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Introduction

When modeling a physical systems, uncertainties inevitably arise from various
sources, e.g., computational geometries, physical parameters, external forces, and
initial or boundary conditions, and may significantly impact the computational
results. Physical systems are usually modeled by parametrized partial differen-
tial equations. When uncertainties are incorporated into these equations, we are
facing stochastic problems or uncertainty quantification. Various computational
methods have been developed to solve such equations, including Monte-Carlo,
stochastic collocation and reduced basis.
The most commonly used Monte-Carlo methods [21,45], typically converge slowly
and require an high computational effort. The stochastic collocation methods
[35, 48], instead, employs multivariate polynomial interpolations for the integral
in the variational formulation of the stochastic system with respect to probability
space. Due to the heavy computation of a deterministic system at each colloca-
tion point in high-dimensional spaces, sparse grids with suitable quadrature rules
have been analyzed and applied to reduce the computational load.
Reduced basis (RB) methods [26] have been applied to stochastic problems in or-
der to reduce the computational effort of Monte-Carlo methods. The RB method
has been proposed primarly to solve parametric systems, in works [37,42], and has
been lately applied to stochastic problems, in works [5, 6]. In the latter context,
it regards the random variable as parameters and selects the most representative
points in the parameter space by greedy sampling, based on a posteriori error
estimation. The underlying idea for the deterministic and stochastic reduced ba-
sis method is to separate the whole procedure into an offline stage and an online
stage. During the former, the large computational ingredients are computed and
stored once and for all, including sampling parameters, assembling matrices and
vectors, solving and collecting snapshots of solutions, etc. In the online stage,
only the parameter-related elements are left to be computed and a small Galerkin
projection problem needs to be solved.
Nevertheless, in [5,6] the RB method was used only for stochastic problems with
uniformly distributed random inputs. In order to deal with more general stochas-
tic problems with other distributed random inputs, the works [8–11], have pro-
posed and analyzed a new version of RB method, named ‘weighted’ reduced basis
method. The basic idea is to suitably assign a larger weight to samples that are
more important or have a higher probability of occuring than the others, accord-
ing to the probability distribution function.
Reduced basis method are part of a larger family, known as reduced order meth-

1



ods [16].
Another well known reduced order technique is the so called Proper Orthogonal
Decomposition (POD). The basic idea behind the POD method is to minimize
the error in a L2 norm over the parameter space. To our knowledge, a weighted
POD method has never been used for the solution of stochastic problems.
In this thesis it has been proposed and numerically analyzed a new version of
POD method for stochastic problems, which has been named ‘weighted’ POD.
The basic idea behind the weighted POD method is to minimize the distance
between the solution in a L2

P norm over the parameter space, where P indicates
the probability distribution of the parameter.
The thesis is organized as follows.
In the first chapter we present reduced order methods for the solution of parametri-
zed PDEs, in the deterministic case. We introduce the general framework and we
analyze, respectively, how POD and RB algorithms work.
In the second chapter we present weighted reduced order methods for PDEs with
stochastic parameters. The general framework of stochastic partial differential
equations (PDEs) and the hypotesis necessary to use weighted reduced order
methods are set. Thus, we apply them for the resolutions of two linear stochastic
elliptic equations, with different random dimensions. We then discuss the results
obtained numerically. For all the implementation, it has been used the RBniCS [2]
library, which we properly modified to allow the use of weighted reduced order
algorithms.
In the third chapter, we discuss a possible application of Smolyak quadrature
[23,36] to weighted POD algorithms. Stochastic collocation methods and in par-
ticular Smolyak algorithms are presented. We then explained how they could be
useful in weighted POD method. We extended the RBniCS library with functions
which allow to compute Smolyak quadrature approximations and to use them for
the weighted POD method. Numerical results and remarks are also reported.
Finally, in the fourth chapter, we analyze the numerical solutions of a 2d linear
elasticity equation, with some stochastic parameters, using weighted reduced or-
der methods.
Some concluding remarks are reported in the final chapter.
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Introduzione

Nel modellizzare un sistema fisico, diverse fonti di incertezza si presentano in-
evitabilmente sotto molti aspetti, quali ad esempio, parametri fisici, forze es-
terne, o condizioni iniziali o al contorno, e possono significativamente influen-
zare i risultati finali. I sistemi fisici sono spesso descritti tramite equazioni alle
derivate parziali dipendenti da parametri. Quando fonti di incertezza sono incor-
porate nei parametri, siamo di fronte a problemi stocastici o di quantificazione
dell’incertezza.
Diversi metodi computazionali sono stati sviluppati per risolvere tali equazioni,
quali i metodi Monte-Carlo e di collocazione stocastica. Tra questi, quelli più
comunemente usati sono i metodi Monte-Carlo [21,45]. Tuttavia tali metodi con-
vergono lentamente e richiedono un grande sforzo computazionale. I metodi di
collocazione stocastica [35,48], d’altro lato, utilizzano un interpolazione polinomi-
ale multivariata nello spazio di probabilità per gli integrali nella formulazione vari-
azionale del problema stocastico. Dato l’alto costo computazionale, per spazi di di-
mensione elevata, di risolvere sistemi deterministici in ogni punto di collocazione,
metodi sparse grid sono stati utilizzati per ridurre il carico computazionale.
I metodi alle basi ridotte [26] sono stati applicati a problemi stocastici per ridurre
il costo computazionale dei metodi Monte-Carlo. I metodi alle basi ridotte sono
stati proposti prima di tutto per risolvere problemi parametrici, nei lavori [37,42],
e successivamente applicati a problemi stocastici, nei lavori [5,6]. In quest’ultimo
contesto, le variabili aleatorie sono viste come parametri e vengono selezionati
i punti più rappresentativi nello spazio dei parametri con un sampling di tipo
greedy, basato su una stima a posteriori dell’errore. L’idea alla base dei metodi
alle basi ridotte è di separare l’intera procedura in una fase offline e una online.
Durante la prima, gli ingredienti di alto costo computazionale (quali, ad esempio,
i parametri di sampling, le matrici e i vettori di assemblaggio, gli snapshot delle
soluzioni, etc.) sono calcolati e salvati una volta per tutte. Nella fase online,
rimangono da calcolare solamente gli elementi legati ai parametri e il problema è
risolto cercando una proiezione di Galerkin piccola.
Nei lavori [5,6] il metodo alle basi ridotte era usato solamente per problemi stocas-
tici con input casuali di distribuzione uniforme. Per trattare problemi stocastici
più generali, ovvero con diverse distribuzioni degli input, i lavori [8–11] hanno
proposto e analizzato una nuova versione di metodi RB, chiamati metodi alle basi
ridotte ‘pesati’. L’idea alla base è di assegnare pesi maggiori a samples che sono
più importanti o hanno una maggior probabilità di apparire di altri, secondo la
distribuzione di probabilità.
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I metodi alle basi ridotte fanno parte di una famiglia più grande, conosciuta come
metodi di ordine ridotto [16].
Un altra tecnica di ordine ridotto è la cosiddetta Proper Orthogonal Decomposi-
tion (POD). L’idea alla base del metodo POD è di minimizzare l’errore in norma
L2 sullo spazio dei parametri.
In questa tesi viene proposta una versione ‘pesata’ del metodo POD. Per quanto
ne sappiamo, un tale metodo non è mai stato utilizzato finora per la risoluzione
di problemi stocastici. L’idea alla base del metodo POD pesato è di minimizzare
l’errore in norma L2

P sullo spazio dei parametri, dove P indica la distribuzione di
probabilità sui parametri.
La tesi è organizzata come segue.
Nel primo capitolo vengono presentati i metodi di ordine ridotto per la risoluzione
di PDEs parametrizzate, nel caso deterministico. Viene introdotto il contesto gen-
erale e sono analizzati, rispettivamente, gli algoritmi dei metodi RB e POD.
Nel secondo capitolo sono presentati i metodi di ordine ridotto pesati per la
soluzione di PDEs dipendenti da parametri stocastici. Sono riportati il contesto
generale delle equazioni alle derivate parziali stocastiche (SPDEs) e le ipotesi
necessarie per applicarvi i metodi di ordine ridotto. Quindi, tali metodi sono ap-
plicati alla risoluzione di due equazioni stocastiche lineari ellittiche, con diverse
dimensioni del parametro stocastico. Infine sono discussi i risultati ottenuti nu-
mericamente. Per tutte le implementazioni, è stata usata la libreria RBniCS [2],
modificata in modo da permettere l’uso di metodi pesati.
Nel terzo capitolo, viene discussa una possibile applicazione della quadratura di
Smolyak [23, 36] ai metodi POD pesati. Innanzitutto sono presentati i metodi di
collocazione stocastica e in particolare gli algoritmi di Smolyak. Viene quindi sp-
iegato il loro possibile utilizzo nei metodi POD pesati. La libreria RBniCS è stata
estesa con funzioni per il calcolo le formule di quadratura di Smolyak e per il
loro utilizzo nei metodi POD pesati. Vengono quindi riportati i risultati numerici
ottenuti e le relative osservazioni.
Infine, nel quarto capitolo, vengono analizzate le soluzioni numeriche di un prob-
lema di elasticità lineare bidimensionale, dipendente da parametri stocastici, ot-
tenute utilizzando metodi di ordine ridotto pesati.
Nel capitolo finale sono riportate delle osservazioni conclusive.
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Prerequisites and notation

We go through some of the necessary terminology used in the course of this thesis.
Let V be an arbitrary normed space. The set of continuous linear mappings from
V to R is called the topological dual space of V and it is denoted by V ′.
Throughout this thesis we employ so-called multi-index notation. If α ∈ Nd, then
we refer to its jth coordinate universally as αj . If β ∈ Nd we write α ≥ β if
αj ≥ βj for all j = 1, . . . , d. We define additionally the shorthand 1 = (1, . . . , 1)
and 0 = (0, . . . , 0). We introduce the following convention for the mixed derivative
operator:

∂α

∂xα
=

∂|α|1

∂xα1
1 · · ·x

αd
d

, x = (x1, . . . , xd) ∈ Rd.

Given a open subset Ω in Rd, we denote with D(Ω) the space of all infinitely
differentiable functions v : Ω → R with compact support and with D ′(Ω) the
space of distributions on Ω.
For each integer m ≥ 0, the Sobolev space Wm,p(Ω) consists of those functions
v ∈ Lp(Ω), for which all partial derivatives ∂αv (in the distribution sense), with
|α|1 ≤ m, belong to the space Lp(Ω). The space Wm,p(Ω) is a Banach space
equipped with the norm

‖v‖m,p,Ω =

 ∑
|α|1≤m

|v|pm,p,Ω

1/p

, where |v|m,p,Ω =

 ∑
|α|1=m

∫
Ω
|∂αv|p dx

1/p

are seminorms. In particular Hm(Ω)
.
= Wm,2(Ω) is an Hilbert space with scalar

product

(u, v)m,Ω =
∑
|α|1≤m

∫
Ω
∂αu ∂αv dx

We denote with ‖·‖m,Ω the norm of Hm(Ω) and with |·|m,Ω = |·|m,2,Ω the semi-
norms. We define the Sobolev space

Hm
0 (Ω) = D(Ω),

the closure being understood in the sense of the norm ‖·‖m,Ω. When the set Ω is
bounded, there exists a constant C(Ω) such that

|v|0,Ω ≤ C(Ω)|v|1,Ω, ∀ v ∈ H1
0 (Ω) (0.1)
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In the following we will consider open sets Ω with Lipschitz continouous boundary
D = ∂Ω, i.e., such that there exist constants α, β > 0, and a finite number of local
coordinate systems and local maps ar, 1 ≤ r ≤ R, which are Lipschitz continuous
on their respective domains of definitions {x̂r ∈ Rd−1 : ‖x̂r‖ ≤ α}, such that:

D =

R⋃
r=1

{(xr1, x̂r) : xr1 = ar(x̂
r), ‖x̂r‖∞ < α}

{(xr1, x̂r) : ar(x̂
r) < xr1 < ar(x̂

r) + β, ‖x̂r‖∞ < α} ⊆ Ω, 1 ≤ r ≤ R,
{(xr1, x̂r) : ar(x̂

r)− β < xr1 < ar(x̂
r), ‖x̂r‖∞ < α} ⊆ (Ω)c, 1 ≤ r ≤ R,

where x̂r = (xr2, . . . , x
r
d). If the maps ar are Ck, we say that D is of class Ck. If D

is Lipschitz continuous, a superficial measure, which we shall denote dγ, can be
defined along the boundary, so that it makes sense to consider the spaces L2(D).
Then it can be proved that there exists a constant C(Ω) such that

‖v‖0,D ≤ C(Ω)‖v‖1,Ω, ∀v ∈ C∞(Ω).

Since in this case C∞(Ω) = H1(Ω), there exists a continuous linear mapping
tr : v ∈ H1(Ω) 7→ tr v ∈ L2(D), which is called the trace operator. However when
no confusion arise, we shall simply write tr v = v. The following characterization
holds:

H1
0 (Ω) = {v ∈ H1(Ω) : v = 0 on D}.

Moreover, since D is Lipschitz, the unit outer normal n = (n1, . . . , nd) exists
dγ almost everywhere (a.e.). Therefore it can be shown that given two func-
tions u, v ∈ H1(Ω), the following fundamental Green’s formula holds for any
i = 1, . . . , d: ∫

Ω
u ∂iv dx = −

∫
Ω
∂iu v dx+

∫
D
u v ni dγ. (0.2)

In the following we shall also consider vectorial problem and so we will consider
the spaces

Lp(Ω)
.
= (Lp(Ω))d, Wm,p(Ω)

.
= (Wm,p(Ω))d,

Hm(Ω)
.
= (Hm(Ω))d, Hm

0 (Ω)
.
= (Hm

0 (Ω))d.

With abuse of notation we will denote the norm and the semi-norms on this spaces
as, respectively,

‖v‖m,p,Ω
.
=

(
d∑
i=1

‖vi‖2m,p,Ω

)1/2

and |v|m,p,Ω
.
=

(
d∑
i=1

|vi|2m,p,Ω

)1/2

,

for v = (v1, . . . , vd) ∈Wm,p(Ω). For every detail about the above definitions and
property we refer to [1, 7, 43].
Finally, in this thesis we will make use of P1 finite element (P1-F.E.) approxima-
tion. For further details about it we refer to [18,38,41].
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Chapter 1

Reduced order methods for
parametrized PDEs

In this chapter we introduce reduced order methods (ROMs) for parametrized par-
tial differential equations (PPDEs), in which a number of input parameters are
used to characterize a particular problem and possible variations in its geometric
configuration, physical properties, boundary conditions or source terms. Reduced
order models are used when the solution is sought for a large number of different
parameter values or when we are interested in a real time input-output computa-
tion. In such situations, we need the ability to accurately and efficiently evaluate
an output of interest when the input parameters are being varied. However, the
complexity and computational cost associated with solving the full partial differ-
ential equation for each new parameter value rules out a direct approach. We must
therefore seek a different approach that allows us to evaluate the desired output
at minimal cost, yet without sacrificing the predictive accuracy of the complex
model. Reduced order method are based on a two stage procedure, comprising an
offline and an online stage. During the potentially very costly offline stage, one
empirically explores the solution manifold to construct a reduced order space that
approximates any member of the solution manifold to within a prescribed accu-
racy. The order space is built as the space spanned by some linear combinations
of solutions. The online stage consists of a Galerkin projection onto the order
spaces. During this stage, one can explore the parameter space at a substantially
reduced cost. The chapter is split in three sections. In the first one we set up
the general framework for reduced order methods. In the two next sections we
describe two different techniques to build reduced order spaces, i.e., the proper
orthogonal decomposition and the greedy basis generation.

1.1 Parametrized PDEs

In this section we describe the framework and the main features of reduced order
methods. In particular we will focus on linear coercive elliptic PPDEs. In the first
two sections we give the abstract formulation of such problems. Then, in the next
three sections, we briefly discuss discretization techniques for the computation of
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high-fidelity solutions, how reduced order methods work and a main assumption
that must be done to ensure efficiency of the ROMs. This section is based on the
book [26] and we remand the reader to it for further details.

1.1.1 Parametric weak formulation

Let Ω ⊆ Rd (d = 1, 2, 3) be a domain1 with Lipschitz boundary Γ = ∂Ω. We
will consider both scalar-valued and vector-valued field variables v : Ω → Rdv ,
where dv = 1 for scalar-valued problems and dv = d for vector-valued problems.
Let Vi, i = 1, . . . , dv be functional spaces over Ω. In particular we assume Vi to
be Hilbert spaces. In general we will consider Hk

0 (Ω) ⊆ Vi ⊆ Hk(Ω), for a fixed
integer k ≥ 1. We then consider the space V = V1 × · · · ×Vdv , equipped with an
inner product (v, w)V and the induced norm ‖v‖V =

√
(v, v)V, for all v, w ∈ V,

such that this norm is equivalent to the (Hk(Ω))dv one. Thus, V is an Hilbert
space. We finally introduce the parameter space P ⊆ RP , where P denotes the
number of parameters. We will so consider parametric field variables u : P→ V,
u = u(µ), for µ ∈ P.
Our general problem will be settled in a parametrized weak formulation. Let
a : V × V × P → R be a parametrized bilinear (with respect to the first two
variables) form and f, l : V × P → R be two parametrized linear forms (with
respect to the first variable). The abstract formulation of our problem reads: find
u : P→ V such that

a(u(µ), v;µ) = f(v;µ), ∀ v ∈ V, µ ∈ P, (1.1)

and evaluate
s(µ) = l(u(µ);µ), ∀µ ∈ P. (1.2)

In order to have a well-posed problem for every parameter µ ∈ P, we make
additional assumptions on the parametrized forms a(·, ·;µ) and f(·;µ), for every
µ ∈ P:

(i) a(·, ·;µ) is coercive and continuous with respect to the norm ‖·‖V, i.e., there
exist two constants α(µ) ≥ α̂ > 0 and γ(µ) ≤ γ̂ < +∞ such that

a(v, v;µ) ≥ α(µ)‖v‖2V and a(v, w;µ) ≤ γ(µ)‖v‖V‖w‖V, (1.3)

for every v, w ∈ V;

(ii) f(·;µ) is continuous with respect to the norm ‖·‖V, i.e., there exists a con-
stant λ(µ) ≤ λ < +∞ such that

f(v;µ) ≤ λ(µ)‖v‖V, ∀ v ∈ V. (1.4)

These properties ensure well-posedness of problem (1.1), thanks to the Lax-
Milgram theorem (cf. [7], p. 140). We also assume that the problem is com-
pliant. This means that we assume that the form a(·, ·;µ) is symmetric and that

1By domain we mean an open bounded connected subset.

