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Sommario

Questa tesi tratta di metodi stabilizzati a basi ridotte per l’approssimazione di equazioni
di diffusione–trasporto alle derivate parziali (PDEs), quando il termine di trasporto do-
mina su quello di diffusione, anche inserendole in un contesto di equazioni stocastiche con
input aleatori.

Introdurremo rapidamente le PDE ellittiche parametrizzate, in particolare l’equazione
di diffusione–trasporto. Poi, presenteremo il metodo a basi ridotte (RB) nei dettagli
[19]. Ci concentreremo sulla strategia di campionamento, sullo stimatore dell’errore e sul
metodo SCM per l’approssimazione della costante di coercività.

Mostreremo alcuni metodi classici di stabilizzazione per gli elementi finiti (FE) [5, 49]
sulle equazioni di diffusione–trasporto con trasporto dominante, quindi studieremo due
metodi di stabilizzazione per le basi ridotte [41]. Introdurremo la formulazione generale
delle basi ridotte per i problemi parabolici e definiremo una tecnica di stabilizzazione
adatta a quest’ultima, basata, anch’essa, sulle stabilizzazione usate negli elementi finiti.

Dopo un’introduzione sulle equazioni stocastiche alle derivate parziali, mostreremo
il metodo pesato a basi ridotte [7] e lo combineremo con le tecniche di stabilizzazione
studiate. Infine, forniremo un metodo che combina le due tecniche di stabilizzazione, al
fine di risparmiare costi computazionali.

Abstract

The aim of this master thesis is to study a stabilized reduced basis method suitable
for the approximation of parametrized advection–diffusion partial differential equations
(PDEs), in advection dominated cases, even in stochastic equations context, considering
random inputs.

We will briefly introduce elliptic coercive parametrized PDEs, in particular advection–
diffusion equation. Then we will show the RB method and we will describe it in details
[19]. In particular we will focus on sampling strategies, the a posteriori error estimator
and the SCM for the approximation of the coercivity constant.

We will show some classical stabilization methods for FE approximation of advection
dominated problems [5, 49], then we will study two reduced basis stabilization methods
[41]. Furthermore, we will introduce the general RB method for parabolic problems and
then we design a suitable stabilization technique, based on stabilization for the FE ap-
proximation of advection dominated parabolic problems.

After an introduction of stochastic partial differential equations, we will show the
weighted RB method [7] and we will combine it with stabilization techniques. Finally, we
will provide a method that uses both stabilization techniques to optimize computational
costs.



Introduzione

L’obiettivo di questa tesi magistrale è di studiare un metodo stabilizzato a basi ridotte
per l’approssimazione di equazioni di diffusione–trasporto alle derivate parziali (PDEs),
quando il termine di trasporto domina su quello di diffusione, anche inserendole in un
contesto di equazioni stocastiche con input aleatori.

Le equazioni di diffusione trasporto sono molto importanti in molte applicazioni in-
gegneristiche, infatti, sono usate per modellare, per esempio, fenomeni di diffusione del
calore o degli agenti inquinanti nell’atmosfera. Noi siamo interessati a studiare le rela-
tive equazioni di diffusione–trasporto nel caso in cui sia alto il numero di Péclet, che,
grossolanamente, rappresenta il rapporto tra il termine di trasporto e quello di diffusione.

Inoltre, in queste applicazioni, è spesso richiesta una valutazione rapida di soluzioni
approssimate che dipendono da alcuni parametri in input. Ciò avviene, per esempio,
quando si tratta di eseguire simulazioni in tempo reale o se abbiamo bisogno di risolvere le
nostre equazioni per numerosi parametri. Queste situazioni sono molto comuni in alcuni
problemi di ottimizzazione, dove il funzionale da ottimizzare può dipendere dalla soluzione
delle equazioni al variare dei parametri.

Il metodo a basi ridotte (RB) può essere una soluzione a questi problemi. Infatti,
ci fornisce velocemente delle approssimazioni delle soluzioni delle PDE e garantisce l’ac-
curatezza della soluzione con uno stimatore dell’errore. In letteratura si trovano molti
lavori riguardo l’applicazione delle basi ridotte a problemi di diffusione–trasporto con
basso numero di Péclet [14, 47, 52] e alcuni su quelli con alti numeri di Péclet [41, 42, 43].

Per trattare i problemi con alti numeri di Péclet, bisogna preventivamente applicare
delle tecniche di stabilizzazione [5, 49], in quanto le soluzioni numeriche più usate in questo
ambito, ad esempio gli elementi finiti (FE), sulle quali le basi ridotte si basano, presentano
forti instabilità.

Confronteremo due tecniche di stabilizzazione delle basi ridotte: una computazional-
mente più costosa, che fornisce, però, stabilità a tutti i livelli dell’algoritmo, e un’altra più
rapida, ma talvolta instabile. Testeremo questi metodi sia su problemi statici (equazioni
ellittiche) che su problemi tempo–dipendenti (equazioni paraboliche).

Infine, studieremo i metodi a basi ridotte con equazioni stocastiche. In particolare,
sarà interessante trattare input aleatori governati da note distribuzioni di probabilità. In
questo contesto, presenteremo il metodo pesato a basi ridotte (wRB) [7] e lo combineremo
con le tecniche di stabilizzazione precedentemente presentate. Inoltre, studieremo una
strategia per ridurre i costi computazionali di stabilizzazione, sfruttando i due metodi di
stabilizzazione. Tutti gli algoritmi saranno testati con diversi esempi.

Il contributo originale di questo lavoro è l’applicazione di metodi a base ridotta pesati
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a equazioni con alto numero di Péclet, sia nelle equazioni ellittiche che paraboliche, con
input aleatori e lo sviluppo di diversi metodi di stabilizzazione per ottenere soluzioni stabili
ottimizzando i tempi computazionali.

Il lavoro si suddividerà nel seguente modo:

Cap. 1 Introdurremo rapidamente le PDE ellittiche parametrizzate, in particolare l’equazione
di diffusione–trasporto. Poi presenteremo il metodo a basi ridotte nei dettagli. Ci
concentreremo sulla strategia di campionamento, sullo stimatore dell’errore e sul
metodo SCM per l’approssimazione della costante di coercività.

Cap. 2 Mostreremo alcuni metodi classici di stabilizzazione per gli elementi finiti sulle
equazioni di diffusione–trasporto, quindi studieremo due metodi di stabilizzazione
per le basi ridotte e li testeremo su alcuni esempi.

Cap. 3 Introdurremo la formulazione generale delle basi ridotte per i problemi parabolici e
definiremo una tecnica di stabilizzazione adatta a quest’ultima, basata sulle stabi-
lizzazione usate negli elementi finiti. Testeremo alcuni esempi.

Cap. 4 Dopo un’introduzione sulle equazioni alle derivate parziali stocastiche, mostreremo
il metodo pesato a basi ridotte e lo combineremo con le tecniche di stabilizzazione
studiate. Infine, forniremo un metodo che combina le due tecniche di stabilizzazione,
al fine di risparmiare costi computazionali.

Per simulare numericamente tutti gli algoritmi proposti in questo lavoro, abbiamo
usato la libreria RBniCS [3], sviluppata da SISSA mathLab, che è un’implementazione in
FEniCS di svariate tecniche di modellazione ridotta. Durante il lavoro, la libreria è stata
estesa e sviluppata implementando i metodi di stabilizzazione, i metodi a base ridotta per
le equazioni paraboliche e il metodo pesato a basi ridotte.



Introduction

The aim of this master thesis is to study a stabilized reduced basis method suitable
for the approximation of parametrized advection–diffusion partial differential equations
(PDEs), in advection dominated cases, even in stochastic equations context, considering
random inputs.

Advection–diffusion equations are very important in many engineering applications,
because they are used to model, for example, heat transfer phenomena or the diffusion of
pollutants in the atmosphere. We are interested in studying related advection–diffusion
PDE when their Péclet numbers, representing, roughly, ratio between the advection and
the diffusion field, are high.

Moreover, in such applications, we often need very fast evaluations of the approximated
solution, depending on some input parameters. This happens, for example, in the case
of real-time simulation or if we need to perform repeated approximations of solutions, for
different input parameters. We find such many-query situations in optimization problems,
in which the objective function to be optimized depends on the parameters through the
solution of a PDE.

The reduced basis (RB) method can be a solution for these issues. It provides rapidly
approximation of solution of PDEs and it is able to guarantee the reliability of the solution
with a sharp a posteriori error bound. In literature we can find many works about appli-
cation of the RB method to advection-diffusion problems, both with low Péclet number
[14, 47, 52] and some with high Péclet number [41, 42, 43].

To deal with high Péclet number problems, we have to resort to some stabilization
techniques [5, 49], since high fidelity numerical solutions, such as finite element method,
that RB method aims to recover, exhibit strong instability problems.

Concerning stabilization techniques, we will compare two RB stabilization techniques
that can be used: one requiring more computational load, but more efficient, and the
other cheaper from a computational point of view, but still unstable. We will test these
methods on both steady case (elliptic equation) and unsteady case (parabolic equation).

Finally, we will study RB methods, with stochastic equations. In particular, we are
interested in dealing with random inputs defined by prescribed random variables. In this
context, we will show the wRBM (weighted reduced basis method) [7] and we will apply
it to stabilized reduced basis strategies. Moreover, we will study a way to reduce compu-
tational costs, combining the two reduced basis stabilization methods studied before. We
will use several examples to tests our methods.

The original contribution of this work is to apply the wRBM on unstable high Péclet
advection–diffusion equations, both in the steady and unsteady case, with random in-
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put parameters and the development of different stabilization methods to obtain stable
solutions with optimized computational times.

The work will be structured as following:

Ch. 1 We will briefly introduce elliptic coercive parametrized PDEs, in particular advection–
diffusion equation. Then we will introduce the RB method and we will describe it
in details. In particular we will focus on sampling strategies, the a posteriori error
estimator and the SCM for the approximation of the coercivity constant.

Ch. 2 We will show some classical stabilization methods for FE approximation of advection
dominated problems, then we will study two reduced basis stabilization methods and
we will test them on some examples.

Ch. 3 We will introduce the general RB method for parabolic problems and then we design
a suitable stabilization technique, based on stabilization for the FE approximation of
advection dominated parabolic problems. We will test this method on few examples.

Ch. 4 After an introduction of stochastic partial differential equations, we will show the
weighted RB method and we will combine it with stabilization techniques. Finally,
we will provide a method that uses both stabilization techniques to optimize com-
putational costs.

To perform computations that will be proposed in this works, we used RBniCS [3] library,
developed at SISSA mathLab, which is an implementation in FEniCS of several reduced
order modelling techniques. This library has been extended and developed while carrying
out this work, implementing stabilization methods, parabolic RB methods and weighted
RB method.



Chapter 1

Reduced basis methods for elliptic
coercive PDEs

The reduced basis (RB) method is a reduced order modelling (ROM) technique which
provides rapid and reliable solutions for parametrized partial differential equations (PPDEs),
in which the parameters can be either physical or geometrical [19].

The need to solve this kind of problems arises in many engineering applications, in
which the evaluation of some output quantities is required. These outputs are often func-
tional of the solution of a PDE, which can in turn depend on some input parameters. The
aim of the RB method is to provide a very fast computation of this input-output evaluation
and so it turns out to be very useful especially in real-time or many-query contexts.

There are several options about the type of reduced basis to use. In this work we will
focus on Lagrange basis, but it would be possible to choose Taylor basis [44], Hermite
basis [26] and proper orthogonal decomposition (POD) basis [19, 51]. Moreover, we will
use only hierarchical RB spaces [19, 51].

The (Lagrange) RB method starts form a high-fidelity approximation space, e.g. a
finite element (FE) space, with a large degrees of freedom, then, for a chosen parameter
it computes a Galerkin projection of the original solution onto the reduced basis (RB)
subspace. This subspace is the one spanned by some pre-computed high-fidelity solutions
(snapshots) of the continuous parametrized problem, corresponding to some suitably cho-
sen values of the parameter.
Let us start considering elliptic coercive PPDEs. Denoting with µ the p-vector parameter,
belonging to the parameter space D ⊂ Rp, our problem is to find u(µ) in an Hilbert space
X such that

a(u(µ), v;µ) = F (v;µ) ∀v ∈ X (1.1)

where a(·, ·;µ) are coercive continuous bilinear forms and F (·;µ) are continuous linear
forms, for all µ in D. Moreover, we require that the map D → X defined by µ→ u(µ) is
smooth, and so the p-dimensional manifold

M = {u(µ) ∈ X |µ ∈ D} (1.2)

turns out to be smooth too.
To proceed in the reduced basis method, we have to define an high-fidelity truth ap-

proximation space, called XN , which is a linear space of finite dimension N , typically
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very large, where we can find our truth solution uN (µ). In this work, we will choose as
XN the classical lagrangian FE space and we will use as truth solution the FE one. Other
possible choices of truth solution can be found in literature, like spectral element [34] and
finite volumes [18]. Acting in this way we can consider the truth manifold

MN = {uN (µ) ∈ XN |µ ∈ D} (1.3)

where uN (µ) is the high-fidelity approximation of the solution of (1.1). The goal of the
RB method is to provide a low-order approximation of the latter manifold.

The reduced basis method requires the following components [4, 19, 47]:

1. rapidly convergent global approximation by Galerkin projection onto anN−dimensional
subspace of XN spanned by solutions of the governing PPDE corresponding to N
suitably selected values of the parameter µ. To get a significant reduction of the
computational cost, it is crucial that N � N .

2. rigorous and sharp a posteriori error estimators for the error between the RB solution
and the truth one. This estimation is fundamental for both the certification of the
method and the sampling procedure used to build the reduced basis. Moreover, we
need to require that the computation of these error bound is inexpensive.

3. decoupling of the computation in two stages: an expensive Offline stage, to be per-
formed only once, and a very inexpensive Online one, in which is actually performed
the input-output evaluation.

Intuitively, we can represent the approximation of the truth manifold by mean of
the Lagrangian RB method as sketched in Figure 1.1, when we are dealing with one
dimensional parameter µ. The black line is the truth manifold in the N -dimensional
space XN . The black dots represent the snapshot solutions, which act like Lagrangian
interpolation nodes. Finally, the red dashed “interpolant” is our RB approximation, that
is built by linear combination of snapshot solutions.

Figure 1.1: Intuitive representation of the truth manifold (1.2) (black line) and its RB
approximation (red dashed line)
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1.1 Elliptic coercive parametrized PDEs

Let µ belong to the parameter domain D, a subset of RP . Let Ω be a regular bounded
open subset of Rd (d = 1, 2, 3) and X a suitable Hilbert space. Given a parameter value
µ ∈ D, let a(·, ·;µ) : X × X → R be a bilinear form and let F (·;µ) : V → R be a linear
functional. As we will consider only second order elliptic PDE, the space X will be such
that H1

0 (Ω) ⊂ X ⊂ H1(Ω). Formally, our problem can be written as follows:

find u(µ) ∈ X s.t.

a(u(µ), v;µ) = F (v;µ) ∀v ∈ X .
(1.4)

Let us define the norms and the inner products we will use. Let asym be the symmetric
part of a. We define:

((v, w))µ := asym(v, w;µ) ∀v, w ∈ X

|||v|||µ := asym(v, v;µ)
1
2 ∀v ∈ X .

(1.5)

The latter forms are of course µ-dependent, but, for our purpose, we will also need
norm and inner product that do not depend on the parameter. Thus we choose a particular
value of the parameter µ̄ ∈ D and we define:

(v, w)X := ((v, w))µ̄ + τ(v, w)L2(Ω) ∀v, w ∈ X

||v||X := ((v, v)X)
1
2 ∀v ∈ X

(1.6)

with τ > 0. We will further discuss the choice of τ and µ.
The coercivity and continuity assumption on the form a can now be expressed by,

respectively:

∃ α0 s.t. α0 ≤ α(µ) = inf
v∈X

a(v, v;µ)

||v||2X
∀µ ∈ D (1.7)

and

+∞ > γ(µ) = sup
v∈X

sup
w∈X

|a(v, w;µ)|
||v||X ||w||X

∀µ ∈ D. (1.8)

Now we shall make an important assumption: the affine dependence of a on the parameter
µ. With affine we mean that the form can be written in the following way:

a(v, w;µ) =

Qa∑
q=1

Θq
a(µ)aq(v, w) ∀µ ∈ D. (1.9)

Here, Θq
a(µ) : D → R, q = 1, . . . , Qa, are smooth functions, while aq : X × X → R,

q = 1, . . . , Qa, are µ-independent continuous bilinear forms. This assumption will turn
out to be crucial for performing the Offline-Online decoupling of the computation. In a
similar way we assume that also the functional F depends “affinely”on the parameter:

F (v;µ) =

QF∑
q=1

Θq
F (µ)F q(v) ∀µ ∈ D, (1.10)



CHAPTER 1. REDUCED BASIS METHODS FOR ELLIPTIC COERCIVE PDES 11

where, also in this case, Θq
F (µ) : D → R, q = 1, . . . , QF , are smooth functions, while

F q : X → R, q = 1, . . . , QF , are µ-independent continuous linear functionals.
Recalling that XN is a conforming finite element space 1 with N degrees of freedom,

we can now set the truth approximation of the problem (1.4):

find uN (µ) ∈ XN s.t.

a(uN (µ), vN ;µ) = F (vN ;µ) ∀vN ∈ X .
(1.11)

As we are considering the conforming FE case, conditions similar to (1.7) and (1.8) are
fulfilled by restriction. More precisely, as regards the coercivity of the restriction of a to
XN ×XN , we define:

αN (µ) := inf
vN∈XN

a(vN , vN ;µ)

||vN ||2X
∀µ ∈ D (1.12)

and, as we are considering a restriction, it easily follows that:

α(µ) ≤ αN (µ) ∀µ ∈ D. (1.13)

Similarly, for the continuity, we can define

+∞ > γN (µ) = sup
vN∈XN

sup
wN∈XN

|a(vN , wN ;µ)|
||vN ||X ||wN ||X

∀µ ∈ D. (1.14)

and it holds that:
γ(µ) ≥ αN (µ) ∀µ ∈ D. (1.15)

In this work we will consider as truth approximation space space XN a classical finite
element space. [45]

1.1.1 Geometrical parametrization

An important feature of the the RB method is that it can be used even when the
parameter is “geometrical”, i.e. the domain of the equation depends on some parameters
[1, 2, 19, 24, 33, 36, 37].

As we will see in the next section, to apply the reduced basis method we need a problem
like (1.4), in which the forms involved have to be defined on a parameter independent space.
To overcome this difficulty, the idea is to assume that the original parametrized domain is
the image of a reference parameter-independent domain through a suitable transformation.
By doing so, the parametric dependence actually moves from the domain to the coefficients
of the equation.

Let us now call parameter-dependent original problem (subscript p) the one defined on
the parameter-dependent original domain Ωp(µ). It reads as follows:

find up(µ) ∈ Xp(µ) s.t.

ap(up(µ), vp;µ) = Fp(vp;µ) ∀vp ∈ Xp(µ)
(1.16)

1Conforming finite element space means that XN ⊂ X
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whereXp(µ) is a functional space on Ωp(µ), satisfying the conditionH1
0 (Ωp(µ)) ⊂ Xp(µ) ⊂

H1(Ωp(µ)). Moreover ap(·, ·;µ) and Fp(·;µ) are a bilinear and a linear form, respectively,
on Xp(µ). We assume that the bilinear form ap satisfies conditions (1.7) and (1.8).

To set the reference domain we choose a particular value of the parameter, µref ∈ D,
and define Ω = Ωp(µref ) as the reference domain. The latter is related to the original
domains through a parametric transformation T (·;µ) : Ω → RP such that T (Ω;µ) =
Ωp(µ).

