +∇p = u in Ω,
div(v) = 0 in Ω,
v = 0 on ∂Ω,

(2.3.2)

where

vd =
(

10 ∂

∂x2
(ϕ(x1)ϕ(x2)), 10 ∂

∂x1
(ϕ(x1)ϕ(x2))

)
,

with ϕ : (0, 1) → (0, 1) is defined as ϕ(z) = (1 − cos(0.8πz))(1 − z)2. The top left plot of
figure 2.3.2.1 shows the desired velocity state of our problem. Let us consider α = 10−4

as penalization for velocity. From the discretization we used a Taylor-Hood pair, i.e.
continuous piecewise quadratic polynomials for the velocity and continuous piecewise linear
polynomials for the pressure. The optimality system formulated in (2.2.9) has the following
particular form:


Mv 0 0 AS BT

S

0 0 0 BS 0
0 0 αMv −Mv 0
AS BT

S −Mv 0 0
BS 0 0 0 0




vvv
ppp
uuu
www
qqq

 =


Mvvvvd

0
0
0
0

 .

A plot of optimal velocity, optimal pressure and control is given in Figure 2.3.2.1, while
in figure 2.3.2.2 the difference between the state and the desired state is shown.
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2.3. Numerical Results

Figure 2.3.2.1: Top left: velocity desired; top right:optimal velocity; bottom left: control;
bottom right: optimal pressure . The penalization terms are α = 10−4 and δ = 0. The functional
is J = 4.02 · 10−2.

Figure 2.3.2.2: Difference between optimal velocity and desired velocity. The penalization
term is α = 10−4.
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Chapter 3

Reduced Basis Method for
Parametrized PDEs

The aim of this chapter is to introduce the reduced basis (RB) approximation for parametrized
PDEs. The interest in this efficient resolution method for parametrized PDEs arises in
very different contexts (i.e. see [7, 15, 47]). Reduced Order methods act on parametrized
problems that have to be evaluated many times. This kind of problems are usually very
expensive in terms of computational costs. A huge number of engineering issues depends
on input parameters: they can represent physical properties or geometrical variables. The
traditional discretization techniques could not afford the computational issue of repeated
resolution of these very complex problems. The RB approximation aims at reducing the
computational cost of parametrized simulations.
To understand how RB methods work, we have to introduce M, the solution manifold,
in other words the set of the solutions of the parametrized PDE under the variation of
the parameters. RB methods want to approximate every particular solution using only
few basis functions, say N , called reduced basis. Let N be the dimension of a classical
approximation space. The RB approximation is based on two different stages:

1. offline stage: it is a (potentially) costly phase, where the solution manifold is
explored to build a reduced basis capable to describe with a sufficient accuracy any
particular solution of M. Computationally one has to solve N problem with N
degree of freedom;

2. online stage: it consists into a Galerkin projection onto the reduced basis space, for
a particular parameter value. The computational cost of this phase is independent
from N .

For RB methods, our principal theoretical references are [57, 34].
In the first Section we will introduce the abstract formulation of a parametrized PDE and
we will specify the important concept of affine decomposition. In Section 3.2 the RB ap-
proximation is described, with the description of offline and online stage, respectively. Sec-
tion 3.3 will be dedicated to the description of Proper Orthogonal Decomposition method
(from now on POD). Section 3.4 is dedicated to an introduction to the Empirical Interpo-
lation Method (as a reference see [34, Chapter 5], [2]) to deal with nonaffine parametric
dependence. In Section 3.5 an oceanographic application modeled by Quasi-Geostrophic
equations in the parametric RB framework is introduced and analysed. For RB methods,
our main theoretical references are [57, 34].
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3.1. Parametrized PDEs

3.1 Parametrized PDEs

In this section we will introduce the concept of parametrized PDEs. We will focus on
the elliptic case, since in this chapter the RB method dissertation will be developed in
this particular framework. We have seen how this kind of problem covers a wide class
of scientific phenomena and engineering applications. Let P (µµµ) be our problem, with
µµµ = [µ1, . . . , µp] ∈ P ⊂ Rp, p ≥ 1, where P represents our parameter space. As we have
already specified in the introduction to the chapter, µµµ can represent physical features of
the model or geometrical variables.
The abstract formulation of a weak parametrized PDE problem and its classical approxi-
mation is presented. Then the fundamental assumption of affine decomposition is discussed
(i.e. see [57, 34]).

3.1.1 Parametrized Weak Formulation

We are going to introduce a framework for a stationary parametrized problem. Let Ω ⊂ Rd,
d = 1, 2, 3 be regular physical domain. The parameter space will be indicated with P ⊂ Rp,
whereas V is a suitable Hilbert space. Let us consider the parametrized V -continuous
functionals f : V × P → R and ` : V × P → R and the parametrized V -bilinear form
a : V × V × P → R. The parametrized weak formulation of the problem reads: given
µµµ ∈ P, find u(µµµ) ∈ V such that:

a(u(µµµ), v;µµµ) = f(v;µµµ), v ∈ V, (3.1.1)

and evaluate the output of interest s : P → R

s(µµµ) = `(u(µµµ);µµµ). (3.1.2)

In this chapter we are assuming that the problem is compliant, that is:

1. `(·;µµµ) = f(·;µµµ), ∀µµµ ∈ P,

2. the bilinear form a(·, ·;µµµ) is symmetric for all µµµ ∈ P.

The Hilbert space V is endowed with a inner product and with a norm || · ||V :

(w, v)µµµ = a(w, v;µµµ), ∀w, v,∈ V,

‖w‖µµµ =
√

(w,w)µµµ =
√
a(w,w; µ̄µµ), ∀w ∈ V.

The well posedness of the abstract problem (3.1.1) is guaranteed by Lax-Milgram Lemma.
We want the problem to be well posed for all the values of the space of parameters. So,
in addition to the bilinearity of a(·, ·;µµµ) and and the linearity f(·,µµµ), we require:

1. a(·, ·,µµµ) is coercive and continuous for every µµµ ∈ P with respect to the norm || · ||V ,
i.e. there exists a positive constant α(µµµ) ≥ α0 > 0 and γ(µµµ) <∞ such that:

a(v, v;µµµ) ≥ α(µµµ)‖v‖2V and a(w, v;µµµ) ≤ γ(µµµ)‖x‖V ‖v‖V ∀w, v ∈ V. (3.1.3)

2. f(·,µµµ) is continuous for all µµµ ∈ P with respect to the norm || · ||V , i.e. there exists a
constant δ(µµµ) ≤ δ0 <∞ such that:

f(v;µµµ) ≤ δ(µµµ)‖v‖V , ∀v ∈ V. (3.1.4)
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3.1. Parametrized PDEs

Let us specify the coercivity constant and the continuity constant of a(·, ·;µµµ) over V . They
are respectively defined as:

α(µµµ) = inf
v∈V

a(v, v;µµµ)
‖v‖2V

, γ(µµµ) = sup
w∈V

sup
v∈V

a(w, v;µµµ)
‖w‖V ‖v‖V

, ∀µµµ ∈ P. (3.1.5)

Thanks to these hypotheses the problem (3.1.1) admits unique solution.

3.1.2 The Truth Problem

We will present the abstract formulation of the discretized version of the problem (3.1.1).
This framework will be indicated as the truth approximation. The dissertation has sense
for every choice of discrete space for Galerkin method, but in this particular case we will
refer to a FE discretization. Let us consider V N ⊂ V , an N -dimensional approximation
space.
The discrete version of the problem (3.1.1) reads: given µµµ ∈ P, find uN (µµµ) ∈ V N such
that

a(uN (µµµ), v;µµµ) = f(v,µµµ), ∀v ∈ V N . (3.1.6)
Naturally, the dimension of the solution isN and the stiffness matrix has dimensionN×N .
The order of operation needed to find u(µµµ) is O(Nα), with α ≥ 1, so, for great values of
N the resolution process can be computationally costly.
For problem (3.1.6) is possible to specify the coercivity constant and the continuity con-
stant defined respectively as:

γN (µµµ) = sup
wN∈V N

sup
vN∈V N

a(wN , vN ;µµµ)
‖wN ‖V ‖vN ‖V

, ∀µµµ ∈ P, (3.1.7)

and
αN (µµµ) = inf

vN∈V N
a(vN , vN ;µµµ)
‖vN ‖2V

, ∀µµµ ∈ P. (3.1.8)

The discrete problem (3.1.6) is well posed since αN (µµµ) ≥ α(µµµ) > 0 and γN (µµµ) ≤ γ(µµµ), for
all µµµ ∈ P.

3.1.3 Affine Decomposition

To ensure the efficiency of the RB method, one has to verify the so called affine decomposi-
tion. This assumption as we will see in Section 3.2.2, is essential to guarantee an adequate
Offline-Online procedure. We are assuming that the bilinear form a(·, ·;µµµ) and the linear
form f(·;µµµ) are affine in the parameter µµµ, that is: there exist Qa and Qf such that the
forms can be rewritten in the following way:

a(w, v;µµµ) =
Qa∑
q=1

Θq
a(µµµ)aq(w, v), ∀w, v ∈ V, ∀µµµ ∈ P, (3.1.9)

f(v;µµµ) =
Qf∑
q=1

Θq
f (µµµ)f q(v) ∀v ∈ V, ∀µµµ ∈ P, (3.1.10)

where the forms
aq : V × V → R, fq : V → R

are independent from the value of the parameter µµµ, while the coefficients

Θq
a : P → R, Θq

f : P → R,

are µµµ-dependent scalar quantities.
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3.2. Reduced Basis Method

3.2 Reduced Basis Method

In this section we will introduce the RB approximation method and its main features. A
deeper analysis of Offline-Online decomposition is presented. For this theoretical part we
refer to [34, 57]. Finally, the POD algorithm (see [41, 57]) is discussed and is exploited
to build the reduce basis functions. The proposed analysis is based on elliptic coercive
problems, but the framework can be extended to non coercive PDEs. In this more complex
case the well posedness is fulfilled in the general sense of if-sup stability. A particolar
example is the application to Stokes equations (the reader interested in it, could look at
[65, 63, 25]).
Let us assume that a given FE approximation is used for our abstract problem (3.1.1), as
previously specified. RB methods compute an approximation of uN (µµµ) using the space
spanned by chosen solutions of the truth problem (3.1.6). We are now ready to describe
the reduction method and all its features and characteristics.

3.2.1 Solution Manifold and Problem Formulation

Let us recall the abstract exact problem (3.1.1): find u(µµµ) ∈ V such that

a(u(µµµ), v;µµµ) = f(v;µµµ), ∀v ∈ V.

We will refer to u(µµµ) as exact solution. In the introduction to this chapter we have shortly
introduced the concept of solution manifold, that is the set of all the solutions of the
parametric problem (3.1.1) varying the parameters. It will be indicated with:

M = {u(µµµ) | µµµ ∈ P} ⊂ V.

Refering to the new truth formulation, one can define the discrete solution manifold as

MN = {uN (µµµ) | µµµ ∈ P} ⊂ V N ,

based on the parametric truth solutions under the variation of the parameter in P. As we
said, let us suppose that V N is a given FE approximation space.
Our goal is to describe the RB spaces construction for this kind of parametric problem1.
Given a positive integer Nmax, we can define a succession of hierarchical RB spaces V RB

N

for N = 1, . . . , Nmax, that is:

V RB
1 ⊂ V RB

2 ⊂ · · · ⊂ V RB
Nmax ⊂ V

N .

These assumptions are fundamental property for the (memory) efficiency of the RB ap-
proximation. To define V RB

N , given N ∈ {1, . . . , Nmax} we have to introduce the sample

SN = {µµµ1, . . . ,µµµN}.

The elements µµµn ∈ P, with 1 ≤ n ≤ N are chosen trough an appropriate algorithm. We
can now consider the snapshots uN (µµµn) ∈ V N . Now, we are able to build the RB spaces
as follows:

V RB
N = span {uN (µµµn), 1 ≤ n ≤ N}. (3.2.1)

Notice that for construction the spaces are hierarchical, and also the samples have a similar
nested structure:

S1 = {µµµ1} ⊂ S2 = {µµµ1,µµµ2} ⊂ · · · ⊂ SNmax .
1The option proposed is very common and in literature is known as Lagrange RB spaces. There are

other approaches based on Taylor space or Hermite spaces (i.e. see [55, 38] respectively).
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3.2. Reduced Basis Method

We are now able to introduce the reduced problem in a Galerkin projection formulation
onto the RB spaces. It is a new approximated problem and it reads: given µµµ ∈ P, find
uRBN (µµµ) ∈ V RB

N ⊂ V N such that

a(uRBN (µµµ), vRBN ;µµµ) = f(vRBN ;µµµ) ∀vRBN ∈ V RB
N . (3.2.2)

From now on we will remove the apex RB for the sake of notation, so V RB
N = VN and

uRBN (µµµ) = uN (µµµ). The next step is to find a well-conditioned basis for VN . The basis
functions are built thanks to a Gram-Schmidt process on the snapshots uN (µµµn), 1 ≤ n ≤
Nmax in the inner product (·, ·)V . In this way what we obtain is a set of orthonormalized
basis functions {ζn}Nmaxn=1 , that is:

(ζn, ζm)V = δnm,

where 1 ≤ n,m ≤ Nmax and δnm is the Kronecker symbol.
Naturally, the basis functions and the snapshots of the truth solutions verify the next
property:

VN = span {ζ1, · · · , ζN} = span {uN (µµµ1), · · · , uN (µµµN )}.

We can now express the reduced solution in terms of the reduced basis {ζn}Nmaxn=1 in the
following way:

uN (µ) =
N∑
j=1

ujN (µµµ)ζj . (3.2.3)

Substituting the latter expression (3.2.3) in the reduced problem (3.2.2) and choosing
vN = ζi, 1 ≤ i ≤ N , one obtains the following algebraic reduced system

N∑
j=1

a(ζj , ζi;µµµ)ujN (µµµ) = f(ζi;µµµ), 1 ≤ i ≤ N, (3.2.4)

that has the coefficients ujN (µµµ) as unknowns. The problem (3.2.4) can be expressed in
matrix form as

AN (µµµ)uN (µµµ) = fN (µµµ), (3.2.5)

where (uN (µµµ))j = ujN (µµµ) and (fN )i = f(ζi;µµµ), whereas the matrix AN has as entries:

(AN (µµµ))ij = a(ζi, ζj ;µµµ).

3.2.2 Offline-Online procedure

The system (3.2.4) usually has low dimension N × N , but its formulation is linked to
the FE approximation space in the basis functions {ζj}Nmaxj=1 . If one assembles the RB
stiffness matrix AN (µµµ) for every value of the parameter µµµ, the evaluation process will
remain very expensive in terms of computational cost. Thanks to the affinity assumption,
the formation of the matrix AN (µµµ) can be decoupled in two phases: the Offline and the
Online stages, that allow to efficiently solve the system (3.2.5) for each new value of the
parameter µµµ. Specifically, using the expressions (3.1.9) and (3.1.10), the system (3.2.4)
takes the following form:

N∑
j=1

( Qa∑
q=1

Θq
a(µµµ)aq(ζj , ζi)

)
ujN (µµµ) =

Qf∑
q=1

Θq
f (µµµ)f q(ζi) 1 ≤ i ≤ N.
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3.2. Reduced Basis Method

The latter problem can be rewritten in matrix form:( Qa∑
q=1

Θq
a(µµµ)AqN

)
uN (µµµ) =

Qf∑
q=1

Θq
f (µµµ)f qN , (3.2.6)

where
(AqN )ij = aq(ζi, ζj), (f qN )i = fq(ζi).

It is clear that a RB approximation requires a µµµ-independent costly Offline phase and a
very efficient Online phase, µµµ-dependent. The first procedure is needed only once, while
the second process is applied at every new evaluation of a different parameter µµµ ∈ P:

• in the Offline stage, first of all the snapshots uN (µµµn) for 1 ≤ n ≤ Nmax are computed.
Then a Gram-Schmidt orthonormalization for 1 ≤ n ≤ Nmax is applied obtaining
the equivalent basis {ζi}Nmaxi=1 . After this preliminary phase, we are ready to assemble
and store the following structures:

fq(ζn), 1 ≤ n ≤ Nmax, 1 ≤ q ≤ Qf , (3.2.7)

and
aq(ζn, ζm), 1 ≤ n,m ≤ Nmax, 1 ≤ q ≤ Qa. (3.2.8)

The computational cost depends on N , Qa and Nmax.

• In the Online stage, we exploit the structures computed in the previous step to build

Qa∑
q=1

Θq
a(µµµ)aq(ζj , ζi) and

Qf∑
q=1

Θq
f (µµµ)fq(ζi), 1 ≤ i, j ≤ N,

and then solve the resulting linear system of dimension N ×N to obtain ujN (µµµ) with
1 ≤ j ≤ N . The operation count depends on N,Qa and Qf , but it is independent
from N . To be more specific we need O(QaN2) to assemble the stiffness matrix,
O(QfN) to assemble the output vector and finally O(N3) are the operations needed
to solve reduced linear system (3.2.5).

Remark 3.2.1. Let us present what is the relation between the RB quantities and the
corresponding FE approximations. Let us introduce {ψs}Ns=1, basis for the FE space V N .
Notice that ζi ∈ V N , so they be expressed in terms of the FE basis, that is

ζi =
N∑
s=1

ζisψs, 1 ≤ i ≤ Nmax.

Moreover

aq(ζi, ζj) =
N∑
s=1

N∑
r=1

ζisa(ψs, ψr)ζjr and f qN =
N∑
r=1

ζjrfq(ψr). (3.2.9)

Let Z = [ζ1 · · · ζN ] ∈ RN×N be the basis matrix, for 1 ≤ N ≤ Nmax. Then the equations
in (3.2.9) can be expressed in a matrix form:

AqN = ZTAqNZ, and f qN = ZT f qN ,

where (AqN )ij = aq(ψi, ψj) and (f qN )i = fq(ψi).
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3.2. Reduced Basis Method

3.2.3 Proper Orthogonal Decomposition (POD)

The main issue treated is this subsection is to understand how to generate reduce basis
spaces. There are essentially two classical approaches to reach this goal: one is the so
called greedy algorithm (see [34, Subsection 3.2.2]), the other one is the proper orthogonal
decomposition (POD). We will focus our analysis on the latter of the two algorithms.
To apply a POD, a discrete and finite-dimensional subset Ph ⊂ P is needed. For this
specific set of parameter one can define

MN (Ph) = {uN (µµµ) | µµµ ∈ Ph}.

The cardinality of MN (Ph) is M = |Ph|. Naturally it holds MN (Ph) ⊂ MN since
Ph ⊂ P. When Ph is fine enough, MN (Ph) is a good approximation of the discrete
manifold MN . From now on we will refer to MN (Ph) as VM. The algorithm of POD is
based on two processes:

1. sampling the parameter space Ph to compute the truth solutions at the chosen
parameters,

2. a compression phase, where one discards the redundant information.

The N -space resulting from the POD algorithm minimize the following quantity:√√√√ 1
M

∑
µµµ∈Ph

inf
vN∈VN

‖uN (µµµ)− vN‖2V (3.2.10)

over the N -dimensional reduced spaces VN of VM = span {uN (µµµ) | µµµ ∈ Ph}.
Let us introduce an ordering on the parameters µµµ1, . . . ,µµµM ∈ Ph. This induce an ordering
on the truth solutions uN (µµµ1), . . . , uN (µµµM ). To reach our goal of constructing the POD-
space, we define the symmetric and linear operator C : VM → VM as

C(vN ) = 1
M

M∑
m=1

(vN , uN (µµµm))uN (µµµm), vN ∈ VM.

Let us consider the eigenvalues λn ∈ R and the corresponding eigenfunctions ξn ∈ VM,
with ‖ξn‖V = 1, linked to the operator C verifying

(C(ξn), uN (µµµm)) = λn(ξn, uN (µµµm)), 1 ≤ m ≤M. (3.2.11)

Let us assume that the eigenvalues satisfy λ1 ≥ λ2 ≥ · · · ≥ λM . The orthogonal POD basis
functions are given by ξ1, . . . , ξM , and they span VM. We can take into consideration the
first N functions ξ1, . . . , ξN that satisfy the criterion 3.2.10. They span the space VPOD.
One can define the projection PN : V → VPOD as follows:

(PN [f ], ξn)V = (f, ξn)V , 1 ≤ n ≤ N,

and is given by

PN [f ] =
N∑
n=1

(f, ξn)V ξn.

Let us apply the projection to all elements of MN (Ph), so it holds:√√√√ 1
M

M∑
m=1
‖uN (µµµm)− PN [uN (µµµm)]‖2V =

√√√√ M∑
m=N+1

λm.
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Remark 3.2.2. All what we have introduced in this subsection can be seen under an
algebraic point of view. Let us consider uN (µµµm) for m = 1, . . . ,M and construct the
correlation matrix C ∈ RM×M as

Cmq = 1
M

(uN (µµµm), uN (µµµq))V , 1 ≤ m, q ≤M.

Then, solve the N -largest eigenvalue-eigenvector (λn, vn) problem:

Cvn = λnvn, 1 ≤ n ≤ N,

with ‖vn‖ = 1. Giving a descending order to the eigenvalues λ1 ≥ λ2 ≥ · · · ≥ λN , the
orthogonal basis functions {ξ1, . . . , ξN} satisfy VPOD = span {ξ1, . . . , ξN}. The basis is
given by:

ξn = 1√
M

M∑
m=1

(vn)muN (µµµm), 1 ≤ n ≤ N,

where (vn)m is m-th component of the eigenvector vn ∈ RM .