8



l(·;µ) = f(·;µ), for every µ ∈ P. We also introduce energy inner product and
energy norm as

(v, w)µ = a(v, w;µ), ∀ v, w ∈ V, (1.5)

‖v‖µ =
√
a(v, v;µ), ∀ v ∈ V, (1.6)

respectively, for every µ ∈ P. In many cases the V-norm ‖·‖V coincides with
energy norm for a fixed parameter µ̄:

(v, w)µ̄ = (v, w)V and ‖v‖µ̄ = ‖v‖V

for every v, w ∈ V.

Example 1.1.1 (Linear elliptic equation). Let Ω ⊆ Rd (d = 1, 2, 3) be a domain
with Lipschitz boundary Γ = ∂Ω. We consider the following equation: find u ∈
C2(Ω) such that

−∇ · (b(x)∇u(x)) = g(x) for x ∈ Ω, (1.7)

with the boundary Dirichlet condition

u(x) = 0 for x ∈ ∂Ω,

where g ∈ L2(Ω), b ∈ L∞(Ω) and b(x) > 0 for every x ∈ Ω. In general existence
of a solution to (1.7) is not guaranteed; we have to make further assumptions on
the regularity of b, g and Ω. However, equation (1.7) can be formulated in a weak
form. Let u be a solution of (1.7). Then, for every v ∈ H1

0 (Ω), it holds that

−
∫

Ω
(∇ · (b(x)∇u(x))) v(x) dx =

∫
Ω
g(x)v(x) dx. (1.8)

Thanks to Green theorem, the right hand side of (1.8) can be reformulated as∫
Ω
b(x)∇u(x) · ∇v(x) dx −

∫
Ω
∇ · (b(x)v(x)∇u(x)) dx,

where, since v ∈ H1
0 (Ω), we have that∫

Ω
∇ · (b(x)v(x)∇u(x)) dx =

∫
∂Ω
b(x)v(x)∇u(x) · n(x) dS = 0.

Thus, (1.8) is equivalent to∫
Ω
b(x)∇u(x) · ∇v(x) dx =

∫
Ω
g(x)v(x) dx. (1.9)

Let us denote with a : H1
0 (Ω)×H1

0 (Ω)→ R and f : H1
0 (Ω)→ R the, respectively,

bilinear and linear form such that, for every u, v ∈ H1
0 (Ω),

a(u, v) =

∫
Ω
b(x)∇u(x) · ∇v(x) dx, (1.10)

f(v) =

∫
Ω
g(x)v(x) dx.
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It is easy to show that a is a coercive and continuous bilinear form and that
f ∈ H−1

0 (Ω). Thus we define the weak formulation of problem (1.7) as: find
u ∈ H1

0 (Ω) such that

a(u, v) = f(v) ∀ v ∈ H1
0 (Ω). (1.11)

Thanks to Lax-Milgram theorem there exists an unique solution to the weak prob-
lem (1.11).

1.1.2 Geometrical parametrization

An interesting case that could be treated in this framework is the one where also
the domain Ω depends on the parameter, i.e., Ω = Ωµ. Suppose our problem can
be formulated as follows: for each µ ∈ P, find u0(µ) ∈ Vµ such that

a0(u0(µ), v;µ) = f0(v;µ), ∀ v ∈ Vµ, (1.12)

where Vµ is a functional space on Ωµ (we suppose H1
0 (Ωµ) ⊆ Vµ ⊆ H1(Ωµ))

and a0(·, ·;µ) and f0(·;µ) are a bilinear and a linear form on Vµ satisfying (1.3)
and (1.4), respectively. Let us choose a particular value of the parameter µ̄ ∈ P
and define the reference domain as Ω = Ωµ̄. The reference domain is related to
domains Ωµ through a parametric transformation T (·;µ) such that T (Ω;µ) = Ωµ.
We now focus only on a particular class of transformations and problems. First,
we introduce a domain decomposition of Ωµ such that

Ωµ =
L⋃
k=1

Ωk
µ

where Ωk
µ, for k = 1, . . . , L are mutually non overlapping open subsets of Ωµ. We

now suppose that the transformations can be defined between subdomains, i.e.,
there are T k(·;µ) : Ωµ → Ω such that:

T k(Ωk;µ) = Ωk
µ,

T (·;µ)|Ωk = T k(·;µ),

for k = 1, . . . , L. Moreover we assume that, for each µ ∈ P, the map T (·;µ) is
continuous and the maps T (·;µ)k are individually bijective and affine. Therefore,
each local map T k can be described by

T ki (x;µ) = Cki (µ) +
d∑
j=1

Gkij(µ)xj , for x ∈ Ωk, i = 1, . . . , d,

where Ck : P → Rd, Gk : P → GLd(R) are smooth maps. We also denote with
Jk(µ) the determinant of the matrix Gk(µ). Under these assumptions in many
cases the problem (1.12) can be easily formulated in the form (1.1), like in the
following Example 1.1.2.
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Example 1.1.2 (Advection-diffusion-reaction operators). An important class of
parametrized domain problems that can be effectively treated within an affine
framework is the one of advection-diffusion-reaction operators:

Lv = ∇ · (D(µ)∇v) +A(µ) · ∇v + λ(µ)v,

being D(µ) the d×d diffusivity tensor, A(µ) the advection field in Rd and λ(µ) the
reaction coefficient. Let us consider the case d = 2. The bilinear form associated
is, for each v, w ∈ Vµ,

a0(v, w;µ) =

L∑
k=1

∫
Ωkµ

(
∂v

∂x
,
∂v

∂y
, v

)
K0,k(µ)

(
∂w

∂x
,
∂w

∂y
, w

)T
dxdy, (1.13)

where K0,k : P → R3×3, k = 1, . . . , L, is a smooth mapping such that, for every
µ ∈ P, is defined as

K0,k(µ) =

(
D(µ) A(µ)

0T λ(µ)

)
.

Denoting with V the space Vµ̄, given a value µ ∈ P, for each v̂ ∈ Vµ we can define
v ∈ V as v = v̂ ◦T (·;µ). We can now track back to Ω = Ωµ̄ the integrals in (1.13)
obtaining:

a(v, w;µ)
.
=

L∑
k=1

∫
Ωk

(
∂v

∂x
,
∂v

∂y
, v

)
Kk(µ)

(
∂w

∂x
,
∂w

∂y
, w

)T
dxdy,

for v, w ∈ V. We denoted by Kk(µ), k = 1, . . . , L, the transformed operator:

Kk(µ) = Jk(µ) Ĝk(µ)K0,k(µ) Ĝk(µ)T ,

where

Ĝk(µ) =

(
(Gk(µ))−1 0

0T 1

)
.

Similarly we can require that the linear form f0(·;µ) : Vµ → R in (1.12) is, for
all v ∈ Vµ:

f0(v;µ) =
L∑
k=1

∫
Ωkµ

F0,k(µ)v dxdy.

Here F0,k, k = 1, . . . , L, is a function P → R. Acting exactly as before, we can
obtain a linear form defined on the reference space V. This form turns out to be,
for v ∈ V:

f(v;µ)
.
=

L∑
k=1

∫
Ωk
Fk(µ)v dxdy,

where, for k = 1, . . . , L, the parametric coefficient Fk(µ) is

Fk(µ) = Jk(µ)F0,k(µ).

11



1.1.3 Discretization techniques

In the following part of the thesis we will assume that given a problem (1.1), the
solution is sought in a conforming approximation space, i.e., a finite-dimensional
subspace Vδ ⊆ V. This will be usually constructed as a finite elements subspace.
Let {ψi}Nδi=1 be a basis of Vδ, where Nδ = dim(Vδ) < +∞. For every µ ∈ P, we
consider the discrete problem: find uNδ(µ) ∈ Vδ such that

a(uNδ(µ), v;µ) = f(v;µ), ∀ v ∈ Vδ, (1.14)

and evaluate
sNδ(µ) = l(uNδ(µ);µ).

We will refer problem (1.14) as the truth problem and uNδ as the truth solution.
We will regard at this as an high fidelity approximation of the solution to problem
(1.1), in the sense we require the error ‖u(µ)−uNδ(µ)‖V to be sufficiently small. A
desired accuracy can be achieved if we allow the dimension of the approximation
space, Nδ, to be sufficiently high. However, this implies that the computation of
truth solution is potentially very expensive.
Thanks to the conformity of approximation space, the truth solution satisfies the
Galerkin orthogonality property:

a(u(µ)− uNδ(µ), v;µ) = 0, ∀ v ∈ Vδ. (1.15)

Therefore the continuity and coercivity of the bilinear form allow us to recover
Cea’s Lemma. Indeed, it holds that

α(µ)‖u(µ)− uNδ(µ)‖2V ≤ a(u(µ)− uNδ(µ), u(µ)− uNδ(µ);µ) =

= a(u(µ)− uNδ(µ), u(µ)− v;µ) ≤ γ(µ)‖u(µ)− uNδ(µ)‖V‖u(µ)− v‖V,

for every v ∈ Vδ, which gives

‖u(µ)− uNδ(µ)‖Vδ ≤
γ(µ)

α(µ)
inf
v∈Vδ
‖u(µ)− v‖Vδ .

Therefore, for every µ ∈ P, the approximation error is strictly related with the
distance of the solution manifold M .

= {u(µ) : µ ∈ P} from the truth approxi-
mation space Vδ.
So, the problem (1.1) has been transformed into a linear algebra one. Indeed, let
us denote with Aµδ , Mδ ∈ RNδ×Nδ and fµδ ∈ RNδ the matrices associated, respec-
tively, with the energy inner product, the inner product and the right hand side,
defined as

(Mδ)ij = (ψi, ψj)V, (Aµδ )ij = a(ψi, ψj ;µ), (fµδ )i = f(ψi;µ),

for all i, j = 1, . . . , Nδ. Matrix Aµδ is usually referred as the stiffness matrix.
Then, the truth problems reads: for every µ ∈ P, find uµδ ∈ RNδ such that

Aµδu
µ
δ = fµδ .
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Thus the truth solution is uNδ(µ) =
∑Nδ

i=1(uµδ )iψi and output can eventually be
evaluated as (in the compliant case)

sNδ(µ) = (uµδ )T fµδ .

Depending on the solver of choice to invert the linear system and the properties
of the stiffness matrix, the computational cost of output evaluation for a given µ,
is O(Nα

δ ), with α ≥ 1.

1.1.4 Reduced order methods

As we would like to require an high accuracy in the truth approximation of so-
lution of problem (1.1), this leads to an high computation cost, depending on
Nδ. Moreover, if we are interested in solutions for many (let’s say K) different
parameter values, the computational cost is K times that of the truth problem.
Therefore we should find a way to reduce the computational effort. In this context
reduced order methods come very useful. Let us introduce the discrete version of
the solution manifold, the truth solution manifold Mδ = {uNδ(µ) : µ ∈ P}. A
main assumption in reduced order methods is thatMδ is of low dimension, i.e.,
that the span of a low number of appropriately chosen basis functions represents
Mδ with a small error. Therefore, the idea is to seek for a small amount, let’s
say N � Nδ, of basis functions ξ1, . . . , ξN ∈ Vδ, and then to solve the problem
(1.1) in the space spanned by those. So, the solving procedure is split in two
steps. During the potentially very costly Offline stage, a N -dimensional reduced
order space Vrb = span{ξ1, . . . , ξN} ⊆ Vδ is built. Then, in the Online stage, the
reduced order approximation is sought as: for any given µ ∈ P, find uN ∈ Vrb

such that
a(uN (µ), v;µ) = f(v;µ), ∀ v ∈ Vrb, (1.16)

and evaluate
sN (µ) = l(uN (µ);µ).

As in the previous case, this is just a linear algebra problem. Now one just have to
solve a N×N linear system, which makes the online stage potentially very cheap,
taking N � Nδ. If we denote with B ∈ RNδ×N and uµN ∈ RN respectively the
matrix such that uN (µ) =

∑N
i=1(uµN )iξi and ξi =

∑Nδ
j=1Bjiϕj , for j = 1, . . . , N ,

(note that uµδ = BuµN ) then problem (1.16) is equivalent to solving the linear
system

AµNu
µ
N = fµN , (1.17)

where AµN = BTAµδB and fµN = BT fµδ . The output of interest can thus (in the
compliant case) be evaluated as sN (µ) = (uµN )T fµN . So, for each given µ ∈ P,
the computational cost of the output evaluation in the online stage is O(Nα), for
some α ≥ 1. The error resulting from the approximation can be split in two parts:

‖u(µ)− uN (µ)‖V ≤ ‖u(µ)− uNδ(µ)‖V + ‖uNδ(µ)− uN (µ)‖V. (1.18)

The first part only depends on how good is the discretization technique used.
In the following we will not focus on such discretization techniques, but we will
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assume that the truth solution is a good approximation of the real solution. For
further details on discretization techniques we refer to [38,41]. Instead, the second
part of (1.18) depends on the distance ofMδ from Vrb. Indeed Cea’s Lemma still
holds:

‖uNδ(µ)− uN (µ)‖V ≤
γ(µ)

α(µ)
inf
v∈Vrb

‖uNδ(µ)− v‖V.

If we introduce the Kolmogorov N-width as

E(Mδ,Vrb) = sup
uNδ∈Mδ

inf
v∈Vrb

‖uδ − v‖V, (1.19)

then dN (Mδ) = inf{E(Mδ,V) : V ⊆ Vδ, dim(V) = N} is an index of how good
Mδ can be approximated by a N -dimensional subspace. Another quantity that
can be considered instead of E(Mδ,Vrb) is√∫

µ∈P
inf
v∈Vrb

‖uNδ(µ)− v‖2V dµ. (1.20)

The former corresponds to an L∞ norm over the parameter space, while the latter
corresponds to an L2 one. Depending on which of these quantities one wants to
minimize we get two different methods for building reduced order spaces. These
methods are presented in sections 1.2 and 1.3.

1.1.5 Affine decomposition

To ensure efficiency of the online stage we have to make a further assumption.
Indeed, to solve problem (1.17) for a new parameter µ ∈ P, the matrix AµN needs
to be assembled. To do this, one generally would need to first assemble the
matrix Aµδ and then construct AµN = BTAµNB. This computation depends on Nδ,
and would severely limit the potential for rapid online evaluation of new reduced
order solution. The same observation holds for term fµN (and for the reduced order
vector of output, in case of non-compliant problems). However, this restriction
can be overcome if we assume that the forms a(·, ·;µ), f(·;µ) and l(·;µ) fulfill the
affine decomposition:

a(·, ·;µ) =

Qa∑
q=1

θaq (µ)aq(·, ·), (1.21)

f(·;µ) =

Qf∑
q=1

θfq (µ)fq(·), (1.22)

l(·;µ) =

Ql∑
q=1

θlq(µ)lq(·), (1.23)

where each form

aq : V× V→ R, fq : V→ R, lq : V→ R,
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is independent of the parameter value µ, and the parametric coefficients

θaq : P→ R, θfq : P→ R, θlq : P→ R,

are scalar quantities. With this assumption matrices AµN , f
µ
N can be computed as

Aµδ =

Qa∑
q=1

θaq (µ)Aqδ, fµδ =

Qf∑
q=1

θaq (µ)f qδ ,

where Aqδ and f
q
δ can be calculated once for all in the offline stage (and analogously

for the output term, in case of non-compliant problems). So the cost of the assem-
bly of the matrix Aµδ is independent of Nδ; e.g., for matrix AµN , the computational
cost scales proportionally to Qa · N2. For cases where an affine decomposition
does not hold naturally for the operator or the linear forms, one can often find an
approximate form that satisfies this property using a technique known as Empir-
ical Interpolation. A description of this method can be found in [26], chapter 5.
However, in this thesis, we always assume an affine decomposition already holds.

1.2 Proper Orthogonal Decomposition

The Proper Orthogonal Decomposition (POD) is a method for building reduced
basis spaces. The main idea of this method is to construct a discrete version of
the integral in (1.20) and to find the N -dimensional subspace which minimize this
quantity.
Let us first introduce a discrete training set Ph = {µ1, . . . , µM} ⊆ P in parameter
domain (it can consist of a regular lattice or a set of randomly generated point in
P), where M = |P|h < +∞. We denote the discrete truth solution manifold

Mδ(Ph)
.
= {uNδ(µ) : µ ∈ Ph}.

In particular, we denote ϕ1 =uNδ(µ1), . . . , ϕM =uNδ(µM ) the elements ofMδ(Ph),
which we can suppose to be linearly independent, and VM the linear space spanned
by these. Now, for a given positive integer N < M , we want to find the N -
dimensional subspace VN ⊆ VM which minimize the quantity√√√√ 1

M

M∑
i=1

‖ϕi − PN (ϕi)‖2V, (1.24)

where PN : VM → VN is the projection operator associated with the subspace
VN . The quantity (1.24) can be regarded as a discretized version of (1.20). Let
us suppose that x1, . . . , xN is an orthonormal basis of VN (with respect to the
inner product (·, ·)V). Then, we have that

M∑
i=1

‖ϕi − PN (ϕi)‖2V =

M∑
i=1

‖ϕi‖2V −
M∑
i=1

N∑
j=1

(xj , ϕi)
2
V

= C −
M∑
i=1

N∑
j=1

(xj , ϕi)
2
V,
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where C > 0 is a constant. Therefore we just have to find an orthonormal N -
dimensional basis that maximize the quantity

H(X)
.
=

1

M

M∑
i=1

N∑
j=1

(xj , ϕi)
2
V

=
N∑
j=1

(xj ,
1

M

M∑
i=1

(xj , ϕi)Vϕi)V =
N∑
j=1

(xj , C(xj))V,

where we denote X = {x1, . . . , xN} and C(xj) = 1
M

∑M
i=1(xj , ϕi)Vϕi. The linear

map C : VM → VM is symmetric (with respect to the inner product induced on
VM ), so we can find an orthonormal basis of eigenvectors ξ1, . . . , ξM , associated
with the eigenvalues λ1 ≥ · · · ≥ λM > 0 (note that the eigenvalues are all positive
since (C(ϕj), ϕj)V = 1

M > 0). We denote Ξ = {ξ1, . . . , ξN}; we want to show
that H(X) ≤ H(Ξ) for all X N -dimensional orthonormal basis of VM . Indeed,
let X = {x1, . . . , xN} be such a basis. Since xj =

∑M
i=1(ξi, xj)Vξi, we can write

H(X) =

N∑
j=1

(

M∑
i=1

(ξi, xj)Vξi,

M∑
k=1

λk(ξk, xj)Vξk)V

=
N∑
j=1

M∑
k=1

λk(xj , ξk)
2
V =

M∑
k=1

λkpk,

where pk =
∑N

j=1(xj , ξk)
2
V. Note that pk = ‖PX(ξk)‖2V ∈ [0, 1] and

∑M
k=1 pk =∑N

j=1‖xj‖2V = N . Therefore, since λ1 ≥ · · · ≥ λM > 0, it holds that

H(X) ≤
N∑
k=1

λk = H(Ξ).