We will now focus only on a particular classes of transformations and problems, as it
is done in [19, 47, 51]. First of all, for all µ ∈ D we introduce a domain decomposition of
Ωp(µ) such that:

Ωp(µ) =

Ldom⋃
l=1

Ω
l
p(µ) (1.17)

where the subdomains Ωl
p(µ), l = 1, . . . , Ldom are mutually non overlapping open subset

of Ωp(µ), that is:

Ωl
p(µ) ∩ Ωl′

p (µ) = ∅ 1 ≤ l < l′ ≤ Ldom. (1.18)

The need for domain decomposition can arise from modelling reasons, for instance it
could happen that the PDE describes a particular application so that different regions of
the domain correspond to different materials properties. This can lead to a PDE in which
the coefficients show significant discontinuities or the PDE itself can have different form
depending on the subdomain. However, a domain decomposition can be set to allow the
construction of maps T which guarantees that the forms involved depend “affinely” on the
parameter. We will now focus on this second aspect by introducing the piecewise affine
transformations.

In order to define the global mapping from the reference domain to the original one,
we start by defining the maps between subdomains. For each µ ∈ D we define T l(·;µ) :
Ωl → Ωl

p(µ), l = 1, . . . , Ldom, such that:

T l(Ωl;µ) = Ωl
p(µ) 1 ≤ l ≤ Ldom,

T l(x;µ) = T l
′
(x;µ) ∀x ∈ Ωl ∩ Ωl′ , 1 ≤ l < l′ ≤ Ldom.

(1.19)

We can now define the global mapping T (·;µ) : Ω → Ωp(µ) by gluing together the local
maps T l, that is:

T (x;µ) := T l(x;µ) ∀x ∈ Ωl ∩ Ω. (1.20)

We assume also that:

1. the maps T l, l = 1, . . . , Ldom, are individually bijective and affine;

2. the map T is continuous.

Under this affinity assumption, each local map T l can be described by

T li (x;µ) = C l
i(µ) +

d∑
j=1

Gl
ij(µ)xj x ∈ Ωl, 1 ≤ i ≤ d (1.21)
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where C l : D → Rd and Gl : D → Rd×d are smooth maps which associate to each value
of the parameter a vector in Rd and an invertible d × d matrix, respectively. Roughly
speaking, the matrix Gl(µ) scales and rotates the reference domain, whereas C l is a
translation vector. For each µ ∈ D, we denote with J l(µ) the determinant of the matrix
Gl(µ). From now on we consider d = 2.

1.1.2 Advection-diffusion-reaction operators

After having introduced the geometry transformations, we have now to discuss the
choice of the operators. An important class that can be effectively treated within an
“affine” framework is the one of advection-diffusion-reaction operators:

Lv = ∇ · (η(µ)∇v) + β(µ) · ∇v + γ(µ)v (1.22)

being η(µ) the 2 × 2 diffusivity tensor, β(µ) the advection (transport) field in R2 and
γ(µ) the reaction coefficient. The bilinear form defined on the original domain associated
to (1.22) is, for each vp, wp ∈ Xp(µ)

ap(vp, wp;µ) =

Ldom∑
l=1

∫
Ωlp(µ)

(
∂vp
∂xo1

∂vp
∂xo2

vp

)
Ko,l(µ)


∂wp
∂xo1

∂wp
∂xo2

wp

 (1.23)

where Ko,l : D → R3×3, l = 1, . . . , Ldom, is a smooth mapping such that, for every µ ∈ D,
the matrix Ko,l(µ) has the form:

Ko,l(µ) =

(
η(µ) β(µ)

0 γ(µ)

)
. (1.24)

Our goal is now to obtain a formulation of the problem in which all the forms are
defined on the reference domain.

Denoting with X the space Xp(µref ), given a value µ ∈ D, for each vp ∈ Xp(µ) we
can define v ∈ X as v = vp ◦ T (·,µ) (note that we have actually defined a one-to-one
correspondence between X and Xp(µ)). We can now track back the integrals in (1.23)
obtaining:

a(v, w;µ) =

Ldom∑
l=1

∫
Ωl(µ)

(
∂v
∂x1

∂v
∂x2

v
)
Kl(µ)


∂w
∂x1

∂w
∂x2

w

 (1.25)

with v and w belonging to X. In (1.25)Kl(µ), l = 1, . . . , Ldom, represents the transformed
operator. The latter can be explicitly written in this way:

Kl(µ) = J l(µ)G̃l(µ)Kp,l(µ)(G̃l(µ))T (1.26)

where

G̃l(µ) =

(
(Gl(µ))−1 0

0 1

)
. (1.27)
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Similarly we can require that the linear form fp(·;µ) : Xp(µ)→ R in (1.16) is, for all
v ∈ Xp(µ) :

Fp(vp;µ) =

Ldom∑
l=1

∫
Ωlp(µ)

Fp,l(µ)vp. (1.28)

Here Fp,l, l = 1, . . . , Ldom, is a function D → R.
Acting exactly as before, we can obtain a linear form defined on the reference space

X. This form turns out to be, for v ∈ X:

F (v;µ) =

Ldom∑
l=1

∫
Ωl(µ)

Fl(µ)v (1.29)

where, for l = 1, . . . , Ldom, the parametric coefficient Fl(µ) is

Fl(µ) = J l(µ)Fp,l(µ). (1.30)

It is important to note that after this discussion we have actually managed to rewrite
the problem (1.16) in the form of (1.4), from which we can obtain the truth approximation
formulation like in (1.11).

For further details about the construction of the domain decomposition performed, for
example, by the RBniCS [3] software we refer to [19], while for rbMIT c© software we refer
to [51]. For more complex classes of geometries, which involve non-affine mappings, we
need to resort to some interpolation technique (e.g. empirical interpolation method) in
order to recover the “affinity” assumption [4, 12, 15, 33].

1.2 The Reduced Basis method

As already mentioned before, the RB method aims to approximate the truth solution
uN (µ) of (1.11) by performing a Galerkin projection on a low-dimensional subspace of
XN spanned by solutions of (1.11), that we will call snapshot solutions, computed for
a well-chosen set of parameter values. In this section we will at first explain the main
features of the RB method and then we will illustrate the method used to choose the
snapshots, highlighting in particular the a posteriori error estimates used.

1.2.1 Main features

Let us suppose that we are given a problem in the form (1.4) and its truth approx-
imation (1.11). We recall that the dimension of the finite element space XN is N . We
introduce now, given an integer Nmax � N , a sequence of at most Nmax subspaces of
XN . For N = 1, ..., Nmax, let XNN be a N -dimensional hierarchical subspace of X such
that:

XN1 ⊂ XN2 ⊂ · · · ⊂ XNN ⊂ · · · ⊂ XNNmax . (1.31)

We will call these subspaces “RB spaces”. Theoretically, the hierarchical choice of the
subspaces would not be necessary. Nevertheless, it turns out to be very useful because it
allows a better exploitation of the memory during the computation and, as a consequence,
this improves the efficiency of the method.
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As mentioned at the beginning of this chapter, we focus on Lagrange RB spaces. In
order to define them, we need to introduce a set of Nmax parameter values:

Ξ = {µ1, . . . ,µNmax} (1.32)

and so we can define for N = 1, . . . , Nmax:

XNN = span{uN (µn)|1 ≤ n ≤ N}. (1.33)

The idea behind this definition is to interpolate the truth manifold (1.3) in correspondence
of the parameter values belonging to Ξ.

We observe that, by definition, the spaces defined in (1.33) satisfy the hierarchical
property (1.31).

Galerkin projection

Given a value µ ∈ D of the parameter and a dimension N , 1 ≤ N ≤ Nmax, of the RB
space, we define the RB solution uNN (µ) such that:

a(uNN (µ), vN ;µ) = F (vN ;µ) ∀vN ∈ XNN . (1.34)

Recalling that N � N , we emphasize the fact that to find the RB solution we need
just to solve a N ×N linear system, instead of the N ×N one of the FE method.

If the bilinear form a is symmetric, is straightforward to prove (via Galerkin orthogo-
nality) the following best “fit” approximation result:

|||uN (µ)− uNN (µ)|||µ ≤ inf
wN∈xNN

|||uN (µ)− wN |||µ. (1.35)

In order to discuss the Offline-Online computational decoupling, we write explicitly the
linear system associated to (1.34). First of all we apply the Gram-Schmidt process [19, 48]
with respect to the inner product (·, ·)X defined in (1.6), to the snapshots u(µn), n =
1, . . . , Nmax, spanning the RB spaces. We denote with ζnN , n = 1, . . . , Nmax, the mutually
orthonormal functions obtained. The RB solution can be now expressed by

uNN (µ) =
∑
m=1

uNN m(µ)ζNm (1.36)

then, choosing ζNn as v in (1.35), we obtain

N∑
m=1

a(ζNm , ζ
N
n ;µ)uNNm(µ) = F (ζNn ;µ) (1.37)

and this can be done for n = 1, . . . , N , thus obtaining a N ×N linear system [47].
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Offline-Online computational decoupling

Given the system (1.37), we can now resort to the affine assumptions (1.9) and (1.10)
to construct an efficient Offline-Online procedure. The system (1.37) can be rewritten

N∑
m=1

 Qa∑
q=1

Θq
a(µ)aq(ζNm , ζ

N
n )

uNNm(µ) =

QF∑
q′=1

Θq′

F (µ)f q
′
(ζNn ) (1.38)

for n = 1, . . . , N. The system we have obtained can be expressed in matrix form Qa∑
q=1

Θq
a(µ)Aq

N

uN (µ) =

QF∑
q′=1

Θq′

F (µ)Fq
′

N (1.39)

where

(uN (µ))m = uNNm(µ), (Aq
N )nm = aq(ζNm , ζ

N
n ), (FqN )n = f q

′
(ζNn ) (1.40)

for m,n = 1, . . . , N.

In order to compute the matrices Aq
N and Fq

′

N we can recall that ζNn belongs to XN

for n = 1, . . . , N and so it holds that:

ζNn =
N∑
i=1

ζNn i 1 ≤ i ≤ N, (1.41)

being {φ}Ni=1 the base of the FE space XN . Denoting with Z the N × N matrix whose
columns are the coordinates of ζN1 , . . . , ζ

N
N with respect to {φ}Ni=1, we have

Aq
N = ZTAq

NZ 1 ≤ q ≤ Qa
Fq

′

N = ZTFq
′

N 1 ≤ q′ ≤ QF
(1.42)

where
(Aq
N )ij = aq(φj , φi), (Fq

′

N )i = F (φi). (1.43)

It is crucial to note that in (1.39) the matrices Aq
N and FqN do not depend on the

parameter µ.
So, a good computational strategy is to compute and store them once for all. The compu-
tation and storage of the µ-independent structures is called “Offline” stage. More precisely
in this stage we compute and store:

• FE stiffness matrices Aq
N , for q = 1, . . . , N , and FE right-hand side terms FqN , for

q = 1, . . . , Nmax;

• snapshot solutions and the corresponding orthonormal basis {ζNn }
Nmax
n=1 ;

• RB stiffness matrices Aq
N , for q = 1, . . . , N, and RB right-hand side terms Fq

′

N , for
q′ = 1, . . . , N.
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We recall that our aim is to obtain, given a new value µ ∈ D, a fast and reliable
approximation of uN (µ). To do this, we need to evaluate the coefficients Θq

a(µ) and
Θq
F (µ) in order to assemble the N × N system in (1.39). Once this system has been

solved, the RB solution is obtained trough the relation (1.37). The operations done to
perform the evaluation µ 7→ uNN (µ) constitute the “Online” stage.

Let us now analyse the computational cost of the Online stage. First of all we have to
consider a cost of O(QaN

2) + O(QFN) to get the matrix and the right-hand side of the
system (1.39), then we need O(N3) operations to solve it [19, 47, 48]. At last we have to
do O(N) operations to perform the product in (1.37) to obtain the solution. As regards
the memory used, during the Online stage the storage cost is O(QaN

2
max) +O(QFNmax),

thanks to the hierarchical space assumption (1.31). The latter assumption allow us to store
the RB system matrices related to the RB space XNNmax so, if we want to use RB spaces
of dimension N ≤ Nmax, we need just to take the principal submatrices (or subvectors) of
the already stored ones.

The most important thing to note is that the Online stage cost is completely indepen-
dent from N .

1.2.2 Sampling strategies

We are now going to discuss about the greedy procedure [19, 47, 51] used to explore
the parameter space and to construct the RB space. Let us define the train samples set
Ξtrain as a finite subset of D, with cardinality |Ξtrain| = ntrain. We need that ntrain is
large enough to ensure that Ξtrain is a good “approximation” of the parameter space D,
i.e., even if we would refine the parameter sample, the greedy algorithm should return
the same results [19, 51]. This choice can heavily affect the computation of the Offline
phase while computation of the Online phase will remain the same. The choice of the
train samples will be discussed later, in cases where we do not have sufficient information,
we can proceed by using Monte Carlo methods with respect to a uniform or a log-uniform
density.

In order to perform a greedy procedure, we need a sharp and computationally inex-
pensive a posteriori error estimator µ→ ∆N (µ), that is

|||uN (µ)− uNN (µ)|||µ ≤ ∆N (µ) ∀µ ∈ D, 1 ≤ N ≤ Nmax (1.44)

that we will define and discuss in section 1.2.3. The algorithm is recursive and each step is
composed by two sub-steps: first, find the value µ̄ ∈ Ξtrain for which the estimator ∆N (µ)
is maximized, then compute the truth solution uNN (µ̄) and add it to the Lagrangian basis.
By acting in this way, in the (N + 1)-th iteration, we are adding to the already chosen
N -basis the solution that is worst approximated by Galerkin projection onto XNN . The
algorithm stops when the maximum estimated error is less then a prescribed tolerance
ε∗tol. We introduce also a secondary stopping criterion by setting Nmax as the maximum
number of basis we are willing to accept. If the tolerance has been obtained with a number
of basis N less than Nmax we set Nmax = N . The algorithm can be implemented as follows
[19]:
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Data: tol, µ1, Nmax

Result: A reduced space XNN
N = 1;
S1 = {µ1};
compute uN (µ1);
XN1 = span{uN (µ1)};
compute ∆1(µ1);
while ∆N (µN ) >tol and N < Nmax do

N = N + 1; compute ∆N (µ) ∀µ ∈ Ξtrain;
µN :=argmaxµ∈Ξtrain∆N−1(µ);
SN = SN−1 ∪ {µN};
compute uN (µN );
XNN = XNN−1

⊕
{uN (µN )};

end
Algorithm 1: Greedy

1.2.3 A posteriori error estimates

One of the most important features of the reduced basis method is the a posteriori error
estimation. As we have seen in section 1.2.2, the estimators ∆N , N = 1, . . . , Nmax, play
a crucial role in the construction of the RB space. For our purposes, a good a posteriori
error estimator have to fulfil the following characteristics:

• It has to be rigorous, in the sense that the inequality

|||uN (µ)− uNN (µ)|||µ ≤ ∆N (µ)

must hold for all µ ∈ D. This is a fundamental requirement to ensure reliability to
the RB method.

• It has to be sharp. An overly conservative error bound can cause inefficient approx-
imation spaces, that is with a dimension N unnecessarily high.

• It has to be computationally efficient. The computation of the error bound must be
very inexpensive both to speed up the Offline stage (i.e. greedy algorithm) and to
allow its use in the Online stage. The computational cost should be independent of
N .

Before defining the error estimator we will use, we need some preliminaries [19, 47].
First of all we observe that the error e(µ) := uN (µ) − uNN (µ) 2, that belongs to XN ,
satisfies for all vN ∈ XN

a(e(µ), vN ;µ) = a(uN (µ)− uNN (µ);µ) = F (vN ;µ)− a(uNN (µ), vN ;µ), (1.45)

so we can define the RB residual r(·;µ) ∈ (xN )′

r(vN ;µ) = F (vN ;µ)− a(uNN (µ), vN ;µ) ∀vN ∈ XN . (1.46)

2Here e(µ) depends on N and N , but, for sake of simplicity, we avoid these heavy notations
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As r(·;µ) is a continuous linear functional over XN , we can apply the Riesz representation
theorem and get r̂(µ) ∈ XN such that:

r(vN ;µ) = (r̂(µ), vN )X , ∀vN ∈ XN , (1.47)

and

||r̂(µ)||X = ||r(·;µ)||(XN )′ = sup
vN∈XN

r(vN ;µ)

||vN ||X
. (1.48)

Now, we can estimate the error between the FE solution and the RB one in energy
norm. Indeed we know that

|||e(µ)|||2µ = a(e(µ), e(µ);µ) ≥ αN ||e(µ)||2X i.e. ||e(µ)||X ≤
|||e(µ)|||µ√

αN
(1.49)

|||e(µ)|||2µ = a(e(µ), e(µ);µ) = r(e(µ)) ≤ ||r̂(µ)||X ||e(µ)||X ≤
||r̂(µ)||X√

αN
|||e(µ)|||µ

(1.50)

from which we can get to the first estimator

|||e(µ)|||µ ≤
||r̂(µ)||X√

αN
. (1.51)

Now we introduce a lower bound αNLB : D → R for the coercivity constant αN such
that:

0 < αNLB(µ) ≤ αN (µ) ∀µ ∈ D (1.52)

and that the computational cost to evaluate µ→ αNLB(µ) is independent of N .
To get this lower bound we can resort to the Successive Constraints Method (SCM)
[19, 23, 51] that we will discuss in section 1.2.5.

Now we are ready to give the definition of our a posteriori error estimator. Let us then
define the estimator for the energy norm of the error:

∆N (µ) :=
||r̂(µ)||X√

αNLB

(1.53)

In order to guarantee that this estimator is sharp we introduce the effectivity associ-
ated:

ηN (µ) :=
∆N (µ)

|||e(µ)|||µ
. (1.54)

We can prove the following result [19, 51]:

Proposition 1.2.1. For any N = 1, . . . , Nmax and for any µ ∈ D the effectivity satisfies

1 ≤ ηN (µ) ≤

√
γ(µ)

αNLB(µ)
(1.55)
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Proof. The first inequality is given by (1.51), which says that our estimator is rigorous.
Recalling (1.46) and the continuity assumption 1.8 we can prove that:

||r̂(µ)||2µ = a(r̂(µ), r̂(µ);µ) ≤ γ||r̂(µ)||2X = γ(µ)a(e(µ), r̂(µ);µ) ≤
≤ γ(µ)||e(µ)||µ||r̂(µ)||µ

(1.56)

and using this result (1.56), the definition of our error estimator (1.53) and Cauchy-
Schwarz inequality

∆2
N =

||r̂(µ)||2X
αNLB(µ)

=
a(e(µ), r̂(µ);µ)

αNLB(µ)
≤ ||e(µ)||µ||r̂(µ)||µ

αNLB(µ)
≤
||e(µ)||2µγ(µ)

αNLB(µ)
. (1.57)

Finally, we get

ηN (µ) =
∆N (µ)

||e(µ)||µ
≤

√
γ(µ)

αNLB(µ)
. (1.58)

Note that the upper bound on the effectivity in (1.55) is independent of N and hence
stable with respect to RB “refinement”. This can give us information about the sharpness
of the estimation.
Moreover, the method we are using to construct the coercivity lower bound αLB is designed
in such a way that:

αN (µ)

αNLB(µ)
≤ C ∀µ ∈ D, (1.59)

where C is a positive constant. Recalling (1.13), we can observe that:

ηN (µ) ≤

√
γ(µ)

αNLB
≤

√
γ(µ)

αNLB

αN (µ)

α(µ)
≤

√
C
γ(µ)

α(µ)
(1.60)

which means that the upper bound for the sensitivity does not depend on the finite element
approximation.

1.2.4 Computation of the dual norm of the residual

In order to compute the error bound, we want to show how the dual norm of the
residual, that is ||r̂(µ)||X , and the lower bound for the coercivity constant αNLB(µ) can be
computed. The goal will be to build a procedure with a computational cost independent
of N , by exploiting the affine assumptions (1.9) and (1.10).