3.3 The Empirical Interpolation Method (EIM)

In this section will analyse the Empirical Interpolation Method (EIM). As said in the pre-
vious section, the efficiency of the RB method is strictly linked to the affinity assumption
on the forms, that is, ∀µµµ ∈ P:

a(w, v;µµµ) =
Qa∑
q=1

Θq
a(µµµ)aq(w, v), and f(v;µµµ) =

Qf∑
q=1

Θq
f (µµµ)fq(v), (3.3.1)

In many cases the affine assumptions are not verified and one has to use some numerical
techniques to recover them: EIM is an approach to approximate the non-affine structure
in a suitable way. The following introduction to EIM algorithm has as references [34,
Chapter 5],[2].

3.3.1 EIM Description

Let us suppose to have a function g(·, ·) : X × PEIM → R, where X is a Banach space
and PEIM is a parameter space. The EIM procedure aims at approximating this kind
of functions. The goal is reached through an interpolation operator IQ, that interpolates
the function of interest at some specific interpolation points x1, . . . , xQ ∈ Ω as a linear
combination of some appropriate basis functions {h1, . . . , hQ}. The peculiarity of these
basis functions is that they are part of the set {g(·,µµµ)}µµµ∈PEIM . Indeed, they are build as a
linear combination of specific snapshots gµµµ1 , . . . , gµµµQ , where the Q parameters µµµ1, . . . ,µµµQ ∈
PEIM are chosen through a suitable algorithm.
Assume that g(·,µµµ) ∈ C0(Ω) ⊂ X. Let µµµ ∈ PEIM be a chosen parameter, the interpolation
operator IQ[g(·,µµµ)] applied to gµµµ(·,µµµ) reads as:

IQ[g(·,µµµ)](x) =
Q∑
q=1

aq(µµµ)hq(x), x ∈ Ω. (3.3.2)

The interpolation operator has to verify the following equality:

IQ[g(·,µµµ)](xj) = g(xj ,µµµ), j = 1, . . . , Q, (3.3.3)
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and the interpolation is given by the following linear system:

Q∑
q=1

aq(µµµ)hq(xj) = g(xj ,µµµ), j = 1, . . . , Q.

Let us express the previous system with Taµµµ = gµµµ, where:

Tij = hj(xi), (aµµµ)j = aj(µµµ), (gµµµ)i = g(xi,µµµ), i, j = 1, . . . , Q. (3.3.4)

There are these main issues to be analysed:

1. build the basis functions {h1, . . . , hQ}

2. determine the interpolation points x1, . . . , xQ

3. prove that the interpolation matrix Tij = hj(xi) is invertible (the interpolation
system has unique solution).

The basis functions and the interpolation points are given by greedy algorithm. The
algorithm chooses gµµµ that is the worst well approximated by the current interpolation
operator. Analogously, the interpolation point is chosen as the one that maximize the
corresponding error function (if the reader is interested in a deeper description of the
algorithmic procedure, see [34, page 53]). As already said, the basis functions are linear
combination of some specific gµµµ1 , . . . , qµµµQ that are able to approximate quite well every
gµµµ. The basis functions and the {h1, . . . , hQ} and the snapshots {gµµµ1 , . . . , gµµµQ} span the
same space:

VQ = span {h1, . . . , hQ} = span {gµµµ1 , . . . , gµµµQ}.

Even if they both generate the space VQ, it is preferable use {h1, . . . , hQ} as basis functions
since the following properties hold:

Tii = hi(xi) = 1, 1 ≤ i ≤ Q and Tij = hj(xi) = 0, 1 ≤ i < j ≤ Q.

Thanks to this choice the basis functions and the interpolation points satisfy (as specified
in [2]):

1. {h1, . . . , hQ} are linearly independent,

2. matrix T is invertible (lower triangular with unity diagonal),

3. EIM is well posed in X until convergence is not reached.

Moreover, the interpolation operator IQ is the identity restricted to the space VQ. Indeed
it holds:

IQ[g(x,µµµi)] = g(x,µµµi) i = 1, . . . , Q, ∀x ∈ Ω,

and
IQ[g(xi,µµµ)] = g(xi,µµµ) i = 1, . . . , Q, ∀µµµ ∈ PEIM .
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3.3.2 EIM and RB

EIM can be a very useful instrument in reduced context: it allows to apply the RB methods
to a wider class of problems, that do not verify the affine assumption 3.3.1. Our aim is to
underline how EIM can be used to face this kind of issue. Let us assume that the bilinear
form of our problem is:

a(w, v;µµµ) =
∫

Ω
g(x;µµµ)b(w, v;x) dΩ,

where b(w, v;x) is bilinear in w in v for any x ∈ Ω and the function g depends non-trivially
on µµµ, i.e. there is not an affine decomposition of the form:

g(x;µµµ) =
Qa∑
q=1

aq(µµµ)hq(x), µµµ ∈ P, x ∈ Ω.

In this case one can apply EIM to approximate g(x;µµµ) and to recover an affine decompo-
sition formulation:

g(x;µµµ) ≈
Qa∑
q=1

aq(µµµ)hq(x), µµµ ∈ P, x ∈ Ω.

Thanks to this approximation

a(w, v;µµµ) ≈
Qa∑
q=1

aq(µµµ)
∫

Ω
hq(x)b(w, v;x) dΩ.

This technique can be used to obtain an affine decomposition for the right hand side
f(v;µµµ), in a similar way.

Remark 3.3.1. Let us analyse the EIM algorithm under an algebraic point of view.
Assume that a discrete representation of the domain Ω and of the parameter space PEIM
is given by ΩM = {x1, . . . , xM} and PNEIM = {µµµ1, . . . ,µµµN}, respectively. Consider the
following matrix representing the function g at the variation of the parameters:

Gij = g(xi,µµµj), 1 ≤ i ≤M, 1 ≤ j ≤ N.

Suppose that a set of basis vectors HQ = [h1, . . . , hQ] and interpolation indices i1, . . . , iQ.
The discrete version of the interpolation operator IQ : RQ → RM applied to g ∈ RQ is
given by

IQ[g] = HQag,
where ag is such that Tag = g. The interpolation matrix T is defined as:

Tlm = (HQ)ilm, l,m = 1, . . . , Q.

In the following we will present the EIM algorithm.
Let us consider q = 1, and a given tolerance t. While err < t do:

1. First of all, pick the index

jq = arg max
j=1,...,M

‖G:j − Iq−1[G:j ]‖`p ,

where G:j represent the j−th column of the matrix G. Then we consider the inter-
polation index:

iq = arg max
i=1,...,N

|Gijq − (Iq−1[G:jq ])i|.
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2. Define the basis vector by:

hq =
G:jq − Iq−1[G:jq ]

Giqjq − (Iq−1[G:jq ])iq
.

3. Finally compute the error in the following way:

err = max
j=1,...,M

‖G:j − Iq−1[G:j ]‖`P

and set q := q + 1.

In some cases one wants to obtain continuous approximation of g(x,µµµ) for all (x,µµµ) ∈
Ω × PEIM . The basis functions hq are found as in 2., but all has to be interpret in a
continuous context. Let us define the following quantities:

S:q = a(G:jq ), from Iq−1[G:jq ] = Hq−1a(G:jq ),

and
Sqq = Giqjq − (Iq−1[G:jq ])iq .

then, the continuous basis functions can be constructed thanks the recursive formula:

hq(x) =

g(x,µµµiq)−
q−1∑
j=1

S:jqhj(x)

Sqq
.

3.4 EIM-POD Galerkin Based Reduction Method Applied
to Quasi-Geostrophic Equations

This section introduces a POD-Galerkin reduced order method approach applied to a cli-
matological problem describing large scale Ocean-wind circulation. We solve a stationary
quasi-geostrophic linear model2 for constant density flows under the influence of Earth
rotation. A two-dimensional square domain Ω = [0, 1]× [0, 1] is considered. It represents
a large portion of Ocean surface. The parametrized equations have the following strong
formulation 3: 

q = ∆ψ in Ω,
∂ψ

∂x
+ µ1q − µ2∆q = − sin(µ3y + µ4) in Ω,

q = 0 on ∂Ω,
ψ = 0 on ∂Ω.

The parameter vector µµµ = [µ1, µ2, µ3, µ4] is in the space P = [10−4, 1]4. The components
µ1 and µ2 are dissipative coefficients, while µ3 and µ4 change the forcing term, representing
wind action on the Ocean surface. Let us define V = H1

0 (Ω). For the sake of notation,
our parameter µµµ, will be indicated simply with µ.

2The non-linear version will be considered in future. The problem will be deeply analysed in the last
chapter.

3It is the so called Stream function formulation, from which one can derive the currents velocity com-
ponents (u, v) thanks to the following relations: u = − ∂ψ

∂y
, v = ∂ψ

∂x
.
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The weak problem formulation aims at finding, for some µ, solutions ψ(µ) and q(µ) in V
such that:


∫

Ω
q(µ)ϕ+

∫
Ω
∇ψ(µ) · ∇ϕ = 0 ∀ϕ, p ∈ V,∫

Ω

∂ψ(µ)
∂x

p+ µ1

∫
Ω
q(µ)p+ µ2

∫
Ω
∇q(µ) · ∇p = − sin(µ3y + µ4) ∀ϕ, p ∈ V.

We endow V with the inner product:

(v, w)V =
∫

Ω
∇v · ∇w ∀v, w ∈ V.

The parametrization on the forcing term leads to a nonaffine formulation. The strategy
to reduce the problem is a EIM-POD Galerkin algorithm (as a reference see [34, Chapter
3] and [34, Chapter 5]).

3.4.1 EIM-POD Galerkin Algorithm

As we learnt through this chapter, the efficiency of a reduced basis approach is closely
linked to the affine assumption. When it is not verified, it is essential to lead the problem
to an approximate affine formulation (thanks to EIM algorithm). Now we have a new
problem to reduce via POD Galerkin algorithm. This is what we call EIM-POD Galerkin.
Let us summarily analyse EIM action on a µ dependent function f : Ω× P → R , like in
our case the forcing term − sin(µ3y+µ4). We know that EIM procedure interpolates f :=
f(x, µ) at {x1, . . . , xQ} ∈ Ω on basis functions {h1, . . . , hQ} that are linear combination of
f evaluated in Q specific parameters.
Let us define the interpolant

IQ[f ](x) =
Q∑
q=1

aq(µ)hq(x).

After EIM approximation f is replaced by IQ[f ](x). This kind of procedure restores the
affine assumption and so one can treat the new problem with a POD Galerkin reduced
basis method. Our specific system is nonaffine and gives a two-component solution. This
issue could be faced in two ways:

1. perform single EIM-POD Galerkin for all the solution components (monolithic),

2. perform a EIM-POD Galerkin for each solution component (partitioned).

In the next section we will compare the two choises in terms of: error between reduced
and finite element solution and POD eigenvalues decay.

3.4.2 Numerical Results

In this section we show some numerical results in order to provide reasons to split EIM-
POD algorithm for the variables q and ψ. In all experiments we used:

• 20 reduced basis functions,

• 21 EIM basis,
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• training set and test set of 100 points,

• log-uniform distribution for physical parameters µ1 and µ2,

• uniform distribution4 for forcing parameters µ3 and µ4,

• a logarithmic y-axes scale for all the plots.

µ3µ3µ3 and µ4µ4µ4 Fixed

In the first case considered the two parameters acting on the forcing term are fixed, while
µ1 and µ2 can vary in [10−4, 1]. We take µ = [µ1, µ2, π, 0] as a parameter vector. This
particular formulation guarantees the affine assumption, so we do not need EIM algorithm.
In Figure 3.4.2.1 we present monolithic error5, the partitioned error6 and eigenvalues decay
normalized with respect to the component largest eigenvalue. Even if both methods have
a good final result, one can notice that the partitioned error decays more rapidly than the
other one and that POD eigenvalues have the same trend, especially for ψ. Splitting the
POD method could be an advantage for affine problem version.

µ1µ1µ1 and µ2µ2µ2 Fixed

Let us focus on a different kind of problem for which physical parameters are fixed,
while forcing parameters can change in the usual range. Our vector parameter is µ =
[0, 0.073, µ3, µ4]. The experiment can be useful to understand how the two methods react
to the loss of affine assumption. Here an EIM algorithm is fundamental. In Figure 3.4.2.2
we can visualize how the errors grow if we take a number of basis function greater than
nine. It is the sign that EIM-POD, at that point, adds noise to the system (the eigenvalues
are practically zero from basis nine on). As in previous experiment, splitting is a better
choice if one uses few reduced basis functions.

Figure 3.4.2.1: On the left we have the monolithic error (red) and partitioned error (green)
plots, on the right POD eigenvalues plots for fixed µ3 and µ4 (red for monolithic version, green
and blue for partitioned version on component q and ψ respectively).

4We chose a different sampling distribution because µ1 and µ2 usually assume small values to have a
real physical meaning: we wanted to replicate this in EIM-POD algorithm.

5The norm for the error computation in || · ||V×V is defined as ||v||2V×V, where v is the aggregated state
variable.

6The norm for the error computation in || · ||V×V is defined as ||(ψ, q)||2V×V = ||ψ||2V + ||q||2V.
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Figure 3.4.2.2: On the left we have the monolithic error (red) and partitioned error (green)
plots, on the right POD eigenvalues plots for fixed µ1 and µ2 (red for monolithic version, green
and blue for partitioned version on component q and ψ respectively).

No Fixed Parameters

The last case has the abstract form described in the introduction to this section. Let
µ = [µ1, µ2, µ3, µ4] be our vector parameter varying in P = [10−4, 1]4. The problem is
more complex than before: we have to take in consideration that the reduction issue adds
up to a not affine formulation. Figure 3.4.2.3 shows errors and POD eigenvalues. In this
case, we reached a good result either via splitting or not, so the method are comparable.
The errors trend is the same for both methods.

Figure 3.4.2.3: On the left we have the monolithic error (red) and partitioned error (green)
plots, on the right POD eigenvalues plots for no fixed parameters (red for monolithic version, green
and blue for partitioned version on component q and ψ respectively).

In the following figures, the difference between the truth state and the reduced state for
the variable ψ are shown. In figure 3.4.2.4 the case with only µ1 and µ2 fixed is analysed.
Figure 3.4.2.5 represents the pointwise error in the specific case of only µ3 and µ4 fixed,
while in figure 3.4.2.6 the no fixed parameters problem is shown. The last two figures refer
to µµµ = [0., 0.073, 0.5, 0.1].
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Figure 3.4.2.4: Left: truth solution, center : reduced solution, right: difference between state
and desired state.

Figure 3.4.2.5: Left: truth solution, center : reduced solution, right: difference between state
and desired state.

Figure 3.4.2.6: Left: truth solution, center : reduced solution, right: difference between state
and desired state.
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Chapter 4

Reduced Basis Method for
Parametrized Optimal Control
Problems

This chapter aims at generalizing the reduced basis techniques described in the previous
Chapter to parametrized optimal control problems. As we have already specified, solving
a parametric control problem is a very costly operation: we will use RB methods to solve
lower dimensional approximate problems compared to the full order discretization. RB can
be very useful since parametrized control applications are various (i.e. see [47, 59, 64, 53])
and all of them are computationally demanding. Our analysis focuses on linear quadratic
optimal control problems governed by elliptic state equations and by Stokes equations.
In Chapter 1 we had introduced the saddle-point formulation for linear quadratic control
problems. Naturally, we can extend this concept and define a parametrized saddle-point
formulation for Optimal Control Problem (OCP(µµµ)), where µµµ is a parameter defined in
finite parameter space P.
Let us indicate, as usual, the state space and the control space with Y and U , respectively.
Let Q be the adjoint space. We assume that the adjoint space and the state space will
coincide, i.e. Y = Q. Let X = Y × U be the aggregated space of state and control.
The generalized continuous parametric formulation of a linear quadratic control reads as
follows: min

x∈X
J (x,µµµ) = 1

2A(x, x;µµµ)− 〈F (µµµ), x〉

subject to B(x, q;µµµ) = 〈G(µµµ), q〉 ∀q ∈ Q.
(4.0.1)

Analogously to what we have presented in the first chapter, it will be proved that the
optimality system of the (OCP (µµµ)) (4.2.1) has the following form:{

A(x,w;µµµ) + B(w, p;µµµ) = 〈F (µµµ), w〉 ∀w ∈ X,
B(x, q;µµµ) = 〈G(µµµ), q〉 ∀q ∈ Q.

(4.0.2)

The goal of the RB methods is to find a low order approximated solution of the problem
(4.0.2). Let XN ⊂ X and QN ⊂ Q be the RB approximation spaces for the aggregated of
state and control space and the adjoint space, respectively. In other words, one wants to
solve: given µµµ ∈ P, find (xN (µµµ), pN (µµµ)) ∈ XN ×QN such that{

A(xN , wN ;µµµ) + B(wN , pN ;µµµ) = 〈F (µµµ), wN 〉 ∀wN ∈ XN ,

B(xN , qN ;µµµ) = 〈G(µµµ), q〉 ∀qN ∈ QN .
(4.0.3)
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In this chapter we are going to analyse the existence, uniqueness and stability of a RB
solution for the problem formulation (4.0.3). In Section 4.1 we will focus on OCP(µµµ)
with elliptic state equation and their RB approximation. Section 4.2 presents the RB
approximation of an OCP(µµµ) governed by Stokes equations. Finally, in the last section,
some numerical results of linear quadratic parametrized control problems are shown.

4.1 Reduced OCP(µµµ) Governed by Elliptic State Equations

In this section we are going to present a theoretical framework to have RB methods applied
to linear quadratic parametrized OCP(µµµ) with elliptic state equation. As we have already
anticipeted in the introduction to this chapter, the structure of a parametric saddle-point
problem is exploited.
The main references that we have followed are [54, 52]. First of all, the whole theoretical
problem structure is described, than the truth approximation, the RB approximation and
the technique of aggregated spaces are analysed.

4.1.1 Problem Formulation

We have already described the framework of an Elliptic OCP in Section 1.2.2. The next
step is to generalize the concept to parametrized control problems. Let Ω be a open,
bounded and regular domain. As usual, let us indicate the state space with Y , the adjoint
space with Q and with U the control space (remember that the control can be on a
portion of Ω, in other words, on the boundary or on a subset of the spatial domain). The
assumption Q = Y is made. Furthermore, the observation space is H, with yd(µµµ) ∈ H,
and G(µµµ) ∈ Q∗.
We can consider the weak formulation of the OCP(µµµ):

min
(y,u)∈Y×U

J(y, u) = 1
2m(y − yd(µµµ), y − yd(µµµ);µµµ) + α

2 n(u, u;µµµ)

such that a(y, q;µµµ) = c(u, q;µµµ) + 〈G(µµµ), q〉 ∀q ∈ Q.
(4.1.1)

Let us specify the hypotheses on the various forms of the problem: the bilinear form
a(·, ·;µµµ) : Y ×Q→ R is continuous over Y ×Q, that is

γa(µµµ) = sup
y∈Y

sup
q∈Q

a(y, q;µµµ)
‖y‖Y ‖q‖Q

< +∞ ∀µµµ ∈ P, (4.1.2)

where P is the parameter space. Moreover, the bilinear form a(·, ·;µµµ) is coercive over
Y = Q, in other words, there exists α0 > 0 such that:

αa(µµµ) = inf
y∈Y

a(y, y;µµµ)
‖y‖2Y

= inf
q∈Q

a(q, q;µµµ)
‖q‖2Q

≥ αa0 ∀µµµ ∈ P. (4.1.3)

Furthermore, the bilinear forms c(·, ·;µµµ) : U ×Q → R is symmetric and continuous, that
is

γc(µµµ) = sup
u∈U

sup
q∈Q

c(u, q;µµµ)
‖u‖U‖q‖Q

< +∞ ∀µµµ ∈ P, (4.1.4)

and the bilinear form n(·, ·;µµµ) : U × U → R is symmetric, continuous over U × U and
coercive over U , that is

γn(µµµ) = sup
u∈U

sup
v∈U

n(u, v;µµµ)
‖u‖U‖v‖U

< +∞ ∀µµµ ∈ P, (4.1.5)
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and

αn(µµµ) = inf
u∈U

n(u, u;µµµ)
‖u‖2U

≥ αn0 > 0 ∀µµµ ∈ P. (4.1.6)

We have to consider other assumptions onto the bilinear form m(·, ·;µµµ): it has to be
symmetric, continuous and positive in the norm induced by the observation space H.
Another property that we have to guarantee is that the forms are affine in µµµ ∈ P: this
hypothesis is crucial for Offline-Online stages. We have to require that for some finite
Qa, Qc, Qn, Qm, QG, Qyd , the forms can be expressed as follows:

a(y, w;µµµ) =
Qa∑
q=1

Θq
a(µµµ)aq(y, w), c(u,w;µµµ) =

Qc∑
q=1

Θq
c(µµµ)cq(u,w)

m(y, z;µµµ) =
Qm∑
q=1

Θq
m(µµµ)mq(y, z) n(u, v;µµµ) =

Qn∑
q=1

Θq
n(µµµ)nq(u, v)

〈G(µµµ), w〉 =
QG∑
q=1

Θq
G(µµµ)〈Gq, w〉, yd(µµµ) =

Qyd∑
q=1

Θq
yd

(µµµ)yqd,

(4.1.7)

where aq(·, ·), cq(·, ·),mq(·, ·), nq(·, ·), Gq, yqd are independent from the parameters, while
Θq
a,Θq

c, Θq
m,Θq

n,Θ
q
G,Θq

yd
are smooth functions depending on µµµ.

The problem (4.1.1) can be formulated in a saddle-point framework. Let us define X =
Y × U . Let x = (y, u) and w = (z, v) be two elements of X, p, q ∈ Q. We can define the
bilinear forms A(·, ·;µµµ) : X ×X → R and B(·, ·;µµµ) : X ×Q→ R as follows:

A(x,w;µµµ) = m(y, z;µµµ) + αn(u, v;µµµ) ∀x,w ∈ X,
B(w, q;µµµ) = a(z, q;µµµ)− c(v, q;µµµ) ∀w ∈ X and ∀q ∈ Q.