So, taking Vrb = span{ξ1, . . . , ξN}, the minimum of (1.24) is obtained and it is
equal to √√√√ 1

M

M∑
i=1

M∑
j=N+1

(ξj , ϕi)2
V =

√√√√ M∑
j=N+1

(ξj , C(ξj))V =

√√√√ M∑
j=N+1

λj .

Therefore, the above described procedure provides a method to get a subspace
Vrb ⊆ Vδ of prescribed dimension N which is optimal in the sense it minimizes
a discrete version of (1.20). Computationally, this can be done finding the N
eigenvectors v1, . . . , vN associated with the maximum eigenvalues λ1 ≥ · · · ≥ λN
of the symmetric matrix C ∈ RM×M defined as

Cij =
1

M
(ϕi, ϕj)V for i, j = 1, . . . ,M . (1.25)

Thus, one defines ξn =
∑M

i=1(vn)iϕi, for n = 1, . . . , N , and takes Vrb as the space
spanned by them.
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1.3 Greedy basis generation

The greedy algorithm is an iterative procedure for building reduced order spaces.
Reduced order spaces built with a greedy algorithm are usually referred to as
reduced basis spaces. At each iteration one new basis function is added and the
overall precision of the basis set is improved. This procedure aims to minimize the
L∞ norm of the error over the parameter space. It requires one truth solution to be
computed at each iteration and the N -dimensional reduced basis space will be the
one spanned by the first N truth solutions computed. The main assumption is the
availability, for every µ ∈ P, of an upper bound η(µ) which provides an estimate
of the error induced by replacing Vrb with Vδ in the variational formulation. We
will describe how to obtain such an estimator in the next subsection and simply
assume here that one is available, satisfying

‖uNδ(µ)− uN (µ)‖µ ≤ η(µ), ∀µ ∈ P. (1.26)

Alternatively, a different norm, e.g., the intrinsic norm ‖uNδ(µ) − uN (µ)‖V, or
even the measure of the output |sNδ(µ) − sN (µ)| error can be chosen. The it-
erative procedure works like that: provided we have a reduced basis space Vrb

of dimension N , which is given by Vrb = span{uNδ(µ1), . . . , uNδ(µN )} for some
µ1, . . . , µN previously selected, we then compute

µN+1 = arg max
µ∈P

η(µ), (1.27)

and compute uNδ(µN+1) to enrich the reduced basis space as Vrb = span{uNδ(µ1),
. . . , uNδ(µN+1)}. This algorithm is repeated until a prescribed accuracy is gained
or until a prescribed dimension N is reached. Actually, in practice, the maximum
of (1.27) is sought only on a discretized parameter space Ph ⊆ P. However, since
for every point in Ph we just have to compute the error estimator, and not a truth
solution, the cost per point is small and Ph can be chosen considerably larger
than the one used in the POD algorithm, provided the error can be evaluated
efficiently.

1.3.1 A posteriori error estimators

In the following we describe how to obtain a good a posteriori error estimate
η(µ). With ‘good’, we mean it should satisfy certain properties. First of all it
must satisfy (1.26), that is, it should be an upper bound. Then it should be
sharp: an overly conservative error bound can cause inefficient approximation
spaces, that is with a dimension N unnecessarily high. Moreover it has to be
computational efficient : its computation must be very fast in order to speed up
the offline stage and to allow its use in the online stage. The computational cost
should be independent of Nδ.
Let us denote

αδ(µ) = inf
v∈Vδ

a(v, v;µ)

‖v‖2V
, λδ(µ) = sup

v,w∈Vδ

a(v, w;µ)

‖v‖V‖w‖V
.
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Note that α(µ) ≤ αδ(µ) and λ(µ) ≥ λδ(µ), for every µ ∈ P. Moreover, let
e(µ)

.
= uNδ(µ)−uN (µ) be the error induced by the reduced basis approximation.

We first note that

a(e(µ), v;µ) = r(v;µ), ∀ v ∈ Vδ, (1.28)

where r(·;µ) ∈ V′δ defined as

r(v;µ) = f(v;µ)− a(uN (µ), v;µ),

for v ∈ Vδ. In particular, thanks to Riesz’ theorem (cf. [7], p. 135), there exists
r̂δ(µ) ∈ Vδ such that

(r̂δ(µ), v)V = r(v;µ), ∀ v ∈ Vδ.

Moreover it holds

‖r̂δ(µ)‖V = ‖r(·;µ)‖V′
δ

= sup
v∈Vδ\{0}

r(v;µ)

‖v‖V
.

Therefore, (1.28) can be re-written as

a(e(µ), v;µ) = (r̂δ(µ), v)V, ∀ v ∈ Vδ.

The following lemma provides a relation between output error and approximation
error in energy norm for compliant problems.

Lemma 1.3.1. If the problem (1.1) is compliant, then it holds that

sNδ(µ)− sN (µ) = ‖uNδ(µ)− uN (µ)‖2µ, ∀µ ∈ P.

Moreover, it holds that sNδ(µ) ≥ sN (µ), for every µ ∈ P.

Proof. Now we have that

a(uNδ(µ)− uN (µ), v;µ) = 0 ∀ v ∈ Vrb.

Therefore it follows

sNδ(µ) − sN (µ) = f(e(µ);µ) = a(e(µ), uNδ(µ);µ) = ‖e(µ)‖2µ ≥ 0.

From now on, we suppose it is available a lower bound for coercivity constant
aδ(µ), namely

αLB(µ) ≤ αδ(µ), ∀µ ∈ P, (1.29)

which is independent of Vδ and efficiently computable. The approximation pro-
cedure of such a lower bound is explained in the next subsection. We can now
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define the a posteriori error estimators for, respectively, energy norm, output and
relative output as

ηen(µ) =
‖r̂δ(µ)‖V
α

1/2
LB (µ)

, (1.30)

ηs(µ) =
‖r̂δ(µ)‖2V
αLB(µ)

= (ηen(µ))2, (1.31)

ηs,rel(µ) =
‖r̂δ(µ)‖2V

αLB(µ)sN (µ)
=

ηs(µ)

sN (µ)
. (1.32)

The following proposition justifies the names of these estimators.

Proposition 1.3.2. The following estimates hold:

‖uNδ(µ)− uN (µ)‖µ ≤ ηen(µ), (i)
sNδ(µ)− sN (µ) ≤ ηs(µ), (ii)
sNδ(µ)− sN (µ)

sNδ(µ)
≤ ηs,rel(µ). (iii)

Proof. We prove (i). Since it holds that

‖e(µ)‖2µ = a(e(µ), e(µ);µ) ≤ ‖r̂δ(µ)‖V‖e(µ)‖V

and
αLB(µ)‖e(µ)‖2V ≤ a(e(µ), e(µ);µ) = ‖e(µ)‖2µ

we get

‖e(µ)‖V ≤
‖r̂δ(µ)‖µ
αLB(µ)

and ‖e(µ)‖µ ≤ ηen(µ). (1.33)

The equations (ii) and (iii) can now be derived from Lemma 1.3.1.

We now introduce the effectivity indeces associated to the estimators, which
can be regarded as a measure of how sharp the estimators are:

effen(µ) =
ηen(µ)

‖uNδ(µ)− uN (µ)‖µ
,

effs(µ) =
ηs(µ)

sNδ(µ)− sN (µ)
,

effs,rel(µ) =
ηs,rel(µ)sNδ(µ)

sNδµ− sN (µ)
.

While all of these effectivity indexes are bigger than 1, one would desire these to
be as close to 1 as possible. The following proposition provides upper estimates
for the effectivities.
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Proposition 1.3.3. The following estimates hold:

effen(µ) ≤

√
λδ(µ)

αLB(µ)
, (i)

effs(µ) ≤ λδ(µ)

αLB(µ)
, (ii)

effs,rel(µ) ≤ (1 + ηs,rel(µ))
λδ(µ)

αLB(µ)
. (iii)

Proof. Now we have that

‖r̂δ(µ)‖2V = (r̂δ(µ), r̂δ(µ))V = a(e(µ), r̂δ(µ);µ) ≤ ‖e(µ)‖µ‖r̂δ(µ)‖µ,

‖r̂δ(µ)‖2µ = a(r̂δ(µ), r̂δ(µ);µ) ≤ λδ(µ)‖r̂δ(µ)‖2V ≤ λδ(µ)‖e(µ)‖µ‖r̂δ(µ)‖µ
which gives

‖r̂δ(µ)‖µ ≤ λδ(µ)‖e(µ)‖µ.

Therefore it holds

(ηen(µ))2 =
‖r̂δ(µ)‖2V
αLB(µ)

≤ λδ(µ)

αLB(µ)
‖e(µ)‖2µ

from which one derives estimates (i) and (ii). Finally, from the effictivities defi-
nition, we have that

effs,rel(µ) =
sNδ(µ)

sN (µ)
effs(µ)

and, since

sNδ(µ)

sN (µ)
= 1 +

sNδ(µ)− sN (µ)

sN (µ)
≤ 1 +

ηs(µ)

sN (µ)
= 1 + ηs,rel(µ),

we get (iii).

Analogous estimators can be obtained for the error in V-norm. Let us define

ηV(µ) =
‖r̂δ(µ)‖V
αLB(µ)

,

ηV,rel(µ) =
2‖r̂δ(µ)‖V

αLB(µ)‖uN (µ)‖V
=

2ηV(µ)

‖uN (µ)‖V
,

respectively the a posteriori estimators for intrinsic norm and relative intrinsic
norm. An analogous to Proposition 1.3.2 holds (see [26], p. 51, for a proof).

Proposition 1.3.4. The following estimates hold:

‖uNδ(µ)− uN (µ)‖V ≤ ηV(µ) (i)

and, if ηV,rel(µ) ≤ 1,

‖uNδ(µ)− uN (µ)‖V
‖uNδ(µ)‖V

≤ ηV,rel(µ). (ii)
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The respective effectivities are defined as in the previous case:

effV(µ) =
ηV(µ)

‖uNδ(µ)− uN (µ)‖V
,

effV,rel(µ) = ηV,rel(µ)
‖uNδ(µ)‖V

‖uNδ(µ)− uN (µ)‖V

Still, an analogous proposition holds (see [26], p. 52, for a proof).

Proposition 1.3.5. The following estimates hold:

effV(µ) ≤ λδ(µ)

αLB(µ)
(i)

and, if ηV,rel(µ) ≤ 1,

effV,rel(µ) ≤ 3
λδ(µ)

αLB(µ)
. (ii)

Now, to efficiently evaluate the effectivities, one must be able to efficiently
compute ‖r̂δ(µ)‖V. To do this, we take advantage of the affine decomposition of
a(·, ·;µ) and f(·;µ). Therefore, we have that

r(v;µ) =

Qf∑
q=1

θfq (µ)fq(v)−
Qa∑
q=1

N∑
n=1

θaq (µ)(uµN ))naq(ξn, v), ∀ v ∈ Vδ,

where {ξ1, . . . , ξN} is a basis of Vrb and uN (µ) =
∑N

n=1(uµN )nξn. We now intro-
duce the coefficients vector

r(µ) = (θf1 (µ), . . . , θfQf (µ),−(uµN )T θa1(µ), . . . ,−(uµN )T θaQa(µ)) ∈ RQr ,

where Qr = Qf +NQa. Analogously we define

F = (f1, . . . , fQf ) ∈ (V′δ)Qf ,
Aq = (aq(ξ1, ·), . . . , aq(ξN , ·)) ∈ (V′δ)N , for q = 1, . . . , Qa,

R = (F,A1, . . . , AQa) ∈ (V′δ)Qr .

Thus, we obtain that

(r̂δ(µ), v)V = r(v;µ) =

Qr∑
q=1

rq(µ)Rq(v), ∀ v ∈ V.

Since, for q = 1, . . . , Qr, Rq(·) = (r̂qδ , ·)V for a r̂qδ ∈ Vδ, we can write

r̂qδ(µ) =

Qr∑
q=1

rq(µ)r̂qδ .
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Therefore, we finally get that

‖r̂δ(µ)‖2V =

Qr∑
q,p=1

rq(µ)rp(µ)(r̂qδ , r̂
p
δ )V.

Note that the inner products (r̂qδ , r̂
p
δ )V, for p, q = 1, . . . , Qr, can be computed once

and for all in the offline stage, so that ‖r̂δ(µ)‖2V can be efficiently computed in the
online stage, with a computational cost independent of Nδ.
This procedure is implemented as follows. Remember that we have the affine
decomposition of matrix Aµδ ,f

µ
δ :

Aµδ =

Qa∑
q=1

θaq (µ)Aqδ, fµδ =

Qf∑
q=1

θaq (µ)f qδ .

We therefore define R ∈ RNδ×Qr as Ri,q = Rq(ϕi), for i = 1, . . . , Nδ, q =
1, . . . , Qr. Note that we have

R = (f1
δ , . . . , f

1
δ , B

TA1
δ , . . . , B

TA1
δ).

Thus, if we define G ∈ RQr×Qr as G = RTMδR, we finally have

‖r̂δ(µ)‖V =
√
r(µ)T Gr(µ).

We can compute G once for all during the offline stage.

1.3.2 Coercivity constant

In this section we explore two possible methods to calculate efficiently a lower
bound for the coercivity constant (1.29). The first one is called (Multi-parameter)
Min-θ-approach and it applies only to parametrically coercive problems. Other-
wise the second one, called Successive Constraint Method (SCM), can be gener-
alized to non-symmetric problems, although this is not discussed in this thesis
(we refer [13–15, 25, 28, 29] for further details). Both these methods make use of
the affine decompositions (1.21),(1.22) and (1.23). Let us first note that the co-
ercivity constant αδ(µ) can be defined as the smallest eigenvalue of a generalized
eigenvalue problem: find (λ,w) ∈ R+ × Vδ such that

a(v, w;µ) = λ(v, w)V, ∀ v ∈ Vδ. (1.34)

Min-θ-approach

Parametrically coercive problems are characterized by the following assumptions:

(i) θaq (µ) > 0, ∀µ ∈ P, q = 1, . . . , Qa,

(ii) aq(·, ·) is semi-positive definite for all q = 1, . . . , Qa.
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Under these assumptions and further assuming that the coercivity constant αδ(µ̄)
has been computed for a single parameter value µ̄ ∈ P, we observe that

αδ(µ) = inf
v∈Vδ

Qa∑
q=1

θaq (µ)
aq(v, v)

‖v‖2V
= inf

v∈Vδ

Qa∑
q=1

θaq (µ)

θaq (µ̄)
θaq (µ̄)

aq(v, v)

‖v‖2V

≥
(

min
q=1,...,Qa

θaq (µ)

θaq (µ̄)

)
inf
v∈V

Qa∑
q=1

θaq (µ̄)
aq(v, v)

‖v‖2V

= αδ(µ̄) min
q=1,...,Qa

θaq (µ)

θaq (µ̄)

.
= αLB(µ)

While this approach provides a positive lower bound αLB(µ) for αδ(µ), it is gener-
ally not a sharp bound, possibly resulting in error bounds that are overly conser-
vative. However, it can be refined as follows. Let us consider a set ofM parameter
eigenvalues µ1, . . . , µM for which we compute the coercivity constant αδ(µm) from
the lowest eigenvalues of (1.34). Now we have that, for each m = 1, . . . ,M ,

αδ(µm) = min
q=1,...,Qa

θaq (µ)

θaq (µm)

is a guaranteed lower bound for αδ(µ). It follows that

αLB(µ) = max
m=1,...,M

(
αδ(µm) min

q=1,...,Qa

θaq (µ)

θaq (µm)

)
is the sharpest of the lower bounds of αδ(µ) among all candidates. While this is
a more accurate approach, it also requires more eigenvalue problems to be solved.

Successive Constraint Method

As for the multi-parameter Min-θ-approach, the SCM is an offline/online proce-
dure where generalized eigenvalue problems of size Nδ need to be solved during
the offline phase; the online part is then reduced to provide a lower bound αLB(µ)
of the coercivity constant αδ(µ) for each new parameter value µ ∈ P with an
operation count that is independent of Nδ. The idea of the SCM is to express
the problem (1.34) as a minimization problem of the functional S : P×RQa → R
such that

S(µ, y) =

Qa∑
q=1

θaq (µ)yq

over the set of admissible solutions

Λ =

{
y ∈ RQa : ∃ v ∈ Vδ s.t. yq =

aq(v, v)

‖v‖2V
, q = 1, . . . , Qa

}
.

Then, we can equivalently write

αδ(µ) = min
y∈Λ

S(µ, y)
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and a lower and upper bound can be found by enlarging or restricting the admis-
sible set of solution vectors y. This is done by introducing ΛUB ⊆ Λ ⊆ ΛLB and
defining

αLB(µ) = min
y∈ΛLB

S(µ, y), and αUB(µ) = min
y∈ΛUB

S(µ, y).

The remaining question is how to efficiently design the spaces ΛUB and ΛLB to
ensure that any target accuracy for the error quantity 1− αLB(µ)/αUB(µ) can be
achieved. Remember that, for the greedy algorithm, we introduced the discretized
parameter space Ph. The offline part of the SCM is based on a greedy approach
where the n-th iteration of the offline procedure is initiated by assuming that:

(i) we know the coercivity constants αδ(µj), j = 1, . . . , n, for some parameter
values Cn = {µ1, . . . , µn} ⊆ Ph;

(ii) for each µ ∈ Ph, we have some lower bound αn−1
LB (µ) ≥ 0 of αδ(µ) from the

previous iteration.

For n = 1, we set α0
LB(µ) = 0 for all µ ∈ Ph. The constants αδ(µj) are computed as

solutions of the eigenvalue problem (1.34); we denote with wjδ the corresponding
eigenfunctions. These eigenfunctions provide the corresponding vectors yj ∈ RQa
by

(yj)q =
aq(w

j
δ , w

j
δ)

‖wjδ‖2V
, for q = 1, . . . , Qa.

We can now set
ΛnUB =

{
yj : j = 1, . . . , n

}
.

So, the evaluation of αUB(µ) consists of solving a discrete minimization problem,
whose cost is clearly independent of Nδ once the vectors yj have been built. For
ΛLB we define first a rectangular box Θ =

∏Qa
q=1[σ−q , σ

+
q ] ⊆ RQa containing Λ by

setting

σ−q = inf
v∈Vδ

aq(v, v)

‖v‖2V
and σ+

q = sup
v∈Vδ

aq(v, v)

‖v‖2V
.