Let us start from the residual. First of all, we expand it into its affine terms. So, for
all vN ∈ XN , we have:

r(vN ;µ) = F (vN ;µ)− a(uNN (µ), vN ;µ)

=

QF∑
q=1

Θq
F (µ)F q(vN )−

Qa∑
q=1

Θq
a(µ)aq

(
N∑
m=1

uNN m(µ)ζNm , v
N
)

=

QF∑
q=1

Θq
F (µ)F q(vN )−

N∑
m=1

uNN m(µ)

Qa∑
q=1

Θq
a(µ)aq

(
ζNm , v

N ) .
(1.61)
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Recalling (1.46), we have:

r̂(µ) =

QF∑
q=1

Θq
F (µ)Fq +

N∑
m=1

uNN m(µ)

Qa∑
q=1

Θq
a(µ)Aqm (1.62)

where Fq and Aqm are solutions of the following systems:

(Fq, vN ) = F q(vN ) ∀vN ∈ XN , 1 ≤ q ≤ QF ,
(Aq, vN ) = −aq(ζNm , vN ) ∀vN ∈ XN , 1 ≤ q ≤ Qa, 1 ≤ m ≤ N.

(1.63)

From this expression of the residual, we easily obtain that:

||r̂(µ)||2X =

QF∑
q=1

QF∑
q′=1

Θq
F (µ)Θq′

F (µ)(Fq,Fq′)X +

Qa∑
q=1

N∑
m=1

Θq
a(µ)uNN m(µ)·

·

2

QF∑
q′=1

Θq′

F (µ)(Fq′ ,Aqm)X +

Qa∑
q′=1

N∑
m=1

Θq′
a (µ)(Aq′m,A

q′

m′)X

 .
(1.64)

It is now possible to see that we can compute and store the parameter independent
quantities once for all. These quantities are:

• the FE ”pseudo-solutions” Fq and Aq
′
m;

• the scalar products (Fq,Fq′)X , (Fq,Aq
′
m)X and (Aqm,Aq

′

m′).

The cost of their computation depends on Qa, QF , N and Nmax.
Once we have the latter quantities, we can evaluate µ → ||r̂(µ)||2X at a very low

computational cost. Given a new value µ ∈ D we need just to evaluate the Θ functions
and then perform the weighted sum of the already stored quantities. The operation count
is O(N2Q2

a +NQaQF +Q2
F ) and it does not depend on N .

1.2.5 Lower bound for the coercivity costant

As we mentioned in section 1.2.3 when we defined the a posteriori error estimator, we
have now to introduce the Successive Constraint Method (SCM) [19, 23] for the evaluation
of the coercivity lower bound αNLB.

First of all, we note that the computation of the discrete coercivity constant (1.12) is
actually a generalized minimum eigenvalue problem. Denoting with {φi}Ni=1 a lagrangian
FE base for XN , we can define the mass matrix M corresponding to the scalar product
(1.6) such that:

M ij = (φi, φj)X 1 ≤ i, j ≤ N . (1.65)

We can also define, for q = 1, . . . , N , the µ-dependent symmetric matrix B(µ) associated
to the symmetric part of the bilinear form a:

Bij = asym(φi, φj) 1 ≤ i, j ≤ N . (1.66)
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Denoting with v the coordinate vector of vN ∈ XN with respect to the given base, we
have that:

a(vN , vN ;µ)

||vN ||2X
=
asym(vN , vN ;µ)

||vN ||2X
=

vTB(µ)v

vTMv
(1.67)

and the problem

given µ ∈ XN , compute

αN = inf
vN∈XN

a(vN , vN ;µ)

||vN ||2X

(1.68)

is equivalent to find the minimum generalized eigenvalue of the following eigenvalue prob-
lem:

B(µ)v = λMv (1.69)

that can be treated, for example, by Lanczos method [10]. To improve the efficiency, we
define the norm (1.6) by setting

τ = inf
vN∈XN

a(vN , vN ; µ̄)

||vN ||2X
(1.70)

as done in [19, 51].
Before introducing the SCM, let us call asym,q the symmetric part of the form aq

defined in (1.9).
We define now an objective functional J obj : D × RQa → R as

J obj(µ; y) =

Qa∑
i=1

Θq
a(µ)yq, (1.71)

where y = (y1, . . . , yQa). An equivalent formulation of the problem (1.68) can be:

given µ ∈ XN , compute

αN (µ) = inf
y∈Y
J obj(µ; y)

(1.72)

where

Y =

{
y ∈ RQa |∃wNy ∈ XN s.t. yq =

asym,q(wNy , w
N
y )

||wNy ||2X
, 1 ≤ q ≤ Qa

}
. (1.73)

We want to provide an upper and a lower bound for α, so we will build a method that
give us two sets such that YUB ⊂ Y ⊂ YLB and will define:

αLB(µ) = min
y∈YLB

Jobj(µ, y) and αUB(µ) = min
y∈YUB

Jobj(µ, y). (1.74)

We are interested in both lower and upper bounds to ensure the accuracy for the error
quantity

η(µ) :=
αUB(µ)− αLB(µ)

αUB(µ)
. (1.75)

The offline part of the SCM is based on a greedy approach where the n-th iteration of
the procedure is initiated by assuming that
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1. We know coercivity constants α(µj), 1 ≤ j ≤ n, for some parameter values Cn =
{µSCM1 , . . . ,µSCMn } ∈ D.

2. Let ΞSCM be a representative finite set of parameters of D. For each µ ∈ ΞSCM , we
have some lower bound αn−1

LB (µ) ≥ 0 of α(µ) from the previous iteration.

The eigensolutions (α(µj), v
N
j ) ∈ R+ × XN are solutions to the generalized eigenvalue

problem (1.68). From the eigenfunctions {vNj }nj=1 we get the corresponding eigenvectors

(yj)
q =

asym,q(vNj , v
N
j )

||vNj ||2X
, 1 ≤ q ≤ Qa, 1 ≤ j ≤ n (1.76)

and then we set
YnUB =

{
yj ∈ RQa |1 ≤ l ≤ n

}
, (1.77)

which is clearly a subset of Y. We can use YnUB to compute αnUB(µ) = miny∈YnUB J
obj(µ, y).

This is clearly independent of N once the vector yj have been built.

To get the lower bound, first, we define a ”bounding box” containing Y

B =

Qa∏
q=1

[
inf

vN∈XN

asym,q(vN , vN )

||vN ||2X
, sup
vN∈XN

asym,q(vN , vN )

||vN ||2X

]
⊂ RQa ; (1.78)

from the continuity hypothesis, B is bounded. We denote with C(M,µ, E) the set of
M ≥ 1 points in E (that can be both ΞSCM or Cn) closest to µ ∈ D, with respect to the
usual Euclidean norm in RP . If M > card(E), we set C(M,µ, E) = E.

Now, given µ ∈ D we define the ”lower bound” set YnLB(µ) ⊂ RQa for some Me,Mp as

YnLB(µ) =

{
y ∈ B|Jobj(µ′, y) ≥ αN (µ′), ∀µ′ ∈ C(Me,µ, Cn),

Jobj(µ′, y) ≥ αn−1
LB (µ′), ∀µ′ ∈ C(Mp,µ,Ξ

SCM \ Cn)

}
.

(1.79)

It can be shown that YnUB ⊂ Y ⊂ YnLB(µ) [23]. Consequently, these sets are nested as

Y1
UB ⊂ Y2

UB ⊂ · · · ⊂ YnUB ⊂ · · · ⊂ Y ⊂ · · · ⊂ YnLB(µ) ⊂ · · · ⊂ Y2
LB(µ) ⊂ Y1

LB(µ). (1.80)

Note that finding αnLB(µ) = miny∈YnLB J
obj(µ, y) corresponds to a linear programming

problem of Qa design variables and 2Qa + Me + Mp conditions. The complexity of the
linear programming problem is thus independent of N .

Having defined the two sets YnUB,YnLB(µ), we can define a greedy selection to enrich
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the space Cn and build Cn+1 at all stages n, minimizing the error of the accuracy (1.75).

Data: tol, µ1, Nmax

Result: The sample points Cn, corresponding coercivity constants αN (µj), vectors
yj , lower bounds αLB(µ) for all µ ∈ ΞSCM

C1 = {µ1};
for µ ∈ ΞSCM do

compute α1
UB(µ) and α1

LB(µ);

compute η(µ, C1) = 1− α1
LB(µ)

αnUB(µ) ;

end
while maxµ∈ΞSCM η(µ) >tol do

select µn = argmaxµ∈ΞSCM η(µ, Cn−1);

for µ ∈ ΞSCM do
compute αnUB(µ) and αnLB(µ);

compute η(µ, Cn) = 1− αnLB(µ)

αnUB(µ) ;

end
solve the generalized eigenvalue problem (1.68) associated with µn+1;
store αN (µn+1) and yn+1;

end
Algorithm 2: Offline procedure of the SCM

Let us observe that our construction of the lower bound guarantees the condition
(1.59). We can indeed see that:

αN (µ)

αNLB(µ)
≤ αN (µ)

αNUB(µ)

1

1− tol
≤ 1

1− tol
∀µ ∈ ΞSCM . (1.81)

Computational Cost

During the Offline stage the following computations are performed:

1. 2Qa eigenproblems over XN to build the ”continuity constraint” box B”. Cost:
O(2QaN ).

2. Nmax eigenproblems overXN to form the set {αN (µ|µ ∈ CNmax}. Cost: O(NmaxN ).

3. NmaxQa inner products over XN to compute YNmaxUB . Cost: O(NmaxQaN ).

4. nSCMtrainNmax lower bound linear programming problems of size 2Qa+Me+Mp and the
associated enumerations to compute the upper bounds. Cost: O(nSCMtrainNmaxQaM).

Note that the global Offline computational cost does not depend on the product nSCMtrainN ,
so we can choose large train sets and truth approximation space with high dimension N
without worsening too much the computational efficiency.

In the Online stage, for each evaluation µ 7→ αLB(µ) we have to:

1. sort of Nmax points of Cn to build C(M,µ, E);

2. evaluate the Θ functions;
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3. solve the resulting linear programming to obtain the lower bound.

This procedure is independent of N . Finally we want to say that the SCM can be effi-
ciently applied also to compute the inf-sup lower bound for non-coercive problems [47, 53].
Moreover, several improvements for the SCM have been recently proposed [8, 22, 32].



Chapter 2

Stabilized reduced basis method
for advection dominated PDEs

In this chapter we will study a class of advection diffusion equations whose FE ap-
proximations are numerically unstable. To deal with such problems, we will use some
stabilization techniques [49]. In particular we will focus on the RB method in the approxi-
mation of advection diffusion equations when the advection effects are much stronger than
the diffusive ones (advection dominated problems).

As the advection-diffusion equations are often used to model heat transfer phenomena,
we can find in literature many results about the RB approximation of heat transfer problem
such as Graetz problem or “thermal fin” problem [14, 47, 50, 52]. However, the latter
works consider only the case in which the Péclet number – that is, roughly speaking,
the ratio between the advection coefficient and the diffusion one – is low, in a sense
that we will specify in section 2.1. The stabilization methods have been used in the RB
framework in some works about the approximation of steady advection reaction equations
and steady control problems [9, 46]. In these works we can also find some applications to
environmental science problems concerning, in particular, air pollution.

In this chapter we will follow main ideas of [40, 41, 42, 43], about further results
on stabilized RB method for advection diffusion problems. In particular, after a brief
introduction on some stabilization method (section 2.1), we will discuss results obtained
stabilizing only the Offline stage or both Online and Offline stages with several values
of the Péclet number. We will see that, with high Péclet number, the latter strategy is
the only one which provides stable results and a good approximation with respect to the
FE stabilized solution. This will be an introduction to chapter 4, where we will use this
method in case of random input parameter distributed as some random variables.

2.1 Stabilization methods

In this chapter we will illustrate some stabilization methods for advection-diffusion
equations. We will focus in particular on a simplified advection-diffusion equation of this
form

− ε∆u+ β · ∇u = f in Ω ⊂ R2. (2.1)

26
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This is a particular case of the general problem Lu = f , with L the diffusion-advection-
reaction operator defined in (1.22), when we do not have a reaction term and the diffusivity
tensor is a multiple of the identity. If the advective β · ∇u term dominates the diffusive
term −ε∆u, that is when |β| � ε, even the classical discretizations, like FE approach,
can be very unsatisfactory, because the approximated solution can show strong instability
phenomena, especially along the direction of the advection field. In the next sections we
will illustrate and analyse some stabilization methods, able to fix this lack of stability.

2.1.1 Advection dominated problems

Let us make precise assumption on our setting. As mentioned before, we will focus on
equations like (2.1) where:

• the diffusion coefficient ε : Ω→ R belongs to L∞(Ω) and exist ε0 > 0 such that

ε(x) ≥ ε0 ∀x ∈ Ω; (2.2)

• the advection field β : Ω→ R2 belongs to (L∞(Ω))2:

• f : Ω→ R2 is an L2(Ω) function.

In order to guarantee the well-posedness of our problem we suppose also that the
following inequality holds:

0 ≥ divβ(x) ≥ −d1 ∀x ∈ Ω (2.3)

where d1 is a positive real constant.
We suppose now that we are given a regular triangulation Th (for the definition see

[45]), where h is the maximum element diameter (mesh size). For any element K ∈ Th,
we can then define the local Péclet number [45, 49]:

PeK(x) :=
|β(x)|hk

2ε(x)
∀x ∈ K, (2.4)

where hK is the diameter of K.
We say that we are dealing with an advection dominated problem if

PeK(x) > 1 ∀x ∈ K, ∀K ∈ Th. (2.5)

To give an example of what can happen in advection dominated situation, we consider
the following 1-dimensional problem:

−εu′′ + u′ = 0 in Ω := (0, 1)

u(0) = 0

u(1) = 1

(2.6)

If the coefficient ε is “large”, e.g. ε = 1
10 , the FE method yields a good approximation of

that solution, as it can be seen in figure 2.1(a). On contrary if we choose a “smaller”value
for the same coefficient, e.g. ε = 1

100 , the FE solution is highly affected by spurious
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Figure 2.1: One dimensional case, different diffusivities

oscillation as we can see in figure 2.1(b). The mesh used in these computations is an
equispaced of size h = 1

10 . (In red we have the exact solution, in blue the FE approximated
one).

Theoretically, to avoid instability problems, it would be sufficient to reduce the mesh
size h in order to lower the local Péclet number. In this one-dimensional case, it is not a
big effort, and we can see in figure 2.2(a) and 2.2(b), that refining the mesh, we will have
more accurate approximated solutions.
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(b) ε = 1
100

, h = 1
70

Figure 2.2: One dimensional case, different mesh sizes

Conversely, if we are dealing with higher dimensional meshes, a “small”mesh size yields
a significant increase of the computational cost. Just to give an example, let us take{

−ε∆u+ (1, 1) · ∇u = 1 in Ω := (0, 1)× (0, 1)

u = 0 on ∂Ω
(2.7)
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Even in this simple example, if we want to have PeK(x) < 1 with ε = 1
100 , we need a

mesh such that h < 0.015. Our computational cost will grow significantly, for example, in
figure 2.3(c) and 2.3(d) we can see solutions for problem (2.7) with ε = 1

100 and different
mesh sizes. The first mesh 2.3(a), with a P1 polynomial space, generates a 174 degrees of
freedom space XN , while the second 2.3(b) forms a 12859 one and the maximum mesh
size is respectively h1 = 0.14 and h2 = 0.013.
The former has large instabilities over the whole square, while the latter is a good approx-
imation of the exact solution.

(a) mesh, h ≈ 0.14, N = 174 (b) h ≈ 0.013, N = 12859

(c) FE solution, h ≈ 0.14, N = 174 (d) FE solution, h ≈ 0.013, N = 12859

Figure 2.3: Two dimensional case, different mesh sizes

Several stabilization methods have been developed to fix the approximated solution
without resorting to mesh refinement [49]. One type of stabilizations consists on adding
some sort of artificial diffusion, in order to smooth the “jumps”(boundary or internal
layers) that the exact solution can show. Let us note also that ε0 is the coercivity constant
of the bilinear form associated to the equation (2.1), while, when we are in an advection
dominated situation, ||β||L∞(Ω) is actually the continuity constant. So, enforcing somehow
the coercivity constant we can obtain a better Céa error estimate [49].

Other stabilization techniques are inspired by the spectral vanishing viscosity method
[35] and they work particularly with RB method, irrespectively on the stabilization op-
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erated on truth solutions. We will not deal with this method, but we will be focused on
adding–terms methods.

A first proposal can be to add to the left-hand side of the equation one of the following
additional diffusion terms:

Ladu = −h||β||L∞(Ω)∆u, (2.8)

Lsdu = − h

||β||L∞(Ω)
div [(β · ∇u)β] . (2.9)

The term (2.8) corresponds to the so called artificial diffusion method [49]. By adding
this term, we are increasing the diffusion in all directions, producing then an unnecessary
“crosswind” smoothing of the solution. To reduce the amount of diffusion introduced, we
could use the term (2.9), which add diffusion only along the wind direction, thus avoiding
the crosswind smoothing. The latter method is called streamline upwind diffusion method
[49]. Both these methods are only weakly consistent, with a consistency error of O(h). As
a consequence, these methods can be useful only with P1 FE approximation. For further
details about these methods we refer to [49].

2.1.2 Strongly consistent stabilization methods

As mentioned in the previous section, the main problem of the artificial diffusion and
the streamline upwind diffusion methods is the fact that they are not consistent, which
deteriorates the accuracy of the polynomial space used in the FE approximation. A way
to avoid this kind of problem is to use a strongly consistent stabilization method. Several
methods have been proposed and many of them can be considered as particular cases of
the general class that we are going to introduce.

Let us consider now the advection-diffusion operator defined on H1
0 (Ω):

Lv = −ε∆v + β · ∇u ∀v ∈ H1
0 (Ω). (2.10)

We can split the operator L into its symmetric and skew-symmetric parts:

symmetric part LSv = −ε∆u− 1

2
(divβ)v (2.11)

skew-symmetric part LSSv = β · ∇v +
1

2
(divβ)v (2.12)

and the following relation holds:
L = LS + LSS . (2.13)

Symmetric and skew-symmetric parts can be recovered using the formulae:

LS =
L+ L∗

2

LSS =
L− L∗

2

(2.14)

where L∗ is the adjoint operator.
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We consider now the weak form of the problem (2.1), that is:

find u ∈ H1
0 (Ω) s.t.

a(u, v) = F (v) ∀v ∈ H1
0 (Ω)

(2.15)

where a is the bilinear form associated to the advection diffusion operator

a(u, v) =

∫
Ω
ε∇u · ∇v + β · ∇uv, v, w ∈ H1

0 (Ω), (2.16)

while F is the linear form defined by

F (v) =

∫
Ω
fv, v ∈ H1

0 (Ω). (2.17)

As in the previous section, let us suppose that we are given a regular triangulation Th.
We consider the following piecewise polynomial approximation space:

Pr(Th) = {v ∈ H1(Ω) s.t. v|K ∈ Pr(K),K ∈ Th} (2.18)

where Pr(K) is the space of polynomials of degree r on the element K. We will denote
with XN the space Pr(Th) ∩H1

0 (Ω), where N is its dimension, i.e. the number of degrees
of freedom.
We define the stabilization terms

s(ρ)(uN , vN ) =
∑
K∈Th

δK

(
LuN ,

hK
|β|

(LSS + ρLS)vN
)
K

(2.19)

φ(ρ)(vN ) =
∑
K∈Th

δK

(
f,
hK
|β|

(LSS + ρLS)vN
)
K

(2.20)

where (·, ·)K is the inner scalar product in L2(K). The weights δK > 0 for all K ∈ Th,
have to be chosen as well as the parameter ρ ∈ R, which identifies the method.

We can consider now the stabilized problem:

find u ∈ XN s.t.

a(uN , vN ;µ) + s(ρ)(uN , vN ) = F (vN ) + φ(ρ)(vN ) ∀vN ∈ XN .
(2.21)

Note that this formulation is strongly consistent, i.e. the continuous solution of (2.15)
satisfies the variational equality (2.21).

We have actually defined a family of strongly consistent methods that can be identified
through the parameter ρ, as we have said before. Several possible choice of ρ have been
studied in literature. A first choice can be to set the parameter ρ equal to zero, thus defin-
ing the so called Streamline Upwind/Petrov Galerkin (SUPG) method [5, 20, 28, 29]. An-
other possibility is to choose ρ = 1 and the corresponding method is called Galerkin/Least-
Squares (GALS) method [21]. The choice ρ = −1 leads to the Douglas-Wang/Galerkin
(DWG) method [13].