As we have already seen in subsection 1.2.2, defining F (µµµ) = m(yd(µµµ), ·) ∈ X∗, given
µµµ ∈ P, one can recast the problem (4.1.1) as:min

x∈X
J (x,µµµ) = 1

2A(x, x;µµµ)− 〈F (µµµ), x〉

subject to B(x, q;µµµ) = 〈G(µµµ), q〉 ∀q ∈ Q.
(4.1.8)

Now, the assumptions made on the linear and the bilinear forms allow to fulfill the hy-
potheses of Theorem 1.4, i.e. the problem (4.1.8) is equivalent to the following one: given
a parameter µµµ ∈ P, find the solutions (x(µµµ), p(µµµ)) ∈ X ×Q that verify:{

A(x(µµµ), w;µµµ) + B(w, p(µµµ);µµµ) = 〈F (µµµ), w〉 ∀w ∈ X,
B(x(µµµ), q;µµµ) = 〈G(µµµ), q〉 ∀q ∈ Q.

(4.1.9)

First of all, let us notice that the affine assumption (4.1.7), allow us to express the bilinear
and the linear forms of the problem 4.1.9 in the following way:

A(x,w;µµµ) =
QA∑
q=1

Θq
A(µµµ)Aq(y, w), B(w, p;µµµ) =

QB∑
q=1

Θq
B(µµµ)Bq(w, p),

〈G(µµµ), s〉 =
QG∑
q=1

Θq
G(µµµ)〈Gq, s〉, 〈F (µµµ), w〉 =

QF∑
q=1

Θq
F (µµµ)〈F q, w〉,

(4.1.10)
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with ΘA,ΘB,ΘG,ΘF are µµµ−dependent smooth functions, and the linear and the bilinear
forms Aq(·, ·),Bq(·, ·), Gq, F q are µµµ−independent.
Moreover we have to guarantee the following assumptions.

Assumptions 4.1. The bilinear forms A(·, ·;µµµ) and B(·, ·;µµµ) have to verify:

1. the bilinear form A(·, ·;µµµ) must be symmetric and nonnegative over X;

2. the bilinear A(·, ·;µµµ) is continuous over X ×X, i.e. it holds:

γA(µµµ) = sup
x∈X

sup
w∈X

A(x,w;µµµ)
‖x‖X‖w‖X

< +∞, µµµ ∈ P;

3. Let us define

X0 = {w ∈ X such that B(w, q;µµµ) = 0, ∀q ∈ Q}.

The bilinear A(·, ·;µµµ) is coercive over X0, i.e. there exists a constant αA0 > 0 such
that

α(µµµ) = inf
x∈X0

A(x, x;µµµ)
‖x‖2X

≥ αA0, ∀µµµ ∈ P;

4. the bilinear form B(·, ·;µµµ) is continuous over X ×Q, i.e.

γB(µµµ) = sup
w∈X

sup
q∈Q

B(w, q;µµµ)
‖w‖X‖q‖Q

< +∞, ∀µµµ ∈ P;

5. the bilinear form B(·, ·;µµµ) verifies the inf-sup condition over X ×Q, in other words,
there exists a constant βB0 such that

β(µµµ) = inf
q∈Q

sup
w∈X

B(w, q;µµµ)
‖w‖X‖q‖Q

≥ βB0 > 0, ∀µµµ ∈ P.

As we have seen in chapter 1, the hypotheses made on the bilinear forms of the state
equation, guarantee the fulfillment of assumptions 4.1

4.1.2 Full Order Approximation

We are going to adapt the concepts introduced in subsection 2.1.2 to an OCP(µµµ). Let
{T N } be a triangulation of the domain Ω. Let us define the following space

Xr
N = {vN ∈ C0(Ω) : vN |K ∈ Pr, ∀K ∈ T N }.

and Pr represents the space of polynomials of degree at most equal to r. Now we can define
Y N = Y ∩Xr

N , QN = Y N and UN = U ∩Xr
N . By construction it holds that Y N ⊂ Y ,

UN ⊂ U and XN = Y N × UN ⊂ X and QN ⊂ Q. Naturally, the N denotes the dimen-
sion of the product space XN ×QN , in other words N = NX+NQ, where NX = NY +NU .
The Galerkin Finite Element problem for an OCP(µµµ) reads: givenµµµ ∈ P, find (xN (µµµ), pN (µµµ)) ∈
XN ×QN such that{

A(xN (µµµ), wN ;µµµ) + B(wN , pN (µµµ);µµµ) = 〈F (µµµ), wN 〉, ∀wN ∈ XN ,
B(xN (µµµ), qN ;µµµ) = 〈G(µµµ), qN 〉 ∀qN ∈ QN .

(4.1.11)
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We will refer to the problem (4.1.11) as the truth problem. As we have seen for the
parameter independent formulation of the problem (see Lemma 2.2), the assumption Y N =
QN provides the bilinear form A(·, ·;µµµ) to fulfill the continuity over XN × XN and the
coercivity over the space

XN0 = {wN ∈ XN such that B(wN , qN ;µµµ) = 0, ∀qN ∈ QN },

that is
γNA (µµµ) = sup

xN∈XN
sup

wN∈XN

A(xN , wN ;µµµ)
‖xN ‖X‖wN ‖X

< +∞, ∀µµµ ∈ P;

and
αN (µµµ) = inf

xN∈XN0

A(xN , xN ;µµµ)
‖xN ‖2X

≥ αA0 > 0, ∀µµµ ∈ P.

The bilinear form B(·, ·;µµµ) verifies of continuity and of inf-sup stability over the space
XN ×QN , in other words:

γNB = sup
wN∈XN

sup
qN∈QN

B(wN , qN ;µµµ)
‖wN ‖X‖qN ‖Q

< +∞, ∀µµµ ∈ P;

and there exists a constant βB0 > 0 such that

βN (µµµ) = inf
qN∈QN

sup
wN∈XN

B(wN , qN ;µµµ)
‖wN ‖X‖qN ‖Q

≥ βB0, ∀µµµ ∈ P.

Thanks to Lemma 2.2 and the fulfillment of the hypotheses of Proposition 2.2 the discrete
Finite Element problem (4.1.11) is well-posed.

Remark 4.1.1. Let us express the concepts just presented into an algebraic framework.
Following the same steps made in Chapter 2, an OCP(µµµ) governed by elliptic state equation
leads to the following linear system:(

A(µµµ) BT (µµµ)
B(µµµ) 0

)(
xN (µµµ)
pN (µµµ)

)
=
(

F(µµµ)
G(µµµ)

)
. (4.1.12)

The affine decomposition assumption is naturally inherited by the matrices A(µµµ) and B(µµµ)
associated to the bilinear forms, and by the matrices of the linear forms F(µµµ) and G(µµµ).
In other words, the following equalities hold:

A(µµµ) =
QA∑
q=1

Θq
A(µµµ)Aq, B(µµµ) =

QB∑
q=1

Θq
B(µµµ)Bq,

G(µµµ) =
QG∑
q=1

Θq
G(µµµ)Gq, F(µµµ) =

QF∑
q=1

Θq
F (µµµ)Fq.

(4.1.13)

4.1.3 Reduced Basis Approximation

We are going to extend the notions of reduced basis methods for parametric PDE to
OPC(µµµ) problems. The path to reach our goal is substantially the same discussed in
Chapter 3: the idea is to use a new approximated space that has a basis composed by
well-chosen solutions (xN (µµµ), pN (µµµ)) of the problem (4.1.11). An assumption has to be
made: the discrete solution has a smooth dependence on µµµ. This hypothesis allow the
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parametric manifold M to be smooth and to be approximated by full order snapshots,
solutions of (4.1.11).
Let us take N ∈ {1, . . . , Nmax} and a set of parameters SN = {µµµ1, . . . ,µµµN} and the Finite
Element solutions {(xN (µµµn), pN (µµµn))}Nn=1. Let us define the reduced spaces for state,
control and adjoint variable, respectively given by:

YN = span {ζn := yN (µµµn), n = 1, . . . , N},
UN = span {λn := uN (µµµn), n = 1, . . . , N},
QN = span {ξn := pN (µµµn), n = 1, . . . , N}.

Let us define XN = YN×UN in order to recast our problem into a saddle-point formulation.
The OCP(µµµ) problem reads: given µµµ ∈ P find (xN (µµµ), pN (µµµ)) ∈ XN ×QN such that{

A(xN (µµµ), wN ;µµµ) + B(wN , pN (µµµ);µµµ) = 〈F (µµµ), wN 〉, ∀wN ∈ XN ,

B(xN (µµµ), qN ;µµµ) = 〈G(µµµ), qN 〉 ∀qN ∈ QN .
(4.1.14)

What we have to prove is the well-posedness of the RB approximation. The crucial point
is to prove the coercivity of A(·, ·;µµµ) over the space

XN
0 = {wN ∈ XN : B(wN , qN ;µµµ) = 0, ∀qN ∈ QN}

and the fulfillment of the inf-sup condition for the bilinear form B(·, ·;µµµ), since the conti-
nuity property derives directly from the Finite Element spaces.
Let us be more specific on the inf-sup condition of B(·, ·;µµµ): there exists a constant β0 > 0
such that

βN (µµµ) = inf
qN∈QN

sup
wN∈XN

B(wN , qN ;µµµ)
‖wN‖X‖qN‖Q

≥ β0, ∀µµµ ∈ P. (4.1.15)

To prove the hypothesis 4.1.15 we can follow the techniques already used in Lemma 2.1.
So, by definition, we have:

sup
wN∈XN ,
wN 6=0

B(wN , qN )
‖wN‖X

= sup
(zN ,vN )∈YN×UN ,

(zN ,vN )6=(0,0)

a(zN , qN )− c(vN , qN )√
‖zN‖2Y + ‖vN‖2U

≥
(zN ,vN )=(qN ,0)

a(qN , qN )
‖qN‖Y

,

for all qN ∈ QN . Notice that to exploit the coercivity of a(·, ·;µµµ) in the last inequality we
have to suppose YN = QN . For the reduced spaces, this assumption do not derive directly
from the Finite Element approximation, since RB basis are linked on the parametric
problem and they are not generic functions as in Finite Element case. A way to recover
the inf-sup stability condition 4.1.15 is to define the enriched RB spaces YN , UN and QN .
To ensure the stability of the RB method we have to build what is known as aggregated
space of state and adjoint variables

ZN = span {ζn := yN (µµµn), ξn := pN (µµµn), n = 1, . . . , N}.

Now, let us choose YN = ZN , XN = ZN×UN andQN = ZN . So, the new RB approximated
problem reads as: find (xN (µµµ), pN (µµµ)) ∈ XN ×QN such that{

A(xN (µµµ), wN ;µµµ) + B(wN , pN (µµµ);µµµ) = 〈F (µµµ), wN 〉, ∀wN ∈ XN ,

B(xN (µµµ), qN ;µµµ) = 〈G(µµµ), qN 〉 ∀qN ∈ QN .
(4.1.16)

Exploiting the new spaces formulation we can fulfill the inf-sup condition 4.1.15, since
YN = QN = ZN .
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Lemma 4.1. The bilinear form B(·, ·;µµµ) verifies the inf-sup condition 4.1.15. Furthermore
it holds

βN (µµµ) ≥ αN (µµµ).

Proof. Let us compute

βN (µµµ) = inf
qN∈ZN

sup
wN∈XN

B(wN , qN ;µµµ)
‖wN‖X‖qN‖Q

=

= inf
qN∈ZN

sup
(zN ,vN )∈ZN×UN

a(zN , qN ;µµµ)− c(vN , qN ;µµµ)
||(zN , vN )||X ||qN ||Q

≥
zN=qN
vN=0

inf
qN∈ZN

a(qN , qN ;µµµ)
||qN ||Q

= αN (µµµ) ≥ αN (µµµ) > 0.

Notice that the identification zN = qN is now allowed, since they are both in ZN .

Proposition 4.1. The reduced basis saddle-point problem (4.1.16) has unique solution
(xN (µµµ), pN (µµµ)) ∈ XN ×QN for all µµµ ∈ P.

Proof. To prove the proposition is sufficient to require the fulfillment of the hypotheses
of Brezzi’s Theorem 2.1. As said previously the continuity of the bilinear and the linear
forms over RB spaces is inherited from FE spaces. The fulfillment of the inf-sup condition
4.1.15 is proved in Lemma 4.1. The coercivity property of the bilinear form A(·, ·;µµµ) can
be proved miming the arguments used in Lemma 2.1 and Lemma ??.

4.1.4 Algebraic Formulation of the Enriched RB Approximation

We will now introduce the algebraic structure of a RB approximated problem (4.1.16),
with enriched space for state and adjoint variables. Let {τj}2Nj=1 = {ζj}Nj=1 ∪ {ξj}Nj=1 be
the basis functions for the space ZN , i.e.

ZN = span {τj , j = 1, . . . , 2N}.

We can know write our state, control and adjoint variables in the following way:

yN (µµµ) =
2N∑
j=1

yNj (µµµ)τj , uN (µµµ) =
N∑
j=1

uNj (µµµ)λj , pN (µµµ) =
2N∑
j=1

pNj (µµµ)τj .

Let us define the product space XN = ZN ×UN . One can generate XN from the functions
{σj}3Nj=1 where

σj =
{

(τj , 0), j = 1, . . . , 2N
(0, λj−2N ) j = 2N + 1, . . . , 3N,

in other words

xN (µµµ) = (yN (µµµ), un(µµµ)) =

 2N∑
j=1

yNj (µµµ)τj ,
N∑
j=1

uNj (µµµ)λj

 .
In algebraic formulation, the reduced problem (4.1.16) reads:

3N∑
j=1

QAN∑
q=1

Θq
AN

(µµµ)AqNijxNj (µµµ) +
2N∑
k=1

QBN∑
q=1

Θq
BN

(µµµ)Bq
Nki

pNk(µµµ) =
QFN∑
q=1

Θq
FN

(µµµ)F qNi , 1 ≤ i ≤ 3N

3N∑
j=1

QBN∑
q=1

Θq
BN

(µµµ)Bq
Nij
xNj (µµµ) =

QGN∑
q=1

Θq
GN

(µµµ)GqNi , 1 ≤ i ≤ 2N

(4.1.17)
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where the matrices linked to bilinear and linear forms are given by

AqNij = Aq(σi, σj) 1 ≤ i, j ≤ 3N

Bq
Nij

= Bq(σj , τi) 1 ≤ j ≤ 3N, 1 ≤ i ≤ 2N

F qNi = 〈F q, σi〉 1 ≤ i ≤ 3N
GqNi = 〈Gq, τi〉 1 ≤ i ≤ 2N.

If one denotes with

AN (µµµ) =
QAN∑
q=1

Θq
AN

(µµµ)AqN , BN (µµµ) =
QBN∑
q=1

Θq
BN

(µµµ)Bq
N ,

GN (µµµ) =
QGN∑
q=1

Θq
GN

(µµµ)GqN , FN (µµµ) =
QFN∑
q=1

Θq
FN (µµµ)F qN ,

the linear system (4.1.17) can be written as(
AN (µµµ) BT

N (µµµ)
BN (µµµ) 0

)(
xN (µµµ)
pN (µµµ)

)
=
(

FN (µµµ)
GN (µµµ)

)
. (4.1.18)

Let Zz = (τ1, . . . , τN ) ∈ RN ×R2N and Zu = (λ1, . . . , λN ) ∈ RN ×RN be the basis matrix.
Thanks to these definitions we can build the following matrices:

Zx =
(
Zz 0
0 Zu

)
∈ R2N × R3N , Z =

Zz 0 0
0 Zu 0
0 0 Zz

 ∈ R3N × R5N .

So we can express the left hand side matrix of the system (4.1.18) in the following way,
underlining how it is linked to the Finite Element space:(

AN (µµµ) BT
N (µµµ)

BN (µµµ) 0

)
=
(
ZTx AZx ZTx BZz
ZTz BZx 0

)
, (4.1.19)

the new matrix formulation is still symmetric and the dimension of the system is 5N×5N .

4.2 Reduced OCP(µµµ) Governed by Stokes State Equations

In this section we are going to provide a reduced basis approach to deal with linear
quadratic OCP(µµµ) governed by Stokes state equations. It is very important to understand
how to face this kind of problem, since Stokes equation are exploited in several and different
applications (i.e see [64, 61, 25]). The structure of the section follows the structure used
in section 4.1: we will use the RB framework and we will study its stability. The main
theoretical references are [53, 52].

4.2.1 Problem Formulation

We are going to introduce the parametric version of a linear quadratic control problem
governed by Stokes state equation. Let us consider the open, bounded and regular domain
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Ω ⊂ R2. Let H1
0 (Ω)×H1

0 (Ω) ⊂ V ⊂ H1(Ω)×H1(Ω) be the velocity space. The pressure
space is given by

P := L2
0(Ω) =

{
r ∈ L2(Ω) :

∫
Ω
r = 0

}
.

Then, the state space is Y = V × P . As adjoint space we consider Q = Y , whereas the
control space is given by U = L2(Ω) × L2(Ω). The state variable will be indicated with
y = (v, p) ∈ V × P . The observation space taken into consideration is H = L2(Ω).
The OCP(µµµ) reads as:

min
(y,u)∈Y×U

J(y, u;µµµ) = 1
2m(v− vd,v− vd;µµµ) + α

2 n(u,u;µµµ)

subject to
{
a(v,φφφ,µµµ) + b(φφφ, p;µµµ) = c(u,φφφ;µµµ) + 〈F (µµµ),φφφ〉 ∀φφφ ∈ V
b(v, ξ;µµµ) = 〈G(µµµ), ξ〉 ∀ξ ∈ P,

where F (µµµ) ∈ V ∗, G(µµµ) ∈ P ∗ and vd ∈ H. The bilinear forms a(·, ·;µµµ), b(·, ·;µµµ) and
c(·, ·;µµµ) are the parametric equivalent of the forms introduced in subsection 2.1.4. Let us
remind the hypotheses made over the bilinear forms:

1. the bilinear form c(·, ·;µµµ) : U ×V → R must be symmetric and bounded over U ×V ,

2. the bilinear form n(·, ·;µµµ) : U × U → R must be symmetric, bounded over U × U
and coercive over U ,

3. the bilinear form m(·, ·;µµµ) : H×H → R must be symmetric, continuous and positive
in the norm induced by the space H.

The OCP(µµµ) can be recast as follows:

min
(y,u)∈Y×U

J(y, u;µµµ) = 1
2m(v− vd,v− vd;µµµ) + α

2 n(u,u;µµµ)

such that A((v, p), (φφφ, ξ),µµµ) = 〈G(µµµ), (φφφ, ξ)〉+ C(u, (φφφ, ξ);µµµ) ∀(φφφ, ξ) ∈ Q,
(4.2.1)

where the bilinear form A(·, ·;µµµ) = Y ×Q→ R is defined as

A((v, p), (φφφ, ξ),µµµ) = a(v,φφφ,µµµ) + b(φφφ, p;µµµ) + b(v, ξ;µµµ), (4.2.2)

while the functional G(µµµ) ∈ Q∗ is given by

〈G(µµµ), (φφφ, ξ)〉 = 〈F (µµµ),φφφ〉+ 〈G(µµµ), ξ〉, (4.2.3)

and the bilinear form C(·, ·;µµµ) : U ×Q→ R is

C(u, (φφφ, ξ);µµµ) = c(u,φφφ;µµµ). (4.2.4)

Naturally, to have an efficient RB approximation of the problem, we have to require the
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forms to be affine in the parameter µµµ: for some QA, Qc, Qm, Qn, QG it holds:

A((v, p), (φφφ, ξ);µµµ) =
QA∑
q=1

Θq
A(µµµ)Aq((v, p), (φφφ, ξ)),

C(u, (φφφ, ξ);µµµ) =
Qc∑
q=1

Θq
c(µµµ)Cq(u, (φφφ, ξ)),

m(v,ψψψ;µµµ) =
Qm∑
q=1

Θq
m(µµµ)mq(v,ψψψ),

n(u, τττ ;µµµ) =
Qn∑
q=1

Θq
n(µµµ)nq(u, τττ),

〈G(µµµ), (φφφ, ξ)〉 =
QG∑
q=1

Θq
G(µµµ)〈Gq, w〉

(4.2.5)

where Θq
A,Θq

c,Θq
m,Θq

n,Θ
q
G are smoothµµµ-dependent functions, and Aq(·, ·), Cq(·, ·),mq(·, ·), nq(·, ·),Gq

are continuous linear and bilinear parameter independent forms. Our goal is to recast the
OCP(µµµ) (4.2.1) in a saddle-point formulation. Let us introduce the space X = Y ×U , the
variables x = ((v, p),u), ζ = ((ψψψ, π), τττ) ∈ X and (φφφ, ξ) ∈ Q. Let A(·, ·;µµµ) : X ×X → R
be a bilinear form defined as:

A(x, ζ;µµµ) = m(v,ψψψ;µµµ) + αn(u, τττ ;µµµ), ∀x, ζ ∈ X,

Let B(·, ·;µµµ) : X ×Q→ R be a bilinear form given by:

B(x, (φφφ, ξ),µµµ) = A((v, p), (φφφ, ξ);µµµ)−C(u, (φφφ, ξ),µµµ),∀x ∈ X, ∀(φφφ, ξ) ∈ Q.