This corresponds to computing the smallest and the largest eigenvalues of an
eigenvalue problem for each aq(·, ·) and can be computed once at the beginning
of the SCM algorithm. To ensure that the set ΛLB is as small as possible while
containing Λ, we impose some additional restrictions, which result in sharper
lower bounds. These constraints depend on the value of the actual parameter
µ, which implies ΛLB to depend on the parameter too, i.e., ΛLB = ΛLB(µ). We
introduce the function that provides close parameter values

PM (µ;E) =

{
M closest point to µ in E if |E| > M ,
E if |E| ≤M ,

for either E = Cn or E = Ph. For some M1,M2, we define

ΛnLB(µ) =
{
y ∈ Θ :S(µ1, y) ≥ αδ(µ1), ∀µ1 ∈ PM1(µ;Cn),

S(µ1, y) ≥ αn−1
LB (µ2),∀µ2 ∈ PM2(µ;Ph \ Cn)

}
.
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It can be shown that ΛnUB ⊆ Λ ⊆ ΛnLB(µ) (see [29] for the proof). Consequently,
ΛnUB, Λ and ΛnLB(µ) are nested as

Λ1
UB ⊆ Λ2

UB ⊆ · · · ⊆ ΛnUB ⊆ · · · ⊆ Λ ⊆ · · · ⊆ ΛnLB(µ) ⊆ · · · ⊆ Λ2
LB(µ) ⊆ Λ1

LB(µ).

Note that finding αnLB(µ) = miny∈ΛnLB(µ) S(µ, y) corresponds to a linear program-
ming problem ofQa design variables and 2Qa+M1+M2 conditions; the complexity
of the linear programming problem is thus independent of Nδ. Now we can define
a greedy selection to enrich the space Cn and build Cn + 1 at all stages of n.
Given the n-th step, we select

µn+1 = arg max
µ∈Ph

(
1− αnLB(µ)

αnUB(µ)

)
and we set Cn+1 = Cn ∪ {µn + 1}. This procedure is repeated until a fixed
tolerance is reached. Once that this process has been completed in the offline
phase, one can so compute αLB(µ), for each µ ∈ P, in the online stage just solving
a linear programming problem, whose cost is independent of Nδ. Note that, since
we now consider any µ ∈ P not necessarily contained in Ph, we must add the
additional constraint that S(µ, y) ≥ 0.

A comparison between Min-θ-approach and SCM

We report here a theorem that provides an inequality between the results of the
two methods presented (for a proof see [26], pp. 63-65).

Proposition 1.3.6. For parametrically coercive problems, consider the multi-
parameter Min-θ-approach based upon the computation of αδ(µ1), . . . , αδ(µM ) and
the SCM assuming that µm ∈ Cn for all 1 ≤ m ≤ M . Then, the multiparameter
Min-θ-approach lower bound is at most as sharp as the lower bound provided by
the SCM based upon Cn and any M2 > 0, i.e.,

αSCMLB (µ) ≥ αθLB(µ), ∀µ ∈ P.
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Chapter 2

Weighted reduced order methods
for SPDEs

In this chapter we introduce weighted reduced order algorithms for the solution
of Stochastic Partial Differential Equations (SPDEs). In the first section, the
general framework for weighted reduced order algorithms is settled; we consider a
particular class of linear stochastic partial differential equations. Then, in the sec-
ond section, we briefly present the classical Monte-Carlo procedure for computing
an approximate solution and discuss why reduced order approximation could be
important in such a context. We therefore present some possible ways to modify
the previous presented greedy and POD algorithms in order to keep into account
the probability distribution of the parameters; the modified algorithms will be
referred as weighted. Finally, in the third section, we implement the weighted
algorithms for the solution of two simple linear elliptic PDEs and we make some
numerical tests.

2.1 Parametrized PDEs with random inputs

Let (S,A, P ) be a complete probability space, where S is the event space, A ⊆ 2S

the σ-algebra, and P the probability measure. Consider a d-dimensional domain
Ω ⊆ Rd (d = 1, 2, 3) with Lipschitz boundary ∂Ω, and we study the following
problem: find a stochastic function, u : S ×Ω→ R, such that for P -almost every
(a.e.) ω ∈ S, the following equation holds:

L(ω, x;u) = g(ω, x), x ∈ Ω, (2.1)

subject to the boundary condition

B(ω, x;u) = h(ω, x), x ∈ ∂Ω, (2.2)

where L is a (linear/nonlinear) differential operator, B is a boundary operator
and g : S × Ω → R, h : S × ∂Ω → R are the forcing terms. In the most general
settings, the operators L and B, as well as the driving terms f and g, can all have
random components. Finally, we assume that the boundary ∂Ω is sufficiently
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regular and the driving terms g and h are properly posed, such that (2.1)-(2.2) is
well posed P -a.e. ω ∈ S.
To solve (2.1)-(2.2) numerically, one needs to reduce the infinite-dimensional prob-
ability space to a finite-dimensional space. This can be accomplished by character-
izing the probability space by a finite number of random variables. In this thesis
we assume that such a characterization is already available. However, such a situ-
ation can be achieved via a certain type of decomposition which can approximate
the target random process with desired accuracy, such as the Karhunen-Loève
type expansion (see, for example, [8]). Thus, assuming that the random inputs
can be characterized by N random variables, we can re-write the random inputs
in abstract form, e.g.,

L(ω, x;u) = L(Y 1(ω), . . . , Y N (ω), x;u), g(ω, x) = f(Y 1(ω), . . . , Y N (ω), x),

where {Y i}Ni=1 are real random variables with zero mean value and unit variance.
Hence, the solution of (2.1)-(2.2) can be described by the same set of random
variables {Y i}Ni=1, i.e.,

u(ω, x) = u(Y 1(ω), . . . , Y N (ω), x).

From a mathematical and computational point of view, it is most convenient
to further assume that these random variables are mutually independent. Such
an assumption is non-trivial and could introduce more errors in approximating
the random input processes. However, in this thesis, we take the customary
approach of assuming that the random inputs are already characterized by a set
of mutually independent random variables. Moreover, we assume their probability
distributions are characterized by density functions ρi : Γi → R+ and their images
Γi = Y i(S) are bounded intervals in R for i = 1, . . . , N . Then

ρ(y) =
N∏
i=1

ρi(yi), for y ∈ Γ,

is the joint probability density of Y = (Y 1, . . . , Y N ) with support

Γ =

N∏
i=1

Γi ⊆ RN .

This allows us to re-write (2.1)-(2.2) as an (N + d)-dimensional differential equa-
tion in the strong form

L(y, x;u) = g(y, x), (y, x) ∈ Γ× Ω, (2.3)

subject to the boundary condition

B(y, x;u) = h(y, x), (y, x) ∈ Γ× ∂Ω. (2.4)

The numerical methods we present in this thesis need the resolution of an amount
of deterministic problems, i.e., for a fixed set of realizations of Y , {y1, . . . , yM}. In
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the following, we assume it is possible to reformulate the deterministic problem in
a weak formulation, as in Section 1.1.1. Doing so, we obtain the Ω-weak/Γ-strong
formulation, which reads: for every y ∈ Γ, find u(y) ∈ Vy such that

a(u(y), v; y) = f(v; y), ∀ v ∈ Vy, (2.5)

where Vy is a suitable functional space over Ω, a(·, ·; y) : Vy × Vy → R is a
bilinear form and f(·; y) ∈ V′y. Moreover we also assume that the space Vy does
not actually depend on y, i.e., Vy = V. A further assumption we make is that a
and f admits an affine decomposition:

a(·, ·; y) = a0(·, ·) +

Na∑
k=1

ykak(·, ·) and f(·; y) = f0(·; y) +

Na+Nf∑
k=Na+1

ykfk(·),

where N = Na + Nf , ak : V × V → R is a bilinear form, k = 0, . . . , Na, and
fk ∈ V′, for k = 0, Na + 1, . . . , N . Moreover we assume that (1.3) and (1.4) still
hold and that the bilinear form a(·, ·; y) is symmetric for every y ∈ Γ. More often,
we are not interested in the solution u(y) itself but on a functional s(u(y); y) of
the solution as model output, e.g., the compliant output s(u(y); y) = f(u(y); y),
as well its statistics, e.g., the expectations

E[s] =

∫
Γ
s(u(y); y)ρ(y) dy or E[u] =

∫
Γ
u(y)ρ(y) dy.

Example 2.1.1 (Linear stochastic elliptic problem). Consider the following prob-
lem: find u : Ω× Γ→ R such that

−∇ · (b(x, y)∇u(x, y)) = g(x, y) ∀ (x, y) ∈ Ω× Γ,

u(x, y) = 0 ∀ (x, y) ∈ ∂Ω× Γ,
(2.6)

where the divergence ∇· and the gradient ∇ are taken with respect to x. For the
random forcing term g and the diffusivity b, we consider the following assumptions:

(i) the random diffusivity b is of the form

b(x, y) = b0(x) +

Na∑
k=1

ykbk(x),

with bk ∈ L∞(Ω), for k = 0, . . . , Na;

(ii) the random forcing term f is of the form

g(x, y) = g0(x) +
N∑

k=Na+1

ykgk(x),

with gk ∈ L2(Ω), for k = 0, Na + 1, . . . , N .
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The Ω-weak/Γ-strong formulation of this problem reads: for every y ∈ Γ find
u(y) ∈ H1

0 (Ω) such that

a(u(y), v; y) = f(v; y) ∀v ∈ H1
0 (Ω), (2.7)

where the bilinear and linear forms are given by

a(u, v; y) =

∫
Ω
b0(x)(∇u · ∇v) dx+

Na∑
k=1

yk

∫
Ω
bk(x)(∇u · ∇v) dx,

and

f(v; y) =

∫
Ω
g0(x)v dx+

N∑
k=Na+1

yk

∫
Ω
gk(x)v dx.

2.2 Weighted reduced order methods

A typical way to solve numerically stochastic differential equations is to use a
Monte-Carlo simulation. The procedure of applying a Monte-Carlo method to
problem (2.3)-(2.4) takes the following steps:

1. for a prescribed number of realizations M , generate independent and iden-
tically distributed (i.i.d.) random variables {Y i

j }Ni=1 = {Y i(wj)}Ni=1, for
j = 1, . . . ,M , with density distribution ρ;

2. for each j = 1, . . . ,M , solve a deterministic problem (2.3)-(2.4) with y =
yj = (Y 1

j , . . . , Y
N
j ) and obtain solution uj = u(yj);

3. Postprocess the results to evaluate the solution statistics, e.g.,

E[u] ' 〈u〉 =
1

M

M∑
j=1

uj or E[s] ' 〈s(u)〉 =
1

M

M∑
j=1

s(uj ; yj)

for some suitable output function s.

Although the convergence rate it is formally independent of the dimension of the
random space, the convergence rate of a Monte Carlo method is relatively slow
(typically 1/

√
M). Thus, one requires to solve a large amount of deterministic

problems to obtain a desired accuracy, which implies a very high computational
cost. In this framework reduced order methods turn out to be very useful in order
to reduce the computational cost, at cost of a (possibly) small additional error.
In the following sections we present a way to modify the previously presented
reduced order algorithm in order to take into account the stochastic distribution
of the parameters. We will refer to these two modified methods as weighted greedy
algorithm and weighted POD. From now on we consider problems formulated as
in (2.5) with all the previously made assumptions.
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2.2.1 Weighted greedy algorithm

In this section we present an adaption to stochastic problems of the greedy al-
gorithm presented in the previous chapter. This technique has been originally
developed by P. Chen et al. (cf. [8–11]). The basic idea of this weighted method
is to assign different weights in the construction of reduced basis space at different
values of parameter y ∈ Γ according to a prescribed weight function w(y), where
w : Γ → R+ is a weight function. The weighted greedy algorithm consists of the
same elements presented in chapter Section 1.3. Thus, here we use the previous
introduced notation and we only highlight the new weighted scheme.
For sake of simplicity, we omit the indexes δ,Nδ and we act like our original prob-
lem (1.1) coincides with the truth problem (1.14). The greedy scheme is based
on the availability of an error estimator η(y) such that

‖u(y)− uN (y)‖y ≤ η(y)

(note that this formula is just (1.30; now the parameters are the possible real-
izations of a random variable) where we replaced µ with y). Thus, the idea is
to modify η(y), multiplying it by a weight w(y), chosen accordingly to the dis-
tribution of y ∈ Γ. Let us introduce, for y ∈ Γ, the spaces Vy = V with the
norm

‖v‖Vy = w(y)‖v‖V, ∀ v ∈ Vy.
Thus, if we define η̂(y) = η(y)w(y), we have that

α‖u(y)− uN (y)‖Vy ≤ w(y)‖u(y)− uN (y)‖y ≤ η̂(y),

for all y ∈ Γ. So, except of a positive constant α, a greedy routine with error esti-
mator η̂ aims to minimize the distance of the solution manifold from the reduced
basis space in a weighted L∞-norm on the parameter space. Now, depending on
what one wants to compute, different choices can be made for the weight function
w. For example, if we are interested in a statistics of the solution, e.g., E[u], we
can choose w(y) = ρ(y). Thus, for the error committed computing the expected
value using the reduced basis, the following estimates holds:∥∥E[u]− E[uN ]

∥∥
V ≤

∫
Γ
‖u(y)− uN (y)‖Vρ(y) dy ≤ 1

α
|Γ| sup

y∈Γ
η̂(y).

If we are interested in the expectance of a linear output s, E[s], using the same
weight function, we get the error estimate:∣∣E[s(u)]− E[s(uN )]

∣∣ ≤ ∫
Γ
‖s‖V′‖u(y)− uN (y)‖Vρ(y) dy ≤ 1

α
|Γ|‖s‖V′ sup

y∈Γ
η̂(y).

Instead, taking w(y) =
√
ρ(y) we obtain that∫

Γ
‖u(y)− uN (y)‖2Vρ(y) dy =

∫
Γ
‖u(y)− uN (y)‖2Vy dy ≤

|Γ|
α

sup
y∈Γ

η̂(y)2.

so that we obtain the following estimate for the quadratic error:

E
[
‖u(Y )− uN (Y )‖2V

]1/2
≤
√
|Γ|
α

sup
y∈Γ

η̂(y). (2.8)
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2.2.2 Weighted POD

In this section we present a possible way to modify also the POD algorithm to keep
into account the probability distribution of the parameters. This is an original
contribution of this work. We recall that, chosen a discretization Ξ = {y1, . . . , yM}
of the parameter space Γ, the POD algorithm provides the N -dimensional linear
subspace of V which minimizes the quantity

1

M

M∑
i=1

‖u(yi)− uN (yi)‖2V.

The first approach, to keep into account the probability distribution of y, is to
consider, as before, the Vy-norm instead of the V-norm. Thus, we look for the
N -dimensional subspace of V which minimize the quantity

1

M

M∑
i=1

w(yi)‖u(yi)− uN (yi)‖2V, (2.9)

for a given weight function w : Ξ→ R+. For example, we can choose w(y) = ρ(y).
Following the same procedure of section 1.2 one can show that this is equivalent
to find the N greatest eigenvalues λ1 ≥ · · · ≥ λN , and corresponding eigenvectors
ξ1, . . . , ξN , of the linear application C : V→ V defined as

C(v) =
1

M

M∑
i=1

w(yi)(v, u(yi))Vu(yi)

The sought best approximation (in sense of minimal quantity (2.9))N -dimensional
subspace is hence given by VN = span{ξ1, . . . , ξN}. Computationally, this can be
achieved computing theN maximumN eigenvalues λ1 ≥ · · · ≥ λN , and respective
eigenvectors v1, . . . , vN , of the preconditioned matrix

Ĉ = P · C,

where C is the matrix defined in (1.25) and

P =

w1

. . .
wM

 . (2.10)

Thus, the basis function are given by ξn =
∑M

i=1(vn)iϕi, for n = 1, . . . , N . We
note that the matrix Ĉ is not symmetric in the usual sense, but respect to the
scalar product induced by the matrix C, i.e., it holds the relation ĈTC = CĈ.
Thus, spectral theorem still holds and there exists an orthonormal basis of eigen-
vectors, i.e., Ĉ is diagonalizable with an orthogonal change of basis matrix. The
discretized parameter space Ξ can be selected with a sampling technique, e.g.,
using an equispaced tensor product grid on Γ or taking M realizations of a uni-
form distribution on Γ. Note that if we build Ξ as the set of M realizations of a
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random variable on Γ, with distribution ρ, and we put w ≡ 1, the quantity (2.9)
we minimize is just a Monte Carlo approximation of the integral∫

Γ
‖u(y)− uN (y)‖2Vρ(y) dy = E[‖u− uN‖2V]. (2.11)

Therefore, in this case, the difference between the weighted and the standard
POD algorithm is (at least theoretically) we replaced quantity (1.20) with (2.11),
which, since we are considering the stochastic problem (2.5), could be reasonable.
Following this reasoning, the idea is to select Ξ and w as the nodes and the weights
of a quadrature algorithm that approximate the integral (2.11). We consider a
quadrature operator U , defined as

U(f) =

M∑
i=1

ωif(xi)

for every integrable function f : Γ → R, where x1, . . . , xM ∈ Γ are the nodes of
the algorithm and ω1, . . . , ωM the respective weights. Then we can approximate
(2.11) as ∫

Γ
‖u(y)− uN (y)‖2Vρ(y) dy '

M∑
i=1

wi‖u(xi)− uN (xi)‖2V, (2.12)

where wi = ωiρ(yi) or, if U is a quadrature rule for integration with respect to
weight ρ, wi = ωi. Thus we can look for the N -dimensional linear subspace
which realizes the minimum of the right hand side of (2.12). This can be found
by following the above described procedure with preconditioning matrix (2.10)
where wi = ωiρ(yi) or, if U is a quadrature rule for integration with respect to
weight ρ, wi = ωi. Therefore, varying the quadrature rule U used, one obtain
diverse ways of preconditioning the matrix C. Unfortunately, the main problem
with POD algorithm is that there is not an a posteriori error estimator. This
does not allow us to say a priori which weighted variant is the best. Moreover,
since it requires to compute the eigenvalues of a M ×M matrix, the dimension
M of Ξ should better not be too high. In Chapter 3 we will describe a method
that allows to build multivariate quadrature formulas with a reduced number of
nodes with respect to tensor product quadrature rules.

2.3 Numerical tests

In this section we test the algorithms described above on a specific problem. We
consider the linear stochastic elliptic equation (2.7) on Ω = [0, 1]2.

2.3.1 The RBniCS library

To solve the following problems we used the RBniCS library (cf. [2]). RBniCS
is an implementation in FEniCS of several reduced order modeling techniques for
coercive problems. We modified the present algorithms in order to treat stochastic
problems and apply weighted reduced order methods. All the scripts were written
in Python.
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2.3.2 First study case: 4 diffusivity zones equation

Let Ω = ∪4
i=1Ωi be a decomposition of Ω = [0, 1]2 such that

Ω1 = [0, 1/2]× [0, 1/2], Ω2 = [1/2, 1]× [0, 1/2],

Ω3 = [0, 1/2]× [1/2, 1], Ω4 = [1/2, 1]× [1/2, 1].