Remark 1. If the polynomial approximation space chosen is P1(Th) and the advection field
is divergence free, i.e. div(β) = 0, any choice of the parameter ρ yields the same method.
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Before going on with the analysis of the SUPG method, in figure 2.4 we show how this
method can approximate the solution of (2.7) with ε = 1

100 . The mesh used are the same
used in figure 2.3. We recall that the approximated solution given by the standard FE
method was very unsatisfactory for the first mesh (h ≈ 0.14 in figure 2.3(c)). Comparing
figure 2.4(a) with 2.3(c) it is evident the smoothing of the boundary layer due to the
increased diffusivity of the stabilized method. While the satisfactory solution (h ≈ 0.013
in figure 2.3(d)) performed by FE is really similar to the stabilized one in figure 2.4(b).

(a) SUPG stabilized solution, h ≈ 0.14, N = 174 (b) SUPG stabilized solution, h ≈ 0.013, N =
12859

Figure 2.4: Two dimensional case, stabilized solutions

Analysis of the SUPG method

As in this work we will focus mainly on the SUPG method, we will now analyse its
properties.

Denoting with ||| · ||| the energy norm associated to the bilinear form a, which turns
out to be

|||v|||2 = ε||∇v||2L2(Ω) +
1

2
||(divβ)

1
2 v||2L2(Ω) ∀v ∈ H1

0 (Ω) (2.22)

we define the SUPG norm on H1
0 (Ω) as

||v||2SUPG = |||v|||2 +
∑
K∈Th

δK

(
LSSv,

hk
|β|

LSSv

)
K

∀v ∈ H1
0 (Ω). (2.23)

It holds that the SUPG bilinear form is coercive with respect to the SUPG norm. This
is straightforward, even without any requirement on the parameters δK , if the polynomial
approximation space is P1(Th) and the advection field is divergence free, as the energy
norm of the SUPG bilinear form is actually the SUPG norm. In general, we have the
following theorem, as it is shown in [49]:

Theorem 2.1.1 (Stability). We assume that we are dealing with the advection dominated
case (2.5) and that for any element K ∈ Th parameter δK satisfies the conditions

0 < δK < C−1
r (2.24)
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where Cr is the constant of the inverse inequality∑
K∈Th

h2
K

∫
K
|∆vN |2 ≤ Cr||∇vN ||2L2(Ω) ∀vN ∈ XN (2.25)

in which r stands for the degree of the piecewise polynomial approximation space. More-
over, if the advection field is not divergence free, we suppose that we have a positive
constant d0 > 0 such that

0 < d0 < −∇ · β (2.26)

and we require that

δKhK ≤
|β(x)|
|∇ · β(x)|

∀x ∈ K. (2.27)

Then the bilinear form associated to the SUPG method is coercive with respect to the
advection diffusion energy norm, that is:

a(vN , vN ) + s(0)(vN , vN ) ≥ 1

2
||vN ||SUPG. (2.28)

The theorem 2.1.1 yields the following result [49]:

Proposition 2.1.2. There exists C > 0, independent of h, such that

||uN ||SUPG ≤ C||f ||L2(Ω) (2.29)

where uN is the solution of (2.21) with ρ = 0.

Acting like in [13, 49], it is also possible to prove the following convergence theorem:

Theorem 2.1.3 (Convergence). Assume that the advection dominated condition (2.5)
holds and assume also that the space XN satisfies the following approximation property:
for each v ∈ H1

0 (Ω) ∩Hk+1(Ω) there exists v̂N ∈ XN such that

||v − v̂N ||L2(K) + hK ||∇(v − v̂N )||L2(K) + h2
K ||D2(v − v̂N )||L2(K)

≤ Chr+1
K |v|Hr+1(K)

(2.30)

for each K ∈ Th. Then the SUPG method has the following order of convergence:

||u− uN ||SUPG ≤ Chr+
1
2 |u|Hr+1(K) (2.31)

provided that u ∈ Hr+1(K).

Proof. First of all we point out that if we choose the approximation space (2.18), for any
v ∈ H1

0 (Ω) ∩Hk+1(Ω) there exists an element v̂N fulfilling the condition (2.30). Indeed,
it sufficient to choose

v̂N = Πr
hv (2.32)

where Πr
h is the piecewise polynomial interpolation operator (see [45] for definition).

We can now define
σN := uN − ûN , η := u− ûN (2.33)
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and we observe that
u− uN = η − σN (2.34)

We want estimate the quantity ||σN ||SUPG. We observe that, from theorem 2.1.3 and
Galerkin orthogonality, we have

1

2
||σN ||2SUPG ≤ a(σN , σN ) + s(0)(σN , σN ) = a(η, σN ) + s(0)(η, σN ). (2.35)

In order to make effective estimates, we write explicitly the right-hand side of (2.35):

a(η, σN ) + s(0)(η, σN ) = ε

∫
Ω
∇η · ∇σN +

∫
Ω
β∇ησN+

+
∑
K∈Th

δK

(
−ε∆η + β · ∇η, hk

|β|
(β · σN +

1

2
divβσN )

)
.

(2.36)

Let us start by estimating the first term of the sum (2.36), using Young’s inequality:

ε

∫
Ω
∇η · ∇σN ≤ ε

8
||∇σN ||2L2(Ω) + 2ε||∇η||2L2(Ω). (2.37)

As regards the second term, we know from Stokes theorem that∫
Ω

div(ησNβ) =

∫
∂Ω
ησNβ · n = 0. (2.38)

Moreover, we can rewrite ad then estimate the second term, using Young inequality, as∫
Ω
β · ∇ησN =

∫
Ω
−ησNdivβ − ηβ · ∇σN =

= −
∫

Ω

1

2
ησNdiv(β)−

∑
K∈Th

∫
K
η

√
hKδK
|β|

(
β · ∇σN +

1

2
σNdiv(β)

)√
|β|
hKδK

≤

≤ 1

4
ε

∫
Ω
∇σN · ∇σN +

∫
Ω

2η2divβ +
1

8

∫
Ω

(σN )2divβ+

+
1

4

∑
K∈Th

δKhK
|β|

(
LSSσ

N , LSSσN
)
K

+ 2
∑
K∈Th

∥∥∥∥∥∥
√
|β|
hKδK

η

∥∥∥∥∥∥
2

L2(K)

≤

≤ 1

4
||σN ||2SUPG + 2||divβ||L∞(Ω)||η||2L2(Ω) + 2

∑
K∈Th

∥∥∥∥∥∥
√
|β|
hKδK

η

∥∥∥∥∥∥
2

L2(K)

.

(2.39)

Finally, we have to care about the stabilization term in (2.36). Also in this case we can
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resort to Young’s inequality and obtain:∑
K∈Th

δK

(
−ε∆η + β · ∇η, hK

|β|
(β · σN +

1

2
divβσN )

)
≤

≤ 1

8
||σN ||2SUPG + 2

∑
K∈Th

δK

∫
K

hK
|β|

(−ε∆η + β · ∇η)2 ≤

≤ 1

8
||σN ||2SUPG + 4

∑
K∈Th

δKhK

∥∥∥∥∥ ε√
|β|

∆η

∥∥∥∥∥
2

L2(K)

+ 4
∑
K∈Th

δKhK ||divβ||L∞(Ω) ‖∇η‖2L2(K) ≤

≤ 1

8
||σN ||2SUPG + 2

∑
K∈Th

δK ||β||L∞(Ω)h
3
K ||∆η||2L2(K) + 4

∑
K∈Th

δKhK ||divβ||L∞(Ω) ‖∇η‖2L2(K)

(2.40)

and in the last inequality we used the advection dominated condition (2.5). From inequal-
ities (2.35), (2.37), (2.39), (2.40) we obtain that

1

8
||σN ||2SUPG ≤ 2||∇η||2L2(Ω) + 2||divβ||L∞(Ω)||η||2L2(Ω) +

∑
K∈Th

2

∥∥∥∥∥∥
√
|β|
hKδK

η

∥∥∥∥∥∥
2

L2(K)

+

+ 2
∑
K∈Th

δK ||β||L∞(Ω)h
3
K ||∆η||2L2(K) + 4

∑
K∈Th

δKhK ||divβ||L∞(Ω)||∇η||2L2(K).

(2.41)

Now we can get rid of the dependence of hK in the third term of the right-hand side thanks
to (2.5), and rearrange the inequality:

1

8
||σN ||2SUPG ≤

∑
K∈Th

2

(
||divβ||L∞(Ω) +

∥∥∥∥ β√
2ε

∥∥∥∥
L∞(Ω)

)
||η||2L2(K)+

+ (2 + ||divβ||L∞(Ω)δK)hK ||∇η||2L2(K) + 2δK ||β||L∞(Ω)h
3
K ||∆η||2L2(K)

(2.42)

From this, we now that there exist C1, C2, C3 and C4 such that:

||σN ||2SUPG ≤ C1||η||2L2(K) + C2h||∇η||2L2(K) + C3h
3||∆η||2L2(K) ≤

≤ C4
1

h

(√
h||η||L2(K) + h||∇η||L2(K) + h2||∆η||L2(K)

)2
≤

≤ C4
1

h

(
||η||L2(K) + h||∇η||L2(K) + h2||∆η||L2(K)

)2
.

(2.43)

Exploiting the condition (2.30), we obtain that:

||σN ||SUPG ≤ Chr+
1
2 |u|Hr+1(Ω) (2.44)

where the constant C does not depend on hK and on PeK(x). It depends on other
quantities such as β and ε.
Using the same procedure, we can have:

||η||SUPG ≤ Chr+
1
2 |u|Hr+1(Ω). (2.45)

Thus, by triangular inequality, we can conclude the theorem.
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Remark 2. As pointed out in [13], if the advection dominated condition (2.5) is not fulfilled
for all K ∈ Th we locally lose even the hr convergence rate of the standard FE method. To
recover at least the standard convergence rate, we need that the coefficient CK of the term∑

K∈Th CK ||∆η||
2
L2(K) in (2.40) must scale, at least, as h2. A possible way to overcome

to this trouble is to act on weights δK , distinguishing between the elements for which
PeK(x) > 1 and PeK(x) ≤ 1. Unfortunately, in RB context, this strategy does not allow
an immediate affine representation (1.9) of the bilinear form.

2.2 Stabilized reduced basis: introduction and numerical
examples

In this section we will try to design an efficient stabilization procedure for the RB
method. In particular, we will focus on a couple of problems that were taken in consider-
ation in [41, 43]. Finally, we will discuss the differences between two different approaches:
Offline-Online stabilization method and an Offline-only stabilized one, when used to ap-
proximate the solution of and advection-diffusion problem:

− ε(µ)∆u(µ) + β(µ) · ∇u(µ) = 0 onto Ωp(µ) ⊂ R2. (2.46)

Offline-Online approach means that the Galerkin projections are performed, in both Of-
fline and Online stages, with respect to the SUPG stabilized bilinear form, that are:

astab(u
N , vN ) =

∫
Ω
ε∇uN · ∇vN +

(
β · ∇uN

)
vN+

+
∑
K∈Th

δK

∫
K

(−ε∆uN + β · ∇uN )

(
hK
|β|
β · ∇vN

) (2.47)

with uN , vN ∈ XN ⊂ Pr(Th), where Th is a triangulation of Ω. This is a bilinear coercive
form, so we can apply the already developed theory in order to use the reduced basis
method. The alternative method we want to study – the Offline-only stabilized method
– consists in using the stabilized form (2.47) only during the Offline stage and then pro-
jecting, during the Online stage, with respect to the standard advection-diffusion bilinear
form. The underlying heuristic idea is to be able to build stabilized basis, to avoid the
Online stabilization.

In both these approaches we have to provide an affine expansion like (1.9) and (1.10)
of the involved bilinear forms and right-hand side operators. If this is not possible in an
exact way, we could resort to some interpolation techniques (e.g. empirical interpolation
[4, 12, 15, 19, 33]. As we always need an affine expansion, the advantage of using the
Offline-only method could be a certain reduction of the computational cost, that could
be significant if the number of affine terms is very high.

We will start from the study of a couple of simple test problems, for which is straight-
forward to obtain the affine expansion. We will consider first the Poiseulle-Graetz problem
[25, 41, 43, 47], which shows strong instability effects that can be fixed with SUPG stabi-
lization method. Secondly, we will study another example where the parameter dependence
will affect the angle of the advection field.
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Let us make a remark about the notation we will use from now on. First of all, we
will write explicitly the FE space dimension N only when it will be necessary. Moreover,
as we will use only the SUPG stabilization method, we will omit the value of ρ in the
stabilization terms.

2.2.1 Graetz-Poiseuille problem

As a first example, we will focus on a Graetz problem [14, 25, 47, 52] where we have two
parameters: one physical (the diffusivity coefficient µ1, which is proportional to the Péclet
number) and one geometrical (the length of the domain µ2 + 1). The Graetz problem
deals with steady forced heat convection (advective phenomenon) combined with heat
conduction (diffusive phenomenon) in a duct with walls at different temperature. Let us
define µ = (µ1, µ2) with both µ1 and µ2 positive, real numbers. Let Ωp(µ) be the rectangle
(0, 1 + µ2) × (0, 1) in R2. The domain is shown in figure 2.5. The problem is to find a

Figure 2.5: Geometry of Graetz problem. Parametrized domain. Boundary conditions:
homogeneous Dirichlet on blue sides, u = 1 on red sides, homogeneous Neumann on the
dashed side

solution u(µ), representing the temperature distribution, such that:
− 1
µ1

∆u(µ) + 4y(1− y)∂xu(µ) = 0 in Ωp(µ)

u(µ) = 0 on Γp,1(µ) ∪ Γp,2(µ) ∪ Γp,6(µ)

u(µ) = 1 on Γp,3(µ) ∪ Γp,5(µ)
∂u
∂ν = 0 on Γp,4(µ).

(2.48)

In order to use a RB approach, we need to set a reference domain Ω that we choose
Ω = (0, 1) × (0, 2), that is the original domain for parameter µ2 = 1, i.e. Ω = Ωp(µ1, 1).
It is useful to subdivide the reference domain into two subdomains, so we define Ω1 =
(0, 1)× (0, 1) and Ω2 = (1, 2)× (0, 1). Now, as we have seen in section 1.1.1, we need the
affine transformation that maps the reference domain into the original one [19, 41, 47, 51],
so we define:

T 1(µ) : Ω1 → Ωp,1(µ) ⊂ R2

T 1

((
x
y

)
;µ

)
=

(
x
y

)
(2.49)
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that is the identity on the first subdomain Ω1 and

T 2(µ) : Ω2 → Ωp,2(µ) ⊂ R2

T 2

((
x
y

)
;µ

)
=

(
µ2x
y

)
+

(
1− µ2

0

)
= G2

(
x
y

)
+

(
1− µ2

0

)
(2.50)

where

G2 =

(
µ2 0
0 1

)
. (2.51)

If we glue together these two transformations, for each µ ∈ D we actually define a trans-
formation T (µ) over the whole domain Ω. Note that T (µ) is a continuous one-to-one
transformation.

The weak formulation of the Poiseuille-Graetz problem is the following one:

find up(µ) ∈ Vp := {vp ∈ H1(Ωp) s.t. v satisfies BC in (2.48)} s.t.

a(up(µ), vp;µ) = 0 vp ∈ H1
0 (Ω)

(2.52)

where

a(up, vp;µ) :=

∫
Ωp

1

µ1
∇u · ∇v + 4y(1− y)∂xuv. (2.53)

We know from the general theory of PDEs that the problem (2.52) admits a unique
solution. Now we want to set the FE approximation of this problem. Let Th be a proper
triangulation of Ω. The FE problem will be:

find uh(µ) ∈ Vh := {vh ∈ Pr(Th) s.t. vh satisfies BC in (2.48)} s.t.

a(uh(µ), vN ;µ) = 0 vN ∈ XN
(2.54)

with XN defined as the subspace of Pr(Th) made up by the functions that vanish on the
boundary of Ω. Finally, let us define the function l as a lifting in Pr(Th) of the Dirichlet
boundary conditions. We can now define uN (µ) = uh(µ) − l that belongs to XN . Thus
we obtain the final FE formulation of our problem:

find uN (µ) ∈ XN s.t.

a(uN (µ), vN ;µ) = F (vN ) ∀vN ∈ XN
(2.55)

where
F (vN ;µ) := −a(l, vN ;µ). (2.56)

When the parameter µ1 takes ”small” values we do not have instability problems. More
precisely, we can obtain stable solution if

PeK :=
µ1hK
|β|

=
µ1hK

|4y(1− y)|
< 1 ∀K ∈ Th (2.57)

that is when the advection dominated condition (2.5) is not fulfilled. In figure 2.6 the
approximated P1-FE solution obtained for µ1 = 6 is shown. We can use the standard RB
method to approximate the solution of the problem (2.48) for a parameter µ1 range from
1 to 10.
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(a)

(b)

Figure 2.6: FE solution for µ1 = 6

(a) µ1 = 1 (b) µ1 = 10

Figure 2.7: FE solution for low Péclet numbers, µ1 = 1 (left), µ1 = 10 (right)

In figure 2.8 we report the energy norm of the difference between the RB solution and
the FE solution (RB approximation error) as a function of the parameter µ1, while we have
fixed the parameter µ2 = 1. More precisely, in figure 2.8 we show the linear interpolation of
the RB approximation error computed for 200 equispaced parameter values between 1 and
10. The local minima are located in correspondence of the parameter values selected by the
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greedy algorithm [19, 47], where, clearly, the error tends to vanish. This phenomenon is
clearly expected because, since we are using Lagrange basis, our RB solution “interpolates”
exactly the truth manifold (1.1) in the “interpolation nodes” represented by the snapshot
solutions.
In figure 2.7 we show some representative RB solution computed in correspondence of
some value of the parameter µ1. The dimension of the RB space is N = 6.

Figure 2.8: RB error for varying Péclet number, µ1 ∈ [1, 10] , µ2 = 1

More interesting is when the Péclet number assumes higher values, for which the condi-
tion (2.57) is not fulfilled. In figure 2.9 the solution obtained by using a FE approximation
without stabilization at µ1 = 105 is represented. Clearly, the FE solution is distant from
the exact one.

(a) µ1 = 105 (b) µ1 = 105, zoom on the central part

Figure 2.9: FE solution for high Péclet numbers, µ1 = 105, µ2 = 1

Anyway, even in this case we can perform a RB approximation of the solution, but
the RB solutions reflect all the instability problems of the FE solution, as we can see in
figure 2.10. For this simple case, if we let the parameter range from 104 to 105 the greedy
algorithm converges and the energy norm of the difference between the RB solution and
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the FE solution behaves as for lower values of the Péclet number, as we can see in figure
2.10.

Figure 2.10: RB error for varying Péclet number, µ1 ∈
[
104, 105

]
, µ2 = 1

This happens because the “target” of the RB approach is to approximate the exact
continuous solution of the problem by trying to recover the FE solution using a significantly
lower number of degrees of freedom. The point is now that the FE solution is not a good
approximation of the exact one.

A possible way to fix this instability problems could be to use some stabilization
methods. We chose the SUPG stabilization method. First of all we have to impose the
stabilization correction to the weak formulation (2.54). We thus introduce the stabilization
terms. To do so, let us define a mesh Th defined on the reference domain Ω and let us call
T 1
h and T 2

h the restrictions of Th onto Ω1 and Ω2 respectively. We can also define a mesh
on Ωp(µ) just by taking the image of Th through the transformation T (·,µ), that is:

Th,p(µ) = {Kp(µ) = T (k;µ)|K ∈ Th}. (2.58)

We can now write the stabilization term, for the P1-FE case, to be added to the left-hand
side:

s(uh, vh;µ) :=
∑

Kp(µ)∈Th,p(µ)

δKp(µ)

∫
Kp(µ)

(4y(1− y)∂xuh)(hKp(µ)∂xvh). (2.59)

Now we have to set the problem onto the reference domain, thus our problem turns out
to be:

find uh(µ) ∈ Vh := {vh ∈ Pr(Th) s.t. vh satisfies BC in (2.48)} s.t.

a(uh(µ), vN ;µ) + s(uh(µ; vN ;µ) = 0 vN ∈ XN
(2.60)
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where XN is defined as in the previous section, a is:

a(uh, vh;µ) :=

∫
Ω1

1

µ1
∇uh∇vh + 4y(1− y)∂xuhvh+

+

∫
Ω2

1

µ1µ2
∂xuh∂xvh +

µ2

µ1
∂xuh∂yvh + 4µ2y(1− y)∂xuhvh

(2.61)

and s is:

s(uh, vh;µ) :=
∑
K∈T 1

h

hK

∫
K

(4y(1− y)∂xuh)∂xvh+

+
∑
K∈T 1

h

hK√
µ2

∫
K

(4y(1− y)∂xuh)∂xvh.