As usual, F(µµµ) = m(vd, ·) ∈ X∗. Thanks these new linear and bilinear forms the problem
(4.2.1) reads: given µµµ ∈ Pmin

x∈X
J (x;µµµ) = 1

2A(x, x;µµµ)− 〈F(µµµ), x〉

subject to B(x, (φφφ, ξ);µµµ) = 〈G(µµµ), (φφφ, ξ)〉 ∀(φφφ, ξ) ∈ Q.
(4.2.6)

The assumptions made over the linear and the bilinear forms of the original problem
(4.2.1) fulfill the hypotheses of Brezzi’s Theorem 1.3 and Theorem 1.4: this guarantees
the equivalence between the problem (4.2.6) and the following saddle-point formulation:
given µµµ ∈ P, find (x(µµµ), (w(µµµ), q(µµµ))) ∈ X ×Q such that{

A(x(µµµ), ζ;µµµ) + B(ζ, (w(µµµ), q(µµµ));µµµ) = 〈F(µµµ), ζ〉 ∀ζ ∈ X,
B(x(µµµ), (φφφ, ξ);µµµ) = 〈G(µµµ), (φφφ, ξ)〉 ∀(φφφ, ξ) ∈ Q.

(4.2.7)

The bilinear forms A(·, ·;µµµ) and B(·, ·;µµµ) satisfy the following properties:

1. the bilinear form A(·, ·;µµµ) is symmetric and non-negative over the space X;

2. the bilinear form A(·, ·;µµµ) is continuous over X ×X: i.e.

γA(µµµ) = sup
x∈X

sup
ζ∈X

A(x, ζ;µµµ)
‖x‖X‖ζ‖X

< +∞, ∀µµµ ∈ P;
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3. let us define the space

X0 = {ζ ∈ X : B(ζ, (φφφ, ξ),µµµ) = 0, ∀(φφφ, ξ) ∈ Q} ⊂ X.

The bilinear form A(·, ·;µµµ) is coercive over X0, i.e. there exists a constant α0 > 0
such that

α(µµµ) = inf
x∈X0

A(x, x;µµµ)
‖x‖2X

≥ α0, ∀µµµ ∈ P;

4. the bilinear form B(·, ·;µµµ) is continuous over X ×Q: i.e.

γB(µµµ) = sup
ζ∈X

sup
(φφφ,ξ)∈Q

B(ζ, (φφφ, ξ);µµµ)
‖ζ‖X‖(φφφ, ξ)‖Q

< +∞, ∀µµµ ∈ P;

5. the bilinear form B(·, ·;µµµ) verifies the inf-sup condition over X ×Q, i.e. there exists
a constant β0 > 0 such that

β(µµµ) = inf
(φφφ,ξ)∈Q

sup
ζ∈X

B(ζ, (φφφ, ξ);µµµ)
‖ζ‖X‖(φφφ, ξ)‖Q

≥ β0, ∀µµµ ∈ P. (4.2.8)

Naturally, the affine decomposition assumption is inherited from the affine assumptions
(4.2.5). Indeed, for some QA, QB, QG, QF it holds:

A(x, ζ;µµµ) =
QA∑
q=1

Θq
A(µµµ)Aq(x, ζ), B(x, (φφφ, ξ);µµµ) =

QB∑
q=1

Θq
B(µµµ)Bq(x, (φφφ, ξ)),

〈G(µµµ), (φφφ, ξ)〉 =
QG∑
q=1

Θq
G(µµµ)〈Gq, w〉, 〈F(µµµ), ζ〉 =

QF∑
q=1

Θq
F(µµµ)〈Fq, ζ〉,

(4.2.9)

where ΘA,ΘB,ΘG,ΘF are smooth µµµ−dependent functions and Aq(·, ·),Bq(·, ·),Gq,Fq are
µµµ−independent bilinear and linear forms. As we underlined among this chapter and among
the previous one, these assumptions are fundamental in order to apply efficiently RB
methods.

4.2.2 Full Order Approximation

In this subsection we will provide a Finite Element approximation of the saddle-point
problem (4.2.7). In an analogy with the theory discussed in subsection 4.1.2, let {T N } be
a triangulation of the domain Ω. Let us define the following space

Xr
N = {vN ∈ C0(Ω) : vN |K ∈ Pr, ∀K ∈ T N }.

where Pr represents the space of polynomials of degree at most equal to r. Now we can
define Y N = Y ∩Xr

N , QN = Y N and UN = U ∩Xr
N . By construction it holds that Y N ⊂

Y , UN ⊂ U and XN = Y N ×UN ⊂ X and QN ⊂ Q. Moreover, let us suppose that Y N =
QN . Naturally, as before, the N denotes the dimension of the product space XN ×QN ,
in other words N = NX +NQ, where NX = NY +NU . The truth Galerkin approximation
of the problem (4.2.7) reads as: given µµµ ∈ P, find (xN (µµµ), (wN (µµµ), qN (µµµ))) ∈ XN × QN
such that{

A(xN (µµµ), ζN ;µµµ) + B(ζN , (wN (µµµ), qN (µµµ));µµµ) = 〈F(µµµ), ζN 〉 ∀ζN ∈ XN ,
B(xN (µµµ), (φφφN , ξN );µµµ) = 〈G(µµµ), (φφφN , ξN )〉 ∀(φφφN , ξN ) ∈ QN .

(4.2.10)
As we did in Lemma 2.4, assuming that QN = Y N , the bilinear forms A(·, ·;µµµ) and
B(·, ·;µµµ) verify the following properties:
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1. The bilinear form A(·, ·;µµµ) is coercive over XN ×XN , i.e.

γNA (µµµ) = sup
xN∈XN

sup
ζN∈XN

A(xN , ζN ;µµµ)
‖xN ‖X‖ζN ‖X

< +∞, ∀µµµ ∈ P;

2. let us define the set

XN0 = {ζ ∈ XN : B(ζN , (φφφN ξN );µµµ), ∀(φφφN , ξN ) ∈ QN }.

The bilinear form A(·, ·;µµµ) is coercive over XN0 , in other words:

αN (µµµ) = inf
xN∈XN0

A(xN , xN ;µµµ)
‖xN ‖2X

≥ α(µµµ) ≥ α0 > 0 ∀µµµ ∈ P;

3. the bilinear form B(·, ·;µµµ) is continuous over XN ×QN , that is:

γNB (µµµ) = sup
ζN∈XN

sup
(φφφN ,ξN )∈QN

B(ζN , (φφφN , ξN );µµµ)
‖ζN ‖X‖(φφφN , ξN )‖Q

< +∞, ∀µµµ ∈ P;

4. the bilinear form B(·, ·;µµµ) verifies the inf-sup stability over XN × QN , i.e. there
exists a constant β0 such that

βN (µµµ) = inf
(φφφN ,ξN )∈QN

sup
ζN∈XN

B(ζN , (φφφN , ξN );µµµ)
‖ζN ‖X‖(φφφN , ξN )‖Q

≥ β0, ∀µµµ ∈ P. (4.2.11)

In particular, as we did in Lemma 2.4, it holds that βN (µµµ) ≥ β̃N (µµµ), where β̃N (µµµ) is the
Babuška constant of the bilinear form A(·, ·;µµµ). For these reasons, the Finite Element
(FE) approximation (4.2.10) is well-posed, thanks to Proposition 2.4.

Remark 4.2.1. Let us recall the algebraic formulation of the linear system associated to
a linear quadratic OCP(µµµ) governed by Stokes equations. Following the same steps made
in Chapter 2, the system reads:(

A(µµµ) BT (µµµ)
B(µµµ) 0

)(
XN (µµµ)
WN (µµµ)

)
=
(

F(µµµ)
G(µµµ)

)
, (4.2.12)

where

X =
(

V
U

)
denotes state and control aggregated variables, whereas W is the adjoint variable related
to the velocity and the pressure variables. Notice that the affine decomposition 4.2.9 is
inherited from the original space, in other words it holds:

A(µµµ) =
QA∑
q=1

Θq
AA

q, B(µµµ) =
QB∑
q=1

Θq
BB

q,

G(µµµ) =
QG∑
q=1

Θq
GGq, F(µµµ) =

QF∑
q=1

Θq
FFq.

(4.2.13)
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4.2.3 Reduced Basis Approximation

As underlined in the previous subsection, the aim of RB methods is to use a new approxi-
mated space that has a basis composed by well-chosen solutions (xN (µµµ), (wN (µµµ), qN (µµµ)))
of the problem (4.2.10). We already know that the discrete solution has a smooth depen-
dence on µµµ. This allows the parametric manifoldM to be smooth and to be approximated
by snapshot solutions of (4.2.10).
In the specific case of OCP(µµµ) governed by Stokes equation, one has to take into account
a nested saddle-point problem: we have a first saddle-point structure given by the state
equations, and the other one given by the linear quadratic optimization. We will proceed
in the following way:

1. the well-posedness of the Stokes problem will be guaranteed by an enriched velocity
space with supremizer solutions (i.e. see [62, 65, 53, 63]),

2. then we will focus on the stability of the whole OCP(µµµ) problem, in other words,
we have to ensure the fulfillment of the RB inf-sup condition on the bilinear form
B(·, ·;µµµ). As we did for the OCP(µµµ) governed by elliptic equations, we will exploit
aggregated spaces for state and adjoint variables, under the assumption YN = QN .

RB Stability of the State Equation

Let us analyse the RB stability for the state equations. For a given N ∈ {1, . . . , Nmax}, let
us consider the sample set SN = {µµµ1, . . . ,µµµN} and the relative Finite Element solutions
{(vN (µµµn), pN (µµµn)), n = 1, . . . , N}. A first (naive) reduced space for pressure can be
defined:

PN = span {pN (µµµn), n = 1, . . . , N}. (4.2.14)

To ensure the stability of the reduced state equation we have to follow the strategy of the
pressure supremizer operator Tµµµp : PN → V N defined as follows:

(Tµµµp s,φφφ)V = b(φφφ, s;µµµ), ∀φφφ ∈ V N . (4.2.15)

We are now ready to build a reduced enriched velocity space:

V µ
µµ
N = span{vN (µµµn), Tµµµp pN (µµµn), n = 1, . . . , N}.

By the reduced Galerkin projection onto V µµµN ×PN , we can formulate a reduce state equa-
tion. The new problem reads: given µµµ ∈ P, find (vN (µµµ), pN (µµµ)) ∈ V µµµN × PN such that{

a(vN (µµµ),φφφ;µµµ) + b(φφφ, pN (µµµ);µµµ) = 〈F (µµµ),φφφ〉 ∀φφφ ∈ V µµµN ,
b(vN (µµµ), π;µµµ) = 〈G(µµµ), π〉 ∀π ∈ PN .

(4.2.16)

Thanks to the inclusions V µµµN ⊂ V N , PN ⊂ PN , the bilinear form a(·, ·;µµµ) remains contin-
uous over V µµµN × V

µµµ
N and coercive over V µµµN , whereas the bilinear form b(·, ·;µµµ) is continuous

over V µµµN × PN . Furthermore, using the enriched velocity space, the bilinear form b(·, ·;µµµ)
verifies the RB inf-sup condition: in [65] is proved that

βN (µµµ) = inf
π∈PN

sup
φφφ∈V µµµN

b(φφφ, π;µµµ)
‖π‖P ‖φφφ‖V

≥ βN (µµµ) ≥ β0 > 0, ∀µµµ ∈ P.

For these reasons the reduced problem (4.2.16) is well-posed since they verify the hypothe-
ses of the Brezzi’s Theorem 2.1.
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RB stability of the global control problem

Once proved the stability of the saddle-point state equation, we will focus on the stability
of the OCP(µµµ) saddle-point structure. In order to reach our goal, we must exploit new
approximated spaces. Let us define the aggregated spaces for the pressure variable

PN = span{pN (µµµn), qN (µµµn), n = 1, . . . , N}, (4.2.17)

and for the velocity variable

V µ
µµ
N = span {vN (µµµn), Tµµµp pN (µµµn),wN (µµµn), Tµµµp qN (µµµn), n = 1, . . . , N}. (4.2.18)

Finally, the control space is defined as follows:

UN = span {uN (µµµn), n = 1, . . . , N}. (4.2.19)

Let us consider the following aggregated space for state and adjoint variables

ZN = V µ
µµ
N × PN ,

this space will be use both for the state space and the adjoint space, i.e. QN = YN = ZN .
Considering the product space XN = YN ×UN , the new problem formulation reads: given
µµµ ∈ P, find (x(µµµ)N , (wN (µµµ), qN (µµµ))) ∈ XN ×QN such that{
A(xN (µµµ), ζN ;µµµ) + B(ζN , (wN (µµµ), qN (µµµ));µµµ) = 〈F(µµµ), ζN 〉 ∀ζN ∈ XN ,

B(xN (µµµ), (φφφN , ξN );µµµ) = 〈G(µµµ), (φφφN , ξN )〉 ∀(φφφN , ξN ) ∈ QN .
(4.2.20)

Now we have to guarantee the well-posedness of the RB approximation. The continuity
property of the bilinear forms A(·, ·;µµµ) and B(·, ·;µµµ) is automatically inherited from the
Finite Element spaces. In particular we want to prove the fulfillment of the coercivity of
the bilinear form A(·, ·;µµµ) over the space

XN
0 = {ζN ∈ XN : B(ζN , (φφφN , ξN );µµµ), ∀(φφφN , ξN ) ∈ QN},

and the fulfillment of the RB inf-sup condition of the bilinear form B(·, ·;µµµ): in other
words we have to show that there exists β0 > 0 such that

βN (µµµ) = inf
(φφφN ,ξN )∈QN

sup
ζN∈XN

B(ζN , (φφφN , ξN );µµµ)
‖ζN‖X‖(φφφN , ξN )‖Q

≥ β0, ∀µµµ ∈ P. (4.2.21)

Lemma 4.2. The bilinear form B(·, ·;µµµ) verify the inf-sup condition (4.2.21).

Proof. First of all, thanks to the enrichment of the velocity space with the supremizer
solutions and the fact that YN = QN , we are able to prove that there exists a constant
β̃0
N such that

β̃N (µµµ) = inf
(vN ,pN )∈YN

sup
(φφφN ,ξN )∈QN

A((vN , pN ), (φφφN , ξN );µµµ)
‖(vN , pN )‖Y ‖(φφφN , ξN )‖Q

= inf
(φφφN ,ξN )∈QN

sup
(vN ,pN )∈YN

A((vN , pN ), (φφφN , ξN );µµµ)
‖(vN , pN )‖Y ‖(φφφN , ξN )‖Q

≥ β̃0
N .
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Now we are going to exploit the weak coercivity of the bilinear form A(·, ·;µµµ) to prove the
inf-sup stability of B(·, ·;µµµ). Indeed:

sup
xN∈XN

B(xN , (φφφN , ξN );µµµ)
‖xN‖X

= sup
((vN ,pN ),u)∈YN×UN ,

((vN ,pN ),u)6=0

A((vN , pN ), (φφφN , ξN );µµµ)− c(u,φφφ;µµµ)√
‖(vN , pN )‖2Y ‖u‖2U

≥
u=0

sup
((vN ,pN ),0)∈YN×UN ,

((vN ,pN ),0)6=0

A((vN , pN ), (φφφN , ξN );µµµ)
‖(vN , pN )‖Y

≥ β̃0
N‖(φφφN , ξN )‖Y = β̃0

N‖(φφφN , ξN )‖Q.

Proposition 4.2. The RB saddle-point problem (4.2.20) has an unique solution for all
µµµ ∈ P.

Proof. We have to verify the hypotheses of the Brezzi’s Theorem 2.1. We have already un-
derlined that the continuity properties of linear and bilinear forms are naturally inherited
from the Finite Element spaces. In Lemma 4.2, we have already proved the RB inf-sup
condition over the bilinear form B(·, ·;µµµ). The coercivity of the bilinear form A(·, ·;µµµ) can
be proved as we did in Lemma 2.3 and in Lemma 2.4, under the assumption of QN = YN
and the supremizer enrichment of the velocity space.

Remark 4.2.2. Notice that, by the definition of the supremizer Tµµµp , the reduced velocity
space V µµµN (and therefore, all the spaces deriving from it, like YN and QN ) depends on µµµ.
The supremizer enrichment adds 2QbN basis functions to the original dimension of the
reduced velocity space and leads to a less efficient application of RB methods. To avoid
this inconvenient we follow the strategy presented in [53, 26, 63]: we substitute the space
V µ
µµ
N with the following one

VN = span {vN (µµµn), Tµµµnp pN (µµµn),wN (µµµn), Tµµµnp qN (µµµn), n = 1, . . . , N}. (4.2.22)

Adding only 2N supremizer snapshots allow to have an efficient decoupling of the Offline
and the Online stages. The stability of this technique is numerically demonstrated in
[26, 63]. Thanks to this new space formulation, the dimension of the state and the adjoint
space is 6N , whereas the control space has dimension N (see [1] as a reference).

4.2.4 Algebraic Formulation of The Enriched RB Approximation

Let us introduce the algebraic formulation associated to the enriched reduced problem
(4.2.20). Let us consider VN as the space introduced in Remark 4.2.2. The aggregated
space for state and adjoint variable is

ZN = VN × PN , YN = QN = ZN ,

with {zj}6Nj=1 as basis functions. The control space UN is generated by {λj}Nj=1. Finally,
we construct XN = YN × UN = span {σj , j = 1, . . . , 7N}, where the functions σn are
defined as follows:

σj =
{

(zj , 0) j = 1, . . . , 6N,
(0, λj−6N ) j = 6N + 1, . . . , 7N.
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Now we can express state, control and adjoint solution of (4.2.20)

xN (µµµ) =
7N∑
j=1

XNJ (µµµ)σj , (wN (µµµ), qN (µµµ)) =
6N∑
j=1

WNj (µµµ)zj .

Then, the linear system associated to the RB problem (4.2.20) has the following explicit
form

7N∑
j=1

QAN∑
q=1

Θq
AN

(µµµ)AqNijXNj (µµµ) +
6N∑
k=1

QBN∑
q=1

Θq
BN

(µµµ)Bq
Nki

WNk(µµµ) =
QFN∑
q=1

Θq
FN

(µµµ)F qNi , 1 ≤ i ≤ 7N

7N∑
j=1

QBN∑
q=1

Θq
BN

(µµµ)Bq
Nij
XNj (µµµ) =

QGN∑
q=1

Θq
GN

(µµµ)GqNi , 1 ≤ i ≤ 6N

(4.2.23)
where the matrices linked to bilinear and linear forms are given by

AqNij = A(σi, σj) 1 ≤ i, j ≤ 7N

Bq
Nij

= B(σj , zi) 1 ≤ j ≤ 7N, 1 ≤ i ≤ 6N

F qNi = 〈F q, σi〉 1 ≤ i ≤ 7N
GqNi = 〈Gq, zi〉 1 ≤ i ≤ 6N.

Denoting with

AN (µµµ) =
QAN∑
q=1

Θq
AN

(µµµ)AqN , BN (µµµ) =
QBN∑
q=1

Θq
BN

(µµµ)Bq
N ,

GN (µµµ) =
QGN∑
q=1

Θq
GN

(µµµ)GqN , FN (µµµ) =
QFN∑
q=1

Θq
FN (µµµ)F qN ,

the linear system (4.2.23) can be written as(
AN (µµµ) BT

N (µµµ)
BN (µµµ) 0

)(
XN (µµµ)
WN (µµµ)

)
=
(

FN (µµµ)
GN (µµµ)

)
. (4.2.24)

This matrix formulation is still symmetric and the dimension of the system is 13N ×13N .

4.3 Numerical Results

In this section we are going to present three numerical examples to test the performance of
RB methods on parametric optimal control problems. The first two tests are the paramet-
ric version of the examples proposed in Chapter 2. The last example is the reduced para-
metric adaptation of an advection-diffusion OCP(µµµ) proposed in [57, subsection 17.11.2].
For the simulations we have used RBniCS library (for information visit the following web-
site: http://mathlab.sissa.it/rbnics), and a one-shot approach to solve linear systems. To
build the reduced basis we tried two strategies:

1. perform single POD Galerkin for all the solution components, i.e. monolithic ap-
proach,

2. perform a POD Galerkin for each solution component, i.e. partitioned approach,
exploiting aggregated spaces.

The results given by the monolithic and the partitioned approach have been compared.

64



4.3. Numerical Results

4.3.1 OCP(µµµ) Governed by Laplace Equation

The first test problem is based on the example proposed in subsection 2.3.1. Let us
consider Ω = (0, 1)2. The parametrized version of the distributed control problem (2.3.1)
reads as follows:

min
(y,u)∈Y×U

J(y, u) = 1
2

∫
Ω

(y − yd)2 dΩ + α

2

∫
Ω
u2 dΩ,

such that
{
−µ∆y = u+ f in Ω,
y = 0 on ∂Ω.

(4.3.1)

Let us briefly recall the main features of the problem: U = L2(Ω), Y = H1
0 (Ω), f = 0

and Q = Y . The desired state yd = 10x1(1 − x1)x2(1 − x2) is given. The parameter
µ represents the diffusivity constant and the parameter space is P = [0.5, 1]. The weak
formulation of the state equation reads:

a(y, q;µ) = c(u, q) ∀q ∈ Q,

where the bilinear form a : Y ×Q→ R and c : U ×Q→ R are the defined as follows:

a(z, q;µ) = µ

∫
Ω
∇z · ∇q dΩ, c(v, q) =

∫
Ω
vq dΩ.

Furthermore, the bilinear forms m : Y × Y → R and n : U × U → R are given by

m(y, z) =
∫

Ω
yz dΩ, n(u, v) =

∫
Ω
uv dΩ.

Let us recast the problem in a saddle-point formulation: let X = Y × U be the product
space of state and the control spaces. Let us consider two elements of X, i.e. x =
(y, u), w = (z, v) and p, q ∈ Q and define the bilinear forms

A(x,w) = m(y, z) + αn(u, v),
B(w, q;µ) = a(z, q;µ)− c(v, q),

and the linear functional:
〈F,w〉 =

∫
Ω
ydz dΩ.