We consider equation (1.11) with g ≡ 1 and b of the form

b(x; y) =
4∑
i=1

yi1Ωi(x), for x ∈ Ω,

for some fixed y = (y1, . . . , y4) ∈ (0,∞)4. In practice we are considering a diffusion

Figure 2.1: Geometrical set-up of problem (2.13).

problem on Ω, where the diffusion coefficient is constant on the elements of a par-
tition of Ω in four zones. In particular we want to consider the following stochastic
problem. Let Γ =

∏4
i=1 Γi =

∏4
i=1[ai, bi] ⊆ (0,+∞)4 and Y = (Y1, . . . , Y4) be

a random vector taking values in Γ. Moreover we suppose that Y1, . . . , Y4 are
independent and that, for i = 1, . . . , 4,

Yi − ai
bi − ai

∼ Beta(αi, βi),

for some positive distribution parameters αi, βi. We consider the problem: find
u : Γ→ H1

0 (Ω) such that, a.s.,

a(u(Y ), v;Y ) = f(v) ∀ v ∈ H1
0 (Ω), (2.13)

where a(·, ·; y) denotes the bilinear form (1.10) with b = b(·; y). We implemented
weighted greedy algorithm and weighted POD for the evaluation of the expec-
tation of the solution, and we compared them. In particular we calculated the
error

E
[
‖uNδ(Y )− uN (Y )‖2H1

0 (Ω)

]
=

∫
Γ
‖uNδ(y)− uN (y)‖2H1

0 (Ω)ρ(y) dy (2.14)
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using a Monte Carlo approximations, i.e.,

E
[
‖uNδ(Y )− uN (Y )‖2H1

0 (Ω)

]
' 1

M

M∑
m=1

‖uNδ(Y
m)− uN (Y m)‖2H1

0 (Ω), (2.15)

where Y 1, . . . , YM are M realizations of Y . In particular we tested the case with
Γi = [1, 3] and (αi, βi) = (10, 10), for all i = 1, . . . , 4. As discretized space Vδ we
used the classical P1-FE approximation space.

Greedy algorithm

We implemented the standard and the weighted greedy algorithm for construc-
tion of reduced basis space, taking ω =

√
ρ in the weighted case (this choice being

motivated by (2.8)). For the train set selection, we sampled it using various tech-
niques as uniform sampling, equispaced grid and sampling of the distribution. We
also tried to use other samples techniques as Clenshaw-Curtis or Gauss-Legendre
tensor product grids (see appendix). We took |Ξ| = 1000 and we chose the first
parameter µ1 as µi1 = 2, for i = 1, . . . , 4 (2 is the mode of the distribution of
Y ). We found that the best accuracy is achieved using the weighted algorithm
with a sampling of the distribution of Y . In Figure 2.2, we reported the graph of
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Figure 2.2: Comparison of error (2.14) using a standard greedy algorithm and a weighted
greedy algorithm with a uniform sampling or a sampling of Y .

the error (2.14) (in a logarithmic scale) as a function of the reduced basis space
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dimension N , using a standard greedy algorithm (with an uniform sampling) and
weighted greedy algorithms with a uniform sampling or a sampling of Y . As we
can see, using the weighted version instead of the standard one we earn almost
one order of accuracy, for N = 9. The weighted greedy with sampling of the dis-
tribution seems to perform a little better than the weighted greedy with uniform
sampling. This should be due to the fact to a more ‘representative’ choice of the
samples. However the difference is almost null.

POD method

We implemented several versions of weighted POD algorithm and we compared
their performances. As explained above, weighted versions of POD algorithm are
based on quadrature formulas. As before, let us denote with Ξ = {y1, . . . , yM} the
sampling point (which correspond to the nodes of the chosen quadrature formula),
w = (w1, . . . , wM ) the correspondent weights used in POD algorithm, ρ1, . . . , ρM
the values of the density ρ in the points of Γh and ω = (ω1, . . . , ωM ) the weights
of the chosen quadrature formula. A description of the quadrature formula used
can be found in Appendix A.1. We chose to use the versions that minimize the
following approximations of (2.11):

(i) Uniform Monte-Carlo approximation:

1

M

M∑
i=1

ρi‖uNδ(Y
i)− uN (Y i)‖2V, (2.16)

where Y 1, . . . , YM are M realizations of a random variable with uniform
distribution on Γ and ρi are the values of the density ρ in these points.
Therefore in this case Ξ = {Y 1, . . . , YM} and wi = ρi, for all i = 1, . . . ,M ;

(ii) Monte-Carlo approximation:

1

M

M∑
i=1

‖uNδ(Y
i)− uN (Y i)‖2V, (2.17)

where Y 1, . . . , YM are M realizations of Y . In this case Ξ = {Y 1, . . . , YM}
and wi = 1, for all i = 1, . . . ,M ;

(iii) Tensor product Clenshaw-Curtis rule approximation:

1

M

M∑
i=1

ρiωi‖uNδ(y
i)− uN (yi)‖2V, (2.18)

where y1, . . . , yM are the nodes of the tensor product Clenshaw-Curtis quadra-
ture rule and ω1, . . . , ωM are the respective quadrature weights. In this case
Ξ = {y1, . . . , yM} and wi = ρiωi, for all i = 1, . . . ,M . We do the same
using also the tensor product Gauss-Legendre quadrature rule (which gives
a different choice of weights and nodes);
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(iv) Tensor product Gauss-Jacobi rule approximation:

1

M

M∑
i=1

ωi‖uNδ(y
i)− uN (yi)‖2V, (2.19)

where y1, . . . , yM are the nodes of the tensor product Gauss-Jacobi quadra-
ture rule and ω1, . . . , ωM are the respective quadrature weights. We choose
parameters of the Gauss-Jacobi formula to be (αi, βi) in each dimension,
accordingly to the distribution of Y . In this case Ξ = {y1, . . . , yM} and
wi = ωi, for all i = 1, . . . ,M .

wi Ξ1| |Ξ1 \ ∂Γ| |Ξ2| |Ξ2 \ ∂Γ|
Standard 1 100 100 500 500

Uniform Monte-Carlo ρi 100 100 500 500

Monte-Carlo 1 100 100 500 500

Clenshaw-Curtis ωiρi 1296 256 2401 625

Gauss-Legendre ωiρi 256 256 625 625

Gauss-Jacobi(10, 10) ωi 256 256 625 625

Table 2.1: Description of the weights used in the weighted POD algorithms and of the
number of points of Ξin the two different trials.

From now on we will refer to POD algorithms coming from previous formulas
as Uniform Monte-Carlo, Monte-Carlo, Clenshaw-Curtis (Gauss-Legendre) and
Gauss-Jacobi, respectively for formulas (2.16), (2.17), (2.18) and (2.19). We re-
port here two different trials made for different values of M . In the first trial we
selected Ξ = Ξ1 to be the smallest possible such that |Ξ1 \ ∂Γ| ≥ 100 for the
various algorithms (when we are using tensor product quadrature rule, we can
not impose the cardinality of Ξ a priori). Instead, in the second trial we selected
Ξ = Ξ2 to be the smallest possible such that |Ξ2 \ ∂Γ| ≥ 500 for the various
algorithms We also note that when we use the Clenshaw-Curtis approximation,
the majority of the points in Γh lies on ∂Γ: these point are completely negligible,
since ρ|∂Γ ≡ 0. So in this case, we need to take a bigger M to get a good accu-
racy. The number of sampling points used for every algorithm in the two trials
is reported in Table 2.1. In Figure 2.3 we confronted a standard POD algorithm
(not weighted, with sampling uniformly distributed) with uniform Monte-Carlo
and Monte-Carlo POD algorithms. As we can see (on the left), weighted algo-
rithms perform better (up to an order of accuracy) than the standard one and
the best accuracy is obtained with the Monte-Carlo POD algorithm. For bigger
values of M , the accuracy improves both for standard and Uniform Monte-Carlo
POD algorithms, while remains almost the same for the Monte-Carlo POD. In
particular, in this case, the two Monte-Carlo POD algorithms almost show the
same accuracy. For further trials (with bigger M) the results show hardly any
change. Therefore, in this case the conclusion is that the better algorithm to be
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Figure 2.3: Comparison for the error (2.14) obtained for two different values ofM , using
standard, uniform Monte-Carlo and Monte-Carlo POD.

used seems to be Monte-Carlo POD.
In Figure 2.4 we reported instead the performance for Clenshaw-Curtis, Gauss-
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Figure 2.4: Comparison for the error (2.14) obtained for two different values ofM , using
Clenshaw-Curtis, Gauss-Legendre and Gauss-Jacobi (of same parameters of distribution
of Y ) POD.

Legendre and Gauss-Jacobi (with the same parameter of distribution of Y ) POD
algorithms, in the two cases (different values of M). We note (from Table 2.1)
that for Clenshaw-Curtis POD we have to take M = 1296 and M = 2401 to
ensure the same number of points in Γ̊ as in other POD algorithms. As we can
see Clenshaw-Curtis and Gauss-Legendre POD algorithms bring almost the same
accuracy, while Gauss-Jacobi POD seems to work a little bit better (which makes
sense, since Gauss-Jacobi quadrature rule is designed exactly for integrals with
Beta weight). However, in the second trial, Gauss-Jacobi POD shows hardly any
change while the other two improve their accuracy almost up to the one provided
by Gauss-Jacobi POD. For further trials (with bigger M) the results show hardly
any change. Thus, in this case the algorithm with best performance is the Gauss-
Jacobi one. Finally, in Figure 2.5 we compared the standard POD algorithm with
the two previous best weighted POD algorithm: Monte-Carlo and Gauss-Jacobi.
In particular we used M = 100, 100, 256, respectively. As we can see the latter
two show almost the same order of accuracy, which is improved, with respect the
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standard one, up to an order of accuracy.

Greedy vs POD: a comparison

In Figure 2.6 we compare standard and weighted greedy algorithm performances
with the ones of standard and Gauss-Jacobi (which was the best weighted one)
POD algorithm. We used M = 1000 for the greedy algorithms and M = 100, 256
for the POD algorithms. As noted before, the weighted algorithms perform better,
up to an order of accuracy. The weighted POD works a little bit better than the
weighted greedy, which makes sense, since the POD is designed to minimize (in
some sense) the quantity (2.14); however, the difference is practically null.

2.3.3 Second study case: 9 diffusivity zones equation

We consider the same problem as before, but subdividing Ω in 9 sub-domains. So
we consider Ω = ∪9

i=1Ωi such that

Ω1 = [0, 1/3]× [0, 1/3], Ω2 = [1/3, 2/3]× [0, 1/3], Ω3 = [2/3, 1]× [0, 1/3],
Ω4 = [0, 1/3]× [1/3, 2/3], Ω5 = [1/3, 2/3]× [1/3, 2/3], Ω6 = [2/3, 1]× [1/3, 2/3],

Ω7 = [0, 1/3]× [2/3, 1], Ω8 = [1/3, 2/3]× [2/3, 1], Ω9 = [2/3, 1]× [2/3, 1],

and equation (1.11) with g ≡ 1 and b of the form

b(x; y) =
9∑
i=1

yi1Ωi(x), for x ∈ Ω,

for some fixed y = (y1, . . . , y9) ∈ (0,∞)9. As before, we consider the stochastic
problem: find u : Γ→ H1

0 (Ω) such that, a.e.,

a(u(Y ), v;Y ) = f(v) ∀ v ∈ H1
0 (Ω), (2.20)

where a(·, ·; y) denotes the bilinear form (1.10) with b = b(·; y) and Y = (Y1, . . . , Y9)
is a random vector taking values in Γ =

∏9
i=1 Γi =

∏9
i=1[ai, bi]. Analogously, we

suppose that Γi = [1, 3] and Yi are i.i.d. random numbers such that

Yi − 1

2
∼ Beta(αi, βi), (2.21)

for i = 1, . . . , 9. Again we implemented diverse versions of weighted greedy and
POD algorithms for the construction of reduced order basis spaces, taking Vδ as
the classical P1-FE approximation space. We hence compared them, confronting
the values of error (2.15), as a function of the reduced order basis space dimension
N .
As one can observe, the only difference with the problem of section (2.3.2) is
practically just the higher number of parameters. We made two different tests for
different parameter values: the first one with αi = βi = 10, for i = 1, . . . , 9, the
second one with αi = βi = 75, for i = 1, . . . , 9.
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Figure 2.5: Comparison of error (2.14) obtained using standard, Monte-Carlo and Gauss-
Jacobi POD algorithms with, respectively, M = 100, 100, 256.
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Figure 2.6: Comparison of error (2.14) obtained using standard Greedy and weighted
greedy and standard and Gauss-Jacobi POD algorithms with, respectively, M =
1000, 1000, 100, 256.
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Figure 2.7: Geometrical set-up of problem (2.20).

Greedy algorithm

We implemented the standard and the weighted greedy algorithm for construction
of reduced basis space, taking ω =

√
ρ in the weighted case as before. Again,

for the train set selection, we sampled it using various techniques. We took
|Ξ| = 2000 and we chose the first parameter µ1 as µi1 = 2, for i = 1, . . . , 9 (2 is
the mode of the distribution of Y ). The best accuracy is still achieved using the
weighted algorithm with a sampling of the distribution of Y . In Figure 2.8, we
reported the graph of the error (2.14) (in a logarithmic scale) as a function of the
reduced basis space dimension N , using a standard greedy algorithm (with an
uniform sampling) and weighted greedy algorithms with a uniform sampling or a
sampling of Y for αi = βi = 10 (left) and αi = βi = 75 (right). In the first case
we observe that the weighted algorithm with sampling of Y performs better than
the standard one. However, the weighted algorithm with uniform sampling does
not show a much better accuracy, providing an accuracy hardly different from
that of the standard POD. This implies that with an higher dimension of the
parameter space the sampling technique assumes much more importance. This
is strongly underlined in the case αi = βi = 75. Here, the distribution of Y is
much more concentrated and the difference between the standard greedy and the
weighted one with sampling of Y is more evident. Moreover, the performance of
the weighted algorithm with uniform sampling gets much worst than the standard
one: this is clearly due the fact that, having a bad sampling, the weighted greedy
algorithm forces us to take points µ1, . . . , µN for which the respective solutions
are almost linearly dependent. This is highlighted by the fact that for N ≥ 8 the
reduced matrix generated by the greedy algorithm becomes singular.
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Figure 2.8: Comparison for the error (2.14) obtained for αi = βi = 10 (left) and αi =
βi = 75 (right), using standard greedy algorithm and weighted greedy algorithms with
uniform sampling or sampling of Y.

POD method

We implemented the various weighted versions of POD algorithm and compared
the results obtained in the cases αi = βi = 10 and αi = βi = 75. In Table 2.2
we reported the weights and the number of sample points used in the various
algorithms. Since Gauss-Legendre and Gauss-Jacobi POD algorithms are based

wi |Ξ|
Standard 1 500

Uniform Monte-Carlo ρi 2000

Monte-Carlo 1 500

Gauss-Legendre ωiρi 512

Gauss-Jacobi ωi 512

Table 2.2: Description of the weights used in the weighted POD algorithms and of the
number of points of Ξin the two different trials.

on a tensor product rule the only possibility was to takeM = 29 = 512. Indeed the
next possible choice is M = 39 = 19683, which is computationally impracticable.
We did not tested Clenshaw-Curtis POD, since |Ξ ∩ Γ̊| = 0 for M = 29 and
|Ξ ∩ Γ̊| = 1 for M = 39, so that for having an enough representative set Ξ we
would need M ≥ 49, which is clearly impracticable. Figure 2.9 shows that the
weighted algorithms perform better of the standard one, even if Monte-Carlo POD
outperforms uniform Monte-Carlo POD. The situation is highlighted in the case
αi = βi = 75, where the distribution of Y is much more concentrated. Moreover,
for obtaining good results for uniform Monte-Carlo POD we had to takeM = 2000
while we run Monte-Carlo POD withM = 500 (for biggerM the performance does
not change). The difference between the two weighted algorithms can be addressed
to the fact that rule (2.17) is a better approximation of (2.14) than (2.16) and to
the more representative choice of the points in Ξ. Therefore, it seems that, in the
case of high dimensional parameter space, the choice of the sampling points plays
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a key role in the POD algorithm, as in the greedy. In Figure 2.10 we reported
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Figure 2.9: Comparison for the error (2.14) obtained for αi = βi = 10 (left) and αi =
βi = 75 (right), using standard, uniform Monte-Carlo and Monte-Carlo POD.

the performances of Gauss-Legendre and Gauss-Jacobi POD algorithms. As in
the case considered in section 2.3.2 Gauss-Jacobi POD shows performances almost
equal to the Monte-Carlo POD ones. However this time Gauss-Legendre performs
very poorly. This is due to a bad selection of the sampling points Ξ by the Gauss-
Legendre algorithm: from N ≥ 8, for both parameter values, the accuracy shows
hardly any change for higher N . Finally, in Figure 2.11 we confronted the two
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Figure 2.10: Comparison for the error (2.14) obtained for αi = βi = 10 (left) and
αi = βi = 75 (right), using Gauss-Legendre and Gauss-Jacobi (of same parameters of
distribution of Y ) POD.

well working weighted POD algorithms (Monte-Carlo and Gauss-Jacobi) with the
standard one. In both the cases a better accuracy is obtained with the weighted
algorithms. The difference is much more visible in the case αi = βi = 75, when
the distribution is highly concentrated.

Greedy vs POD: a comparison

We report in Figure 2.12 the comparisons of the errors obtained using standard
and weighted reduced order approximation. We selected, both for POD and
greedy algorithms, the weighted versions with the best performance. We observe
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Figure 2.11: Comparison for the error (2.14) obtained for αi = βi = 10 (left) and
αi = βi = 75 (right), using standard, Monte-Carlo and Gauss-Jacobi (of same parameters
of distribution of Y ) POD.

that in both cases a better accuracy is obtained with a weighted algorithm instead
of a standard one. The differences between weighted and standard algorithms are
much more evident when the distribution is highly concentrated.
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Figure 2.12: Comparison of error (2.14) obtained using standard Greedy and weighted
Greedy and standard and Monte-Carlo POD algorithms for αi = βi = 10 (left) and
αi = βi = 75 (right).