(2.62)

By introducing a lifting of the Dirichlet boundary condition and setting uN (µ) =
uh(µ)− l, we can obtain the final stabilized FE formulation:

find uN (µ) ∈ XN s.t.

a(uN (µ), vN ;µ) + s(uN (µ); vN ;µ) = F (vN ;µ) + F s(vN ;µ) vN ∈ XN
(2.63)

where F is defined in (2.56) and

F s(vN ) := −s(l, vN ). (2.64)

Let us call astab the bilinear form and Fstab the right-hand side, that is

astab = a+ s

Fstab = F + F s.
(2.65)

We point out that for K ∈ T 2
h we should choose δKp(µ) such that δKp(µ)hKp(µ) = hK

√
µ2.

The underlying idea is that we would like to choose δKp(µ) = 1 but we have to consider how

the element diameter transforms, that is hKp(µ) ≈ hK
√
J(µ) = hK

√
µ2. This rescaling

is done mainly for preserving the convergence rate of the SUPG method. We need to
make an assumption like this also because it would not make any sense, in an RB point
of view, to compute Online every exact value of hKp(µ). Indeed, the Online stage of the
RB method actually forgets about the triangulation.

Recalling remark 2, we want to observe that by using a weighting that depends on both
parameter and element size we lose the affinity assumption (1.9) on the bilinear form, or
better, we lose that assumption with a number of affine terms Qa independent of N . So,
if we are facing problems in which the advection dominated condition (2.5) is not fulfilled
for all K ∈ Th and we want to rigorously recover the convergence order of the FE method,
in order to resort to a weighting δ = δ(x,µ) (as proposed in [13]) we need to exploit some
interpolation techniques involving the empirical interpolation [4, 19]. In this case it would
be also worth to be checked if it were possible to define a weighting that does not depend
on each hK , but on the mesh size h, under suitable regularity assumptions [29].

We would like also to recall that the convergence performances of the stabilization
method depend on the regularity properties of the mesh. So, as the meshes Th,p(µ) we are
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actually using to stabilize on the original domains are the image through T of the trian-
gulation defined on the reference domain, we should guarantee that the transformation T
does not worsen the properties of the reference triangulation. In our numerical tests the
reference domain will be the one corresponding to µ2 = 1 and we will let the parameter
range from 0.5 to 4, so we will not have an excessive deformation. We will also use a
quite coarse mesh (mesh size 0.019 < h < 0.037) and high values for µ1 (we will first try
from 104 to 105, then from 105 to 106 and then from 1 to 106) in order to have significant
instability.

The point is that the boundary layer arise in an area in which the norm of the advection
field (and thus the value of the local Péclet number) is relatively small (near upper and
lower walls, where |β| ≈ 0.01 on quadrature points. We will have that the Péclet number
will assume different value depending on the choice of the diffusivity range.

PeK(x) =
|β(x)|hk

2ε(x)
∈
[

0.01 · 0.02

2 · 10−4
= 1,

1 · 0.03

2 · 10−5
≈ 103

]
for µ1 ∈

[
104, 105

]
PeK(x) =

|β(x)|hk
2ε(x)

∈
[

0.01 · 0.02

2 · 10−5
= 10,

1 · 0.03

2 · 10−6
≈ 104

]
for µ1 ∈

[
105, 106

]
PeK(x) =

|β(x)|hk
2ε(x)

∈
[

0.01 · 0.02

2 · 1
= 10−2,

1 · 0.03

2 · 10−6
≈ 104

]
for µ1 ∈

[
1, 106

]
(2.66)

In figure 2.11 we show a solution computed using the SUPG stabilization. The differ-
ences with the non-stabilized figure 2.9 are clear, in particular along the boundary layer,
where the stabilization deletes every peak, which were not part of the exact solution.

(a) Stabilized, µ1 = 105 (b) Stabilized, µ1 = 105

Figure 2.11: Stabilized SUPG, FE solution, µ1 = 105

Performing the Greedy algorithm with and without stabilization we obtain solution
like in figure 2.12. As we can see, the Offline-Online stabilized RB solution is showing a
behaviour similar to the exact one, while the Offline-only stabilized RB solution still has
some noise near the boundary layer and some peaks near discontinuities of solution at top
and bottom walls.

Now we will compare timing we need to perform all the computation in different cases.
First, to compute a FE solution in this case (we are using a space where N = 4369) we
used in the stabilized case 4.11 · 10−2 seconds, while in a non stabilized case 3.6 · 10−2

seconds. To compute one Online stabilized RB solution we need 5.12 · 10−3 seconds, while
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(a) Offline-Online stabilized, µ = (104.8, 3.3)

(b) Offline Stabilized, µ = (104.8, 3.3)

Figure 2.12: RB solution, stabilized Offline-Online and Offline, µ = (104.8, 3.3)

a non stabilized Online RB solution needs 1.51 · 10−3 seconds. Finally, the time used to
compute the whole offline phase (included the SCM algorithm) is 241 seconds.

Now, we want to compare errors between stabilized FE solutions and RB solutions in
both situations (Online–Offline stabilized and Offline–only stabilized) for different ranges
of µ1. In figure 2.13 we can see this comparison through the energy norm error computed
over a sample of D and the ∆N (µ) error bound performed as in (1.53). We can compare
different choices of D = [µ1,min, µ1,max] × [0.5, 4], but in every case we can notice several
behaviours. The Online–Offline stabilization has an error that converge to a really small
error as the RB space enriches its dimension. The error of the Offline–only stabilized
solutions stays over 10−2, this is clearly higher than the other, because in the Online
phase we are solving an equation which is different from the Offline one.

Nevertheless, there exists an error bound for this error which is sharper than RB one
[40, 41]. Of course it will be of order of hK as the stabilization that we have introduced has
the same order, and it depends on the tolerance ε∗ of the Greedy algorithm to compute
the reduced space N . One can prove that the error between stabilized FE solution and
Offline-only stabilized RB solution is such that:

|||uN (µ)− ustab,N (µ)|||µ ≤hmax(µ)C(µ)||β · ∇ustab,N (µ)||L2(Ωp(µ))+

+ (1 + hmax(µ)C(µ)2||β||L∞(Ωp(µ)))ε
∗.

(2.67)

we point out that this bound depends on the L2 norm of the streamline derivative. This
means that the Offline–only method has better performances when applied to problems in
which the strongest variations occur along a direction orthogonal to the advection field.
This could happen in the cases in which boundary layers are parallel to the advection
field, e.g. the Graetz-Poiseuille problem.

We will discuss in chapter 4 how we can partially use the Offline–only stabilization
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(a) µ1 ∈ (104, 105) (b) µ1 ∈ (105, 106)

(c) µ1 ∈ (1, 106)

Figure 2.13: Error comparison between Offline and Online-Offline stabilization

(that can be useful in case of very heavy computation for stabilization terms).
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2.2.2 Propagating front in a square problem

In this section we will test the stabilization method for another test case, again in the
RB context.

The problem we want to present is set over a squared domain Ω ⊂ R2, as sketched in
figure 2.14, and it has two parameter µ1, µ2 ∈ R. It is the following:

− 1
µ1

∆u(µ) + (cosµ2, sinµ2) · ∇u(µ) = 0 in Ω

u(µ) = 1 on Γ1 ∪ Γ2

u(µ) = 0 on Γ3 ∪ Γ4 ∪ Γ5.

(2.68)

Figure 2.14: Geometry Square problem

Let us note that µ1 represents the Péclet number of the advection-diffusion problem,
while µ2 is the angle between the x axis and the direction of the constant advection field.
The bilinear form associated to the problem is:

a(u, v;µ) =

∫
Ω

1

µ1
∇u · ∇v + (cosµ2 ∂xu+ sinµ2 ∂yu)v. (2.69)

We introduce again a triangulation Th on the domain Ω and we consider P1(Th), that is the
piecewise polynomial interpolation space of order 1. Now we can define our stabilization
term:

s(uh, vh;µ) =
∑
K∈Th

δK

∫
K

(cosµ2, sinµ2) · ∇uh (cosµ2, sinµ2) · ∇vh (2.70)

in which the value of the weights δK is to be assigned.
As we did in section 2.2.1 we define l ∈ P1(Th) a lifting of the boundary conditions

and then we can obtain our final FE approximation problem:

find us,N (µ) ∈ XN s.t.

astab(u
s,N (µ), vN ;µ) = Fstab(v

N ;µ) ∀vN ∈ XN ,
(2.71)

where XN , astab and Fstab are defined as in (2.65). Here, we tried to change δK for different
choice of the parameter µ2, with µ1 = 2 · 104. As we can see in figure 2.15, there are some
simulations that are too stabilized and others that are not enough stabilized, and even in
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(a) µ2 = 0, δK = 0.7 (b) µ2 = 0, δK = 1.4 (c) µ2 = 0, δK = 2.1

(d) µ2 = 0.4, δK = 0.7 (e) µ2 = 0.4, δK = 1.4 (f) µ2 = 0.4, δK = 2.1

(g) µ2 = 0.8, δK = 0.7 (h) µ2 = 0.8, δK = 1.4 (i) µ2 = 0.8, δK = 2.1

(j) µ2 = 1.2, δK = 0.7 (k) µ2 = 1.2, δK = 1.4 (l) µ2 = 1.2, δK = 2.1

Figure 2.15: FE solution comparison varying δK and µ2
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the same simulation we can find zones that are too much stabilized and zones that are not.
For example, in case µ2 = 1.2 we can see in figure 2.15(j) that boundary layers near the
right side and across the square are not enough stabilized, indeed physically, the solution
should not get over 1, but we reached 1.3. If we add more stabilization (δK = 2.1) as
in figure 2.15(l) we can fix the problem on the right boundary layer, but not on the left
boundary layer (still too perturbed).
Moreover, we have to consider the fact that we are working in a RB context and we can
not choose δK varying depending on the parameter µ2 or on the triangular K ∈ Th. If
we look at picture 2.15(c) we are losing the exact solution, adding too much diffusivity,
in particular in the right side of the solution. Overall, we have to find a compromise that
will be δK = 1 from now on.

Observing the greedy algorithm, we think that it is worth to be noted that if we reduce
the mesh size, increasing then the number of the degrees of freedom N , the number N
of basis function, that we need to achieve the same value for the error bound, increases
too. For example, we have tried with 2 different mesh with N = 4688 and N = 1121. For
D = {104}× [0.5, 1] we have that the former needs 15 basis functions to reach a tolerance
of 10−7 while the latter needs only 12 basis function. Moreover, after 18 basis function the
first can guarantee an error bound of 1.319 · 10−7, while the second guarantees an error
bound of 9.409 · 10−9.
Our (heuristic) explanation of this phenomenon is that, by reducing the mesh size h,
we are able to capture more information about the sharp layers, but this means that
the number of possible configurations of the system, depending on the parameter, rises.
As a consequence, we will need more basis functions to obtain the same accuracy. This
behaviour of the stabilized method have been highlighted also in [9].

Another important aspect that we can observe is that, for different ranges of parameter
µ, that variations of the advection field are more relevant than variations of the Péclet
number. This is because by varying the direction of the advection field, the solution shows
strong variations in energy norm [40]. Since this, we have tried to considerably change the
range of the angle of the advection field and to study the behaviour of the greedy algorithm
in these cases. As maximum range for µ2 we have chosen

[
−0.75 ≈ −π

4 , 1.57 ≈ π
2

]
, while

µ1 will always be in
[
104, 105

]
.

As we can see in figure 2.16, with a small range of µ2, as
[
0.5 ≈ π

6 , 1 ≈
π
3

]
, the greedy

algorithm converges quickly, with a reduced basis space of dimension 30, we have an error
around 10−6, while, widening the range to our maximum range, the convergence is heavily
slowed (the error decrease really slowly and after 30 steps of Greedy algorithm, the error
is still over 0.1). Clearly, this range is excessive and this results are not acceptable, but
are useful to optimize our range, to get to [0, 1.57], where we have all the possible positive
angles and a good decrease of the error.
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Figure 2.16: RB error and ∆N error bound varying µ2 range



Chapter 3

Stabilized reduced basis method
for parabolic equations

In this chapter, we will apply a stabilized RB method to parabolic (time dependent)
problems. This approach is similar to one introduced for steady problems of chapter 2.
The RB method for time dependent problems has been already studied in several works,
e.g. [14, 19, 47, 52]. Stabilization of advection diffusion parabolic equations with high
Péclet number have been studied in several works with different stabilization methods.
We will adapt SUPG stabilization for FE methods on parabolic equations to RB method,
as suggested in [40, 41, 42, 43]. Moreover, we will propose two different algorithms to
compute the Greedy procedure [18, 47] of the RB method and we will compare them.

As the previous chapter, this one is a prerequisite to chapter 4, where we will deal
with stochastic equations with random input parameters, defined by a prescribed random
variable.

3.1 Reduced basis methods for linear parabolic equations

Like for elliptic equations, we define a parameter domain D as a closed subset of RP
and we call µ any general P -tuple belonging to D. Again, let Ω be a bounded open subset
of Rd (d = 1, 2, 3) with regular boundary ∂Ω and let X be a functional space such that
H1

0 (Ω) ⊂ X ⊂ H1(Ω). For each admissible value of the parameter, i.e. for each µ ∈ D, we
define the continuous bilinear forms

a(·, ·;µ) : X ×X → R
m(·, ·;µ) : X ×X → R.

(3.1)

We suppose that the form a satisfies the affinity and coercivity assumptions (1.9) and
(1.7), respectively. We need m to be coercive, i.e.

∃αm s.t. αm ≤ αm(µ) := inf
v∈X

m(v, v;µ)

||v||2X
∀µ ∈ D (3.2)

50
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and we assume also that the mass form m satisfy the affinity assumption

m(v, w;µ) =

Qm∑
q=1

Θm
q (µ)mq(v, w) (3.3)

where, as in (1.9), Θm
q : D → R, q = 1, . . . , Qm, are smooth functions whereas mq :

X × X → R, q = 1, . . . , Qm, are continuous µ-independent bilinear forms. Finally, for
each µ ∈ D, we define the right-hand side continuous form F (·;µ) : X → R which satisfies
the affine assumption (1.10). Let us finally denote our time domain with I = [0, T ], where
T is the final time.

We want to spend some words to explain why we need the affine assumption (3.3) also
on the mass term. As we saw in chapter 1, the parameter can be geometrical, that is
the original domain of the problem Ωp(µ) might depend on the parameter. As in section
1.1.1, let us then suppose that both the original domain and the reference one are divided
in subdomains, like in (1.17) and (1.18). The original mass form, that is the L2 scalar
product on the original domain, becomes:

mp(up, vp;µ) =

Ldom∑
l=1

∫
Ωlp(µ)

upvpdx ∀up, vp ∈ Xp(µ) (3.4)

where Xp(µ) is the original test function space. Tracking back the latter integrals on the
reference domain Ω trough the map T defined in (1.20) and (1.21), as we did in section
1.1.2 for the bilinear form ap, we obtain:

m(v, w;µ) =

Ldom∑
l=1

∫
Ωl
uvJ l(µ)dx ∀u, v ∈ X (3.5)

where J l(µ) is the (local) Jacobian of the transformation T .
We can now define our continuous problem:

find u(·;µ) ∈ C0(I;L2(Ω)) ∩ L2(I;X) s.t.

m(∂tu(t;µ), v) + a(u(t;µ), v;µ) = g(t)F (v;µ) ∀v ∈ X, ∀t ∈ I
given the initial value u(0;µ) = u0 ∈ L2(Ω)

(3.6)

where g : I → R is a control function such that g ∈ L2(I). We need such a control function
for problems of the form

∂tu(µ) + Lu(µ) = h1(·, t) in Ω

u(·, t µ) = h2(·, t) on ∂Ω, ∀t ∈ I
u(·, 0;µ) = u0(·, t)

(3.7)

where L is a differential operator and h1 ∈ (Ω × I) and h2 : ∂Ω × I → R are sufficiently
regular. If we suppose that h1(x, t) = g1(t)f1(x) and h2(x, t) = g2(t)f2(x) with g1,2 ∈
L2(I), f1 ∈ L2(Ω) and f2 ∈ H

1
2 (∂Ω), we can obtain a weak formulation like (3.6) adding

a right-hand side term that satisfies lifting boundary conditions.
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3.1.1 Discretization and RB formulation

To discretize the time-dependent problem (3.6) we follow the approach used in [16, 19,
39, 47], that is to use finite differences in time and FE in space discretization [48].

We start by discretizing the spatial part of the problem. We thus define the FE truth
approximation space XN and we denote its basis with {φi}Ni=1. The semi-discretized
problem reads as

for each t ∈ I, find uN (t;µ) ∈ XN s.t.

m(∂tu
N (t;µ), vN ;µ) + a(uN (t;µ), vN ;µ) = g(t)F (vN ;µ) ∀vN ∈ XN , ∀t ∈ I

given the initial value uN0 s.t.

(uN0 , v
N )L2(Ω) = (u0, v

N )L2(Ω) ∀vN ∈ XN .

(3.8)

To obtain a fully discretized problem, we subdivide the time interval I into J subintervals
of length ∆t = T

J and we define tj = j∆t, j = 1, . . . , J . We then replace the time derivative
in (3.8) with a backward finite difference approximation. The fully discretized problem
we are considering is:

for each 1 ≤ j ≤ J, find uNj (µ) ∈ XN s.t.

1

∆t
m(uNj (µ)− uNj−1(µ), vN ;µ) + a(uNj (t;µ), vN ;µ) = g(tj)F (vN ;µ) ∀vN ∈ XN ,

given the initial condition uN0 s.t.

(uN0 , v
N )L2(Ω) = (u0, v

N )L2(Ω) ∀vN ∈ XN .
(3.9)

The latter problem is the Backward Euler-Galerkin discretization of (3.6). Of course,
this is not the only way to discretize the time-dependent problem (3.6), for example we
can resort to other theta-methods (e.g. Crank-Nicholson) or to high order method (e.g.
Runge–Kutta) [48].
We will denote with uN (µ) the solution array, that is:

uN (µ) = (uN1 (µ), . . . , uNJ (µ)) ∈
(
XN

)J
. (3.10)

The RB formulation of the problem (3.9) is based on hierarchical RB space as we did
for the steady case, that is: given an integer Nmax we define a finite sequence {XNN }

Nmax
N=1

of subspaces of XN such that (1.31) holds. To generate this subspaces there are different
techniques that we will study in section 3.1.2, for the moment let us say that the basis
functions of XNN are built by properly combining snapshots in time and space. As in
chapter 1 we use the following notation

XNN = span{ζNn |1 ≤ n ≤ N}. (3.11)

We also assume that the functions ζNn are mutually orthonormal with respect to the scalar
product (·, ·)X .
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The RB problem is then:

for each 1 ≤ j ≤ J, find uNN,j(µ) ∈ XNN s.t.

1

∆t
m(uNN,j(µ)− uNN,j−1(µ), vN ;µ) + a(uNN,j(t;µ), vN ;µ) = g(tj)F (vN ;µ) ∀vN ∈ XNN ,

given the initial condition uNN,0 s.t.