Let us underline the affine structure (very intuitive in this simple case): with QA = QF = 1
and QB = 2 the affine decomposition of the problem is given by

Θ1
A = 1 A1(x,w) = A(x,w)

Θ1
F = 1 〈F 1, w〉 = 〈F 1, w〉

Θ1
B = µ B1(w, q) =

∫
Ω
∇z · ∇q dΩ

Θ2
B = −1 B2(w, q) =

∫
Ω
vq dΩ.

In the following we present a specific experiment. We used a POD algorithm with 20 basis
functions, and a training set of 100 points. The parameter is chosen trough an uniform
distribution. The penalization term is α = 10−5. In the following we are going to show the
results given by the specific diffusivity parameter µ = 1. In figure 4.3.1.1 full order state
solution and reduced state solution are shown, with a pointwise error plot: notice that the
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maximum value of the error is of the order of 10−8. Analogously, in figure 4.3.1.2 we have
a comparison between the full order control variable and the reduced control variable.

Figure 4.3.1.1: Left: full order optimal state; center : reduced optimal state, right: pointwise
error.

Figure 4.3.1.2: Left: full order control variable; center : reduced control variable, right: point-
wise error.

Let us focus on the error analysis. In figure 4.3.1.3 we notice that, as we expect, increasing
the reduced basis number, the error decreases for all the tree variables. In the bottom right
plot a comparison between the monolithic error and the partitioned error of the reduced
basis approximation with respect to the full order approximation1 is presented: splitting
the POD algorithm for the different variables and using the aggregated space formulation
is more convenient and leads to better results.

1Let us call W = Y × U × Q. For u ∈ W , the monolithic error is given by an aggregated error of the
type ‖u‖2W , while the partitioned error is given by ‖u‖2W = ‖y‖2Y + ‖u‖2U + ‖q‖2Q.
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Figure 4.3.1.3: Top left: reduced optimal state error trend; top right: reduced control error
trend. bottom left: reduced adjoint state error trend; bottom right: comparison between monolithic
and partitioned approaches.

Table 4.1: Speed up analysis for Laplace problem

Basis Number 1 2 3 4 5 6 7 8 9 10
Speed up 62 62 61 61 60 60 59 59 58 57

Basis Number 11 12 13 14 15 16 17 18 19 20
Speed up 57 58 56 57 55 55 54 53 52 52

In the following a comparison between the dimensions of full order system and the
reduced one is shown.

N ×N 1323× 1323

5N × 5N 100× 100

As we underlined among the whole chapter, reduced basis methods are a good technique
to let costly problems be solved in a small time with respect to the time necessary to a
full order solving system. This can be easily noticed in Table 4.1: the reduced system
dimension is drastically lower with respect the full order system dimension. The reduced
space dimension is indicated with N , while the full order dimension with N , as usual.
To characterize the computational performances of the RB methods we used the speed up
index: it measures how many reduced order systems can be afforded in the time needed
for a full order system to be solved. Naturally, the time of the reduced system resolution
increases if the basis number increases, but the advantages are remarkable even with a
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large reduced space dimension. Let us indicate with Jt the cost functional associated to
the full order solution and Jr the cost functional of the reduced problem: for the particular
value µ = 1 we have Jt = Jr = 2.3286 · 10−4.

4.3.2 OCP(µµµ) Governed by Stokes Equation

The second test is based on the numerical example proposed 2.3.2. As spatial domain we
consider Ω = (0, 1)2. The control is distributed over Ω. The spaces are those specified in
subsection 4.2.1: in this particular case, since we have homogeneous Dirichlet boundary
conditions, V = H1

0 (Ω)×H1
0 (Ω). Let Y = V × P be the state space. Let us focus on two

examples.

Affine Target Function

The parametrized version of the problem (2.3.2) reads as follows: for a given µµµ = [µ1, µ2],
find (y(µµµ), u(µµµ)) ∈ Y × U solution of

min
(y,u)∈Y×U

J(v, p,u) = 1
2

∫
Ω
|v− µ2vd|2 dΩ + α

2

∫
Ω
|u|2 dΩ,

such that


−µ1∆v +∇p = u in Ω,
div(v) = 0 in Ω,
v = 0 on ∂Ω,

(4.3.2)

where

vd =
(

∂

∂x2
(ϕ(x1)ϕ(x2)),− ∂

∂x1
(ϕ(x1)ϕ(x2))

)
,

with ϕ : (0, 1) → (0, 1) is defined as ϕ(z) = (1 − cos(0.8πz))(1 − z)2. The parameter µ1
represents the diffusivity and µ2 chances the intensity of the desired velocity field. The
parameter space is P = [0.5, 1]× [5, 10]. In this particular example the weak formulation
of the state equation is: {

a(v,φφφ;µ) + b(φφφ, p) = c(u,φφφ), ∀φφφ ∈ V,
b(v, ξ) = 0, ∀ξ ∈ P,

(4.3.3)

where the bilinear forms a : V × V → R, b : V × P → R and c : U × V → R are given by:

a(v,φφφ;µµµ) = µ1

∫
Ω
∇v · ∇φφφ dΩ,

b(φφφ, p) = −
∫

Ω
div(φφφ)p dΩ,

c(u,φφφ) =
∫

Ω
u ·φφφdΩ.

Now we want to recast the problem (4.3.2) into a saddle-point formulation. To reach this
goal we build the bilinear forms A : Y × Y → R and C : U ×Q→ R as follows

A((v, p), (φφφ, ξ);µµµ) = a(v,φφφ;µµµ) + b(φφφ, p) + b(v, ξ),
C(u,φφφ) = c(u,φφφ).

Let us consider the bilinear forms m : Y × Y → R ans n : U × U → R given by:

m((v, p), (ψψψ, π)) =
∫

Ω
vψψψ dΩ

n(u, τττ) =
∫

Ω
u · τττ dΩ.
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To have a problem of the form presented in (4.2.7) let us define X = Y × U and let
x = ((v, p),u) and ζ = ((ψψψ, π), τττ) be two elements of X, while (φφφ, ξ) ∈ Q. We have to
consider the following bilinear forms A : X ×X → R and B : X ×Q→ R given by

A(x, ζ) = m((v, p), (ψψψ, π)) + αn(u, τττ),
B(x, (φφφ, ξ);µµµ) = A((v, p), (φφφ, ξ);µµµ)−C(u,φφφ).

and the linear form F (µµµ) : X → R

〈F (µµµ), ζ〉 = µ2

∫
Ω

vdψψψ dΩ.

The affine structure can be underlined (as the previous example, very intuitive): with
QA = 1, QB = 2 and QF = 1 the affine decomposition of the problem is given by

Θ1
A = 1 A1(x, ζ) = A(x, ζ),

Θ1
B = µ1 B1(x, (φφφ, ξ)) =

∫
Ω
∇v · ∇φφφ dΩ,

Θ2
B = 1 B2(x, (φφφ, ξ)) = −

∫
Ω

div(φφφ)p dΩ−
∫

Ω
div(v)ξ dΩ−

∫
Ω

u ·φφφ dΩ,

Θ1
F = µ2 〈F 1, ζ〉 =

∫
Ω

vdψψψ dΩ.

Let us describe a specific test experiment. In this case we took as parameter µµµ = (1, 10)
and as penalization term α = 10−4. To build the reduced basis we directly decide to use a
partitioned POD of 10 basis functions on a training set of 50 points. In figure 4.3.2.1 and
in figure 4.3.2.2 we can notice how rapidly the error decays and how the reduced solution
is similar to the full order one.
Table 4.2 highlights how much RB methods are useful for a Stokes problem. Even in this
case the dimensionality is drastically reduced: we recall that N is the full order dimension,
while N is the reduced one. To solve a full order system a time tt = 48, 78s is needed,
while tr = 2.38 · 10−2s, where tr represents the reduced problem time resolution. This
convention is adopted for all the following examples. Let Jt and Jr be the functionals
associated to the Finite Element problem and the reduced problem, respectively. In this
experiment Jt = 5.5760 · 10−2 and Jr = 5.5764 · 10−2.

Figure 4.3.2.1: Left: full order state variable; center : reduced eim state variable, right: error.
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Figure 4.3.2.2: Left: full order control variable; center : reduced eim control variable, right:
error.

Table 4.2: Speed up analysis for Stokes problem

Basis Number 1 2 3 4 5 6 7 8 9 10
Speed up 1731 2529 2408 2479 2314 2352 2252 2192 2012 1895

In the following a comparison between the dimentions of full order system and the
reduced on is shown.

N ×N 23085× 23085

13N × 13N 130× 130

Non-Affine Target Function

Let us analyse a particular non-affine case. We consider the problem (2.3.2), with a little
variant on the target function vd. The new formulation (4.3.4) reads as follows: for a
given µµµ = [µ1, µ2, µ3, µ4], find (y(µµµ), u(µµµ)) ∈ Y × U such that:

min
(y,u)∈Y×U

J(v, p,u) = 1
2

∫
Ω
|v− µ2vd(µµµ)|2 dΩ + α

2

∫
Ω
|u|2 dΩ,

such that


−µ1∆v +∇p = u in Ω,
div(v) = 0 in Ω,
v = 0 on ∂Ω,

(4.3.4)

where

vd =
(

∂

∂x2
(ϕ(x1)ϕ(x2)),− ∂

∂x1
(ϕ(x1)ϕ(x2))

)
,

with ϕ : (0, 1)→ (0, 1) is defined as ϕ(z) = (1− cos(µ3µ4z))(1− z)2. The target function
is not affine in the parameters and the problem looses the affine assumption. To recover it
we used a partitioned EIM-POD strategy (see Chapter 3), that allows us to approximate
ϕ(x) in an affine formulation in order to apply efficiently RB methods. The parameter µµµ
is in the parameter space P = [0.5, 1] × [5, 10] × [0.5, 0.8] × [0, 3.5]. Let us discuss some
results: µµµ = [1, 10, 0.8, π] is taken, we applied a POD reduction with 10 basis on a training
set of 50 points using an uniform distribution on the parameters. The EIM approximation
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was made exploiting 11 basis functions (they are sufficient, as we can see from the table
4.3).

Table 4.3: EIM Error ϕ(x)

EIM Basis Number Error

1 3.97492e-05
2 1.56411e-06
3 1.92805e-08
4 2.08603e-10
5 2.87039e-12
6 9.38846e-14

In figure 4.3.2.3 and 4.3.2.4 the full order state and control expected are compared to their
EIM-POD approximation, respectively. Table 4.4 represents the computational advantage
of using RB spaces rather than full order approximation.

Figure 4.3.2.3: Left: full order state variable; center : reduced state variable, right: error.

Figure 4.3.2.4: Left: full order control variable; center : reduced control variable, right: error.
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Table 4.4: Speed up analysis for EIM Stokes problem

Basis Number 1 2 3 4 5 6 7 8 9 10
Speed up 922 1636 2079 1960 1641 1634 1602 1404 752 792

In the following a comparison between the dimensions of full order system and the
reduced one is shown.

N ×N 23085× 23085

13N × 13N 130× 130

The time resolution for the full order system and the reduced one are, respectively, tt =
53.59s and tr = 1.17s. As we did for the other examples, we indicate with Jt the cost
functional related to the full order problem and Jr the one related to the reduced problem.
What we reach is Jt = 5.55758 · 10−2 and Jr = 5.55759 · 10−2.

4.3.3 An Environmental Preliminary Application: Thermal Pollution
into a River

In this subsection we will apply RB methods to solve an OCP(µµµ) dealing with an envi-
ronmental application. We will parametrized a control problem governed by advection-
diffusion state equation. The example we are going to face is inspired to the one proposed
in [57, Subsection 17.11.2] and deals with the issue of the thermal pollution of a river.
Thermal pollution can be very dangerous since it can change the natural habitat of an
ecological specie, causing the loss of biodiversity. Advection-diffusion control models are
very useful to avoid those kinds of issues and they are exploited in order to prevent eco-
logical problems when a new industrial system must be designed.
The theoretical base of the general OCP governed by advection-diffusion is discussed in
Example 1.3.2.2. As usual, we will indicate with Y and U the state and the control spaces,
respectively. The adjoint space is Q = Y . Let us adapt the structure theoretically pro-
posed in 1.3.2.2 to our specific parametric version of the control problem. First of all, we
introduce the spatial domain used: in figure 4.3.3.1 three subdomains are highlighted

1. Ω1: the portion of the domain where the forcing term is defined;

2. Ω2: the portion of the domain where the control variable is defined;

3. ΩOBS : the portion of the domain where the observation is made.

Figure 4.3.3.1: River pollution domain description, from [57, Subsection 17.11.2]
.
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Figure 4.3.3.2: Transport field.

In this particular example we are going to reach a desired temperature profile, avoiding
alterations the industrial system emission rate. The non dimensional OCP(µµµ) problems
reads as follows:

min
(y,u)

J(y, u) =
∫

ΩOBS
(y − yd)2 dΩOBS + α

∫
ΩOBS

(u− µ3)2 dΩOBS ,

such that


−div(µ1∇y) + βββ · ∇y = µ2χ1 + uχ2 in Ω,
y = 0 on ΓIN ,

µ1
∂y

∂n
= 0 on ΓN .

(4.3.5)

where ΓIN in specified in figure 4.3.3.1 and ΓN = ∂Ω \ ΓIN , y ∈ Y = H1
ΓD(Ω) represents

the temperature profile, u ∈ U = R is the control variable, whereas yd ∈ L2(Ω) is the
desired temperature profile. With χ1 and χ2 we will indicate the characteristic functions
associated to Ω1 and Ω2. The parameter µµµ = [µ1, µ2, µ3] is considered in the parameter
space P = [0.01, 0.1] × [5, 10] × [5, 10], where µ1 represents the diffusivity coefficient, µ2
a source term and µ3 the desired emission rate. The penalization term is α = 10−3. We
have to specify that βββ is a transport field (see figure 4.3.3.2) given by the solution of
Navier-Stokes equation in the domain Ω with the following boundary conditions:

• a parabolic velocity profile on ΓIN with 1 as maximal value;

• ∂βββ

∂n = 0 on ΓOUT ;

• no-slip conditions on ∂Ω \ (ΓIN ∪ ΓOUT );

• Reynolds number Re = 500.

The problem can be rewritten in weak formulation as follows:

a(y, q;µµµ) = c(u, q), ∀q ∈ Q,

where the bilinear forms a : Y ×Q→ R and c : U ×Q→ R are defined as follows:

a(y, q;µµµ) = µ1

∫
Ω
∇y · ∇q dΩ +

∫
Ω
βββ · ∇yq dΩ

c(u, q) = u

∫
Ω
q dΩ.

Moreover, the bilinear forms m : Y × Y → R and n : U × U → R are given by

m(y, z) = 2
∫

Ω
yz; dΩ, n(u, v) = 2

∫
Ω
uv dΩ.
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To recast the problem in a saddle-point formulation, as usual, define X = Y × U and
consider x = (y, u), w = (z, v) ∈ X and q ∈ Q. Furthermore we can define the linear
forms as:

〈F (µµµ), w〉 = 2
∫

Ω
ydz dΩ + 2µ3

∫
Ω
v dΩ, 〈G(µµµ), q〉 = µ2

∫
Ω
q dΩ,

and the bilinear forms

A(x,w : µµµ) = m(y, z) + αn(u, v),
B(w, q;µµµ) = a(y, q;µµµ)− c(u, q).

In this way we have recast the problem (4.3.5) in the saddle-point formulation typical of
linear quadratic OCP(µµµ)s. We can underline the affine structure of the problem: with
QA = 1, QB = 2, QF = 2 and QG = 1 the affine decomposition of the problem is given by

Θ1
A = 1 A1(x,w) = A(x,w),

Θ1
B = µ1 B1(x, q) =

∫
Ω
∇y · ∇q dΩ,

Θ2
B = 1 B2(x, q) =

∫
Ω
βββ · ∇yq dΩ− v

∫
Ω
q dΩ,

Θ1
G = µ2 〈G1, q〉 =

∫
Ω
q dΩ,

Θ1
F = µ3 〈F 1, w〉 = 2

∫
Ω
v dΩ,

Θ2
F = 1 〈F 2, w〉 = 2

∫
Ω
ydz dΩ,

Let us show some numerical results for specific values of the parameters. For the construc-
tion of the reduced basis a partitioned POD technique was used, exploiting 50 reduced
basis with a training set of 100 points. The parameters were chosen trough uniform dis-
tribution. In the experiment proposed the parameter was fixed to µµµ = [0.01, 10, 10]. The
penalization term is α = 10−3 and yd = 0. In figure 4.3.3.3, the full order optimal temper-
ature profile and the reduced optimal temperature profile are shown, the bottom figure
represents the pointwise error, which has 10−7 as maximum value. The error trends with
respect the full order approximation are presented in figure 4.3.3.4. The top left, top
right and bottom left plots describe the optimal state, the control variable and the adjoint
variable error, respectively. The bottom right plot represents the comparison between the
monolithic approach and the partitioned approach (for the error definitions, see footnote
1) in terms of error norms: notice that for few reduced basis functions the two method
are comparable, while the partitioned method gives a consistent improvement from the
15th reduced basis and on. Let us analyse how much RB is convenient computationally
speaking: in Table 4.5 the temporal improvement from basis number 1 to basis number
50 is presented (the comparison between full order and reduced order is shown through
the usual speed up index); notice how the dimension of the reduced system is lower than
the full order one, this lead to the following results tt = 1.7s and tr = 3.56 · 10−2. Finally,
let us analyse the cost functionals. Let Jt and Jr have the usual interpretation. In this
experiment we obtain Jt = Jr = 4.1836 · 10−2.
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Figure 4.3.3.3: Top left: full order temperature profile, top right: reduced temperature profile,
bottom: pointwise error.

Figure 4.3.3.4: Top left: reduced optimal state error trend; top right: reduced control error
trend. bottom left: reduced adjoint state error trend; bottom right: comparison between monolithic
and partitioned approaches.
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Table 4.5: Speed up analysis for river problem

Basis Number 1 2 3 4 5 6 7 8 9 10
Speed up 75 88 73 66 59 72 66 68 71 77

Basis Number 11 12 13 14 15 16 17 18 19 20
Speed up 67 74 69 64 58 72 65 66 68 49

Basis Number 21 22 23 24 25 26 27 28 29 30
Speed up 73 63 67 72 78 67 76 63 44 65

Basis Number 31 32 33 34 35 36 37 38 39 40
Speed up 68 65 51 64 56 60 39 55 56 54

Basis Number 41 42 43 44 45 46 47 48 49 50
Speed up 13 53 47 48 46 46 43 42 38 45

In the following a comparison between the dimensions of full order system and the
reduced one is shown.

N ×N 2975× 2975

5N × 5N 250× 250
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Chapter 5

Reduced Basis Applications in
Environmental and Engineering
Marine Sciences

In this chapter we are going to apply the RB numerical methods to environmental control
problems. Specifically, we will focus our attention on marine sciences: thematically and
geographically speaking, large scale dynamic of Atlantic Ocean and pollutant control on
the area of the Gulf of Trieste are analysed. As we have already underlined among this
work, one can be interested in predicting some quantities and in controlling some physical
or geometrical features in many contexts: from civil environmental engineering to ecolog-
ical and climatological sciences. The theory of optimal control problems can be widely
exploited in these topics and applications: in the last years environmental studies have
grown and have been object of interest of many specific fields. Mathematical modeling
and computational analysis are very important tools to study and face environmental is-
sues. Optimal control applications can be easily adapted to various marine environmental
problems: in forecasting (for example see [39, 74]), in preventing human activity effects
and in monitoring pollutant quantities and substances (i.e. see [16, 18]) and in eco-friendly
industrial planning and designing (i.e. see [48]), just for citing few possible applications.
Reduced basis methods can be a very efficient way to study all these phenomena: as we
already specified in Chapter 4, control problems are hugely demanding under the computa-
tional point of view. RB methods can be a useful and powerful instrument to rapidly solve
problems with a new low-dimensional formulation. Furthermore, environmental problems
are characterized by a great use of parameters. They could describe physical features of
the model or geometrical characteristics of the domain that we are considering. For these
reasons, RB methods are an appropriate resource in this particular field of research. There
are many works that verify how RB approach is a suitable technique to solve optimal con-
trol problems linked to environmental issues (i.e. see [16, 58, 59]).
In this thesis we will essentially focus on two thematic fields.

1. Forecasting and studying general Ocean circulation models
Ocean circulation models are a wide studied topic and they have fascinated scientists
in many fields of knowledge. In the last years, their analysis is growing and improving
(i.e. see [71, 74, 11]) since they are related to serious issues as global warming, gulf
current weakening and other problems linked to anthropic causes. They are analysed
in the hope of forecasting catastrophic events in order to prevent them. One way
to have more realistic forecasting models is to exploit data assimilation technique
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(i.e. see [10, 9, 3, 28]): during the simulations this approach allow to train the
model adding information from experimental data. In this chapter we focused on
the study of the PDEs governing the Ocean circulation model and then adapt a
parametric state solution tracking problem to them (this is the base of assimilation
analysis). Numerically, the Ocean circulation models are deeply studied at the best
of our knowledge: the numerical simulation technique is strongly linked to finite
differences approach (i.e. see [73, 11]). In this work we have not only used a Finite
Element approximation for the full order solution, but we will exploit RB methods
to show their advantages for the specific case.

2. Environmental engineering application of optimal control problem gov-
erned by advection-diffusion equations
In the second application we focused on advection-diffusion pollutant optimal control
problems. We have already treated the topic: theoretically in chapter 1, numerically
in chapter 4, respectively. In this Chapter we are going to adapt the concept pre-
viously studied to our geographical reality: the Gulf of Trieste. Optimal control
problems can be a great instrument to avoid environmental and ecological changes.
The Gulf of Trieste is a physical basin particularly windy and it has very peculiar
flora and fauna population (i.e. see [68, 50]). Moreover its analysis is important
and interesting since it has a great impact on Trieste community: the city of Trieste
overlooks the sea and depends on the Gulf and on its structures from harbours to
tourist infrastructures. For these reasons it needs to be monitored and kept under
control and, maybe, redesigned.