2.3.4 Remarks

We implemented the weighted reduced order methods presented in Section 2.2
and we tested them on two easy linear stochastic elliptic problems, with random
space dimension N = 4 and N = 9, respectively. We observed that weighted
reduced order methods performs better than the not weighted ones. However,
if the dimension of the random space is high enough (N = 9 in our case), not
all the weighted methods perform well; indeed in this case the choice of a well
representative sampling Ξ is fundamental. Moreover, the importance of a good
sampling is still more important when the distribution of the random parameters
is highly concentrated. This fact can be easily explained by the fact that the
subspace built by the reduced order methods is a subspace of {u(y) : y ∈ Ξ}.
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Thus, if Ξ contains only points y with probability P{Y = y} too low, adding a
linear combination of solutions {u(y) : y ∈ Ξ} to the reduced subspace is use-
less, since we are interested in a statistics of the solution. Even if every method
presented before could generate a sampling set Ξ enough fine, this is computa-
tionally impracticable for high N . Therefore, we need to use a method which
samples accordingly to the distribution. This can be achieved in the greedy just
taking Ξ as a set of realizations of Y and in the POD using the Monte-Carlo
POD. Moreover, in our example we were considering Y with a Beta distribution
function, so also Gauss-Jacobi POD, which is based on Gauss integration with a
Beta weight function, was working almost as well as Monte-Carlo POD. However
to use such a rule we are forced to take, in our case, at least |Ξ| = 29. In the next
chapter we describe Smolyak quadrature rules, which allow to define multivariate
quadrature rules with a reduced number of nodes with respect to tensor product
quadrature rules, and we apply them to weighted POD algorithms.
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Chapter 3

Sparse grid sampling techniques

In this chapter we present a possible way to define a multivariate quadrature rule,
in order to use it in weighted POD algorithms. The algorithm presented here is
known as Smolyak algorithm and it allows to define a multivariate quadrature
rule, based on univariate quadrature rules, which make use of a nodal set with
significantly less number of nodes compared to the tensor product rule. The
resulting nodal set is called sparse grid. Sparse grids have been firstly used, in the
framework of stochastic partial differential equations, for stochastic collocation
methods. In the first section we present stochastic collocation methods for the
solution of a stochastic partial differential equation (2.3)-(2.4). These methods
are based on polynomial interpolation in the random parameter space. Then, in
the second section we present Smolyak algorithms for quadrature rules. Their
possible use in stochastic collocation methods and POD algorithms is discussed.
Finally, in the third section, we report some numerical tests for the use of Smolyak
quadrature algorithms in weighted POD algorithms.

3.1 Stochastic collocation methods

In this section we present the stochastic collocation methods for the solution of
problem (2.1)-(2.2). This section is based on works [35, 48]. We will keep the
notation introduced in section 2.1. The construction of stochastic collocation
methods is based on polynomial interpolation in the multidimensional random
space Γ ⊆ RN , where N is the dimension of the random space. Let us denote by
PN the space of all N -variate polynomials with all real coefficients and by PNd the
subspace of polynomials of total degree at most d. Now, given a finite number of
distinct points y1, . . . , yM ∈ RN , some real constants b1, . . . , bM , and a subspace
VI ⊆ PN , the Lagrange interpolation problem is defined as find a polynomial
l ∈ VI such that

l(yj) = bj , for each j = 1, . . . ,M . (3.1)

The points y1, . . . , yM are called interpolation nodes, and VI is the interpolation
space. The Lagrange interpolation point is said to be poised in VI , for the points
y1, . . . , yM ∈ RN , if, for any given data b1, . . . , bM ∈ R there exists a function
l ∈ VI that satisfies (3.1). Suppose now that we have a set of prescribed nodes
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ΘN = {yj}Mj=1 ⊆ Γ such that Langrange interpolation (3.1) in the N -dimensional
random space Γ is poised in a corresponding interpolation space VI . Subsequently,
Lagrange interpolation of a smooth function f : Γ→ R, can be viewed as follows:
find a polynomial I(f) ∈ VI such that I(f)(yj) = f(yj), for each j = 1, . . . ,M .
The polynomial approximation I(f) can be expressed by using the Lagrange
interpolation polynomials, i.e.,

I(f)(y) =

M∑
k=1

f(yk)Lk(y),

where
Li ∈ VI , Li(yj) = δij , for 1 ≤ i, j ≤M , (3.2)

are the Lagrange polynomials. We equip the spaces C0(Γ) and PN (Γ) with the
L∞-norm, and we consider the dual norm of Lagrange operator I : C0(Γ)→ VI .
It is easy to show that

‖I‖ = sup
f 6=0

‖I(f)‖∞
‖f‖∞

= Λ
.
= max

y∈Γ

M∑
k=1

|Li(y)|.

The constant Λ is known as the Lebesgue constant. Therefore, one gets that

‖f − f∗‖∞ ≤ ‖f − I(f)‖∞ ≤ (1 + Λ)‖f − f∗‖∞,

where f∗ is the best approximating polynomial of f . The collocation procedure
consists to approximate the solution u(y) to the problem (2.3)-(2.4) with

û(y) =
M∑
k=1

u(yk)Lk(y),

where u(yk) are the solutions to (2.3)- (2.4) for y = yk, k = 1, . . . ,M . By using
the property of Lagrange interpolation (3.2), we immediately obtain:

L(yk, x;u(yk)) = g(yk, x), x ∈ D, (3.3)

with boundary condition

B(yk, x;u(yk)) = h(yk, x), x ∈ ∂D, (3.4)

for k = 1, . . . ,M . Thus, the stochastic collocation method is equivalent to solving
M deterministic problems (3.3)-(3.4), the deterministic counterpart of problem
(2.3)- (2.4), at each nodal point yk, k = 1, . . . ,M , in a given nodal set ΘN .
Problem (3.3)-(3.4) for each k is naturally decoupled, and existing deterministic
solvers can be readily applied.
Once the numerical solutions of (3.3)-(3.4) are obtained at all collocation points,
the statistics of the random solution can be evaluated, e.g.,

E(û) =
M∑
k=1

u(yk)

∫
Γ
Lk(y)ρ(y) dy. (3.5)
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The evaluations of such expectation require explicit knowledge of the Lagrange
polynomials {Lk}Mk=1. For a given nodal set ΘN , the polynomials can be de-
termined numerically by inverting a Vandermonde-type matrix (the matrix is
invertible under the assumption that the Lagrange is poised on ΘN ) (see [40],
p. 376). In multivariate case, such a procedure can be cumbersome, but can be
accomplished once and for all at the preprocessing stage.
An alternative is to choose the set ΘN to be a quadrature. Given a quadrature
rule ∫

Γ
f(y) dy '

M∑
k=1

f(yk)wk,

where {wk}Mk=1 and {yk}Mk=1 are, respectively, the weights and the nodes of the
quadrature formula, we can choose the interpolation point set ΘN to be the same
as the quadrature point set {yi}Mi=1, then the evaluation of (3.5) is reduced to

E(û) =
M∑
k=1

u(yk)wk. (3.6)

The computational complexity of the stochastic collocation methods is M times
that of a deterministic problem, whereM is the total number of collocation points.
Thus, we need to choose a nodal set ΘN with fewest possible number of points
under a prescribed accuracy requirement. Generally we will have multidimen-
sional random spaces, i.e., Γ ⊆ RN with N > 1. The first idea is to choose the
multi-dimensional interpolation nodes set ΘN as the tensor product of an uni-
variate interpolation nodes sets. Remember that the random space has the form
Γ =

∏N
i=1 Γi, with Γi = [ai, bi], for i = 1, . . . , N . If we have a sequence of N

unidimensional nodal sets

Θi
1 =

{
xi1, . . . , x

i
mi

}
⊆ [−1, 1], (3.7)

for i = 1, . . . , N , then we can take

ΘN = Θi1
1 × · · · ×ΘiN

1 .

Clearly, the Lagrange interpolation with the above defined nodal set needs M =
mi1 ·mi2 · · ·miN nodal points. If we choose the same nodal sets (3.7) in each di-
mension, with number of points m, then the total number of points is M = mN .
This number grows quickly in high dimension N � 1, even for a poor approxi-
mation with two points (m = 2), M = 2N � 1 for N � 1. The same situation
holds when we consider tensor product quadrature formulas (see Appendix, Sec-
tion A.2.1) for the evaluation of (3.6). In the next section we describe the Smolyak
algorithm for the construction of multivariate quadrature rules. These algorithms
provide sparse grid as nodal set, and a correspondent set of weights. This ap-
proach allows to reduce significantly the number of nodes used, compared to the
number of points of a tensor product rule.
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3.2 Sparse grids: Smolyak quadrature rules

In this section we present the Smolyak algorithm for the construction of multi-
variate quadrature formulas. Given a sequence of quadrature rules, the Smolyak
quadrature rule is formulated as a sum of tensor product taken over the consecu-
tive differences in the univariate sequence. In the following we suppose we want
to define a quadrature formula U : C0(Γ)→ R, with Γ =

∏n
i=1 Γi =

∏n
i=1[ai, bi].

Let (U
(j)
i )∞i=1 be a sequence of univariate quadrature rules in the interval Ij ⊆ R,

for j = 1, . . . , n. We call i the order of the operator . We introduce the differences
operators in Ij by setting

∆
(j)
0 = 0 and ∆

(j)
i+1 = U

(j)
i+1 − U

(j)
i for i ≥ 0,

where we put U (0)
i = 0. We define the Smolyak quadrature rule of order q in Γ as

the operator:

Qnq =
∑
|α|1≤q
α∈Nn

n⊗
i=1

∆(i)
αi . (3.8)

Note that the tensor product ∆
(1)
α1 ⊗· · ·⊗∆

(n)
αn in the summation of (3.8) vanishes

whenever αi = 0 for some index i. Thus in the sequel we always assume α ≥ 1

and hence q ≥ n. Moreover, note that, for n = 1, we have Q1
q = U

(1)
q for all q ≥ 1.

Using the differences operators defined above, we can write the tensor product
operator of order q in the form

n⊗
i=1

U (i)
q =

(
q∑

α1=0

∆(1)
α1

)
⊗ · · · ⊗

(
q∑

α1=0

∆(n)
αn

)

=

q∑
α1=0

· · ·
q∑

αn=0

q⊗
i=1

∆(i)
αi =

∑
|α|∞≤q
α∈Nn

n⊗
i=1

∆(1)
αi .

Therefore the rule (3.8) can be considered as a delayed sum of the ordinary tensor
product operator. The following theorem provides an alternative representation
of operator (3.8). A detailed proof of this theorem is given in the Appendix,
Section A.4.

Theorem 3.2.1. The operator Qnq defining the Smolyak quadrature rule can be
written as

Qnq =
∑

max{n,q−n+1}≤|α|1≤k
α∈Nn, α≥1

(−1)q−|α|1
(

d− 1

k − |α|1

) n⊗
i=1

U (i)
αi . (3.9)

An immediate consequence of the formula (3.9) is the way it renders the
evaluation point sets of the Smolyak rule explicitly known. Let X(j)

i be the
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point sets containing the evaluation points of the quadrature rule U (j)
i , for each

j = 1, . . . , n and i ≥ 1. Then by (3.9) the evaluation points of Qnq form the set

Θq
n =

⋃
|α|1=q

α∈Nn, α≥1

X(1)
α1
× · · · ×X(n)

αn for all q ≥ n.

We call elements of the set Θq
n the nodes of Qnq . The cardinality of the set Θq

n

determines the cost of Qnq since it determines the minimum number of function
evaluations required to compute the Smolyak rule. We can now formulate the
numerical implementation of the Smolyak rule for the evaluation of integrals of
the form

InW f =

∫
Γ
W1(x1) · · ·Wn(xn)f(x1, . . . , xn) dx1 · · · dxn

where W (x1, . . . , xn) = W1(x1) · · ·Wn(xn) is the weight function, for f ∈ C0(Γ).
Suppose that U (j)

i are the quadrature rules for univariate integrals with weight
function Wj , i.e.,

∫
Γi

f(x)Wj(x) dx ' U (j)
i (f)

.
=

m
(j)
i∑

l=1

w
(j)
i,l f(x

(j)
i,l )

for f ∈ C0(Γi), i = 1, . . . , n. Then, for f ∈ C0(Γ), the Smolyak rule gives the
approximation of integral

InW f ' Qnq (f) =

=

q∑
s=max{n,q−n+1}

∑
|α|1=s

α∈Nn, α≥1

m
(1)
α1∑

l1=1

· · ·
m

(n)
αn∑

ln=1

Csn,q w
(α1)
1,l1
· · ·w(αn)

n,ln
f(x

(α1)
1,l1

, . . . , x
(αn)
n,ln

),

where Csn,q = (−1)q−n
(
n−1
q−s
)
. The above is just the Smolyak rule (3.9) writ-

ten down explicitly. Observe that the cumbersome nested sums can be replaced
by summation over all occurring combinations of univariate nodes and weights.
Clearly, the formulation discussed above can be formulated with interpolation op-
erators L(j)

i instead of quadrature operators U (j)
i . For more details about Smolyak

interpolation we refer to works [4, 47].
We report here two results on order of polynomial exactness from Smolyak quadra-
ture rules.

Theorem 3.2.2. Let U (j)
i be univariate quadrature rules that corresponds to the

weight Wj and have polynomial exactness m(j)
i = mi such that mi ≤ mi+1. Then

InW f = Qnq (f) ∀ f ∈
∑
|α|1=q
α∈Nn

n⊗
i=1

P1
mαi

and q ≥ n.
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Figure 3.1: Example of sparse grids. The right one is obtained using Clenshaw-Curtis
nodes gor q = 9, the left one with Gauss-Legendre nodes for q = 7.

For the proof of the theorem above and further results on order of polynomial
exactness and approximation errors for Smolyak quadrature we refer to works
[23, 27, 36]. Smolyak methods are frequently used in implementing stochastic
collocation techniques. They indeed allow to use interpolation or quadrature
rules with a reduced number of nodes with respect to tensor product rules. Our
idea is to try to use them for the construction of weighted POD algorithms. In
the next section we solve problem (2.20) and compare the results obtained with
that of the previous chapter.

3.3 Numerical tests

In this section we solve problem (2.20) using Smolyak quadrature rules and we
discuss the results. We use the notation of Section 2.3.3. We wrote python scripts
for Smolyak algorithms and we implemented them in RBniCS to allow weighted
reduced order methods to use them.
We used Smolyak algorithms built using Gauss-Legendre or Gauss-Jacobi rules in
each dimension, i.e., we defined Qnq taking U (j)

i to be the Gauss-Legendre quadra-
ture operator of order i, for each j = 1, . . . , n, or taking U (j)

i to be the Gauss-
Jacobi quadrature operator of order i and parameters αi, βi, for each j = 1, . . . , n.
We refer to the POD algorithm deriving from this quadrature rule as, respec-
tively, sparse Gauss-Legendre POD and sparse Gauss-Jacobi POD. We did not
used Clenshaw-Curtis rules for the following reason. If we define the Smolyak
quadrature operator taking U (j)

i to be the Clenshaw-Curtis quadrature operator
of order i, for each j = 1, . . . , n, the number of nodes not in ∂Γ is too low (see Ta-
ble 3.1). In Figure 3.2 we reported the performances of Gauss-Legendre POD and
Sparse Gauss-Legendre POD for problem (2.20), for αi = βi = 10. As we can see
the sparse Gauss-Legendre POD method performs much worse than the standard
Gauss-Legendre POD, providing a constant error for N > 1. This is due to an
unconvenient choice of nodes. Indeed, if Y = (Y 1, . . . , Y 9) is a random variable
distributed as in (2.21), for αi = βi = 10, and we denote Γ∗ = [1.5, 2.5]9 ⊆ Γ,
then P{Y ∈ Γ∗} ' 0.85. However if we use a sparse Gauss-Legendre training set
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q = 9 q = 10 q = 11 q = 12 q = 13

|Ξ| 1 19 163 853 3157

|Ξ \ ∂Γ| 1 1 1 19 37

Table 3.1: Cardinalities of the sets Ξ of nodes of Smolyak quadrature algorithms built
from Clenshaw-Curtis rules of different orders q.
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Figure 3.2: Comparison of error (2.14) using Gauss-Legendre POD and sparse Gauss-
Legendre POD methods.
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with cardinality |Ξ| = 181 (which corresponds to the Smolyak formula of order
q = 11), then only one point of Ξ lies in Γ∗. This means that the sparse Gauss-
Legendre POD (of such order q) samples nodes that are mostly irrelevant with
respect to the distribution of Y . The situation does not get better for higher
orders: for q = 12 one gets |Ξ ∩ Γ∗| = 1122 while |Ξ| = 1177 and for q = 13 one
gets |Ξ ∩ Γ∗| = 5748 while |Ξ| = 5965. Bigger values of q are computationally
impracticable. Because of the bad performance in the case αi = βi = 10 we did
not implemented Gauss-Jacobi for the case αi = βi = 75, where the distribution
is much more concentrated.
In Figure 3.3 we report the performance of Gauss-Jacobi POD and Sparse Gauss-
Jacobi POD for problem (2.20), for αi = βi = 10 and αi = βi = 75. In this
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Figure 3.3: Comparison of error (2.14) obtained using sparse Gauss-Jacobi POD and
standard Gauss-Jacobi POD algorithms for αi = βi = 10 (left) and αi = βi = 75 (right).

case the use of sparse grids actually improve the performances of POD algo-
rithms. However, the difference between the errors obtained is not so relevant.
The important difference between the two algorithms is the number of nodes used.
Indeed, in the sparse algorithm we took a training set Ξ consisting of |Ξ| = 181
nodes, versus the 512 nodes of the tensor product grid. Finally in Figure 3.4 we
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Figure 3.4: Comparison of error (2.14) obtained using sparse Gauss-Jacobi POD and
Monte-Carlo POD algorithms for αi = βi = 10. In the left the training set Ξ for Monte-
Carlo algorithm is taken with |Ξ| = 100, and with |Ξ| = 500 in the right figure.
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compared the performance of sparse Gauss-Jacobi POD and Monte-Carlo POD
algorithms in the case αi = βi = 10. In the left figure we used a training set
of |Ξ| = 100 nodes for the Monte-Carlo POD and in the right figure we used a
training set of |Ξ| = 500 nodes. In the first case the sparse Gauss-Jacobi POD
performs a little better than the Monte-Carlo POD, even if the difference is not
relevant, while in the second case both algorithms provide almost the same ap-
proximation error. Therefore, the sparse Gauss-Jacobi POD method provides the
best approximation with the least number of nodes in the training set Ξ.

3.3.1 Remarks

We implemented weighted POD algorithms based on Smolyak quadrature formu-
las. We applied them to problem (2.20). The results highlighted the importance
of a well representative, in the sense of the distribution of Y , training set Ξ.
This induces a dual effect. If the quadrature rule was already working well and
providing a ‘good’ train set in the weighted POD based on the tensor product
quadrature, the weighted POD based on Smolyak method for the same quadrature
rule provides a slightly better approximation with the use of a smaller training
set. This is very important because it makes possible to reduce the computational
effort in the offline stage. In our example, this is the case of the Gauss-Jacobi
POD method.
Instead, if the quadrature rule is not optimal, using a Smolyak algorithm we have
the opposite effect and the situation worsens. Indeed, with the Smolyak algorithm
the number of points representative of the distribution of Y drastically decreases.
This has implied, in our case, to have an error constant in the dimension N of
the reduced order space, for N = 1, . . . , 15.
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Chapter 4

Application to a stochastic
vectorial problem

In this chapter we apply the weighted reduced order methods presented in the
previous chapters to a linear elasticity problem. In the first section, we present
the problem in its deterministic version, then, in the second section, we add some
stochastic parameters and we apply weighted reduced order methods to solve it.
Therefore, the obtained results are discussed.