(uNN,0, vN )L2(Ω) = (uN0 , vN )L2(Ω) ∀vN ∈ XNN .
(3.12)

Again, as in (3.10), we define

uNN (µ) = (uNN,1(µ), . . . , uNN,J(µ)) ∈
(
XNN

)J
. (3.13)

Let us now try to obtain the matrix formulation of the RB problem (3.12). First of all
we recall that, for each j = 1, . . . , J , the RB solution uNN,j(µ) ∈ XNN can be expressed as:

uNN,j(µ) =

N∑
m=1

uNN,j,m(µ)ζNm . (3.14)

Then, by taking vN = ζNn , ∀n = 1, . . . , N , in the RB formulation (3.12) we have:

1

∆t
m(uNN,j(µ), ζNn ;µ) + a(uNN,j(t;µ), ζNn ;µ) = g(tj)F (ζNn ;µ) +

1

∆t
m(uNN,j−1(µ), ζNn ;µ)

(3.15)
that is, recalling the affine assumptions (1.9), (1.10) and (3.3):

N∑
m=1

 1

∆t

Qm∑
q=1

Θq
m(µ)mq(ζNm , ζ

N
n ) +

Qa∑
q=1

Θq
a(µ)aq(ζNm , ζ

N
n )

uNN,j(µ) =

=g(tj)

QF∑
q=1

Θq
F (µ)F q(ζNn ) +

N∑
m=1

 1

∆t

Qm∑
q=1

Θq
m(µ)mq(ζNm , ζ

N
n )

uNN,j−1(µ).

(3.16)

We can thus obtain the matrix formulation: 1

∆t

Qm∑
q=1

Θq
m(µ)Mq

N +

Qa∑
q=1

Θq
a(µ)Aq

N

uNN,j(µ) =

= g(tj)

QF∑
q=1

Θq
F (µ)FqN +

 1

∆t

Qm∑
q=1

Θq
m(µ)Mq

N

uNN,j−1(µ)

(3.17)

where AN ,FN are defined in (1.42) e (1.40), while(
uNN,j(µ)

)
m

= uNN,m,j(µ),
(
Mq

N

)
nm

= mq(ζNn , ζ
N
m ), (3.18)

for n,m = 1, . . . , N , and j = 1, . . . , J . Denoting with Z the N ×N matrix whose columns
are the coordinates of the reduced basis ζN1 , . . . , ζ

N
N with respect to {φi}Ni=1, it holds that:

Mq
N = ZTMq

NZ 1 ≤ q ≤ Qm
with (Mq

N )ij = mq(φi, φj) 1 ≤ i, j ≤ N , 1 ≤ q ≤ Qm.
(3.19)
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Like in the steady case, during the Offline stage, we have to compute and store the FE
matrices, the snapshots solutions and the RB matrices. The only difference between the
time-dependent case and the steady case is that in the former we have also to deal with
matrices associated to the mass term, which arise as a consequence of the time-dependency.

The Online operation count is the following [19, 39, 47]:

• O((Qa +Qm)N2) to get the left-hand side matrix;

• O(QFN +QmN
2) to get the right-hand side;

• O(N3 + JN2) to perform a factorization of the left-hand side matrix and to solve
the J linear systems (3.17);

• O(JN) to perform the scalar products (3.14).

Once again, we stress the point that the Online computational cost is independent of the
dimension N of the underlying FE element truth approximation.

3.1.2 Sampling strategies and a posteriori error estimates

To construct the reduced basis in the time-dependent case, we will try two different
methods. The first will be the so called POD–Greedy approach [19, 39, 47], while the
second will be a mix between the first one and the one proposed in [18] that we will call
GS⊥–POD–Greedy.

In both algorithms we need to introduced the POD (proper orthogonal decomposition)
technique (which is also called PCA (principal component analysis) in machine learning
environment)[30, 31].

POD

POD algorithm starts from K vectors wk, k = 1, . . . ,K, in a linear space W (we will
call WK := span{wk|1 ≤ k ≤ K}), and it returns M vectors χm, m = 1, . . . ,M , with
M < K, that are orthonormal with respect to a given scalar product (·, ·) and such that
the space

PM = span{χm|1 ≤ m ≤M} (3.20)

is optimal in the sense that:

PM = arg min
YM⊂WK

(
1

K

K∑
k=1

inf
v∈YM

||wk − v||2
)
, (3.21)

where YM denotes an M -dimensional linear space and || · || is the norm induced by scalar
product (·, ·). We also note that it also holds:

inf
v∈YM

||wk − y||2 = ||wk − πYM v||
2 (3.22)

where πYM is the orthogonal projection on YM , with respect to the scalar product (·, ·).
Roughly speaking we are searching the M -dimensional linear subspace which minimize
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the sum of all the “errors” between our vectors wk and their projections onto YM . It is
easy to prove that it is equivalent to find the M -dimensional linear subspace included in
WK which maximize the variance of vectors χm, m = 1, . . . ,M .

We show now an effective procedure to compute the orthonormal basis {χm|1 ≤ m ≤
M} [30, 31].

1. Given snapshots {wk|1 ≤ k ≤ K}, we compute the K ×K symmetric and positive
definite matrix C defined by

Cij =
1

K
(wi, wj). (3.23)

2. We compute the first M eigenvalues λm, 1 ≤ m ≤ M , of C and the associated
eigenvectors {ψ, 1 ≤ m ≤M}.

3. We obtain the orthonormal basis {χm|1 ≤ m ≤M} using the formula:

χm =
1√
λm

K∑
k=1

(ψm)kwk 1 ≤ m ≤M, (3.24)

where (ψm)k is the k-th component of the eigenvector ψm.

As regards the error, we can define

EM :=
1

K

K∑
k=1

||wk − πPMwk||
2 =

K∑
k=M+1

λk (3.25)

where the second equality can be proven as in [30].
It was already obvious from the definition that EM → 0 as M → K, but the equality
(3.25) turns out to be useful for the choice of M . If we fix a tolerance εPODtol , we can set
M as:

M = min

{
R

∣∣∣∣
(

K∑
k=R+1

λk

)1/2

≤ εPODtol

}
. (3.26)

To indicate the POD procedure, we adopt the following compact notation:

{χm|1 ≤ m ≤M} = POD(WK ,M). (3.27)

POD–Greedy method

We introduce now the POD–Greedy method [18, 19, 47], used to build the reduced
basis for the time dependent problem (3.12). First of all, let us define the norm:

|||vN (µ)|||t−dep =

m(vNJ (µ), vNJ (µ);µ) +

J∑
j=1

asym(vNj (µ), vNj (µ);µ)∆t

 1
2

(3.28)

for all sequences vN (µ) = (vN1 (µ), . . . , vNJ (µ)) ∈ (XN )J .
Let us denote with e(µ), µ ∈ D, the difference between the truth solution uN (µ) and the
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RB one uNN (µ). In order to pursue an effective greedy strategy, we assume that we have
a sharp and a computationally inexpensive a posteriori error estimator µ 7→ ∆t

N (µ), as
in appendix A, such that:

|||e(µ)|||t−dep ≤ ∆t
N (µ) ∀µ ∈ D, 1 ≤ N ≤ Nmax. (3.29)

Like in the steady case, we define a finite subset Ξtrain of D, large enough to be considered
an approximation of the parameter space D.

The N -th step of the POD–Greedy algorithm can be described as:

1. find the value µ̃ ∈ Ξtrain that maximize the estimator ∆t
N−1;

2. compute the FE solution to problem (3.9) for µ̃;

3. apply a first POD method to time snapshots of this solution, i.e., {uNj (µ̃)}Jj=1 and

obtain {χm}M1
m=1, for some prescribed M1, that represents the number of retained

modes;

4. apply a second POD method to old reduced basis together with the results of the
first POD, i.e. {χm}M1

m=1 ∪ {ζNn }
N−1
n=1 and retain only the first M2 modes.

Data: µ1, Nmax, ε∗tol, M1, ε
1
tol, M2, ε

2
tol

Result: A reduced space Z
µ̃ = µ1;
compute uN (µ̃);
Z = POD({uNj (µ̃)}Jj=1,M1, ε

1
tol);

N = M1;
compute ∆t

1(µ), ∀µ ∈ Ξtrain;
set µ̃ = arg max{∆t

N (µ), µ ∈ Ξtrain};
while ∆t

N (µ̃) > ε∗tol and N < Nmax do
{χm} = POD({uNj (µ̃)}Jj=1,M1, ε

1
tol);

Z = POD({χm} ∪ Z,M2, ε
2
tol);

N =dimension of Z;
compute ∆t

n(µ), ∀µ ∈ Ξtrain;
set µ̃ = arg max{∆t

N (µ), µ ∈ Ξtrain};
compute uN (µ̃);

end
Algorithm 3: POD–Greedy

Concerning stopping criteria, we will consider 2 different conditions: a tolerance on
the greedy, i.e. we stop the algorithm when ∆t

N (µ) ≤ ε∗tol, ∀µ ∈ Ξtrain; a maximum RB
dimension Nmax. The POD–Greedy procedure is shown in algorithm 3. In this algorithm
there are two “tuning” values, M1 and M2. Moreover, thanks to (3.26), we can use two
tolerances ε1

tol, ε
2
tol as stopping criteria of the two PODs. So we will have 4 parameter to

set.
Several problems can arise from this choice, for example, if we take an M1 too small, it
can happen that the choices of the parameter by Greedy algorithm is repetitive and that
a single parameter is chosen many times. If we take a too large M2 we may keep more
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information than what we need. If ε2
tol is too small, the algorithm can fall in a infinite

loop before reaching Nmax.
For our computation we have chosen ε1

tol = 10−3 and M1 ∈ {5, 6, 7, 8}, while ε2
tol = 0

and M2 ∈ {1, 2, 3}.

GS⊥–POD–Greedy method

To avoid this choice, we can remove some parameter choices changing the algorithm
to the one that we will call GS⊥–POD–Greedy (Gram-Schmidt, orthogonalization, POD,
Greedy)[18]. The main problem of the POD–Greedy algorithm is the possibility of an
infinite loop, due to the fact that the first POD can provide to the reduced basis space
the same information from the same parameter µ̃ at each step. The main idea of this
improvement is to delete the information we already have from reduced basis and then
doing the POD on the chosen parameter. It means that instead of doing a POD on
uN (µ̃), we will do it on the projection of this vectors onto the orthogonal space Z⊥.
Computationally it is not a great effort, it is sufficient to perform u⊥,N := uN −ZZTuN .
After this we will add the result of this POD to the old reduced basis space, and the we
perform a Gram-Schmidt orthonormalization to stabilize the further steps, as we can see
in algorithm 4.

Data: µ1, Nmax, ε∗tol, M1, ε
1
tol

Result: A reduced space Z
µ̃ = µ1;
compute uN (µ̃);
Z = POD({uNj (µ̃)}Jj=1,M1, ε

1
tol);

N = M1;
compute ∆t

1(µ), ∀µ ∈ Ξtrain;
set µ̃ = arg max{∆t

N (µ), µ ∈ Ξtrain};
while ∆t

N (µ̃) > ε∗tol and N < Nmax do
compute u⊥,N = uN −ZZTuN ;

{χm} = POD({u⊥,Nj (µ̃)}Jj=1,M1, ε
1
tol);

Z = GS(Z
⊕
{χm});

N =dimension of Z;
compute ∆t

n(µ), ∀µ ∈ Ξtrain;
set µ̃ = arg max{∆t

N (µ), µ ∈ Ξtrain};
compute uN (µ̃);

end

Algorithm 4: GS⊥–POD–Greedy

Also in this algorithm we have to set M1 and ε1
tol, but we are sure that from every POD

we will not take any redundant information. So, even if we fail the choice of parameter,
the algorithm should work. Problems that we can have due to this setting are that the
algorithm may be slow, or not the best to choose the RB space. Anyway, we will see that
this algorithm is better than POD–Greedy algorithm, even in simulations.
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For computations of the error estimator ∆t
N (µ) we refer to appendix A.

To test these two algorithms on our parabolic advection–diffusion problems, we have to
resort a stabilization technique for our equations. Otherwise, we will get some really un-
stable results as in chapter 2. To avoid these problems we have to introduce a stabilization
method valid for parabolic equations.

3.2 SUPG stabilization method for parabolic problems

In this section we briefly introduce the SUPG method for time-dependent problems
[5, 29]. The idea is the same of the steady case: we have to add terms like s(0) and
φ(0), defined in (2.19) and (2.20) to the left-hand side and to the right-hand side of (3.9)
respectively. More precisely, the right-hand side term is the same, whereas we have to
slightly redefine the term s(ρ) in order to consider the time dependence and to guarantee
the strong consistency. We thus set

s(ρ)(vN (t), wN ) =
∑
K∈Th

δK

(
∂tv
N (t) + LvN (t),

hk
|β|

(LSS + ρLS)wN
)
K

(3.30)

where vN (t) ∈ XN for each t ∈ I and wN ∈ XN . To get the SUPG stabilization we take
ρ = 0.

We note that if either the coefficients of the equation or its domain are µ-dependent,
then the stabilization terms will depend on µ too, as we have actually shown in sec-
tion 2.2. Assuming the parametric dependence, we can write the Backward Euler–SUPG
formulation as follows:

for each 1 ≤ j ≤ J, find uNj (µ) ∈ XN s.t.

1

∆t
mstab(u

N
j (µ)− uNj−1(µ), vN ;µ) + astab(u

N
j (t;µ), vN ;µ) =

= g(tj)Fstab(v
N ;µ) ∀vN ∈ XN ,

given the initial condition uN0 s.t.

(uN0 , v
N )L2(Ω) = (u0, v

N )L2(Ω) ∀vN ∈ XN .

(3.31)

where the stabilized terms are

mstab(v
N , wN ;µ) = m(vN , wN ;µ) +

∑
Kp(µ)∈Th,p(µ)

δKp(µ)

(
vN ,

hKp(µ)

|β(µ)|
LSSw

N
)
Kp(µ)

astab(v
N , wN ;µ) = a(vN , wN ;µ) +

∑
Kp(µ)∈Th,p(µ)

δKp(µ)

(
LvN ,

hKp(µ)

|β(µ)|
LSSw

N
)
Kp(µ)

Fstab(v
N ;µ) = F (vN ;µ) +

∑
Kp(µ)∈Th,p(µ)

δKp(µ)

(
f,
hKp(µ)

|β(µ)|
LSSv

N
)
Kp(µ)

(3.32)

where Kp(µ) are the elements which form the mesh Th,p defined on the original domain
Ωp(µ).
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For the analysis of stability and convergence of this method, we refer to [27].
After the introduction of this stabilization, we can use RB formulation (3.15) with new

forms:

1

∆t
mstab(u

N
N,j(µ), ζNn ;µ) + astab(u

N
N,j(t;µ), ζNn ;µ) =

= g(tj)Fstab(ζ
N
n ;µ) +

1

∆t
mstab(u

N
N,j−1(µ), ζNn ;µ)

(3.33)

and test it on following examples.

3.3 Numerical Results

We are now showing some numerical results of the stabilized RB method for parabolic
PDEs. The first one is the time-dependent Poiseuille-Graetz problem and the second will
be the time-dependent case of the square problem of section 2.2.2.

3.3.1 Parabolic Poiseuille-Graetz problem

In this section we want to test the stabilized RB method for a time dependent Poiseuille-
Graetz problem [14, 25, 47, 52]. The settings are analogous to the steady case in section
2.2.1.

Figure 3.1: Geometry of Graetz problem. Parametrized domain. Boundary conditions:
homogeneous Dirichlet on blu sides, u=1 on red sides, homogeneous Neumann on the
dashed side

Let µ = (µ1, µ2) ∈ R2 such that µ1, µ2 > 0. For each value of the parameter µ, let
Ωp(µ) be the rectangle in R2 sketched in figure 3.1. We first subdivide Ωp(µ) into two
subdomains, Ωp,2(µ) and Ωp,1(µ) and then subdivide the boundary into 6 parts Γp,i, i =
1, . . . , 6. Then we define the time interval I = [0, T ].
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The problem is to find the temperature distribution u(µ) such that:

∂tu(µ)− 1
µ1

∆u(µ) + 4y(1− y)∂xu(µ) = 0 in Ωp(µ)

u(·, t;µ) = 0 on Γp,1(µ) ∪ Γp,2(µ) ∪ Γp,6(µ)

u(·, t;µ) = 1 on Γp,3(µ) ∪ Γp,5(µ)
∂u
∂ν (·, t;µ) = 0 on Γp,4(µ)

u(·, 0;µ) ≡ 1 in Ωp(µ)

(3.34)

Here boundary conditions are steady. Only in the next section we will use time-dependent
boundary conditions.

As in section 2.2.1, we have a reference domain Ω = Ωp(·, 1) with its subdomains
Ωi, i = 1, 2, and boundary regions Γi, i = 1, . . . , 6, and a linear transformation T (µ) : Ω→
Ωp(µ) ⊂ R2 defined as in the steady case (2.49) and (2.50). We build two triangulations
over subdomains Ωi:T ih , i = 1, 2 such that their union is a proper triangulation Th on Ω.
We can define the approximation space XN = P1(Th) ∩H1

0 (Ω).
We define the lifting of the boundary data l as a function in P1(Th) such that l|Γ1,2,6 ≡ 0

and l|Γ3,5 ≡ 1.
We can write the weak formulation of the problem (3.34) and then track it back on

the reference domain, similarly to section 2.2.1. We obtain the following Backward Euler
Stabilized FE problem:

for each 1 ≤ j ≤ J, find uNj (µ) ∈ XN s.t.

1

∆t
mstab(u

N
j (µ)− uNj−1(µ), vN ;µ) + astab(u

N
j (t;µ), vN ;µ) = g(tj)Fstab(v

N ;µ) ∀vN ∈ XN ,

given the initial condition uN0 s.t.

(uN0 , v
N )L2(Ω) = (1, vN )L2(Ω) ∀vN ∈ XN .

(3.35)

where the stabilized terms are

mstab(v
N , wN ;µ) =

∫
Ω1

vNwN +
∑
K∈T 1

δKhK

∫
K
vN∂xwN+

+

∫
Ω2

µ2

µ1
vNwN +

∑
K∈T 2

δK
hK√
µ2

∫
K
vN∂xwN

astab(v
N , wN ;µ) =

∫
Ω1

1

µ1
∇vN · ∇wN + 4y(1− y)∂xv

NwN+

+
∑
K∈T 1

δKhK

∫
K

4y(1− y)∂xv
N∂xwN+

+

∫
Ω2

1

µ1µ2
∂xv
N∂ywN +

µ2

µ1
∂xv
N∂xwN + µ1µ24y(1− y)∂xv

NwN+

+
∑
K∈T 2

δK
hK√
µ2

∫
K

4y(1− y)∂xv
N∂xwN

Fstab(v
N ;µ) =− astab(l, vN ;µ)

(3.36)
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for all vN , wN ∈ XN .
Now, we can see in picture 3.2 some snapshots at different time for stabilized FE

solution (our truth solution) at µ1 = 1 and µ2 = 1 · 104. We can notice that in parabolic
case, instabilities near the boundary layer after the stabilization are almost disappeared.
In this tests we have used a timestep of ∆t = 0.3 seconds, with the same mesh used for
the steady case (hmax = 0.037).

Finally, we can compute the RB method and test the different methods and compare
them. In figure 3.3 we can see that the GS⊥–POD–Greedy algorithm, with respect to the
POD–Greedy one, can not increase its delta or error as the dimension of the reduced basis
space increases. In this Graetz case this fact is an advantage, indeed, it happens that the
POD–Greedy algorithm increases ∆N and the error, while the other is always decreasing
in a more regular way.
The most important disadvantage of the POD–Greedy algorithm is that it does not use
the information collected during the Greedy algorithm in the first POD step. During this
step, it happens that often it choose some samples that are very similar to others already
chosen and that during the second POD it simply take a little information from basis
chosen, or even nothing new. While GS⊥–POD–Greedy considers only information that
are not already used in the previous part of the algorithm and this guarantees an always
decreasing error and ∆N .
In other cases, this could be also a disadvantage, for example, when the algorithm take in
consideration some basis that are less important than others, the POD–Greedy algorithm
can get rid of these ones during the second POD, while the GS⊥–POD–Greedy keeps all
the information.

