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1) Introduction and motivations
Nowadays the scientific community is facing the demand to simulate fluid dynamics prob-
lems with high values of the Reynolds number. High Reynolds number flows can be
now simulated accurately using either Stabilized Finite Element or Finite Volume with
turbulence modelling. However, in several situations, there is need to perform simulations
in a multi-query contest (e.g. optimization, uncertainty quantification) or an extremely
reduced computational time is required (real-time control). Therefore, in such situations,
the resolution of the governing PDEs using standard discretization techniques may be-
come unaffordable.
In this work we present two methodologies to tackle the increase of Reynolds number in
Reduced Order Methods (ROMs) which are based on two different full order discretization
techniques. First stabilized Finite Element method [1, 2] or a Variational Multi-Scale
(VMS) approach [3], suited to deal with some turbulent patterns, are used for small to
moderate Reynolds number. Then Finite Volume method is used for higher Reynolds
number.

2) Projection based ROMs
For the case of moderate values of Reynolds number we consider the unsteady incom-
pressible Navier-Stokes equations: find u(x, t) and p(x, t), such that

∂u

∂t
+ (u · ∇)u− ν∆u +∇p = 0 in Ω× (0, T ) ,

∇ · u = 0 in Ω× (0, T )

u = 0 on ∂Ω× (0, T )

u|t=0 = u0 in Ω

(1)

where (0, T ) with T > 0 is the time interval of interest, Ω is bounded domain in R2,
u0 ∈ L2(Ω) and ν is the viscosity of fluid. We seek the unknown velocity in the Sobolev
space V = H1

0 (Ω) =
{
v ∈ H1(Ω)|v = 0 on ∂Ω

}
, as well as the pressure in Q = L2

0(Ω) ={
q ∈ L2(Ω)|

∫
Ω
qdΩ

}
.

The main assumption of ROM, regardless of the full order discretization technique, is that
the system’s dynamics and its response into the parameter space is governed by a reduced
number of dominant modes. Therefore we can decompose the velocity and pressure into
linear combination of global basis functions ϕi(x) and χi(x) (which do not depend on
t or the parameter µ, which can be either a geometrical or physical quantity) multiplied
by unknown coefficients ai(t, µ) and bi(t, µ), for velocity and pressure respectively, as
follows:

u(x, t;µ) ≈
Nu∑
i=1

ai(t, µ)ϕi(x), p(x, t;µ) ≈
Np∑
i=1

bi(t, µ)χi(x).

The reduced basis spaces Vrb = span {ϕi}Nui=1 and Qrb = span {χi}
Np
i=1 can be obtained

either by Reduced Basis method with a greedy approach or using Proper Orthogonal
Decomposition (POD) [4].

3) Stabilized Finite Element RB reduced order model
For low values of Reynolds number, we write the discrete formulation of (1) introducing
the stabilization terms as:

Find uh(., t;µ) ∈ Vh, ph(., t;µ) ∈ Qh;

(u̇h,vh) + a(uh,vh;µ) + c(uh,uh,vh;µ) + b(vh, ph;µ) = ξh(vh;µ) ∀vh ∈ Vh

b(uh, qh;µ) = φh(qh;µ) ∀ qh ∈ Qh

(2)

where ξh(vh;µ) and φh(qh;µ) are the stabilization terms defined as:
ξh(vh;µ) := δ

∑
K h2

K

∫
K

(u̇h − ν∆uh + uh · ∇uh +∇ph,−νγ∆vh + uh · ∇vh) (3)
φh(qh;µ) := δ

∑
K h2

K

∫
K

(u̇h − ν∆uh + uh · ∇uh +∇ph,∇qh)

∀ vh ∈ Vh and qh ∈ Qh. We use equal order Pk/Pk FE spaces. For γ = 0, 1,−1, the
stabilization (3) is respectively known as Streamline Upwind Petrov Galerkin (SUPG),
Galerkin least-squares (GLS), Douglas-Wang (DW). We then project (2) onto the reduced
basis generated by a greedy method, either with or without supremizer enrichment.

4) Finite Volume POD-Galerkin reduced order model
For higher values of the Reynolds number, the problem is modelled through URANS
equations with a k − ω turbulence modelling:

∂u

∂t
+ (u · ∇)u = ∇ ·

[
−pI + (ν + νt)

(
∇u + (∇u)

T
)
− 2

3kI
]

∇ · u = 0

νt = f(k, ω) in Ω× (0, T )

Transport-Diffusion equation for k
Transport-Diffusion equation for ω

The previous decomposition assumption is extended to the turbulent viscosity field νt:

νt(x, t;µ) ≈ νt,r(x, t;µ) =

Nνt∑
i=1

di(t, µ)ηi(x)

Afterwards, the momentum equation is projected onto the spatial bases of velocity, as
well as the continuity equations onto the spatial bases for pressure. In contrast, k − ω
transport-diffusion equations are not used in the projection procedure. The coefficients
d = [di]

Nνt
i=1 are computed using a radial basis interpolation. The resulting system is thus:{

(B + BT )a− aTCa + dT (CT1 + CT2)a−Kb = ȧ

Pa = 0
(4)

where a and b represent the unknown vectors of coefficients. In order to avoid pres-
sure instabilities given by spurious pressure modes we employ a supremizer stabilization
approach [5].

5) Numerical Results

FE Based ROM Results

Steady Navier-Stokes problem: SUPG-
Stabilized RB solution for Velocity (left)
and Pressure (right): Re=120 (online), L=2
(geometrical parameter), T=4885s (Offline),
T=242s (Online), FE dim N=44091, RB
dim N=18 (with supremizer), N=12 (no
supremizer).

Steady Navier-Stokes problem: Er-
ror comparison for velocity (left) and
pressure (right). Parameters range
Re ∈ [100, 200],L ∈ [0.5, 3].

Unsteady Navier-Stokes problem: L2

error in time for velocity (left) and pressure
(right). Parameters range Re ∈ [100, 200],
Online: Re = 120, RB dimension N = 20.

SUPG stabilization method for RB sta-
bility at low & moderate Reynolds num-
ber is applied to lid driven cavity flow.
We summarize the main outcomes as fol-
lows:

• we need to stabilize both offline and
online stages for P1/P1 or P2/P2,

• no need to add supremizers to ve-
locity space,

• offline-only stabilization is not con-
sistent.

FV Based ROM Results

The presented results are for a backstep benchmark in a steady state setting.
The parameters in this case are the magnitude of the velocity at the inlet and its
inclination with respect to the inlet. In the offline stage we sampled randomly the
parameters using latin hypercube sampling approach. The Re ∈ [3816,16866] with
a mean value equal to 10000. The ROM is constructed with 7 modes for velocity,
pressure and supremizer and with 5 modes for the turbulent viscosity field. The
fields computed with the ROM of (4) are compared with those obtained without
considering the eddy viscosity’s contribution at the reduced order level.

ROM Velocity (without viscosity) vs ROM Velocity vs HF Velocity

ROM Pressure (without viscosity) vs ROM Pressure vs HF
Pressure at the inlet

Rel. L2 error for velocity
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