4.1 The linear 2d elastic block problem

Let Ω ⊆ R2 be a domain with Lipschitz boundary D = ∂Ω. Also, let D0, D1 ⊆ D
be a partition of D, such that D0 has a positive dγ-measure. We consider the
following problem: find u ∈ H1(Ω) such that

−µ∆u− (λ+ µ)[∇(∇ · u)] = f in Ω, (4.1)
u = 0 on D0,

σ(u)n = g on D1,

where µ, λ are two positive constants, f ∈ L2(Ω), g ∈ L2(D1), and

σ(u) = λ(∇ · u)I + µ(∇u +∇uT ). (4.2)

Equations (4.1) and (4.2) can be formulated in terms of the linearized strain tensor

e(v) =
1

2

(
∇v +∇vT

)
as, respectively,

−∇ · {λ tr(e(u)) I + 2µ e(u)} = f in Ω,

and
σ(v) = λ tr(e(v)) I + 2µ e(v). (4.3)
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The above problem is called the system of equations of two-dimensional, or plane,
elasticity. Assuming ‘small’ displacements u and ‘small’ strains e(u), this system
describes the equilibrium state of a homogeneous isotropic elastic body which
occupies the set Ω, u denoting the displacement of the points of Ω under the
influence of given forces f and g. The body Ω can not move along Γ0, and along
Γ1 surfaces forces of density g are given. In addition, a volumic force, of density
f , is prescribed inside the body Ω. The tensor σ(u) is called the linearized stress
tensor and the relationship (4.3) between the linearized strain tensor and the
linearized stress tensor is known in elasticity theory as Hooke’s law for isotropic
bodies. The constants λ and µ are the Lamé coefficients of the material of which
the body is composed. For further details on equation (4.1) and its physical
meaning we refer to [17].
Problem (4.1) can be reformulated in a weak version. Let us define the space

V = {v = (v1, v2) ∈ (H1(Ω))2 : vi|D0 = 0, for i = 1, 2}. (4.4)

Then if we integrate (4.1) over Ω against a function v ∈ V we get∫
Ω

(∇ · S(u)) · v dx =

∫
Ω

f · v dx

where we put S(u) = −σ(u). Now, from the fundamental Green’s formula (0.2),
it follows that∫

Ω
(∇ · S(u)) · v dx = −

∫
Ω

S(u) :∇v dx+

∫
D

S(u)n · v dγ

= −
∫

Ω
S(u) : e(v) dx−

∫
D1

g · v dγ.

Therefore, we can reformulate problem, in the following weak form: find u ∈ V
such that, for all v ∈ V,∫

Ω
σ(u) : e(v) =

∫
Ω

f · v dx+

∫
D1

g · v dγ.

Clearly, we can rewrite this problem as: find u ∈ V such that

a(u,v) = f(v) for all v ∈ V, (4.5)

where we defined the bilinear form

a(u,v) =

∫
Ω

tr (σ(v)e(v)) dx

=

∫
Ω
{λ (∇ · u) (∇ · v) + 2µ e(u) : e(v)} dx

and the linear form
f(v) =

∫
Ω

f · v dx+

∫
D1

g · v dγ.
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The space V is a normed space with the norm ‖·‖V = ‖·‖1,Ω. Moreover, applying
repeatedly the Cauchy-Schwartz inequality, and thanks to the continuity of the
trace operator, it is easy to show these bilinear and linear forms are continuous.
Instead, coercivity of the bilinear form a is not trivial, and we need some prelimi-
nary result to prove it. The following theorem provides a fundamental inequality,
which is due to Korn.

Theorem 4.1.1 (Korn’s inequality). Let Ω be a domain in Rd. Then there exists
a constant c > 0 such that

‖v‖1,Ω ≤ c
{
|v|20,Ω + |e(v)|20,Ω

}1/2 for all v ∈ H1(Ω),

and thus, on the space H1(Ω), the mapping

v 7→
{
|v|20,Ω + |e(v)|20,Ω

}1/2

is a norm, equivalent to the norm ‖·‖1,Ω.

For a proof of this theorem we refer to [34]. With Korn’s inequality, we now
prove the coercivity of the bilinear form

v 7→
∫

Ω
e(v) : e(v) dx,

whence that of the bilinear form a. In the proof of the following theorem we make
use of Theorem A.5.1 and Theorem A.5.2, which are reported in the appendix.

Theorem 4.1.2. Let V be the space defined in (4.4). Then V is a closed subspace
of H1(Ω) (i.e., V is an Hilbert space). Moreover, there exists a constant c > 0
such that

1

c
‖v‖1,Ω ≤ |e(v)|0,Ω ≤ c‖v‖1,Ω for all v ∈ V, (4.6)

i.e, on the space V, the seminorm v 7→ |e(v)|0,Ω is a norm, equivalent to the norm
‖·‖1,Ω.

Proof. We first prove that V is closed. Let (vk)k be a sequence of elements of
V such that vk → v in H1(Ω). Then vk → v in L2(D), and so there exists a
subsequence (vki)i such that v(x) = limi→∞ vki(x) for dγ-a.e. x ∈ Γ. Hence,
v = 0 dγ-a.e. on Γ0, and thus the space V is closed in H1(Ω).
As a preliminary to the proof of inequality (4.6), we now show that v 7→ |e(v)|0,Ω =
0 implies v = 0 if v ∈ V. To this end, we observe that the following identities
hold:

∂jkvi = ∂jeik(v) + ∂keij(v)− ∂iejk(v) in D ′(Ω),

for i, j, k = 1, 2. Hence we deduce that

|e(v)|0,Ω = 0 ⇒ e(v) = 0 ⇒ ∂jkvi = 0 in D ′(Ω),

for i, j, k = 1, 2. By Theorem A.5.1, we deduce that each function vi is a polyno-
mial of degree less or equal than 1 in the variables xi, i.e., vi(x) = ai+bi1x1+bi2x2.
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Since eij(v) = 0 further implies that bij = −bji, we reach the conclusion that there
are constants a1, a2 and b such that

v1(x) = a1 + bx2, v2(x) = a2 − bx1,

equivalently, there exists a ∈ R2 and b ∈ R such that

v(x) = a +

(
0 b
−b 0

)(
x1

x2

)
for all x ∈ Ω.

Hence the set {x ∈ R2 : v(x) = 0} is always of zero area, unless b = 0, a = 0,
and thus

area(D0) > 0 ⇒ {v ∈ H1(Ω) : e(v) = 0, v = 0 dγ-a.e. on D0} = {0},

as was to be proven.
Now we can prove the inequalities (4.6). The inequality |e(v)|0,Ω ≤ c‖v‖1,Ω clearly
holds for all v ∈ V (in fact, for all v ∈ H1(Ω)), for a constant c > 0 big enough (it
can be proved just applying repeatedly the Cauchy-Schwartz inequality). Instead,
if the other inequality was false, there exists a sequence (vk)k in V such that

‖vk‖1,Ω = 1 for all k ≥ 1, and lim
k→∞
‖e(vk)‖0,Ω = 0.

Since the sequence (vk)k is bounded in the space H1(Ω), there exists a subse-
quence (vki)i that converges in the space L2(Ω), as a consequence of Theorem
A.5.2. Since the subsequence (e(vki))i also converges in the spaces L2(Ω), we
conclude that the sequence (vki)i is a Cauchy sequence with respect to the norm

v 7→ {|v|20,Ω + |e(v)|20,Ω}1/2.

By Korn’s inequality, this norm is equivalent to the norm ‖·‖1,Ω on the space
H1(Ω). Hence this Cauchy sequence converges to some element v ∈ V, since the
space V is complete. Therefore, the limit v satisfies

‖e(v)‖0,Ω = lim
i→∞
‖e(vki)‖0,Ω = 0,

and hence v = 0. But this contradicts the equalities ‖vki‖1,Ω = 1 for all i ≥ 1.

From the previous result, it easily follows the coercivity of the bilinear form
a. Indeed, if v ∈ V we have that

a(v,v) =

∫
Ω
{λ(∇ · v)2 + 2µ e(v) : e(v)} dx ≥ 2µ|e(v)|20,Ω

since λ > 0, which implies coercivity of a, since µ > 0 and (4.6). We therefore
conclude that problem (4.5) is well-posed.
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4.2 Stochastic formulation and numerical results

We consider equation (4.5) with the following stochastic parametrization. Let
Ω,Ω1, . . . ,Ω4 be as in Section 2.3.2. We consider problem (4.5) where we put

a(u,v;Y 1, . . . , Y 4) =
4∑
i=1

Y i

∫
Ωi

{λ (∇ · u)(∇ · u) + 2µ e(u) : e(v)} dx,

f(v;Y 5, Y 6) =
2∑
i=1

Y i+4

∫ i/2

(i−1)/2
v2(1, x2) dx2,

for every u,v ∈ V, where V = {v ∈ H1(Ω) : v|D0 = 0}, with D0 = [0, 1] ×
{0, 1} ⊆ ∂Ω. This corresponds to consider the equation of a linear elastic block,

Figure 4.1: Geometrical set-up of problem (4.7).

split in four parts, with Lamé constants re-scaled by a parameter Y i, i = 1, . . . , 4,
on each part, and with the volumetric and surface forces, respectively,

f(x) ≡ 0, for x ∈ Ω,

g(x;Y 4, Y 5) = (Y 5
1[0,1/2](x2) + Y 6

1[1/2,1](x2))

(
1
0

)
, for x ∈ D1 = ∂Ω \D0,

acting on the block. Moreover we consider the parameters Y i, i = 1, . . . , 6, to be
random numbers such that

Y i − 1

2
∼ Beta(αi, βi), for i = 1, . . . , 4,

Y i − 2

4
∼ Beta(αi, βi), for i = 5, 6.

Thus we look for the solution of: find u = u(Y ) ∈ V such that

a(u,v;Y 1, . . . , Y 6) = f(v;Y 5, Y 6) (4.7)

for all v ∈ V.

POD method

The forms a and f are such that we can apply the weighted POD methods pre-
sented in the previous sections. Therefore we implemented POD algorithms for
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the solution of the above problem. We also implemented greedy algorithms, but
since in this case it had not a priori a lower bound αLB of the coercivity constant,
we had to use SCM to compute it. These resulted in a much longer computation
time with respect to the computation time needed to the POD algorithm. More-
over, the two algorithms showed practically the same behavior, so we decided to
report here only the results obtained with the weighted POD methods.
Firstly we analyzed the error (2.14) obtained with standard and various POD
methods for the cases . In Table 4.1 we reported the cardinalities of the training
sets Ξ for the various algorithms. We implemented standard, uniform Monte-
Carlo and Monte-Carlo PODs. In Figure 4.2 we reported the results. The situa-
tion resembles perfectly that of the precedent cases, i.e., both the weighted POD
methods work better, up to an order of approximation, than the standard one,
when the distribution of Y is not much concentrated, while, when the distribution
is highly concentrated, the uniform Monte-Carlo POD loose its accuracy, because
of a bad sampling, while the Monte-Carlo POD performs much better than the
standard one, up to two order of approximation. Then, we implemented weighted

Standard - Monte-Carlo Gauss-Legendre Sparse Gauss-Jacobi
|Ξ| 500 729 389

Table 4.1: Description of the number of points of Ξ in the weighted POD algorithms
used.
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Figure 4.2: Comparison of error (2.14) using standard, Monte-Carlo and Uniform Monte-
Carlo POD algorithms, for the cases αi = βi = 10 (left) and αi = βi = 75 (right).

POD methods based on quadrature formula. Also in this case we did not imple-
mented Clenshaw-Curtis POD, since it was providing a training set such that
|Ξ| = 728, but with only one point not on D. The next choice of training set has
a cardinality of |Ξ| = 15625, which was computationally impracticable. Follow-
ing the results of the previous chapter, we instead chose to use sparse algorithms
for Gauss-Jacobi POD, and tensor product algorithms for Gauss-Legendre POD.
The results are reported in Figure 4.3 and they still resemble the situation of the
previous chapters. The Gauss-Jacobi POD performs better than standard POD,
up to an order of accuracy in the case αi = βi = 10 and up to two order of accu-
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racy in the case αi = βi = 75. Instead, the Gauss-Legendre POD, perform little
better than the standard one, but worse than the Gauss-Jacobi POD. This is due
to a bad training set Ξ choice, which causes the algorithm to produce singular
basis, in the case αi = βi = 75, for N ≥ 10. We therefore reported in Figure 4.4
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Figure 4.3: Comparison of error (2.14) using standard, Gauss-Legendre and sparse
Gauss-Jacobi POD algorithms, for the cases αi = βi = 10 (left) and αi = βi = 75
(right).

the performances of Gauss-Jacobi and Monte-Carlo POD versus the ones of the
standard POD. Finally, for sake of completeness, we reported also the graphs for
the following errors:

(i) The distance between the mean of the solution computed with Monte-Carlo
and the mean of the solution computed with the reduced order method:

‖E[uNδ(Y )]− E[uN (Y )]‖21,Ω, (4.8)

(ii) The error for the computation of the mean of the compliant output:

|E[sNδ(Y )]− E[sN (Y )]|, (4.9)

(iii) The relative error for the computation of the mean of the compliant output:

|E[sNδ(Y )]− E[sN (Y )]|
|E[sNδ(Y )]|

. (4.10)

For such errors we implemented only the standard POD method and the two best
working weighted POD methods: Monte-Carlo and sparse Gauss-Jacobi. As we
can see in figures 4.5, 4.6 and 4.7, the good performances of the weighted PODs
versus those of the standard POD still hold.
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Figure 4.4: Comparison of error (2.14) using standard, Monte-Carlo and sparse Gauss-
Jacobi POD algorithms, for the cases αi = βi = 10 (left) and αi = βi = 75 (right).
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Figure 4.5: Comparison of error (4.8) using standard, Monte-Carlo and sparse Gauss-
Jacobi POD algorithms, for the cases αi = βi = 10 (left) and αi = βi = 75 (right).
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Figure 4.6: Comparison of error (4.9) using standard, Monte-Carlo and sparse Gauss-
Jacobi POD algorithms, for the cases αi = βi = 10 (left) and αi = βi = 75 (right).
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Figure 4.7: Comparison of error (4.10) using standard, Monte-Carlo and sparse Gauss-
Jacobi POD algorithms, for the cases αi = βi = 10 (left) and αi = βi = 75 (right).
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Chapter 5

Conclusions and perspectives

In this thesis we analyzed weighted reduced order methods for the solution of
partial differential equations depending on stochastic parameters.
Firstly, we analyzed the already existing weighted reduced basis method for the
evaluation of statistics of solutions of stochastic partial differential equations. We
considered two multivariate parametrizations of a diffusion problem, with different
random space dimension. The weighted RB method has proved to be numerically
efficient and reliable at reducing the cost of computation for the evaluation of
statistics of the solutions. Moreover the results showed the importance of choos-
ing a well representative (in the sense of the parameters distribution) training
sample set.
Secondly, our main effort has been to understand how to properly modify a differ-
ent reduced order method. We proposed and analyzed a weighted POD method.
The basic idea was to assign different weight to samples, according to the proba-
bility distribution function. Since the purpose of POD method is to minimize the
approximation error in a L2 norm over the parameter space, we decided to choose
samples and respective weights according to a quadrature formula. We used both
Monte-Carlo and tensor product quadrature rules. For low dimensional random
spaces, all the various quadrature formulas we applied (Monte-Carlo, Clenshaw-
Curtis and Gauss quadrature) showed the same results. Nevertheless, for higher
dimensional random spaces and more concentrated probability distribution, the
numerical results highlighted the importance of choosing rules which provide a
well representative set of nodes. The best performance has been obtained with
quadrature rules tailored for the probability distribution (Beta), i.e., Monte-Carlo
and Gauss-Jacobi rules. We compared these results with those of RB method.
To reduce the computational effort in the offline stage of POD, we tested Smolyak
quadrature rules. The use of Smolyak algorithms was derived from the stochas-
tic collocation method, which makes use of sparse grid Lagrange interpolation.
This method showed that is possible to actually reduce the computational effort
for weighted POD based on Gauss quadrature with orthogonal polynomials with
respect to density weight (Gauss-Jacobi in our case), maintaining the same accu-
racy.
Finally, we applied weighted POD to a linear elasticity problem, which is a vec-
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torial problem. The tests show the same performance of the scalar cases. This
could be the starting point to study the application of weighted reduced order
methods to non-linear elastic equations.
In all our tests, we considered the case of a Beta distribution. This choice was
motivated by the the fact that the Beta density is unimodal and with compact
support. However, other distributions could be considered as well. For example,
Gauss formulas for diverse distributions are available in literature and they can
be applied in these cases.
All the computations have been carried out using the RBniCS library, which is
based on FEniCS. We properly modified the library, allowing to select the desired
distribution and weighting method for RB and POD methods. Moreover we wrote
additional functions which allow to compute the nodes and weights sets of the
tensor product, for the chosen univariate rules.
Possible future investigations could concern applications to problems with more
involved stochastic dependence, as well as non-affinely parametrized problems.
The latter ones could require the use of an ad hoc weighted empirical interpola-
tion technique. Another problem, would be that of providing accurate estimation
for the error. Such estimation were obtained for linear elliptic coercive problems
in [9], but it would be useful to generalize them to different problems. Finally,
the proposed tests and methodology could also be used as the first step to study
non-linear problems.
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Appendix A

A.1 Univariate quadrature rules

In this section we present some methods of numerical integration. In particular
we will focus on integration of univariate functions f : I ⊆ R → R, where I ⊆ R
is an interval. The rules we discuss are usually referred to as quadrature rules and
have the form ∫

I
f(x) dµ(x) ' U(f)

.
=

m∑
k=1

wkf(xk),

for a sequence of positive weights {wk}mk=1 and a sequence of nodes {xk}mk=1 ⊆ I.
In the following, we assume that the measure µ is of the form dµ(x) = W (x)dx,
where W is a non-negative function such that x 7→ W (x)xk is integrable in I for
all k ∈ N; we will refer to W as the weight function. We say that the quadrature
rule U has order of polynomial exactness n ∈ N if

∫
I p(x) dµ(x) = U(p) for every

p ∈ P1
n, where P1

n denotes the space of all univariate polynomials of order at most
n. The following lemma holds (for a proof, see [45], p. 166).