We want to notice that the error in absolute value, is a lot larger than the steady case
one. With a reduced basis space of dimension 20 the error is still around 1, while for
the steady case, with same dimension reduced basis space, we have an error of 10−3. If
we want, for example, to set a tolerance on the greedy algorithm and reach an error of
10−2 we have to compute a reduced basis space of dimension 83. This is due to the large
diversity between snapshots taken at different times and different parameter values.
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(a) t = 0 sec (b) t = 0.5 sec

(c) t = 1 sec (d) t = 1.5 sec

(e) t = 2 sec (f) t = 2.5 sec

(g) t = 3 sec (h) t = 4 sec

(i) t = 5 sec (j) t = 7 sec

Figure 3.2: Plot of FE solution for parabolic Graetz problem at different times at µ1 = 1
and µ2 = 1 · 104
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Figure 3.3: Error of POD–Greedy algorithm and GS⊥–POD–Greedy algorithm
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3.3.2 Propagating front in a square parabolic problem

Let consider the same geometry of figure 3.4, i.e. a square Ω ⊂ R2, with boundary
subdivided in two zone: red one composed by Γ1 ∪ Γ2 and the blue one Γ3 ∪ Γ4 ∪ Γ5.
Let us denote I the time interval [0, T ]. Let β = (µ1, µ2), with µ1, µ2 ∈ R. The problem

Figure 3.4: Propagating front problem geometry

we are dealing with is the following:
∂tu(µ)− 1

µ1
∆u(µ) + (cosµ2, sinµ2) · ∇u(µ) = 0 in Ω× I

u(·, t;µ) = g(t) on Γ1 ∪ Γ2

u(·, t;µ) = 0 on Γ3(µ) ∪ Γ4 ∪ Γ5

u(·, 0;µ) ≡ 0 in Ωp(µ)

(3.37)

where g is a control function, g(t) = cos(t).
To build our approximation procedure, we first define a triangulation Th, with which

we can define the polynomial approximation space P1 as in the steady case (section 2.2.2).
Moreover we define XN = P1 ∩H1

0 (Ω). And we obtain the stabilized Backward-Euler FE
formulation (3.31), that we recall

for each 1 ≤ j ≤ J, find uNj (µ) ∈ XN s.t.

1

∆t
mstab(u

N
j (µ)− uNj−1(µ), vN ;µ) + astab(u

N
j (t;µ), vN ;µ) =

= g(tj)Fstab(v
N ;µ) ∀vN ∈ XN ,

given the initial condition uN0 s.t.

(uN0 , v
N )L2(Ω) = (u0, v

N )L2(Ω) ∀vN ∈ XN .

(3.38)

where, for all vN , wN ∈ XN , we have:

mstab(v
N , wN ;µ) =

∫
Ω
vNwN +

∑
K∈T

δKhK
(
vN , (cosµ2, sinµ2) · ∇wN

)
K

astab(v
N , wN ;µ) =

∫
Ω

1

µ1
∇vN · ∇wN + (cosµ2, sinµ2) · ∇vNwN+

+
∑
K∈T

δKhK
(
(cosµ2, sinµ2)∇vN · ∇wN

)
K

Fstab(v
N ;µ) =

∑
K∈T

δKhK
(
fh, (cosµ2, sinµ2) · ∇wN

)
K

(3.39)
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where fh is a lifting function corresponding to the boundary condition u = 1 on ∂Ω. We
will use, as in section 2.2.2, δK = 1 for every element. We are using a timestep ∆t = 0.2
with a maximum time T = 3 seconds.
In figure 3.6 we can see some stabilized FE solution at a finer time step (∆t = 0.08) at
different times. We can see that even in this case the instabilities along boundary layers
are well smoothed by the stabilization, indeed at each time, the solution is always under
1, while in the steady–case, it was often over (physically senseless).
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Figure 3.5: Error of POD–Greedy algorithm and GS⊥–POD–Greedy algorithm

As for the Graetz problem, we can compare the two algorithms proposed in figure
3.5. We can notice the same behaviour of the previous case. The GS⊥–POD–Greedy
algorithm is getting lower errors with same dimension of reduced basis space with respect
to POD–Greedy algorithm.
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(a) t = 0 sec (b) t = 0.16 sec (c) t = 0.32 sec

(d) t = 0.48 sec (e) t = 0.64 sec (f) t = 0.8 sec

(g) t = 0.96 sec (h) t = 1.12 sec (i) t = 1.28 sec

(j) t = 1.6 sec (k) t = 1.92 sec (l) t = 2.24 sec

Figure 3.6: Plot of FE solution for parabolic Square problem at different times, µ1 =
2 · 104, µ2 = 0.8



Chapter 4

Weighted reduced basis algorithm
for stabilized transport PDEs

In this chapter we will discuss a refinement of the reduced basis method in particular
situations. Until now, we have dealt with parameters that were uniformly distributed
on their ranges. In order to deal with more general uncertainty problems with random
distributed parameters, we will propose an extended version of the reduced basis method
called “weighted reduced basis method” [6].
The main idea of this method is to suitably assign a larger weight to those samples that
are more important. We expect a better convergence of this algorithm over a distributed
test set.

Moreover, we will compare this method to the standard reduced basis method for
advection–diffusion problems with high Péclet number. In order to do this, we will use all
the stabilization techniques used in chapters 2 and 3.

We will also provide an offline/online stabilization approach that can be useful in case
when stabilization involves large computations.

Finally, we will provide some numerical examples on problems presented in previous
chapters.

Similar methods are studied even for nonlocal diffusion problems. In [17] we can
see both reduced basis methods and uncertainty quantification in sense of random input
parameters applied to nonlocal diffusion problems. This tell us that our weighted reduced
basis method can be extended to other problems different from PDEs.

4.1 Weighted Reduced Basis Method

In this section, we will introduce stochastic partial differential equations and then, we
will discuss the weighted Reduced Basis method [7].

First of all, we have to set an appropriate mathematical environment to define our
problems. As in previous chapters, let Ω be an open set of R2 with Lipschitz boundary
∂Ω and let H1

0 (Ω) ⊂ X ⊂ H1(Ω) a functional space.
Let (A,F , P ) denote a complete probability space, where A is a set of outcomes ω ∈ A,

F is a σ-algebra of events and P : F → [0, 1] with P (A) = 1 is a probability measure [11].

67
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A real-valued random variable is defined as a measurable function Y : (A,F) → (R,B),
being B the Borel σ-algebra on R.
The distribution function of a random variable Y : A→ D ⊂ R, being D the image of Y ,
is defined as FY : D → [0, 1] such that ∀y ∈ D, FY (y) = P (ω ∈ A : Y (ω) ≤ y). Let dFY (y)
denote the distribution measure, i.e., for all B ⊂ D P (F ∈ B) =

∫
B dFY (y). Provided

that dFY (y) is absolutely continuous with respect to the Lebesgue measure dy, which we
assume hereafter to be the case, there exists a probability density function ρ : D → R such
that ρ(y)dy = dFY (y). Note that the new measure space (D,B(D), ρ(y)dy) is isometric to
(A,F , P ) under the random variable Y .

We define the probability Hilbert space L2(A) := {v : A → R :
∫
A v

2(ω)dP (ω) < ∞}
and L2

ρ(D) := {wD → R|
∫
D w

2(y)ρ(y)dy < ∞}, equipped with the equivalent norms (by
noting that v(ω) = w(y(ω)))

||v||L2(A) :=

(∫
A
v2(ω)dP (ω)

)1/2

=

(∫
D
w2(y)ρ(y)dy

)1/2

=: ||w||L2
ρ(D). (4.1)

Let v : Ω×A→ R be a real-valued random field, which is a real-valued random variable
defined on A for each x ∈ Ω. We define the Hilbert space S(Ω) := L2(A)

⊗
H1(Ω),

equipped with the inner product

(w, v) =

∫
A

∫
Ω

(wv + ∂1v∂1w + ∂2v∂2w)dx1dx2dP (ω) ∀w, v ∈ S(Ω), (4.2)

where ∂i is the partial derivative along the ith coordinate of Ω. The associated norm is
defined as ||v||S(Ω) =

√
(v, v).

Now we can introduce stochastic partial differential equations. Given random vector
field µ : A→ Rp, our stochastic advection-diffusion problem will be finding a random field
u(µ(ω), x) such that

− ε(µ(ω))∆u(µ(ω)) + β(µ(ω)) · ∇u(µ(ω)) = 0 on Ω(µ(ω)) (4.3)

according to boundary conditions.
As in previous chapter, we have to consider the weak formulation of this problem, for

example (2.52), then a discretized version of this weak formulation with FE, for example
(2.60), and we have to remember the RB approach and the greedy algorithm of chapter 1.

Now, we want to develop an algorithm that gives more importance to parameters with
higher probability of been chosen. The basic idea is to assign different weights to every
values of parameter µ ∈ D ⊂ RP inside the RB algorithm according to a prescribed
weight function w(µ), during the RB procedure of construction of the RB space. The
motivation is that when the parameter µ has various weights w(µ) at different values
µ ∈ D, e.g., stochastic problems with random inputs obeying probability distribution far
from uniform type, the weighted approach can considerably attenuate the computational
effort for large scale computational problems. The weighted reduced basis method consists
of the same elements, namely greedy algorithm, a posteriori error estimate and offline-
online decomposition, as presented in chapter 1. In this chapter, we only highlight the
new weighted scheme.
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Let XN be a high-fidelity approximation space of X, equipped with the norm ||u||X =√
a(u, u; µ̃) ∀u ∈ X at some reference value µ̃ ∈ D. LetXNw be a weighted approximation

space (actually XN ) with norm

||u(µ)||w = w(µ)||u(µ)||X ∀u ∈ XN , ∀µ ∈ D, (4.4)

where w : D → R+ is a weighted function taking positive real values.
Recalling the greedy algorithm (1), at each step we want to find µ∗ such that it

maximize the error between the truth solution uN (µ) and the reduced basis solution
uN (µ) . Similarly, the greedy weighted algorithm essentially deals with the L∞(D;Xw)
optimization problem in a greedy way, seeking a new parameter µN ∈ D such that

µN = arg sup
µ∈D
||uN (µ)− uN (µ)||w, (4.5)

where again uN is the reduced basis approximation of the truth solution uN . As before
we want to replace the parameter space D with its discretized version Ξtrain. Instead of
performing the true error, we use a weighted a posteriori error estimator ∆w

N such that

||uN (µ)− uN (µ)||w ≤ ∆w
N (µ). (4.6)

The choice of the weight function w(µ) is aimed by the desire of minimizing the square
norm error of the RB approximation in the space L∞(D;Xw), i.e.

E[(uN − uN )2] =

∫
A

∫
Ω

(uN (µ(ω))− uN (µ(ω)))2dxdP (ω) =

=

∫
D

∫
Ω

(uN (µ)− uN (µ))2dxρ(µ)dµ,

(4.7)

that we can bound with

E
[
(uN − uN )2

]
≤
∫
D

∆N (µ)2ρ(µ)dµ, (4.8)

where ∆N is the error estimator (1.53).
So we will use as weighted function w(µ) =

√
ρ(µ) and we set ∆w

N (µ) := ∆N (µ)
√
ρ(µ).[7]

Another important aspect in the RB algorithm is the choice of the training set Ξtrain.
Usually we use Uniform Monte Carlo sampling methods to choose elements from D, while,
in this context, we can use a Monte Carlo sampling according to the distribution ρ(µ).
We will see in numerical test that this choice is important to improve the convergence of
the error.
For further convergence analysis we refer to [6, 7].

4.2 Stabilized weighted reduced basis

The weighted reduced basis method has been studied in [6, 7] and in other works, but
it was never tested on advection–diffusion equations with high Péclet number.
We want to test it with our examples (Graetz problem 2.2.1 and propagating front problem
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2.2.2). As before we will have a domain Ωp(µ) a strong formulation of the problems (2.48)
(2.68) and their FE weak formulations (2.55) (2.71). As in section 2.1, for the moment, we
will add the SUPG stabilization terms getting formulations (2.63) (2.70). The difference
will be µ : A→ D that, instead of being a parameter in a range, will be a random vector.
For example, if we write the Graetz example of this formulation, it will be:

find uN (µ) ∈ XN s.t.

astab(u
N (µ(ω)), vN ;µ(ω)) = Fstab(v

N ;µ(ω)) vN ∈ XN , ∀ω ∈ A
(4.9)

where astab and Fstab are defined in (2.65), µ is a random vector. The distribution of µ
for our test will be a Beta(α, β) distribution, with different values of α and β, over the
ranges that we used in previous chapters:

µ1 ∼ µ1,min + (µ1,max − µ1,min)X1

µ2 ∼ µ2,min + (µ2,max − µ2,min)X2

X1 ∼ Beta(α1, β1)

X2 ∼ Beta(α2, β2).

(4.10)

We choose this distribution because it takes values in a compact set and because we can
give more importance to a certain piece of the range (for example, the one with higher
Péclet number).
In figure 4.1 we can see the density function of a Beta(4, 2) distribution.

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.5

1.0

1.5

2.0

2.5 Beta(4,2) distribution density function

Figure 4.1: Beta(4,2)

4.2.1 Numerical test: Poiseuille-Graetz problem

For Poiseuille-Graetz problem, we consider the already used range D =
[
101, 106

]
×

[0.5, 4] for the parameter µ. To give more importance to parameter with µ1 ≈ 105, we use
X1 ∼ Beta(4, 2) and µ1 ∼ 101+5·X1 , while X2 ∼ Beta(3, 4) and µ2 ∼ 0.5 + 3.5X2.
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In previous chapters we, implicitly used this algorithm with a uniform distribution over
D1.
Before using weighted Greedy algorithm on weighted stabilized weak formulation (4.9),
we have to decide how to discretize D. Doing so in different ways, we will compare 4
algorithms:

1. Classical Greedy with Uniform Monte Carlo sampling (black in figure 4.2)

2. Classical Greedy with Beta Monte Carlo sampling (purple in figure 4.2)

3. Weighted Greedy with Uniform Monte Carlo sampling (green in figure 4.2)

4. Weighted Greedy with Beta Monte Carlo sampling (red in figure 4.2).
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Figure 4.2: Greedy algorithms comparison for Graetz problem

We used 200 samples for Ξtrain in each algorithm and to evaluate errors and ∆N we used
a test set Ξtest of 100 samples distributed according to µ. We can see in figure 4.2 the
comparison between the errors and ∆N between these algorithms. Both the improvements
are important to make the weighted method converge faster than the classical Greedy
method [55]. Clearly, putting together the two improvements (weighted error estimator
and Monte Carlo sampling) we get the best result.

Overall, the stabilization of the weak formulation have not great influence on weighted
method and its convergence, indeed, we have that with a reduced basis space of dimension
20, we have that its error is one tenth of the error of the classical Greedy algorithm.
Anyway, in this situation, we should be more interested in the mean of the error in a
probability sense, while the one that we have plotted before was the uniform mean of
errors. So, we would like to compute

E[||uN (µ)− uN (µ)||X ] =

∫
D
||uN (µ)− uN (µ)||Xρ(µ)dµ, (4.11)

1We change µ1 through its logarithm otherwise we will have that most (90%) of our parameters µ1 are
in

[
105, 106

]
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that we can approximate using some quadrature method, in particular, we will use Monte
Carlo method, i.e.

E[||uN (µ)− uN (µ)||X ] ≈ 1

M

M∑
i=1

||uN (µi)− uN (µi)||Xρ(µi), (4.12)

where µi, i = 1, . . . ,M are randomly chosen in D.
If we want to compare for this error the classical Greedy method and the weighted reduced
one, we obtain that the former is 4.5485 · 10−4, while the latter is 1.2807 · 10−4.

4.2.2 Numerical test: propagating front in a square problem

We can proceed in the same way for the propagating front problem. Given geome-
try, functional spaces and stabilization as in section 2.2.2, the stabilized stochastic weak
formulation will be:

find uN (µ(ω)) ∈ XN s.t.

astab(u
N (µ(ω)), vN ;µ(ω)) = Fstab(v

N ;µ(ω)) ∀vN ∈ XN , ∀ω ∈ A
(4.13)

where all forms are defined as in (2.71).
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Figure 4.3: Greedy algorithms comparison for Square problem

In this section, the parameter range that we will use D will be
[
104, 105

]
× [0, 1.5].

Even here we have that parameters µ1 and µ2 are random Beta variables, in particular
X1 ∼ Beta(3, 4) while X2 ∼ Beta(4, 2) and µ1 ∼ 104 + 9 · 104 ·X1 while µ2 ∼ 1.5 ·X2.
As for Graetz problem we can apply the weighted reduced basis method of section 4.1 and
compare it with classical Greedy method.
In figure 4.3 we can see results very similar to Graetz problem. We have tested only
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two algorithms (classical Greedy Uniform MC and weighted Greedy Beta MC) on a Ξtest
sample distributed as µ: the weighted RB method is converging faster than the classical
one.
If we want to compare them in sense of (4.12)

E[||uN (µ)− uN (µ)||X ], (4.14)

we will have that the new method produces an error of 1.7803 · 10−3, while the old one
gives an error of 7.9362 · 10−3 with a reduced basis space of dimension N = 20.

4.2.3 Numerical test: Parabolic problems

Even for parabolic cases we can proceed as before. We have stabilized weak formu-
lations for both problems (3.31) with respectively forms (3.36) and (3.39). Here µ is
distributed as in previous sections 4.2.1 and 4.2.2.
The main difference is that our solutions will be J random fields uNj (µ(ω)), for j = 1, . . . , J .

for each 1 ≤ j ≤ J, find uNj (µ(ω)) ∈ XN s.t.

1

∆t
mstab(u

N
j (µ(ω))− uNj−1(µ(ω)), vN ;µ(ω)) + astab(u

N
j (t;µ(ω)), vN ;µ(ω)) =

= g(tj)Fstab(v
N ;µ(ω)) ∀vN ∈ XN ,

given the initial condition uN0 s.t.

(uN0 , v
N )L2(Ω) = (u0, v

N )L2(Ω) ∀vN ∈ XN ,

(4.15)

where stabilized forms are defined in (3.32).
As in chapter 3, the error will be the sum of errors at each time, for plot in figure 4.4

we still use the norm of the error defined in (3.28), i.e.

|||eN (µ)|||t−dep =

m(eNJ (µ), eNJ (µ);µ) +

J∑
j=1

asym(eNj (µ), eNj (µ);µ)∆t

 1
2

, (4.16)

where eN = uN (µ)− uNN (µ).
We can see in figure 4.4 that for Graetz problem the difference between classical Greedy

method and weighted one is not so relevant for the first 20 dimension of the reduced basis
space in terms of the error, while the ∆N error bound is improved with the modified
algorithm. For propagation front problem we can see important improvements both in
error and ∆N .

If we want to consider an error analogous to (4.11), we can define

E[uN − uNN ] :=

J∑
j=1

∫
D
||uNj − uNN,j ||Xρ(µ)dµ (4.17)

and approximate it with Monte Carlo quadrature procedure.
By doing this we obtain for Graetz problem with a reduced basis space of dimension 20 an
error of 8.3248 · 10−2 for classic Greedy algorithm and 7.6318 · 10−2 for weighted reduced
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(b) Propagating front problem

Figure 4.4: Greedy algorithms comparison for parabolic problems

basis algorithm. For propagating front problem we have that the classic Greedy algorithm
produce an error of 0.3196 while the weighted algorithm gets 0.2343.

In conclusion we can say that the weighted reduced basis method can be useful in
situation where we know the distribution of parameters. In the particular case where
the parameters are concentrated around a high Péclet zone, we can use this algorithm to
reduce our Online computation.

4.3 Offline/Online stabilized weighted reduced basis method

In this section we want to optimize computational costs in the Online phase of RB
method. The aim of the following algorithm is to reduce long computations that stabi-
lization procedures can have during the Online phase (for example large Qa or QF ). The
SUPG stabilization in our examples does not have this problem (stabilization affine terms
are at most 3), but, anyway, we want to test these improvements on these examples to
understand if we can avoid some stabilization procedures (even for other stabilization tech-
niques). We know that errors computed with the Offline-only stabilized method are often
very large, compared with Offline-Online stabilization (for example for Graetz problem
in figure 2.13), especially for high Péclet numbers. But, working in context of stochastic
partial differential equation and using the error (4.11), we want to combine the Offline–
only and the Offline–Online approach to reduce computational costs and not to worsen
the error too much.