Finally, let us introduce how the chapter will be organized. It will substantially consist
in two sections. In the first section the Ocean circulation model will be discussed, then
we will introduce an OCP(µµµ) state tracking problem, analysing it under a saddle-point
formulation. Finally, some numerical results will be shown on different domains. In
Section 5.2, RB methods for advection-diffusion control problems are discussed. We will
apply them to a pollutant control test case and then on a OCP(µµµ) with the Gulf of Trieste
as reference domain.

5.1 Reduced Basis Application to Ocean Circulation Model

As we said in the introduction to the Chapter, in this section we will study the dynamics
of general Ocean circulation. This kind of large scale analysis is what is behind long
time scale forecasting models. Ocean dynamics is strictly linked to the wind action.
Large scale circulation, indeed, can be considered as a coupled system of atmosphere and
Ocean. It satisfy a balance between pressure gradient forces and the effects of Earth’s
rotation (physically described by the Coriolis’ effect). In Oceanography, this phenomenon
is called geostrophic equlibrium. The model that we are going to use adds quantities (time
derivatives, diffusive effects...) to the equilibrium and then it constitutes the subject of
the quasi-geostrophic theory. In this section we are going to describe the PDEs governing
this large scale dynamics (for the theoretical physical topics, we refer to [11]), then we
will introduce a state solution tracking control problem governed by quasi-geostrophic
equations that will be solved with RB methods and then compared with Finite Element
approximation.
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5.1.1 General Governing Equation

In this subsection we are going to present the general non-linear quasi-geostrophic equa-
tion.
Quasi-geostrophic equation describes the homogeneous wind-driven Oceanic circulation.
In other words it explains the Ocean gyres phenomena due to wind stress action under
a single fluid layer1 assumption. The non-dimensional state equation has the following
form: (δI

L

)2
F(ψ,∆ψ) + ∂ψ

∂x
= f − δS

L
∆ψ +

(δM
L

)3
∆2ψ, (5.1.1)

where, given a suitable space V , the non-linearity of the expression is given by F(·, ·) :
V × V → R defined as:

F(ψ, q) = ∂ψ

∂x

∂q

∂y
− ∂ψ

∂y

∂q

∂x
.

Moreover,

∆2ψ = ∂4ψ

∂x4 + ∂4ψ

∂y4 + 2 ∂4ψ

∂y2∂x2 .

As specified in [11, Section 3.2], the forcing term is linked to the action of the wind by the
following relation:

f = k̂ · rot τττ ,

where k̂ is the third reference spatial unit vector, whereas τττ represents the wind stress.
Considering an open, bounded and regular domain Ω ⊂ R2 we have to impose no-slip
conditions over ψ and ∆ψ, in other words:

ψ = 0 and ∆ψ = 0 on ∂Ω.

We have already specified that quasi-geostrophic equation describes large scale Oceanic
dynamics. The division for the constant L gives non dimensionality to the system and
L = O(106).
The quasi-geostrophic equation is linked to geophysical Navier-Stokes equations: more
specifically, the first equation is the stream function formulation of the following system
of equations

ε(u · ∇)u− (1 + εy)v = −∂p
∂x

+ ε

Re

(∂2u

∂x2 + ∂2u

∂y2

)
+ f1 in Ω,

ε(u · ∇)v + (1 + εy)u = −∂p
∂y

+ ε

Re

(∂2v

∂x2 + ∂2v

∂y2

)
+ f2 in Ω,

div(u) = 0 on ∂Ω,
u = 0 on ∂Ω,

(5.1.2)

where u = (u, v) ∈ H1
0 (Ω) × H1

0 (Ω) is a velocity field with scale O(10−2m/s), Re is the
Reynolds number that verifies

1
Re

= O
(δM
L

)3

and ε = O(10−4). The terms −(1 + εy)v and (1 + εy)u represent the Coriolis’ effect for
the first velocity component and the second velocity component, respectively. The reader

1We are assuming that the whole fluid has the same density and so stratification effects are neglected.
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interested in the derivation of the quasi-geostrophic equation from the geophysical Navier-
Stokes equations can refer to [11, Chapter 3]. The following relation links the velocity
field and the stream function:

u = (u, v) =
(
− ∂ψ

∂y
,
∂ψ

∂x

)
. (5.1.3)

Let us analyse the different dynamics depending on the parameters δI , δS , δM . The ex-
istence and uniqueness of the solution is non-trivially proved in [19]. As spatial domain
we firstly considered Ω = [0, 1]× [0, 1], that represents the Ocean surface in this example.
The various regimes depend on the relative amplitude of δM and δI . The behaviour of the
solution of the quasi-geostrophic equation under the forcing term f = − sin(πy) is shown
in three cases (the simulation are based on a Finite Element discretization2, as a reference
on stability of the method see [40]):

1. the first case shown is a linear case, corresponding to δI = 0 and δM = 7 ·104. As we
can see in the left of figure 5.1.1.1, the solution is characterized by an intensification
on the western boundary, a phenomenon very known in literature and also observed
in nature (i.e. Gulf Stream, as reported in [74]);

2. in the center of figure 5.1.1.1 the solution of a moderate amount of non-linearity
effect is presented. In this case we have chosen δI = δM = 7 · 104. Notice that the
gyre moves northward;

3. the last configuration corresponds to a highly non-linear system, where δI >> δM , in
the specific δM = 7 · 103 and δI = 7 · 104. What we can observe is the intensification
of the northward movement of the circulation gyre3.

In figure 5.1.1.2, we can observe the same behaviour described for the squared domain,
but on a mesh that simulate the North Atlantic Ocean.

Figure 5.1.1.1: Left: linear solution; center : weak nonlinear solution, right: high nonlinear
solution.

2The weak formulation of the quasi-geostrophic equation was already discussed in subsection 3.4 and
it will be better presented in the following subsection.

3The highly non-linear configuration is reached as a steady state of the time dependent problem:

∂∆ψ
∂t

+
(
δI
L

)2
F(ψ,∆ψ) + ∂ψ

∂x
= f − δS

L
∆ψ +

(
δM
L

)3
∆2ψ. (5.1.4)

Indeed, the problem (5.1.2) is unstable when δI >> δM . To avoid this inconvenient there are several
techniques that can be used, like the ones proposed in the articles [12, 51]. See the appendix Perspectives
for a deeper analysis.
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Figure 5.1.1.2: Left: linear solution; center : weak nonlinear solution, right: high nonlinear
solution.

The mesh used in figure 5.1.1.2 is obtained trough FreeFem++ (as a reference see [32]
and visit the link http://www.freefem.org/ ) from Google Earth images, and then, thanks
to Gmsh (see as a reference [27], and visit http://gmsh.info/ ), imported into FEniCS for
Finite Element simulation (in this case we refer to [45], for further informations one can
refer to https://fenicsproject.org). In figure 5.1.1.3 we can give a taste of the work needed
to obtain a physical mesh for the North Atlantic Ocean.

Figure 5.1.1.3: Left: mesh and state solution; center : western Atlantic Ocean, right: eastern
Atlantic Ocean.

Remark 5.1.1. To make the model more realistic one can add the influence of bathymetry
in the dynamics equations. In the quasi-geostrophic case it is simple to consider the
underwater depth effect in the equation (we always refer to [11, Chapter 3]). Let us
suppose that the sea floor can be defined by a smooth function h : Ω→ R. The new state
equation to be examined is:(δI

L

)2
F(ψ,∆ψ + h(x, y)) + ∂ψ

∂x
= f +

(δM
L

)3
∆2ψ −

(δS
L

)
∆ψ.

To describe the Atlantic floor4, for example, one can use

h(x, y) = e
− x
δI
L + g(x, y),

where g(x, y) is a Gaussian function representing the mid-Atlantic Ridge, whereas the
exponential function represents a rapid coastal decay. We notice that bathymetry did not

4Atlantic domain experiments are analysed in figure 5.1.1.2
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cause considerable changes: for this reason we decided to use a no-bathymetry simplified
model, without loss of generality.

5.1.2 Linear Optimal Control Problem Formulation

As we have already declared in the introduction to this Chapter, we are going to build an
OCP(µµµ) governed by quasi-geostrophic equation. We will focus on the linear case: consider
this simple case is not restrictive, since the behaviour of the large scale circulation usually
follows a linear trend.
The optimal control problem that we will face is a state solution tracking. This procedure
is the base of data assimilation technique, much exploited in forecasting models (i.e. see
[10, 9, 3, 28]). Let us define the problem:

min
(ψ,u)∈Y×U

J(ψ, u) = 1
2

∫
Ω

(ψ − ψd)2 dΩ + α

2

∫
Ω
u2 dΩ

such that


∂ψ

∂x
= u− µ1∆ψ + µ2∆2ψ in Ω,

ψ = 0 on ∂Ω,
∆ψ = 0 on ∂Ω,

(5.1.5)

where ψ ∈ Y is our state variable, u ∈ U is the forcing term to be controlled, where
Y and U are two suitable functions spaces, that will be lately specified. The parameter
µµµ = (µ1, µ2) represents the diffusivity action of the system and the parameter space is
P = [10−4, 1]× [10−4, 1], whereas the penalization term is α = 10−5.
Now, let us rewrite the problem in the following way:

min
((ψ,q),u)∈Y×U

J((ψ, q), u) = 1
2

∫
Ω

(ψ − ψd)2 dΩ + α

2

∫
Ω
u2 dΩ

such that



q = ∆ψ in Ω,
∂ψ

∂x
= u− µ1q + µ2∆q in Ω,

ψ = 0 on ∂Ω,
q = 0 on ∂Ω,

(5.1.6)

where the spaces are defined as Y = H1
0 (Ω) × H1

0 (Ω) and U = L2(Ω). The aim of the
problems (5.1.5) and (5.1.6) is to let the solution ψ be the most similar to ψd ∈ L2(Ω),
the desired state variable5.
Let us introduce the weak formulation of the state equation. It can be expressed in the
following way:

a((ψ, q), (φ, p);µµµ) = c(u, φ) ∀φ, p ∈ H1
0 (Ω), (5.1.7)

where a : Y × Y → R and c : U × Y → R are given by:

a((ψ, q), (φ, p);µµµ) =
∫

Ω

∂ψ

∂x
φ dΩ + µ2

∫
Ω
∇q · ∇φ dΩ +

+ µ1

∫
Ω
qφ dΩ +

∫
Ω
qp dΩ +

∫
Ω
∇q · ∇p dΩ,

c(u, φ) =
∫

Ω
uφ dΩ.

5The function ψd in a data assimilation framework represents real data that allow to update model
parameters in order to be more precise in the forecasting previsions.
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The definition of the bilinear form a(·, ·) derives from integration by parts, Divergence
Theorem and the belonging of the variables (ψ, q) and the functions (φ, p) to the space
H1

0 (Ω)×H1
0 (Ω). The equation (5.1.7) derives from the addition of the two weak equations:

∫
Ω
qp dΩ +

∫
Ω
∇ψ · ∇p dΩ = 0 ∀(φ, p) ∈ Y,∫

Ω

∂ψ

∂x
φ dΩ + µ2

∫
Ω
∇q · ∇φ dΩ + µ1

∫
Ω
qφ dΩ−

∫
Ω
uφ dΩ = 0 ∀(φ, p) ∈ Y.

(5.1.8)

It is easy to prove the consistence of the weak formulation (5.1.7) with respect to the
strong formulation. Indeed:∫

Ω
qp dΩ +

∫
Ω
∇ψ · ∇p dΩ +

∫
Ω

∂ψ

∂x
φ dΩ + µ2

∫
Ω
∇q · ∇φ+ µ1

∫
Ω
qφ dΩ−

∫
Ω
uφ dΩ = 0

applying again integration by parts, Divergence Theorem and assuming that both state
variables and (p, φ) vanish on the boundary of the domain, the previous equation can be
written as ∫

Ω
(q −∆ψ)p dΩ +

∫
Ω

(∂ψ
∂x

+ µ1q − µ2∆q − u
)
φ dΩ = 0.

Since p and φ are two arbitrary functions of H1
0 (Ω), we obtain the following system:q −∆ψ = 0,

∂ψ

∂x
+ µ1q − µ2∆q − u = 0,

(5.1.9)

notice that the system (5.1.9) coincides with the strong formulation of the state equation
in the problem (5.1.6).
Next step is to recast the optimal control problem into a saddle-point framework. Let
us recall that the state space is Y = H1

0 (Ω) ×H1
0 (Ω), the control space is L2(Ω) and for

the adjoint space we require that Y = Q. Let us define the product space X = Y × U.
Let x = ((ψ, q), u) and w = ((χ, t), v) be two elements of X, whereas let s = (φ, p) be an
element of Q. The problem (5.1.6) can be rewritten in the following general parametric
way: given µµµ ∈ P find (x(µµµ), p(µµµ)) ∈ X ×Q such that{

A(x(µµµ), w;µµµ) + B(w, p(µµµ),µµµ) = 〈F (µµµ), w〉 ∀w ∈ X
B(x(µµµ), s;µµµ) = 0 ∀s ∈ Q,

(5.1.10)

for some suitable bilinear forms A : X × X → R and B : X × Q → R and linear form
F : X → R. To build these two bilinear forms we need not only a(·, ·;µµµ) and c(·, ·), but
also the bilinear forms m : Y × Y → R and n : U × U → R defined as

m(ψ, χ) =
∫

Ω
ψχ dΩ

n(u, v) =
∫

Ω
uv dΩ,

and the linear form F : X → R as:

〈F,w〉 =
∫

Ω
ψdχ dΩ.

Let us define the bilinear form A(·, ·;µµµ) and B(·, ·;µµµ) as follows:
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A(·, ·;µµµ) = A(x,w) = m((ψ, q), (χ, t)) + αn(u, v)
B(·, ·;µµµ) = a((ψ, q), (φ, p))− c(v, φ).

As we have specified in subsection 4.1.1, there are some assumptions to be made on the
bilinear forms a(·, ·), c(·, ·),m(·, ·) and n(·, ·) to guarantee the consistence of the saddle
point formulation, as well as, existence and uniqueness of the solution. The following are
verified for every given µµµ:

• a : Y ×Q→ R is continuous over Y ×Q,

• c : U ×Q→ R is continuous over U ×Q,

• n : U × U → R is continuous, symmetric over U × U and coercive over U ,

• m : Y ×Y → R is symmetric, continuous and positive in the norm of the observation
space.

In this specific case, for the decoupled version of the state equation used in the problem
(5.1.6), the bilinear form a(·, ·;µµµ) is not coercive6. Although this fact, we decided to reduce
the system and study the results.
Before using reducing techniques, one has to define the discretized version of problem
(5.1.10). As we already said, a Finite Element discretization is chosen. The discrete version
of this specific OCP(µµµ) problem reads: given µµµ ∈ P, find (xN (µµµ), pN (µµµ)) ∈ XN × QN
such that {

A(xN (µµµ), wN ) + B(wN , pN (µµµ);µµµ) = 〈F,wN 〉, ∀wN ∈ XN ,
B(xN (µµµ), sN ;µµµ) = 0 ∀sN ∈ QN .

(5.1.11)

To build the reduced space we exploit a partitioned POD algorithm. Moreover, to en-
sure stability to the RB approximation, we used aggregated space for state and adjoint
variables, defining the space

ZN = span {ζn := (ψN (µµµn), qN (µµµ)), ξn := pN (µµµn), n = 1, . . . , N}.

The control space has the usual form

UN = span {λn := uN (µµµn), n = 1, . . . , N}.

Now, let us choose YN = ZN , XN = ZN×UN andQN = ZN . So, the new RB approximated
problem reads as: given µµµ ∈ P find (xN (µµµ), pN (µµµ)) ∈ XN ×QN such that{

A(xN (µµµ), wN ) + B(wN , pN (µµµ);µµµ) = 〈F,wN 〉, ∀wN ∈ XN ,

B(xN (µµµ), sN ;µµµ) = 0 ∀sN ∈ QN .
(5.1.12)

As in the previous chapters, N is the reduced space dimension and the system we are going
to solve is of the type proposed in subsection (4.1.4)(

AN (µµµ) BT
N (µµµ)

BN (µµµ) 0

)(
xN (µµµ)
pN (µµµ)

)
=
(
FN (µµµ)

0

)
. (5.1.13)

6The coercivity of the problem can be recovered analysing the not decoupled system (5.1.5) as in proved
in [40].
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The affinity assumption must be guaranteed for the efficiency of the reduced problem.
Let us highlight it. With QA = 1, QB = 2 and QF = 1 the affine decomposition of the
problem is given by

Θ1
A = 1 A1(x,w) = A(x,w),

Θ1
B = µ1 B1(x, s) =

∫
Ω
qφ dΩ,

Θ2
B = µ2 B2(x, s) =

∫
Ω
∇q · ∇φ dΩ,

Θ2
B = 1 B3(x, s) =

∫
Ω

∂ψ

∂x
φ dΩ +

∫
Ω
qp dΩ +

∫
Ω
∇q · ∇p dΩ−

∫
Ω
uφ dΩ,

Θ1
F = 1 〈F 1, w〉 = 〈F,w〉.

Let us analyse some results. We build a reduce space with 50 basis functions, thanks to
a partitioned POD algorithm applied to a training set of 100 points. The sampling of the
parameters is based on a log-uniform distribution for the two component of µµµ.

Figure 5.1.2.1: Left: desired state; center : full order solution, right: reduced solution.

Figure 5.1.2.2: Left: pointwise error; right: error decay.

We treat the specific case with µµµ = (0, 0.073) and the penalization term α = 10−5. First
of all, in figure 5.1.2.1 we can notice that the state solution matches the desired state and
the full order state solution. The pointwise error between full order state and the reduced
one is shown in figure 5.1.2.2, together with error7 decay. Lets us focus on how much
is computationally convenient exploit RB methods rather than full order Finite Element

7 of the norm. Let us define yt the Finite Element solution and yr the reduced solution. The state error
norm is given by ‖yt − yr‖2Y .
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approximation. Geophysical simulations can last days, so it is very important to use an
efficient technique in order save time and computational resources. As we did in subsection
4.3, the speed up index is used (we recall that it measures how many reduced problems can
be solved in the time needed for a full order resolution). The performance of RB problem
formulation is shown in Table 5.1. In the table the dimension of the full order system
and of the reduced order system are reported: as we can notice, the reduced system is
characterized by a low dimensionality with respect to the Finite Element system. As we
did in the previous Chapter, we indicate with tt and tr, the full order and the reduced
order time resolution, respectively. What we obtain is tt = 5.59s and tr = 2.38 · 10−1s.
Another quantity helps us to understand how efficient the RB methods are: the value of
the cost functional. Let Jt and Jr the cost functionals related to the full order control
problem and to the reduced order control problem. We obtain the following equality
Jt = Jr = 3.4465 · 10−6.

Table 5.1: Speed up analysis for Quasi-Geostrophic equation on the square domain

Basis Number 1 2 3 4 5 6 7 8 9 10
Speed up 379 201 203 183 134 224 227 181 179 178

Basis Number 11 12 13 14 15 16 17 18 19 20
Speed up 212 174 187 185 156 199 133 150 140 137

Basis Number 21 22 23 24 25 26 27 28 29 30
Speed up 130 129 100 107 102 77 72 79 79 74

Basis Number 31 32 33 34 35 36 37 38 39 40
Speed up 71 62 64 58 54 53 49 43 46 40

Basis Number 41 42 43 44 45 46 47 48 49 50
Speed up 40 38 30 28 27 24 21 21 17 23

In the following a comparison between the dimensions of full order system and the
reduced one is shown.

N ×N 5935× 5935

9N × 9N 450× 450

With the same parameters and the same POD inputs, we have solved the OCP(µµµ) problem
on the mesh representing the North Atlantic Ocean. In figure 5.1.2.3 the desired state, the
full order state solution and the reduced one are presented. They match: this hypothesis
is supported by figure 5.1.2.4, on the left is presented a pointwise error of the difference
between full order approximation and reduced approximation (the maximum value reached
is 3.057 · 10−6); on the right the state error norm decay (see footnote 7) is shown. Also
in this case, Table 5.2 represents the computational advantages of using reduced problem:
the speed up index shows how is convenient to exploit RB techniques and how many
computational time can be saved with respect to the Finite Element approach. In this
example we obtain tt = 6.07s and tr = 2.03 · 10−1s, where tt and tr must be interpreted
has the previous examples. Let us give to Jt and Jr the usual characterization. In this
case we have Jt = 7.3098 · 10−6 and Jr = 7.2668 · 10−6.
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Figure 5.1.2.3: Left: desired state; right: full order solution, bottom: reduced solution.

Figure 5.1.2.4: Left: pointwise error; right: error decay.

Table 5.2: Speed up analysis for Quasi-Geostrophic equation on the Atlantic Ocean mesh

Basis Number 1 2 3 4 5 6 7 8 9 10
Speed up 1049 369 437 309 395 223 315 385 247 192

Basis Number 11 12 13 14 15 16 17 18 19 20
Speed up 263 342 253 253 207 210 205 193 180 199

Basis Number 21 22 23 24 25 26 27 28 29 30
Speed up 132 151 95 66 33 75 90 107 66 54

Basis Number 31 32 33 34 35 36 37 38 39 40
Speed up 48 54 80 78 62 48 53 52 51 44

Basis Number 41 42 43 44 45 46 47 48 49 50
Speed up 29 41 35 34 31 28 25 21 17 23

In the following a comparison between the dimensions of full order system and the
reduced one is shown.