Lemma A.1.1. No quadrature rule with n distinct nodes in the interior of supp(W )
can have order of polynomial exactness 2n or greater.

A classical to way to define a quadrature rule is, given a set of nodes x1, . . . , xn,
to approximate the function f , of which we want to compute the integral, with its
Lagrange interpolation in the nodes x1, . . . , xn, and then to calculate the integral
of this function. That is:∫

I
f(x) dµ(x) ' Q(f)

.
=

∫
I
I(f)(x) dµ(x) =

m∑
k=1

f(xk)

∫
I
lk(x) dµ(x), (A.1)

where I(f) =
∑m

k=1 f(xk)lk(x) is the Lagrange interpolation of the function f
and li are the Lagrange polynomials

li(x) =
∏

1≤j≤n
j 6=i

x− xj
xi − xj

.

Thus, equation (A.1) defines a quadrature formula with nodes xk and weights
wk =

∫
I lk(x) dµ(x). Clearly, such a formula has order of polynomial exactness at
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least n. In section A.1.1 we describe how to obtain a method of the form (A.1)
with maximum order of polynomial exactness, while in section A.1.2 we describe
a powerful method for integration with respect to Lebesgue measure.

A.1.1 Gauss quadrature rule

Gauss quadrature rule are such that both the nodes and the weights are chosen
so as to maximize the order of polynomial exactness of the quadrature formula.
This method is based on the choice of a system Q = {qn : n ∈ N} of orthogonal
polynomials for µ, that is, for n ∈ N, qn is a polynomial of degree exactly n such
that ∫

I
p(x)qn(x) dµ(x) = 0 for all p ∈ P1

n.

One can show that, for each n ∈ N, qn has exactly n distinct roots in I (for a
proof, see [45], p. 146). The n-points Gauss quadrature rule is defined as

QGn (f)
.
=

n∑
i=1

wif(xi),

where x1, dots, xn are the roots of qn and the weights w1, . . . , wn are given in
terms of Lagrange basis polynomial li for the nodes x1, . . . , xn by

wi
.
=

∫
I
li(x) dµ(x) =

∫
I

∏
1≤j≤n
j 6=i

x− xj
xi − xj

dµ(x),

for i = 1, . . . , n. With such a choice of nodes and weights, the n-points Gauss
quadrature rule has maximum order of polynomial exactness 2n− 1 (for a proof
of this fact, see [45], p. 170).
In section A.3 we describe the sets of orthogonal polynomials for some weight
functions W .

A.1.2 Clenshaw-Curtis quadrature rules

The Clenshaw-Curtis quadrature formula for the integration of a function f :
[−1, 1] → R with respect to Lebesgue measure on [-1,1] begins with a change of
variables: ∫ 1

−1
f(x) dx =

∫ π

0
f(cos θ) sin θ dθ.

Now suppose that f has a cosine series

f(cos θ) =
a0

2
+
∞∑
k=1

ak cos(kθ)

where the cosine series coefficients are given by

ak =
2

π

∫ π

0
f(cos θ) cos(kθ) dθ.
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If so, then ∫ π

0
f(cos θ) sin θ dθ = a0 +

∞∑
k=1

2a2k

1− (2k)2
.

The Clenshaw-Curtis formula of order n is defined as the approximation∫ 1

−1
f(x) dx ' QCn (f)

.
= a0 +

n∑
k=1

2a2k

1− (2k)2

Note that we can re-write the above formula as

QCn (f) = w · a

where we put

a =


a0

a1
...
an

 , w =


w0

w1
...
wn

 , wj =


1, j = 0,

2
1−j2 , j 6= 0 even,

0, j odd.

The coefficients ak can be approximated as

ak '
2

n

n∑
j=0
∗

f(cos θj) cos(kθj), (A.2)

where ∗ in the sum indicates that the first and the last terms are to be weighted
by a factor of 1/2, and where

θj =
jπ

n
.

Introducing some convenient shorthand notations, we can write equation (A.2) in
the form

ak '
n∑
j=0

Λkjf(tj),

where

tj = cos
πj

n
, Λkj =


1
n cos

(
jkπ
n

)
, j = 0,

2
n cos

(
jkπ
n

)
, j = 1, 2, . . . , n− 1,

1
n cos

(
jkπ
n

)
, j = n.

Therefore we can write
a ' Λf ,

where Λ = (Λkj)kj and f = (f(t0), . . . , f(tn)). It follows that the Clenshaw-Curtis
quadrature formula can be written as

QCn (f) =
n∑
k=0

ωkf(tk), (A.3)
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where we denote ωk = (wTΛ)k. Note that the nodes of the formula A.3 are the
Chebyshev nodes. Moreover it is possible to prove the following explicit formula
for the weights:

ωk =


1

n2−1
, k = 0,

2
n

[
1 +

{∑n/2−1
j=1

(
2

1−4j2

)
cos
(

2kjπ
n

)}
+ cos kπ

1−n2

]
, k = 1, . . . , n− 1

1
n2−1

, k = n.

In contrast to Gaussian quadrature, which evaluates the integrand at n+1 points
and exactly integrates polynomials up to degree 2n+ 1, Clenshaw-Curtis quadra-
ture evaluates the integrand at n+ 1 points and exactly interpolates polynomials
only up to degree n. However, in practice, the fact that Clenshaw-Curtis quadra-
ture has lower order of polynomial exactness is not of great concern, and has
accuracy comparable to Gaussian quadrature for ‘most’ integrands (which are
ipso facto not polynomials). The work [46] presented numerical evidence that the
‘typical’ error for both Gauss and Clenshaw-Curtis quadrature of an integrand in
Ck is of the order 1

(2n)kk
. Moreover the weights of the Clenshaw-Curtis rule can

be computed in O(n log n) time, while classical methods for computing weights
of Gauss formula takes O(n2).

A.2 Multivariate quadrature rules

In this section we describe two possible ways to calculate multi-dimensional inte-
grals, i.e., integrals of the form∫

Γ
f(x1, . . . , xd) dµ(x1, . . . , xd)

where Γ ⊆ Rd. The first method it is just the natural extension of univariate rules
to multi-dimensional domains. The second one is known as Monte-Carlo integra-
tion and works drawing samples from the measure against which the integrand is
to be integrated.

A.2.1 Tensor product rules

Suppose that Γ =
∏d
i=1 Ii, for some intervals Ii ⊆ R, and that dµ(x1, . . . , xd) =

W1(x1) · · ·Wd(xd) dx1 · · · dxd. Then the first, obvious, strategy to try is to treat
d-dimensional integration as a succession of d one-dimensional integrals and apply
a chosen univariate quadrature formula d times. This method can be described in
terms of tensor products of univariate quadrature operators. Let Ui : L1

µi(Ii) →
R be univariate quadrature operators, where L1

µi(Ii) is the set of the functions
integrable with respect to the measure dµi(xi) = W (xi)dxi, for i = 1, . . . , d. Then
we can define the tensor product operator U : L1

µ(Γ)→ R as

U = U1 ⊗ · · · ⊗ Ud. (A.4)
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If the operators Ui are defined as

Ui(f) =

mi∑
k=1

wki f(xki )

then we can write (A.4) explicitly as

U(f) =

m1∑
k1=1

· · ·
md∑
kd=1

wk11 · · ·w
kd
d f(xk11 , . . . , x

kd
d ).

In general, when the univariate rules use n nodes the error for an integrand in Cr
using a tensor product rule is O(n−r/d). The main drawback of tensor product
rule is that, if we use univariate rules with n nodes, then the tensor product rule
uses N = nd nodes, which very rapidly leads to an impractically large number of
integrand evaluations for even moderately large values of n and d.

A.2.2 Monte-Carlo methods

Monte-Carlo methods are, in essence, an application of the Law of Large Num-
bers (LLN). Recall that the LLN states that if Y 1, Y 2, . . . are independently and
identically distributed according to the law of a random variable Y with finite
expectation E[Y ], then the sample average

Sn =
1

n

n∑
i=1

Y i

converges a.s. to E[Y ] as n→ +∞. Suppose now that we want to compute

E[f(X)] =

∫
Γ
f(x) dµ(x).

where X is a random variable distributed according to the probability measure
µ on Γ ⊆ Rd. Assuming that one can generate independent and identically
distributed samples X1, X2, . . . from the probability measure µ, the nth Monte-
Carlo approximation is

E[f(X)] ' Sn(f)
.
=

1

n

n∑
i=1

f(Xi)

To obtain an error estimate for such Monte Carlo integrals, we simply apply
Chebyshev’s inequality to Sn(f), which has expected value E[Sn(f)] = E[f(X)]
and variance

Var[Sn(f)] =
1

n2

n∑
i=1

Var[f(X)] =
Var[f(X)]

n
,

to obtain that, for any t ≥ 0,

P {|Sn(f)− E[f(X)]| ≥ t} ≤ Var[f(X)]

nt2
.
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That is, for any ε ∈ (0, 1], with probability at least 1 − ε with respect to the n
Monte-Carlo samples, the Monte Carlo average Sn(f) lies within (Var[f(X)])1/2

of the true expected value E[f(X)]. Thus, for a fixed integrand f , the error
decays like n−1/2 regardless of the dimension of the domain of integration and
of the smoothness of f , and this is major advantage of Monte Carlo integration.
However, the slowness of the n−1/2 decay rate is a major limitation of Monte-
Carlo methods.
In the case that we wish to evaluate an expected value for some integrand f(X),
where X ∼ µ, but can only easily draw samples from some other measure ν,
one approach is to re-weight the samples of ν: if the density dµ

dν exists and is
computationally accessible, then we can estimate E[f(X)] via

E[f(X)] =

∫
Γ
f(x)

dµ

dν
(x) dµ(x) ' 1

n

n∑
i=1

f(Y i)
dµ

dν
(Y i),

where Y 1, . . . , Y n are independent and identically ν-distributed.

A.3 Some classes of orthogonal polynomials

We report here some systems of orthogonal polynomials, with their respective
weights.

Legendre polynomials

The Legendre polynomials are orthogonal on the interval (−1, 1) with respect to
the weight function w(x) = 1. They can be defined by:

Pn(x) =
(−1)n

2nn!

∂n

∂xn
[(1− x2)n], n ∈ N.

They can be described by the recurrent relation

P0(x) = 1, P1(x) = x,

Pn+1(x) =
2n+ 1

n+ 1
xPn(x)− n

n+ 1
Pn−1(x), n ≥ 1.

The following orthogonality relation holds∫ 1

−1
Pm(x)Pn(x) dx =

2

2n+ 1
δnm, n,m ∈ N.

Hermite polynomials

The Hermite polynomials are orthogonal on the interval (−∞,+∞) with respect
to the weight function w(x) = e−x

2 . They can be defined by:

Pn(x) = (−1)nex
2 ∂n

∂xn
e−x

2
, n ∈ N.
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They can be described by the recurrent relation

P0(x) = 1, P1(x) = 2x,

Pn+1(x) = 2xPn(x)− 2nPn−1(x), n ≥ 1.

The following orthogonality relation holds∫ 1

−1
Pm(x)Pn(x)e−x

2
dx = 2nn!

√
πδnm, n,m ∈ N.

Jacobi polynomials

The Jacobi polynomials are orthogonal on the interval (−1, 1) with respect to the
weight function w(x) = (1− x)α(1 + x)β , for some fixed α, β > −1. They can be
defined by:

Pn(x) =
(−1)n

2nn!
(1− x)−α(1 + x)−β

∂n

∂xn
[(1− x)n+α(1 + x)n+β], n ∈ N.

The following orthogonality relation holds∫ 1

−1
Pm(x)Pn(x) dx =

2α+β+1Γ(n+ α+ 1)Γ(n+ β + 1)

(2n+ α+ β + 1)Γ(n+ α+ β + 1)n!
δnm, n,m ∈ N,

where Γ : R+ → R is the Euler Gamma function defined as

Γ(x) =

∫ +∞

0
tx−1e−t dt, x > 0.

Chebyshev polynomials

For x ∈ [−1, 1] the Chebyshev polynomials P 1
n(x) of the first kind and the Cheby-

shev polynomials P 2
n(x) of the second can be defined by:

P 1
n(x) = cos(nθ) and P 2

n(x) =
sin((n+ 1)θ)

sin θ
, x = cos θ, n ∈ N.

They can be described by the recurrent relation

P 1
0 (x) = P 2

0 (x) = 1, P 1
1 (x) = x, P 2

1 (x) = 2x,

P in+1(x) = 2xP in(x)− P in−1(x), n ≥ 1, i = 1, 2.

The following orthogonality relations hold∫ 1

−1

1√
1− x2

P im(x)P in(x) dx =
π

2
δnm, n,m ∈ N, i = 1, 2.

75



Laguerre polynomials

The Legendre polynomials are orthogonal on the interval (0,+∞) with respect to
the weight function w(x) = e−xxα, for a fixed α > 0. They can be defined by:

Pn(x) =
1

n!
exx−α

∂n

∂xn
[e−xxn+α], n ∈ N.

The following orthogonality relation holds∫ +∞

0
e−xxαPm(x)Pn(x) dx =

Γ(n+ α+ 1)

n!
δnm, n,m ∈ N.

A.4 Proof of Theorem 3.2.1

In this section we use the same notation introduced in section 3.2. Before proving
theorem 3.2.1, we prove a preliminary result concerning difference operators in
tensor product operations.

Proposition A.4.1. Let α ∈ Nn and α ≥ 1. Then
n⊗
i=1

∆(i)
αi =

∑
γ∈{0,1}n
α−γ≥1

(−1)|γ|1
n⊗
i=1

U
(i)
αi−γi .

Proof. We apply induction on the dimension n. In the elementary case n = 1 we
just to verify the following:

∆
(1)
1 = U

(1)
1 = (−1)0U

(1)
1−0;

∆
(1)
i = U

(1)
i − U

(1)
i−1 = (−1)0U

(1)
i−0 + (−1)1U

(1)
i−1, i ≥ 2

Now let us suppose that the claim holds for some n ≥ 1. Let α ∈ Nn+1 and α ≥ 1.
If αd+1 6= 1, then we get by direct computation

∑
γ∈{0,1}n+1

α−γ≥1

(−1)|γ|1
n+1⊗
i=1

U
(i)
αi−γi =

∑
γ∈{0,1}n
α−γ≥1

(−1)|γ|1+0

(
n⊗
i=1

U
(i)
αi−γi

)
⊗ U (n+1)

αn+1−0

+
∑

γ∈{0,1}n
α−γ≥1

(−1)|γ|1+1

(
n⊗
i=1

U
(i)
αi−γi

)
⊗ U (n+1)

αn+1−1

=
∑

γ∈{0,1}n
α−γ≥1

(−1)|γ|1

(
n⊗
i=1

U
(i)
αi−γi

)
⊗∆(n+1)

αn+1
.

The induction hypotesis implies therefore that

∑
γ∈{0,1}n+1

α−γ≥1

(−1)|γ|1
n+1⊗
i=1

U
(i)
αi−γi =

(
n⊗
i=1

∆(i)
αi

)
⊗∆

α
(n+1)
n+1

=
n+1⊗
i=1

∆(i)
αi .
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If αn+1 = 1, then we substitute U (n+1)
αn+1−1 = 0 in the computation above and we

arrive at the same conclusion. This proves the claim.

We can now prove theorem 3.2.1.

Theorem 3.2.1. The operator Qnq defining the Smolyak quadrature rule can be
written as

Qnq =
∑

max{n,q−n+1}≤|α|1≤k
α∈Nn, α≥1

(−1)q−|α|1
(

d− 1

k − |α|1

) n⊗
i=1

U (i)
αi .

Proof. Thanks to theorem we have the following representation of operator (3.8):

Qnq =
∑
|α|1≤q
α∈Nn

∑
γ∈{0,1}n
α−γ≥1

(−1)|γ|1
n⊗
i=1

U
(i)
αi−γi .

Changing the order of the summation we get:

Qnq =
∑

γ∈{0,1}n

∑
|α|1≤q

α∈Nn, α−γ≥1

(−1)|γ|1
n⊗
i=1

U
(i)
αi−γi .

We can now replace the summation variable α by β = α− γ with the conditions
β ≥ 1 and |β|1 ≤ k−|γ|1. Then we can change the order of summation obtaining

Qnq =
∑
|β|1≤q

β∈Nn, β≥1

∑
γ∈{0,1}n
|γ|1≤q−|β|1

(−1)|γ|1
n⊗
i=1

U
(i)
βi
. (A.5)

Moreover it holds that

∑
γ∈{0,1}n
|γ|1≤q−|β|1

(−1)|γ|1 =

min{n,q−|β|1}∑
i=0

(−1)i
∑

γ∈{0,1}n
|γ|1=i

1

=

min{n,q−|β|1}∑
i=0

(−1)i ·
∣∣∣{γ ∈ {0, 1}n : |γ|1 = i}

∣∣∣
=

min{n,q−|β|1}∑
i=0

(−1)i
(
n

i

)
.

The term above vanishes whenever n ≤ q − |β|1, so we can discard these multi-
indixes. Recalling that β ≥ 1 we can equivalently assume |β|1 ≥ max{n, q−n+1}
in (A.5). Since it holds that (see [49], formula 0.151.4)

k∑
i=0

(−1)i
(
d

k

)
= (−1)k

(
d− 1

k

)
, for k ≥ 0 and d > k,
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we finally get ∑
γ∈{0,1}n
|γ|1≤q−|β|1

(−1)|γ|1 = (−1)q−|β|1
(
n− 1

q − |β|1

)
,

which concludes the proof.

A.5 Two analysis results

We report in this section two results used in Chapter 4. The first one is a result
of distribution theory. For a proof we remand to [44], p. 60.

Theorem A.5.1. Let Ω be an open connected subset of Rd. If m ≥ 1 is an integer
and T ∈ D ′(Ω) is a distribution such that

∂αT = 0, ∀ |α|1 = m

then T is a polynomial of degree ≤ m− 1

The second one is a classical results about compact imbeddings of Sobolev
spaces. For a proof we remand to [7], p. 285.

Theorem A.5.2 (Rellich-Kondrašov imbedding theorem). Let Ω be a domain in
Rd and let p ∈ [1,+∞). Then the following compact imbeddings hold:

W 1,p(Ω) ↪→ Lq(Ω) ∀ q ∈ [1, p∗), where
1

p∗
=

1

p
− 1

d
, if p < d,

W 1,p(Ω) ↪→ Lq(Ω) ∀ q ∈ [p,+∞), if p = d,

W 1,p(Ω) ↪→ C0(Ω) if p > d.

As a special case of the Rellich-Kondrašov theorem, note that the compact
imbedding

H1(Ω) ↪→ L2(Ω)

always holds, independently of the dimension d.
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