Let us consider the Poisuille-Graetz example, with Beta distribution over parameter
µ. We change a little bit parameters to have more comprehensible plots, but results are
similar to distribution used in previous example (4.10). To simplify more, we will not
use the second parameter µ2 that we fix at µ2 = 1. For µ1, we use range [10, 106] with
X1 ∼ Beta(3, 5) as in figure 4.5(a).

To sum up what we have done in the previous section, we have taken µ as a random
vector, we have taken the stochastic equation (4.3), its weak formulation and the dis-
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cretized version. Then, we applied the Offline stage of the weighted RB algorithm (section
4.1) to SUPG stabilized version of this equation (4.9).
As a result of this procedure we can apply stabilized and non-stabilized Online phase to a
test set (that we have taken with a Uniform Monte Carlo sampling). In figure 4.5(b) we
can see which error this algorithm produces. We can observe that for low Péclet number
(µ1 ≤ 102), stabilized and non-stabilized Online phase produce almost the same error
(which is a lot bigger then high Péclet numbers one due to the density of µ and weighted
RB algorithm).
We have that the zone with lower Pèclet numbers coincides with lower density ρ(µ). So,
we should consider the idea of not stabilizing during the Online phase the reduced solution
of parameters with low density and low Péclet numbers. Indeed, they are less relevant
in terms of error (4.11) and their difference between Online–Offline stabilized error and
Offline only stabilized error will be smaller than one of solutions of high Péclet numbers
as we can see in figure 4.5(b).

Let us start considering the case we want to stabilize Online solutions depending on
Péclet numbers. First, we establish a threshold at a certain diffusivity ε = 1

µ1
, for example

µ̃1 = 102. For parameters µ1 > µ̃1 we will use both stabilization Online and Offline, while
for parameter µ1 ≤ µ̃1 we will use only stabilization Offline as we see in figure 4.6.

After this we can compute the error in sense of (4.11) and we can see that, if during
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Figure 4.6: Péclet discriminant, black line is the Péclet threshold

the Online stage we do not stabilize every solution, we have an error of 0.021128, while
stabilizing everything we get an error of 7.967 · 10−4. For different thresholds we can
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compute errors as we can see in the following table.

Threshold Error Percentage non-stabilized

0 7.9673 · 10−4 0%
101.5 8.0704 · 10−4 10%
102 10.0060 · 10−4 20%

102.5 18.2806 · 10−4 33%
103 33.4593 · 10−4 45%
∞ 0.021128 100%

Considering that the original error was of 7.967 · 10−4, we can say that until 102.5 we are
not worsening considerably the error. Anyway, even with a threshold of 102 we can save
computations of stabilization for 19% of our test (that was Uniformly distributed), which
is a good result.

The other natural gauge to decide whether stabilize the Online solution or not is the
density ρ(µ). We can choose different thresholds ρ̃ and if ρ(µ) ≤ ρ̃ we will not stabilize
the Online solution. In this situation, we will decide the threshold through the percentage
of integral of the density we want to stabilize or not. It means that if we want not to
stabilize the 10% of the integral with lowest density, we will take the range I of parameters
that are with less density such that ∫

I
ρ(µ)dµ = 0.10, (4.18)

in this way, I will be the set {µ : ρ(µ) ≤ ρ̃} and we will know, in probability, how much
this will weigh on the whole parameter set. In figure 4.7 we can see an example of 10% of
integral non stabilized online.

In the following table, we can see some results to test at different thresholds.∫
I ρ(µ)dµ Threshold ρ̃ Error Percentage non-stabilized

0 0 7.9673 · 10−4 0%
0.001 0.02233 9.3222 · 10−4 15%
0.002 0.04423 9.6456 · 10−4 17%
0.005 0.09094 14.7861 · 10−4 21%
0.01 0.13877 15.9482 · 10−4 25%
0.02 0.21433 25.6017 · 10−4 30%
0.05 0.38244 49.1931 · 10−4 38%
0.1 0.89068 66.7488 · 10−4 45%
1 ∞ 0.021128 100%

We have that errors computed using density discriminant are less accurate than ones
computed with Péclet discriminant. This is due to the enormous difference between Online
stabilized and Online non stabilized solution for high Péclet numbers (figure 4.5(b)). In-
deed, for the same percentage of non-stabilized solution (for example 45%) we have bigger
errors in density discriminant approach (66 · 10−4 instead of 33 · 10−4).

Nevertheless, we can not always use the Pèclet discriminant approach. For example,
in propagating front problem we had a limited µ1 range, which was [104, 105], important
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Figure 4.7: Density discriminant, black line is the density threshold

differences were given by angle µ2 range, that was [0, 1.5]. Even in this case, to simplify
the problem, we can fix µ1 = 105 and we take a Beta(4,2) distribution over the angle
parameter µ2.

We can see error of stabilized and not stabilized Online phase over a Uniform Monte
Carlo test set of 200 elements in figure 4.8. We can notice that Offline–Online stabilized
errors of solutions with small angles (left side of figure 4.8) are even bigger than Offline only
stabilized errors (this is due to the Beta distribution and the weighted Greedy algorithm
that do not give much importance to that set of the parameter range). So, we would like
to stabilize only angles greater that a certain threshold, example in figure 4.9. The error in
sense of (4.11) of all stabilized online solutions is of 0.01416, while with all not stabilized
is of 0.82998. In next table we show different errors at different angle thresholds.

Threshold µ2 Error Percentage non-stabilized

0 0.01416 0%
0.1 0.01416 6%
0.2 0.01506 16%
0.3 0.04056 23%
0.4 0.11810 30%
0.5 0.20365 37%
1.5 0.82998 100%

We can observe that at the beginning the error is decreasing as the threshold increase, as
we expected, while, passed a certain angle, it slowly increase. For example, a threshold of
0.2 is optimal not to increase the error and save 16% of stabilization computations.
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Figure 4.8: Errors stabilized and not stabilized Online phase

As for Graetz example, we can test the density threshold and see if it works better
in this case. In figure 4.10 we can see an example of density threshold. In the following
table, we are showing different errors for different density thresholds.∫

I ρ(µ)dµ Threshold ρ̃ Error Percentage non-stabilized

0 0 0.01416 0%
0.001 0.02271 0.01400 13%
0.002 0.04600 0.01506 16%
0.005 0.10237 0.02269 20%
0.01 0.13598 0.04658 25%
0.02 0.26309 0.11158 30%
0.05 0.51855 0.20613 38%
0.1 0.72557 0.32034 46%
1 ∞ 0.82998 100%

In this case the two methods produce almost the same results, because even big angles
are not well approximated through the weighted RB method. Anyway we can say that
without adding almost any error we can save 15% of stabilized Online computations, while
if we want to sacrifice a little bit the error, we can arrive to 25% of computations saved
(and 1% of the integral

∫
I ρ(µ)dµ).

We want to remark that, in a deterministic point of view, the Offline-Online-discriminant
stabilized approach can not guarantee a good approximation for a single snapshot taken
during the Online phase of the RB method. Conversely, in a stochastic error analysis it
can give a lot of computational advantages.
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Figure 4.9: Density discriminant, black line is the density threshold
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Figure 4.10: Density discriminant, black line is the density threshold



Conclusions

In this thesis we have dealt with stabilization techniques for approximation of advection
dominated problems using a reduced basis approach into a stochastic framework, both in
steady and unsteady case.

To perform a stabilization in reduced basis algorithm, we have studied the SUPG [49]
stabilization for FE method and introduced two reduced basis stabilization algorithms.
The Online–Offline stabilization, which uses SUPG stabilized forms in both stages (Offline
and Online) and the Offline–only stabilization, which uses the original (not stabilized)
forms for the Online stage. The underlying idea was to obtain a stable RB approximation,
from the stable FE approximation, with reasonable computational times and, at the same
time, a very good accuracy.

We have tested the two methods on some examples (the Poisuille–Graetz problem and
the propagating front in a square problem) which have shown that the Offline–Online
stabilization produces stable results and that the a posteriori error bound of RB method
still guarantees a convergence. The Offline–only shows some instabilities and the error
between RB approximation and FE one can not always converge because of declared
inconsistencies between Online and Offline phase forms.

We have improved these methods to parabolic problems producing a stabilized RB
approach for unsteady cases [41], starting from SUPG stabilized parabolic FE methods [5,
29]. We have proposed two different algorithms to perform the parabolic RB algorithm and
we have compared them. We have tested successfully our algorithms on time dependent
equations with also time dependent boundary conditions (for example Poiseuille–Graetz
problem).

Then we introduced stochastic equations and weighted reduced basis method [7]. We
tested a weighted stabilization reduced basis method for random input parameters and,
thanks to error produced by this algorithm, we introduced a class of Offline–Online/Offline-
only discriminant methods which allows to reduce quite well the computational load, with
a negligible worsening of the error, which remains of the same order of the previous strate-
gies one.

Possible developments of this topic can be applications of these methods to more
complex geometries that requires more affine terms for forms. An other step, that can be
done, could be to use non–affinely parametrized geometries, which requires an empirical
interpolation pre–processing [4, 33].

Moreover, the method could be tested on larger dimension parameter spaces D, using
again Monte Carlo sampling or improving it implementing quasi-Monte Carlo strategies.
Other possibilities can be to test the algorithms on other type of probability distributions
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and compare different results.



Appendix A

Parabolic error estimator

In this appendix we will discuss the a posteriori error estimator that we will use for
parabolic Greedy algorithm, proposed in [16].

First of all, we want to notice that the error estimator ∆t
N should depend also on

the control function g. Then we have to choose a particular control function with which
the greedy algorithm is performed. Recalling that our problem is linear, for every input
control function g we can recover the solution uN (µ) by convolution

uN
j̃

(µ) =

j̃∑
j=1

g(tj)ũN
j̃−j(µ) (A.1)

where ũN (µ) is the impulse response, that is the solution of (3.9) in which it is used an
impulse control g̃, such that:

g̃(t0) = 1, g̃(tj) = 0 1 ≤ j ≤ J. (A.2)

It is important to note, in (A.1), that the function uN
j̃
, j = . . . , J , is a linear combination

of the impulse response ũNj , j = . . . , J. This means that, to obtain a good approximation
of the solution corresponding to any control function g, it is sufficient that the RB method
approximates well the (parametric) impulse response [16].
As a consequence of the presence of an “unknown” control function that can be set Online,
theoretically the error e(µ) should depend also on g. We must point out that the following
inequality is not valid:

|||e(µ; g)||t−dep ≤ ε∗tol ∀µ ∈ Ξtrain (A.3)

for every choice of g, but we can provide error estimators such that

|||e(µ; g)||t−dep ≤ ∆t
N (µ; g) ∀µ ∈ Ξtrain, ∀g. (A.4)

A posteriori error estimates

We are dealing now with the a posteriori error estimators to be used in the greedy
algorithm. In our work we will follow the choice presented in [16], but other possibility
have been proposed [54].
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The first ingredient we have to introduce is the dual norm of the residual:

εN (tj ;µ; g) := sup
vN∈XN

rN (vN ; tj ;µ; g)

||vN ||X
, 1 ≤ j ≤ J, (A.5)

where rN is the residual of the RB approximation, that is:

rN (vN ; tj ;µ; g) = g(tj)f(vN )− 1

∆t
m(uNj,N − uNj−1,N , v

N ;µ)− a(uNj,N , v
N ;µ)

∀vN ∈ XN , 1 ≤ j ≤ J.
(A.6)

Let us define Fq,Anq ,Mn
q ∈ XN respectively for q = 1, . . . , QF , q = 1, . . . , Qa, n =

1, . . . , N and q = 1, . . . , Qm, n = 1, . . . , N as following:

(Fq, vN )X = F q(vN ) ∀v ∈ XN

(Anq , vN )X = aq(ζNn , v
N ) ∀v ∈ XN

(Mn
q , v
N )X = mq(ζNn , v

N ) ∀v ∈ XN .
(A.7)

All these quantities are µ-independent. Now, we need to define some scalar products as
follows:

ΛFFpq = (Bp,Bq)X , 1 ≤ p, q ≤ QF ;

ΛaFpqn = −2(Bp,Anq )X , 1 ≤ p ≤ QF , 1 ≤ p ≤ Qa, 1 ≤ n ≤ N ;

ΛMF
pqn = − 2

∆t
(Bp,Mn

q )X , 1 ≤ p ≤ QF , 1 ≤ p ≤ Qm, 1 ≤ n ≤ N ;

Λaapnqm = (Anp ,Amq )X , 1 ≤ p, q ≤ Qa, 1 ≤ n,m ≤ N ;

ΛaMpnqm =
2

∆t
(Anp ,Mm

q )X , 1 ≤ p ≤ Qa, 1 ≤ q ≤ Qm, 1 ≤ n,m ≤ N ;

ΛMM
pnqm =

1

∆t2
(Mn

p ,Mm
q )X , 1 ≤ p, q ≤ Qm, 1 ≤ n,m ≤ N.

Finally, we can compute, thanks to affine assumptions (1.9), (1.10) and (3.3), the residual
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squared [16]:

εN (tj ;µ; g)2 =

QF∑
p,q=1

Θp
F (µ)Θq

F (µ)g(tj)2ΛFFpq +

+

QF∑
p=1

N∑
n=1

Θp
F (µ)g(tj)

(
Qa∑
q=1

Θq
a(µ)uNN,n,j(µ)ΛaFpqn+

+

Qm∑
q=1

Θq
M (µ)

(
uNN,n,j(µ)− uNN,n,j−1(µ)

)
ΛMF
pqn

)
+

+

N∑
n,m=1

{
Qa∑
p,q=1

Θp
a(µ)Θq

a(µ)uNN,m,j(µ)uNN,n,j(µ)Λaapmqn+

+

Qm∑
p,q=1

Θp
M (µ)Θq

M (µ)ΛMM
pmqn·

· (uNN,m,j(µ)− uNN,m,j−1(µ))(uNN,n,j(µ)− uNN,n,j−1(µ))+

+

Qa∑
p=1

Qm∑
q=1

Θp
a(µ)Θq

M (µ)uNN,m,j(µ)(uNN,n,j(µ)− uNN,n,j−1(µ))ΛaMpmqn

}
.

(A.8)

We then need again a lower bound µ 7→ αNLB(µ) for the coercivity constant of the dis-
cretized bilinear form a as in (1.52). To do so we can resort to the SCM [23] introduced
in section 1.2.5 and used in the steady case.

After these preliminaries, we are finally able to define the a posteriori error estimator
which satisfies (3.29):

∆t
N (µ; g) =

 ∆t

αNLB(µ)

J∑
j=1

εN (tj ;µ; g)2

 1
2

. (A.9)

The a posteriori error estimator used during the greedy is actually

∆t
N (µ) := ∆t

N (µ; g̃), (A.10)

where g̃ defined in (A.1).



Bibliography

[1] F. Ballarin. Reduced-order models for patient-specific haemodynamics of coronary
artery bypass grafts. PhD thesis, Politecnico di Milano, 2015.

[2] F. Ballarin, E. Faggiano, S. Ippolito, A. Manzoni, A. Quarteroni, G. Rozza, and
R. Scrofani. Fast simulations of patient-specific haemodynamics of coronary artery
bypass grafts based on a POD–Galerkin method and a vascular shape parametriza-
tion. Journal of Computational Physics, 315:609 – 628, 2016.

[3] F. Ballarin, A. Sartori, and G. Rozza. RBniCS - reduced order modelling in FEniCS.
http://mathlab.sissa.it/rbnics, 2015.

[4] M. Barrault, Y. Maday, N.C. Nguyen, and A.T. Patera. An ‘empirical interpolation’
method: application to efficient reduced-basis discretization of partial differential
equations. C. R. Math. Acad. Sci., 339(9):667–672, 2004.

[5] A.N. Brooks and T.J.R. Hughes. Streamline upwind/Petrov-Galerkin formulations for
convection dominated flows with particular emphasis on the incompressible Navier-
Stokes equations. Comput. Methods Appl. Mech. Engrg., 32(1-3):199–259, 1982.

[6] P. Chen. Model Order Reduction Techniques for Uncertainty Quantification Problems.
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[9] L. Dedè. Reduced basis method for parametrized elliptic advection-reaction problems.
J. Comput. Math., 28(1):122–148, 2010.

[10] J.W. Demmel. Applied numerical linear algebra. Society for Industrial and Applied
Mathematics (SIAM), Philadelphi, PA, 1997.

[11] R. Durrett. Probability Theory and Examples. Cambridge University Press, Cam-
bridge, UK, 2010.

86

http://mathlab.sissa.it/rbnics


BIBLIOGRAPHY 87

[12] J.L. Eftang, M.A. Grepl, and A.T. Patera. A posteriori error bounds for the empirical
interpolation method. C. R. Math. Acad. Sci., 51(1):28–58, 2010.

[13] L.P. Franca, S.L. Frey, and T.J.R. Hughes. Stabilized finite element methods. I.
Application to the advective-diffusive model. Comput. Methods Appl. Mech. Engrg.,
95(2), 1992.

[14] F. Gelsomino and G. Rozza. Comparison and combination of reduced-order modelling
techniques in 3D parametrized heat transfer problems. Math. Comput. Model. Dyn.
Syst., 17(4):371–394, 2011.

[15] M.A. Grepl, Y. Maday, N.C. Nguyen, and A.T. Patera. Efficient reduced-basis treat-
ment of nonaffine and nonlinear partial differential equations. M2AN Math. Model.
Numer. Anal., 41(3):575–605, 2007.

[16] M.A. Grepl and A.T. Patera. A Posteriori error bounds for reduced-basis approxima-
tions of parametrized parabolic partial differential equations. M2AN Math. Model.
Numer. Anal., 1(39):157–181, 2005.

[17] Q. Guan, M. Gunzburger, C. G. Webster, and G. Zhang. Reduced basis methods
for nonlocal diffusion problems with random input data. Technical report, Elsevier,
2016.

[18] Haasdonk, B. and Ohlberger, M. Reduced basis method for finite volume approxi-
mations of parametrized linear evolution equations. ESAIM: M2AN, 42(2):277–302,
2008.

[19] J.S. Hesthaven, G. Rozza, and B. Stamm. Certified Reduced Basis Methods for
Parametrized Partial Differential Equations. Springer, 2016.

[20] T.J.R. Hughes and A.N. Brooks. A multidimensional upwind scheme with no cross-
wind diffusion. In Finite element methods for convection dominated flows, volume 34,
pages 19–35. Am. Soc. Mech. Engrs, New York, 1979.

[21] T.J.R. Hughes, L. P. Franca, and G. M. Hulbert. A new finite element formula-
tion for computational fluid dynamics. VIII. The Galerkin/least-squares method for
advective–diffusive equations. Comput. Methods Appl. Mech. Engrg., 73(2), 1989.

[22] D.B.P. Huynh, D.J. Knezevic, Y. Chen, J.S. Hesthaven, and A.T. Patera. A natural-
norm successive constraint method for inf-sup lower bounds. Comput. Methods Appl.
Mech. Engrg., 199(29-32):1963–1975, 2010.

[23] D.B.P. Huynh, G. Rozza, S. Sen, and A.T. Patera. A successive constraint linear
optimization method for lower bounds of parametric coercivity and inf-sup stability
constants. C. R. Math. Acad. Sci., 345(8):473–478, 2007.

[24] L. Iapichino, A. Quarteroni, and G. Rozza. A reduced basis hybrid method for
coupling of parametrized domains represented by fluidic networks. Comput. Methods
Appl. Mech. Engrg., 221-222:63–82, 2012.



BIBLIOGRAPHY 88

[25] F.P. Incropera and D.P. DeWitt. Fundamental of Heat and Mass Transfer. John
Wiley & Sons, 1990.

[26] K. Ito and S.S. Ravindran. A reduced-order method for simulation and control of
fluid flows. J. Comput. Phys., 2(143):403–425, 1998.

[27] V. John and J. Novo. Error analysis of the SUPG finite element discretization of evolu-
tionary convection-diffusion-reaction equations. SIAM J. Numer. Anal., 49(3):1149–
1176, June 2011.
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