N ×N 6490× 6490

9N × 9N 450× 450
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Conclusions

In Oceanography, a numerical tool capable to save computational resources is really needed
and important. Even if the parametrization is usually linked to the physics of the problem,
and not to the geometry of the domain, Oceanographic simulations could be a great effort
to face.
A solution tracking with a given desired state was presented: as we already specified in
the introduction to the chapter, this kind of optimal control problem is at the base of
assimilation of experimental data. A complete data assimilation problem can be time
dependent, non-linear and it could have many parameters to handle and then, it is usually
very demanding. For this reasons RB methods are a valuable approach for these of physical
systems.
Let us focus on the environmental aspects of the specific example proposed:

1. First of all, the state tracking solution gives us information on the Ocean currents, on
their magnitude, position, on the gyres, etc. Globally speaking, the analysis of the
dynamic of the Atlantic Ocean allows to understand many climatological phenomena
governing the North Hemisphere.

2. Shifting our attention to the control variable, we can affirm that not only the currents
can be forecast, but also the wind stress and the fetch, that is the portion of domain
where the wind blows. It is important and interesting for the global understanding
of the general Wind-Ocean Circulation dynamics and their climatological effects.

Both currents and wind stress are linked to a much more complex environmental interest,
as the global warming and the global Ocean circulation. Even if the problem formula-
tion is straightforward, with distributed control over the whole domain and homogeneous
Dirichlet boundary conditions, the effects and the dynamics are very complex and linked
to many geophysical phenomena. Concluding: this climatological environmental issue can
be really demanding since involves a lot of physical variables to take into account. RB
methods can be a very suitable, viable and powerful tool to reduce the computational
effort of these complex models and could help a lot in this growing field of knowledge that
attracts the interest of many scientific subjects.

5.2 Reduced Basis Application to Gulf of Trieste

In this section we will apply our knowledge on RB methods to an environmental control
problem on the Gulf of Trieste. The problem aims at limiting the impact of a pollutant
tracers on touristic and natural areas. The OCP(µµµ) is governed by advection-diffussion
state equation, theoretically discussed in chapter 1, and already generalized to parametric
version in the RB application of subsection 4.3.3. The section is structured as follows:
first of all, we will briefly recall the general problem formulation of an OCP(µµµ): from the
theoretical formulation, to the Finite Element approximation and finally, to RB saddle
point formulation. Then, a test example of pollutant control is presented: it is adapted
from [59]. Finally, we will show the application on the Gulf of Trieste.

5.2.1 General Problem Formulation

The aim of this subsection is to put together all the knowledge on parametric advection-
diffusion optimal control problems. As usual, Y is the state space, U the control space
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and Y = Q the adjoint space. Let us recall the general weak formulation for a OCP(µµµ)
governed by advection-diffusion state equation: given µµµ ∈ P, find (y(µµµ), u(µµµ)) ∈ Y × U

min
(y,u)∈Y×U

J(y, u) = 1
2m(y − yd(µµµ), y − yd(µµµ);µµµ) + α

2 n(u, u;µµµ)

such that a(y, q;µµµ) = c(u, q;µµµ) + 〈G(µµµ), q〉 ∀q ∈ Q.
(5.2.1)

In this case, the expression a(y, q;µµµ) = c(u, q;µµµ) represents the parametrized version of
advection-diffusion state equation with no forcing term, depending on the problem that
we are considering. Let χΩu be the characteristic function of Ωu ⊂ Ω, the portion of the
domain where the control variable is defined. The strong parametric formulation of the
state equation is: 

−div(ν(µµµ)∇y) + βββ(µµµ) · ∇y = uχΩu in Ω,
y = 0 on ΓD,

ν(µµµ)∂y
∂n

= 0 on ΓN ,

then the bilinear forms a(·, ·) : Y ×Q→ R and c(·, ·) : U×Q→ R are defined, respectively,
as

a(y, q,µµµ) =
∫

Ω
(ν(µµµ)∇y · ∇q + βββ(µµµ) · ∇yq) dΩ,

c(u, q) =
∫

Ωu
uq dΩ.

As usual G(µµµ) ∈ Q∗ represents forcing terms and boundary conditions, whereas m(·, ·) :
Y ×Y → R and n(·, ·) : U×U → R are the bilinear forms associated to the cost functional.
Let us recall the properties of the spaces and of the boundary conditions, already discussed
in subsection 4.3.3

• Ω is an open, bounded and regular domain, with Lipschitz boundary ∂Ω = ΓD ∪ΓN
and ΓD ∩ ΓN = ∅,

• U = L2(Ω),

• Y = H1
ΓD(Ω) = {y ∈ H1(Ω) : y|ΓD = 0},

• Y = Q,

• yd ∈ L2(Ω) is given,

• the diffusivity term verifies ν(µµµ) > 0 in Ω,

• advective field βββ = βββ(µµµ) in L2(Ω)× L2(Ω) is given,

• we impose homogeneous Dirichlet boundary conditions on ΓD,

• we impose homogeneous Neumann conditions on ΓN .

As we specified in example 1.3.2.2, it is possible to formulate the optimal control system
and find the solutions. Then one can apply POD technique on a Finite Element discretiza-
tion to have a RB approximation and solve the OCP(µµµ) problem (as a reference see [59]).
We recall that the following properties are verified:
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• a : Y ×Q→ R is coercive over Q for some specific values of µµµ 8,

• a : Y ×Q→ R is continuous over Y ×Q, ∀µµµ ∈ P,

• c : U ×Q→ R is continuous over U ×Q ,∀µµµ ∈ P,

• n : U × U → R is continuous, symmetric over U × U and coercive over U , ∀µµµ ∈ P,

• m : Y ×Y → R is symmetric, continuous and positive in the norm of the observation
space, ∀µµµ ∈ P.

We decided to use a partitioned POD and to recast the problem (5.2.1) in a saddle-point
formulation. In the examples, we will propose the structure already used in subsection
4.3.3. Analytically, we want to structure the problem in the following general way: given
µµµ ∈ P, find (x(µµµ), p(µµµ)) ∈ X ×Q such that

{
A(x,w;µµµ) + B(w, p;µµµ) = 〈F (µµµ), w〉 ∀w ∈ X,
B(x, q;µµµ) = 〈G(µµµ), q〉 ∀q ∈ Q,

(5.2.2)

where X = Y × U , x = (y, u), w = (z, v) ∈ X. In this specific case A : X ×X → R and
B : X ×Q→ R are defined as follows:

A(x,w;µµµ) = A(x,w) = m(y, z) + αn(u, v),
B(w, q;µµµ) = a(z, q;µµµ)− c(v, q).

In all the applications we implemented we had G(µµµ) ≡ 0, that is that we have no forcing
terms and homogeneous boundary conditions, whereas

〈F (µµµ), w〉 = 〈F,w〉 = m(yd, z).

For the discretized version of the problem a Finite Element approximation can be used.
Analogously to the system (5.1.11), the discrete version of advection-diffusion the OCP (µµµ)
problem reads: given µµµ ∈ P, find (xN (µµµ), pN (µµµ)) ∈ XN ×QN such that

{
A(xN (µµµ), wN ) + B(wN , pN (µµµ);µµµ) = 〈F,wN 〉, ∀wN ∈ XN ,
B(xN (µµµ), qN ;µµµ) = 0 ∀qN ∈ QN .

(5.2.3)

The reduced version of the problem is built trough a POD algorithm in order to obtain
the following system: given µµµ ∈ P find (xN (µµµ), pN (µµµ)) ∈ XN ×QN such that

{
A(xN (µµµ), wN ) + B(wN , pN (µµµ);µµµ) = 〈F,wN 〉, ∀wN ∈ XN ,

B(xN (µµµ), qN ;µµµ) = 0 ∀qN ∈ QN .
(5.2.4)

In the following subsections we will present two specific applications and we will give more
informations on how the POD reduction was exploited.

8As we have seen in Theorem 1.2.9, to guarantee the the stability of the saddle-point formulation we
have to require the coercivity of the bilinear form a(·, ·), that we have only for chosen parameters, see [20,
Section 3.5] and [57, Chapter 12].
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5.2.2 Pollutant Control Test

In this subsection we are going to apply RB approach to an OCP(µµµ) governed by advection-
diffusion equation. This test is preliminary to the example proposed in subsection 5.2.3.
The problem studied is a parametric marine adaptation of the one in [57, Subsection
17.13.3], that involves three real control variables.
First of all, let us present the domain considered for this particular example.

Figure 5.2.2.1: Domain considered for the pollutant control test, from [57, Subsection 17.13.3].

In figure 5.2.2.1 we can notice:

1. the observation domain ΩOBS := D, where the pollutant threshold is evaluated;

2. Ω1 := U1, Ω2 := U2 and Ω3 := U3 are the three pollutant areas linked to the control
variables u1, u2 and u3, respectively;

3. on ΓD homogeneous Dirichlet boundary conditions are applied;

4. on ΓN homogeneous Neumann boundary conditions are applied.

Following the general formulation presented in subsection 5.2.1, we can build a specific
problem that reads: given µµµ ∈ P find (y(µµµ), u(µµµ)) ∈ Y × U , such that

min
(y,u)∈Y×U

J(y, u) =1
2

∫
ΩOBS

(y − yd)2 dΩOBS + α1
2

∫
Ω1
u2

1 dΩ1 + α2
2

∫
Ω2
u2

2 dΩ2 + α3
2

∫
Ω3
u2

3 dΩ3

such that a(y, q;µµµ) = c(u, q), ∀q ∈ Q.

where the state y is the pollutant concentration and yd ∈ R is the desired concentration
of pollutant, that usually represents a safety threshold. Let u = [u1, u2, u3] be an element
of U ≡ R3, the control space. The bilinear form a : Y × Q → R and c : U × Q → R are
defined as follows

a(y, q,µµµ) =
∫

Ω
(µ1∇y · ∇q + µ2βββ · ∇yq) dΩ,

c(u, q) = u1

∫
Ω1
q dΩ1 + u2

∫
Ω2
q dΩ2 + u3

∫
Ω3
q dΩ3.

The first component of the parameter µµµ = [µ1, µ2] ∈ P = [0.1, 1.]× [0.1, 3.] represents the
diffusivity action, while µ2 is a constant that changes the intensity of advection transport
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field βββ. To recast the problem in a saddle-point framework (5.2.2), we have to define the
bilinear forms m : Y × Y → R and n : U × U → R as:

m(y, z) =
∫

ΩOBS
yz dΩOBS ,

n(u, v) = α1

∫
Ω1
u1v1 dΩ1 + α2

∫
Ω2
u2v2 dΩ2 + α3

∫
Ω3
u3v3 dΩ3.

The next step is defining the product space of state and control variables, i.e. X = Y ×U .
Let us consider x = (y, u), w = (z, v) ∈ X and q ∈ Q. For this specific test case the
bilinear forms A : X ×X → R and B : X ×Q→ R are defined in the following way:

A(x,w) = m(y, z) + n(u, v),
B(w, q;µµµ) = a(z, q;µµµ)− c(v, q).

The linear form F : X → R is defined as follows:

〈F,w〉 = yd

∫
ΩOBS

z dΩOBS .

In this way we can build the saddle point system (5.2.2), introduced in subsection 5.2.1, and
then, after a Finite Element approximation (5.2.3), the reduced version of the saddle-point
problem is structured, corresponding to the formulation (5.2.4), thanks to a partitioned
POD algorithm with 50 basis functions generated on a training set of 100 points. The pa-
rameters have been sampled with an uniform distribution. To build the reduced problem,
we used the space ZN for both state and adjoint variable, where

ZN = span {ζn := yN (µµµn), ξn := pN (µµµn), n = 1, . . . , N}.

The control space remains R3. To be sure that the RB method is efficient, we have to
guarantee the affinity hypotheses. Let us underline the affine structure of this specific
OCP(µµµ). With QA = 1, QB = 2 and QF = 1 the affine decomposition of the problem is
given by

Θ1
A = 1 A1(x,w) = A(x,w),

Θ1
B = µ1 B1(x, q) =

∫
Ω
∇y · ∇q dΩ,

Θ2
B = µ2 B2(x, q) =

∫
Ω
βββ · ∇yq dΩ

Θ1
F = 1 〈F 1, w〉 = 〈F,w〉.

Let us show some numerical results corresponding to the specific choice of µµµ = (1., 2.5).
The desired concentration has the value yd = 100, and the maximum concentration for
the three control variables is U = 8 ·105. The transport field has been considered constant:
βββ =

(
cos

( π
30
)
, sin

( π
30
))

. The control variables have the following values:

u1 = 8.8838 · 103, u2 = 7.4169 · 103, u3 = 6.9423 · 104.

Figure 5.2.2.2 shows a comparison between the uncontrolled concentration of pollutant and
the controlled solution of the full order and the reduced order approximation, respectively.
Let us analyse the performance of the RB method with respect to the full order approx-
imation. In figure 5.2.2.3 the pointwise error difference between the truth approximation
and the reduced one is represented. The maximum value reached is of the order of 10−7.
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Figure 5.2.2.2: Left: uncontrolled state; center : full order controlled state; right:reduced order
controlled state.

Figure 5.2.2.3: Pointwise error that compares full order solution and reduced order solution.

Figure 5.2.2.4 shows the decay of the error norms comparison between reduced solutions
and full order solutions (see footnote 7 and extend the definition to all the variables). As
usual we report the speed up index in Table 5.3: it is very convenient to use RB meth-
ods since they save computational time. The reduced system has a lower dimension with
respect to the full order one and this allows the system to be more affordable, computa-
tionally speaking. Let us compare time of resolution: tt = 5.26s, while tr = 6.95 · 10−2s.
The functional of the uncontrolled problem is J = 5.93919 · 104. When we add control
conditions the truth cost functional Jt and the cost functional associated to the reduced
problem Jr reach the same value 1, 02442 · 103.

Figure 5.2.2.4: left: state error; center : control error; right: adjoint error.

93



5.2. Reduced Basis Application to Gulf of Trieste

Table 5.3: Speed up analysis for pollutant control test

Basis Number 1 2 3 4 5 6 7 8 9 10
Speed up 953 998 990 987 956 958 930 933 894 892

Basis Number 11 12 13 14 15 16 17 18 19 20
Speed up 868 846 824 800 775 755 742 724 708 698

Basis Number 21 22 23 24 25 26 27 28 29 30
Speed up 685 665 649 633 611 609 589 562 534 522

Basis Number 31 32 33 34 35 36 37 38 39 40
Speed up 514 493 483 458 436 424 411 400 388 376

Basis Number 41 42 43 44 45 46 47 48 49 50
Speed up 369 330 338 324 311 303 290 273 275 269

In the following a comparison between the dimensions of full order system and the
reduced one is shown.

N ×N 6823× 6823

4N + 3× 4N + 3 203× 203

5.2.3 Pollutant control on the Gulf of Trieste

In this subsection we are going to apply partitioned POD method to a pollutant control
on the Gulf of Trieste. We have simulated a pollutant loss from a marine accident. First
of all, we had to build the physical domain. As we did for the Ocean, we had to create
the mesh from Google Earth image thanks to FreeFem++ (as a reference see [32] and visit
the link http://www.freefem.org/ ) and, as in the Atlantic Ocean example, thanks to Gmsh
(see as a reference [27], and visit http://gmsh.info/ ) we imported it into FEniCS (see [45]
and for further informations one can refer to https://fenicsproject.org). To have an idea
of the global process see figure 5.2.3.1.

Figure 5.2.3.1: Left: mesh; right: gulf of Trieste, bottom: subdomains considered: in red ΩOBS

and in green Ωu.

The problem is formulated in the following way: let us define the state and the control
spaces Y, U and the adjoint space Y = Q as we did in subsection 5.2.1, the non dimensional
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OCP(µµµ) reads: given µµµ ∈ P, find (y(µµµ), u(µµµ)) ∈ Y × U such that:

min
(y,u)∈Y×U

J(y, u) = 1
2

∫
ΩOBS

(y − yd)2 dΩOBS

such that a(y, q;µµµ) = c(u, q), ∀q ∈ Q.

(5.2.5)

where the state y is the pollutant concentration and yd = 0.2 ∈ R represents the safe
concentration of pollutant. The control variable is u ∈ R. The bilinear forms a : Y ×Q→ R
and c : U ×Q→ R are defined as:

a(y, q,µµµ) =
∫

Ω
(ν(µµµ)∇y · ∇q + βββ(µµµ) · ∇yq) dΩ,

c(u, q) = L u

∫
Ωu
q dΩu.

where ν(µµµ) ≡ µ1 represent the diffusivity action of the state equation, βββ(µµµ) = [β1(µ2), β2(µ3)]
is the transport field and µµµ = [µ1, µ2, µ3] represents our parameter. The constant L = 103,
multiplied for the control variable u ∈ R, make the system non dimensional. For the trans-
port field we decided to take into consideration only constant functions in the proximity
of the observation domain 9. They will have the following form:

β1(µ2) ≡ µ2, β2(µ3) ≡ µ3.

The parameter space considered is P = [0.5, 1]× [−1, 1]× [−1, 1]. Let us spend some words
about the choice of the subdomains. The right plot of the figure 5.2.3.1 shows them:
in green we have the zone of the domain where the pollutant is (in our mathematical
formulation it is represented by Ωu); the red part of the plot represents the observation
domain ΩOBS , positioned along the swimming touristic area and Miramare natural area.
This particular zone is of great interest for two reasons:

1. for the peculiar ecological flora and fauna marine population,

2. and because it is an area crowded by Trieste citizens inhabitants and from many
tourists.

These argumentations encourage us in the choice of ΩOBS .
The boundary conditions are specified in the bulleted list of subsection 5.2.1. The coasts
are considered in ΓD, while the open sea represents ΓN . To recast all the problem in the
framework presented in (5.2.2) we have to define the bilinear forms m : Y × Y → R and
n : U × U → R as follows:

m(y, z) =
∫

ΩOBS
yz dΩOBS ,

n(u, v) ≡ 0.

As usual let X = Y × U the product space of state and control variables. Let x = (y, u)
and w = (z, v) be elements of X, whereas q an element of Q. In this particular example,
the bilinear forms A : X ×X → R and B : X ×Q→ R are defined in the following way:

A(x,w) = m(y, z),
B(w, q;µµµ) = a(z, q;µµµ)− c(v, q).

9They will be sufficient to simulate the most interesting configurations for the transport field action on
the Gulf of Trieste, and we are not taken into consideration the dynamics at the boundary.
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The linear form F : X → R reads:

〈F,w〉 = yd

∫
ΩOBS

z dΩOBS .

Now we have all we need to apply a Finite element discretization on the system (5.2.1)
and obtaining the discrete system (5.2.3) and a new OCP(µµµ) that reads: given µµµ ∈ P,
find (xN (µµµ), pN (µµµ)) ∈ XN ×QN such that{

A(xN (µµµ), wN ) + B(wN , pN (µµµ);µµµ) = 〈F,wN 〉, ∀wN ∈ XN ,
B(xN (µµµ), qN ;µµµ) = 0 ∀qN ∈ QN .

(5.2.6)

As we have already mentioned before, to reach a RB approximation we used a partitioned
POD algorithm with N = 50 reduced basis functions and a training set of 100 point. To
sample the parameters we used an uniform distribution on the space of the parameters.
We decided to apply the technique of aggregated space and to compare it to a monolithic
POD approach. Then, the state and the adjoint spaces will be approximated with the
same space defined as:

ZN = span {ζn := yN (µµµn), ξn := pN (µµµn), n = 1, . . . , N}.

The reduced control space UN is R. Then, supposing Y = ZN and Q = ZN , whereas
U = UN , the reduced problem reads:{

A(xN (µµµ), wN ) + B(wN , pN (µµµ);µµµ) = 〈F,wN 〉, ∀wN ∈ XN ,

B(xN (µµµ), qN ;µµµ) = 0 ∀qN ∈ QN .
(5.2.7)

We can underline the affine structure of the problem: with QA = 1, QB = 3 and QF = 1
the affine decomposition of the problem is given by

Θ1
A = 1 A1(x,w) = A(x,w),

Θ1
B = µ1 B1(x, q) =

∫
Ω
∇y · ∇q dΩ,

Θ2
B = µ2 B2(x, q) =

∫
Ω

∂y

∂x1
q dΩ,

Θ3
B = µ3 B3(x, q) =

∫
Ω

∂y

∂x2
q dΩ

Θ1
F = 1 〈F 1, w〉 = 〈F,w〉.

Let us discuss some numerical results. First of all we solved an uncontrolled advection-
diffusion problem for a maximum value of pollutant umax = 1. We have studied the
optimal control problem in three classical configurations:

1. neutral wind condition,

2. Bora blowing condition,

3. Scirocco blowing condition.

Naturally, the configuration is given by the values that the parameters µ2, µ3 may assume.
Our model involves only the surface of the Gulf (the depth can be totally neglected since
it is dozens meters deep). In the following we will present the solutions of the three con-
figurations.
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Neutral Configuration

The first experiment we analysed is the case with no wind blowing. This condition is given
by the transport field βββ(µµµ) = [0, 0]. In this particular case the OCP(µµµ) is governed by a
Laplace equation and has no advection term. This is a purely diffusive control problem.
The diffusion term is given by µ1 = 1. In figure 5.2.3.2 we have the comparison between
the uncontrolled concentration of pollutant and the controlled concentration in the Finite
Element approximation and the reduced solution. In the bottom right of the figure a
pointwise error is presented: the maximum value reached is of the order of 10−12. The
uncontrolled functional is J = 1.7579 · 10−3. Let us indicate with Jt the cost functional
related to the Finite Element approximation, while Jr is the cost functional value derived
from the reduced problem formulation (this convention will be used in the other two
experiments, also). In this neutral case they have the following value: Jt = Jr = 5.1320 ·
10−5. Our control variable is u = 7.6901 · 10−1.

Figure 5.2.3.2: No wind configuration. Top left: uncontrolled state; top right: full order
controlled state, bottom left: reduced controlled state, bottom right: pointwise error.

Bora Configuration

The second experiment shows how the physical results change under the action of wind.
The peculiar wind blowing on the city of Trieste is the Bora. It is a cold wind that blows
from East to North-West. To simulate his action we decided to take a constant transport
field βββ(µµµ) = [−1, 1], that exactly simulate the water transport due to Bora blowing. In
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this sense we expect that the pollutant has a minor concentration on the source domain,
since the Bora effect leads the current to remove waters from the observation and source
domains. For these reasons a lower value is obtained for J, Jt and Jr: the pollutant in ΩOBS

is less than the concentration observed in the previous configuration and in the Scirocco
configuration. In Figure 5.2.3.3 we have the solution plots referred to uncontrolled state,
controlled full order state and reduced controlled state. In the bottom right we find the
pointwise error describing the difference between full order and reduced order pollutant
concentration: the maximum value is of the order of 10−11.

Figure 5.2.3.3: Bora configuration. Top left: uncontrolled state; top right: full order controlled
state, bottom left: reduced controlled state, bottom right: pointwise error.

The uncontrolled functional assume the same value than before: J = 1.7579 · 10−3, while
Jt and Jr reach both 4.9167 · 10−5. The value of our control variable is u = 7.3698 · 10−1.

Scirocco Configuration

The last experiment presents the result of this control problem under the action of Scirocco.
It is a warm wind that comes from South-East. To simulate its action we decided to take
a constant transport field βββ(µµµ) = [1,−1]. The net water transport is direct toward South
and so this do not allow the dispersion of pollutant in the open Adriatic sea, as Bora does.
What we expect is an higher value of the control variable u and and higher value of the cost
functional, since more pollutant is present in the observation domain. In Figure 5.2.3.4
uncontrolled state, controlled full order state and reduced controlled state are shown. As
in the previous two experiments, in the bottom right we find the pointwise error describing
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the difference between full order and reduced order solutions: the maximum value is of
the order of 10−11.

Figure 5.2.3.4: Scirocco configuration. Top left: uncontrolled state; top right: full order
controlled state, bottom left: reduced controlled state, bottom right: pointwise error.

The uncontrolled functional assume the same value than before: J = 1.7579 · 10−3, while
Jt and Jr reach both 5.3417 · 10−5. The value of our control variable is u = 8.0800 · 10−1.
Now let us analyse the error norm comparison between full order solutions and the reduced
solutions. The plot in figure 5.2.3.5 shows the error norm decay for the state, control and
adjoint variables. They are related to the choice µµµ = [1,−1, 1], that is Bora configuration.
Even if we used 50 basis functions to build the reduced space, we can notice that few of
them were sufficient to reach a good approximation of the full order solutions. The bottom
right plot shows the comparison between the monolithic error version and the partitioned
error with respect to the full order and reduced state variable. Some comments on Table
5.4.: the speed up index remains considerably high. solving the reduced system is very
convenient in this case, since the full order system is characterized by high dimensionality
derived by the mesh. The time of resolution of the full order and the reduced order systems
are tt = 2.79s and tr = 2.41 · 10−2s, respectively.
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Figure 5.2.3.5: Errors. Top left: state error; top right: control error , bottom left: adjoint
error, bottom right: monolithic and partitioned error comparison.

Table 5.4: Speed up analysis for Gulf of Trieste example

Basis Number 1 2 3 4 5 6 7 8 9 10
Speed up 361 380 369 366 364 362 352 348 346 350

Basis Number 11 12 13 14 15 16 17 18 19 20
Speed up 336 334 333 328 317 315 309 303 301 296

Basis Number 21 22 23 24 25 26 27 28 29 30
Speed up 294 288 282 277 271 264 267 257 251 245

Basis Number 31 32 33 34 35 36 37 38 39 40
Speed up 240 234 231 218 216 204 201 202 195 188

Basis Number 41 42 43 44 45 46 47 48 49 50
Speed up 183 175 167 161 157 152 147 147 134 135

In the following a comparison between the dimensions of full order system and the
reduced one is shown.

N ×N 5639× 5639

4N + 1× 4N + 1 201× 201
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Conclusions

The interest in parametric analysis of the gulf of Trieste is twofold:

1. it has a very peculiar dynamic, due to the particular wind circulation of the North-
Eastern zone of Italy. This means that we have to consider different scenarios, typical
of the region. Naturally, a model that has to simulate various solutions needs several
parameters and then RB methods can be a useful and powerful instrument to handle
them;

2. it is peculiar for urban and natural resources. Trieste is a city that arises on the
seaside and it is linked to its gulf under many aspects: tourism, economy, industry,
ecology and biodiversity, etc. For this reasons the study of the gulf can lead to
several important results, involving different aspects of citizens’ life and natural
environment.

Concluding, pollutant substances are, obviously, dangerous (i.e. see [21]): the unhealthy
effects could damage not only the peculiar flora and fauna of the Gulf, but, indirectly,
also human beings: Trieste is a city that overlooks the seaside and many of its activities
depends on it. As we have seen, many variables have to be taken into considerations, the
morphology of the Gulf, the structure of the city and the weather conditions, very peculiar
in this particular zone. In this specific example we focused on physical parametrization,
but in this case one can consider also geometrical parametrization and study different
phenomena. Reduced basis methods can be very versatile in this context, where many
parameters are involved and query optimal control problems could be formulated. In this
particular field of application, as in Oceanographic example, simulations can be computa-
tionally demanding and costly: RB techniques could be a good and viable way to reduce
this issue.
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Perspectives

In this appendix we are going to show some results on parametrized optimal control prob-
lems governed by PDEs (OCP(µµµ)), that could be better developed in future.
The natural prosecution of this study, is to extend the concept proposed among the chap-
ters of this master thesis in more general frameworks. The initial purposes of this work
was to analyse not only linear quadratic optimal control problems, but also non-linear
and time dependent OCP(µµµ). Naturally, these two extensions are of great importance in
engineering applications, as we can see in [19, 30, 23, 14, 13, 55], for example.
In Oceanographic applications, while the non-linearity could be neglected, time depen-
dency is really important since the research is interested in temporal evolution of the dy-
namics and of the phenomena related to it. In the small scale contexts, the non-linearity
has a major influence: fluids dynamics is usually modeled by Navier-Stokes equations.
One of the main focus of scientific investigation in this field is linked on the the effects of
non-linearity related to Reynolds number.
Among this work we bumped into OCP(µµµ) with non-linear state equations. In the fol-
lowing sections we will describes some numerical results linked to the little steps made in
non-linearity and time dependency, respectively.

Non-Linearity

Among this work, we tried to implement and study also OCP(µµµ) governed by non-linear
PDEs. In this section we are going to show some results obtained in this direction. The
reduction was not implemented, but we ran some high fidelity simulations.
Initially, our attention focused on steady quasi-geostrophic non-linear equation and steady
Navier Stokes equation, exploited in the geophysical version. We were able also to build
state solution tracking non-linear OCP(µµµ) governed by quasi-geostrophic equation. The
results that we are going to show are derived from finite element approximation.

Steady Quasi-Geostrophic Equation: State Equation and Control

We recall the non-linear version of the steady quasi-geostrophic equation, already intro-
duced in subsection 5.1.1. Considering Ω = [0, 1] × [0, 1], Ocean circulation is described
by the following non-linear PDE.

(δI
L

)2
F(ψ,∆ψ) + ∂ψ

∂x
= f − δS

L
∆ψ +

(δM
L

)3
∆2ψ in Ω,

ψ = 0 on ∂Ω,
∆ψ = 0 on ∂Ω,

(1)

where the non-linearity is defined by:

F(ψ, q) = ∂ψ

∂x

∂q

∂y
− ∂ψ

∂y

∂q

∂x
,
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where ψ is in suitable function space Y , L = 106 is a dimensional parameter, δI is the
non-linearity parameter, while δM , δS are diffusivity parameters and the forcing term is
f = − sin(πy). As we did in subsection 5.1.1, we can impose q = ∆ψ and the system
becomes 

q = ∆ψ in Ω,(δI
L

)2
F(ψ, q) + ∂ψ

∂x
= u− δS

L
q +

(δM
L

)3
∆q in Ω,

ψ = 0 on ∂Ω,
q = 0 on ∂Ω.

(2)

For the simulations we had to build the weak formulation of the problem. Let us consider
ψ, q ∈ Y = H1

0 (Ω) × H1
0 (Ω). Thanks to this assumptions and exploiting integration by

part and divergence theorem we can reach the following weak formulation for the problem
(2): ∀(φ, p) ∈ V , find (ψ, q) ∈ V such that verify

∫
Ω
qp+

∫
Ω
∇ψ · ∇p = 0

(δI
L

)2 ∫
Ω

(ψ∇q × k̂) · ∇φ+
∫

Ω

∂ψ

∂x
φ+

(δM
L

)3 ∫
Ω
∇q · ∇φ+ δS

L

∫
Ω
qφ = f

where f = − sin(πy) and exploiting the relation (see [11, Appendix A])

F(ψ, q) = div(ψ∇q × k̂).

We studied the dynamics of this PDE in a framework of weak non-linearity: in other
words, when the diffusivity and the non-linear parameters are comparable. Indeed, when
δI � δM , the system is unstable and needs a stabilization. We propose some numerical
results, some of them have been already introduced in subsection 5.1.1. In figure 1 three
configuration are shown, for different choice of parameters. The diffusivity parameter
δS = 0 in all the experiments, while:

• on the left we choose δI = 0 and δM = 7 · 104;

• the plot in the center shows the non-linear solution for δI = δM = 7 · 104;

• on the right the unstable result for δI = 7 · 104 and δM = 7 · 103.

Figure 1: Left: linear solution; center : weak nonlinear solution, right: high nonlinear solution.
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The next step was to implement a non-linear state tracking control problem. The problem
formulation is totally similar to (5.1.5). We already know that the state space is Y , the
control space is U and the adjoint space is Q = Y . The OCP split version reads:

min
(ψ,u)∈Y×U

J(ψ, u) = 1
2

∫
Ω

(ψ − ψd)2 dΩ + α

2

∫
Ω
u2 dΩ

such that



q = ∆ψ in Ω,
∂ψ

∂x
+
(δI
L

)2
F(ψ, q) +

(δS
L

)
q −

(δM
L

)3
∆q = u in Ω,

ψ = 0 on ∂Ω,
q = 0 on ∂Ω.

(3)

Let us define (ψadj , qadj) ∈ Q as the adjoint variables. Thanks to Lagrangian approach we
have built the following optimality system.


aadj((ψadj , qadj), (χ, t)) = −(ψ − ψd, χ)L2(Ω) ∀(χ, t) ∈ Y,
(αu, v)L2(Ω) = c(v, (ψadj , qadj)) ∀v ∈ U,
a((ψ, q), (φ, p)) = c(u, (φ, p)) ∀(φ, q) ∈ Q,

(4)

where a : Y ×Q→ R is defined as the sum of the weak formulation of the right hands sides
of state equation in the constrain of (3)10. The bilinear form c : U ×Q→ R is defined as

c(u, (φ, p)) =
∫

Ω
uφ dΩ.

The bilinear form aadj : Y ×Q→ R, thanks to integration by parts, divergence’s theorem
and thanks to the hypotheses made on the functions, is defined as follows:

aadj((ψadj , qadj), (χ, t)) =−
∫

Ω

∂ψadj
∂x

χ dΩ +
(δM
L

)3 ∫
Ω
∇qadj · ∇χ dΩ +

+
(δS
L

) ∫
Ω
qadjχ dΩ +

(δI
L

)2 ∫
Ω
F(χ, q)ψadj dΩ +

+
(δI
L

)2 ∫
Ω
F(ψ, χ)qadj dΩ +

+
∫

Ω
qadjt dΩ +

∫
Ω
∇qadj · ∇t dΩ,

Let us show some numerical results in the case of weak non-linearity. We use a Finite
Element discretization P1−P1 both for state and adjoint variables, to simulate the control
problem. In figure 2 a comparison between the desired state, the Finite Element solu-
tion. The right plot shows the pointwise error of the difference between desired state and
state obtained: the maximum value reached is 1.703 · 10−2, whereas the value of the cost
functional is J = 1.0960 · 10−5.

10The consistency with the strong formulation of the state equation can be shown as we did in subsection
5.1.1.

105



Figure 2: Left: desired state; center : control problem solution, right: pointwise error.

Steady Geophysical Navier Stokes State Equation

In order to understand what is the link between Quasi-Geostrophic equation and the
geophysical Navier Stokes dynamics, we decided to simulate it and to compare the results
obtained with these two different approaches. We recall the strong formulation of the PDE
(5.1.2), describing large scale fluid motion under the influence of Earth’s rotation. In this
particular example, we considered δS = 0. Our purpose is to find u ∈ V = H1

0 (Ω)×H1
0 (Ω)

and p ∈ P = L2
0(Ω) where

L2
0(Ω) =

{
r ∈ L2(Ω) :

∫
Ω
r = 0

}
,

such that:

(δI
L

)2
(u · ∇)u− (1 + y)u2 = −∂p

∂x
+
(δM
L

)3(∂2u1
∂x2 + ∂2u1

∂y2

)
+ f1 in Ω,

(δI
L

)2
(u · ∇)v + (1 + y)u1 = −∂p

∂y
+
(δM
L

)3(∂2u2
∂x2 + ∂2u2

∂y2

)
+ f2 in Ω,

div(u) = 0 on ∂Ω,
u = 0 on ∂Ω,

(5.2.8)

in this case, u = (u1, u2) and the forcing term f = (f1, f2) is linked to the wind stress
and is taken as f =

(
− 1
π

cos(πy), 0
)
. For the simulations we have considered a Finite

Element approximation, with a P2−P1 discretization for both state and adjoint variables.
The weak formulation of the problem reads: find (u, p) such that:{

a(u,v) + b(v, p) = f ∀v ∈ V,
b(u, q) = 0 ∀q ∈ P,

(5.2.9)

where the bilinear forms a : V × V → R and b : V × P → R are defined as follows:

a(u,v) =
(δI
L

)2 ∫
Ω

(u · ∇)u dΩ−
∫

Ω
(1 + y)u2v1 dΩ +

+
∫

Ω
(1 + y)u1v2 dΩ +

(δM
L

)3 ∫
Ω
∇u · ∇v dΩ,

b(v, p) =−
∫

Ω
div(v)p dΩ.
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Let us show some results. As in the quasi-geostrophic case, the simulation is very unstable
for δI � δM . A stabilization is needed. Figure 3 shows the velocity fields in two config-
urations: in the left we have the velocity solution for δI = 0 and in the center the weak
non-linear velocity solution corresponding to δI = δM = 7 · 104.

Figure 3: Left: linear velocity; right: weak non-linear velocity.

As we expect, in the linear case we have a thickening of the current toward the west
boundary. When we add the non-linear effect, the velocity fields moves Northward.

Time Dependency

Time dependency is another topic of great importance in science and engineering simula-
tions. In our work, we wanted to exploit it in Oceanographic application: one could focus
on the study of the evolution of the quasi-geostrophic equations and the builing of a time
dependent tracking control problem to be inserted in a data assimilation context. In the
following subsection we will show time dependent evolution of quasi-geostrophic equation
and of geophysical Nevier-Stokes.

Time Dependent Quasi-Geostrophic Equation State Equation

One of the major spark of this master thesis was the study of data assimilation model.
In other words we aim at simulating a time dependent dynamics and at some time steps
making an optimization on the solution in order to modify the parameters considered: in
this way a forecasting model could be more precise and reliable. The first step we did in
this direction was to simulate the time evolution of the quasi-geostrophic equation.
Let consider the usual domain Ω = [0, 1] × [0, 1]. The split time dependent quasi-
geostrophic PDEs read as follows: find (ψ, q) ∈ V = H1

0 (Ω)×H1
0 (Ω) such that



q = ∆ψ in Ω,
∂q

∂t
+
(δI
L

)2
F(ψ, q) + ∂ψ

∂x
−
(δM
L

)3
∆2q + δS

L
q = − sin(πy) in Ω,

q = 0 on ∂Ω,
ψ = 0 on ∂Ω.

(5.2.10)
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As we did in the previous section, we can derive the weak formulation. It reads: find
(ψ, q) ∈ V such that for every (φ, p) ∈ V :

∫
Ω
qp+

∫
Ω
∇ψ · ∇p = 0∫

Ω

∂q

∂t
φ+

(δI
L

)2 ∫
Ω

(ψ∇q × k̂) · ∇φ+
∫

Ω

∂ψ

∂x
φ+

+
(δM
L

)3 ∫
Ω
∇q · ∇φ+ δS

L

∫
Ω
qφ = f.

(5.2.11)

As is the previous examples, we exploited a P1 − P1 Finite Element approximation for
the state variable. For the time evolution we used an Implicit Euler Method, with initial
conditions q(t = 0, x) = 0. Let us show some results for different configurations.

Linear case

Let us take Ω = [0, 1] × [0, 1]. We are going to present the results obtained with the
following parameters: δI = 0 and δM = 7 · 104. The time interval is [0, 60] and the dt = 10
as time increment11. In figure 4 the time evolution at t = 10, t = 30 and t = 60, from left
to right.

Figure 4: Time evolution of linear case on the square domain.

The same parameters are were used in the simulation on the Atlantic Ocean. The time
interval of the simulation is [0, 100], dt = 10. In figure 5 linear time evolution is presented
for t = 10, t = 60 and t = 100, from left to right.

Figure 5: Time evolution of linear case on North Atlantic Ocean.

11A time increment of dt = 10 means 4 month of dynamics evolution.
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Non-linear case

Let us take Ω = [0, 1] × [0, 1]. In this paragraph we will show the results for an high
non-linear case: δI = 7 ·104 and δM = 7 ·103. The time interval is [0, 130] and the dt = 10.
In figure 6 the snapshots proposed are related to t = 10, 60, 130, from left to right.

Figure 6: Time evolution of non-linear case on the square domain.

We simulated the same parameters on the North Atlantic mesh. The time interval in this
case is [0, 100], and the plots in figure 7 represent the ψ solutions at time t = 10, 60, 100,
from left to right.

Figure 7: Time evolution of non-linear case on North Atlantic Ocean.

Time Dependent Geophysical Navier Stokes State Equation

The time dependence was studied also in the case of geophysical Navier Stokes equations.
The unsteady formulation of the equations for δS = 0 is the following: find u ∈ V =
H1

0 (Ω)×H1
0 (Ω) and p ∈ P = L2

0(Ω) such that



∂u1
∂t

+
(δI
L

)2
(u · ∇)u1 − (1 + y)u2 = −∂p

∂x
+
(δM
L

)3(∂2u1
∂x2 + ∂2u1

∂y2

)
+ f1 in Ω

∂u2
∂t

+
(δI
L

)2
(u · ∇)u2 + (1 + y)u1 = −∂p

∂y
+
(δM
L

)3(∂2u2
∂x2 + ∂2u2

∂y2

)
+ f2 in Ω

div(u) = 0 on ∂Ω
u = 0 on ∂Ω,

(5.2.12)
where u = (u1, u2). Also in this case we used a Finite Element discretization. The scheme
used was a P2 − P1, for velocity variable and pressure, respectively. To simulate the time
evolution, we exploit and implicit Euler method, with u(t = 0, x) = 0. Let us show some
result in linear and wek non-linear framework.
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Linear case

As we did for quasi-geostrophic case, we analysed the case of linear solution with δI = 0
and δM = 7 ·104. First of all we considered the square domain Ω = [0, 1]× [0, 1]. The time
interval is [0,60] and dt = 10. From left to right, the plots in figure 8 show velocity field
solutions for t = 10, 30, 60.

Figure 8: Linear geophysical Navier Stokes velocity on the squared domain.

The same physics and time parameters were used to understand linear time evolution
in the North Atlantic Ocean. In figure 9 velocity plots are shown: from left to right
t = 10, 30, 60 with dt = 10.

Figure 9: Linear geophysical Navier Stokes velocity on North Atlantic Ocean.

Non-linear case

Although we used no stabilization techniques, we were able to handle the weak linear case
corresponding to the parameters δI = δM = 7 · 104. The simulation in this case is made
on the time interval [0, 100], with the usual dt = 10. Figure 10 shows the evolution for
t = 10, 60, 100.

Figure 10: non-linear geophysical Navier Stokes velocity on the squared domain.

In figure 11 the results of the same experiment run on the North Atlantic Ocean mesh is
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proposed, for the same temporal steps.

Figure 11: Non-linear geophysical Navier Stokes velocity on the Atlantic Ocean.

Conclusions and Future Developments

Among this appendix, we have presented the first results obtained in order to extend
what we have discussed among this work to non-linear time dependent optimal control
problems. At the end, let us expose purposes and intentions that we want to improve and
complete as a natural development of this master thesis.

1. First of all, a deeper analysis of non-linear cases is required to build OCP (µµµ) gov-
erned by a general state equation. Then, we plan to deal with non-linear control
problems, solve them with RB methods and compare this approach to the other
discretization techniques, as Finite Element discretization.

2. Next step would involve the development of time dependent optimal control prob-
lems. They are of great importance in climatological applications, in order to fore-
cast and predict future scenarios. Time dependency will make the problems more
computational demanding. In this sense another objective is to apply model order
reduction to save computational resources.

3. Naturally, another objective is to mix these two first points to build non-linear time
dependent optimal control problems.

4. Finally, we would like to exploit what we previously underlined in environmental
applications: in particular, this knowledge can be exploited in order to build a real
data assimilation model. The other step is to reduce the problem and to compare
RB performance with full order resolution.
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[13] J. C. de los Reyes and F. Tröltzsch. Optimal control of the stationary Navier-Stokes
equations with mixed control-state constraints. SIAM Journal on Control and Opti-
mization, 46(2):604–629, 2007.
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questo progetto sotto la sua supervisione: ha sempre trovato il modo e il tempo non solo
di seguire il mio lavoro, ma anche di indirizzarmi e sostenermi, con grande professionalità,
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