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Introduction and Motivation
Parametrized inverse problems, such as optimal flow control problems (OFCP(µµµ)), data assimilation, and multi-physics applications, play an
ubiquitous role in several fields of application, yet are usually very demanding from a computational standpoint. POD–Galerkin reduction allow us to
solve them in a low-dimensional framework and in a fast and reliable way. Following [1, 2], we present some fluid-structure interaction problems in view
further applications in multi-physics in cardiovascular modeling [4], employing a novel preprocessing proposed in [3]. Following a similar methodology,
we also propose two applications to optimal flow control problems, for cardiovascular modeling and environmental marine applications [5], respectively.

Fluid-structure interaction problems
Problem: simulate the displacement in the time interval [0, T ] of a thin
structure Ωst at the top of a 2D rectangle filled with a fluid Ωft .
Model:

ρf (∂tu + (u− ∂td) · ∇u)− divσf (u, p) = bf , in Ωft × [0, T ]

divu = 0, in Ωft × [0, T ]

ρs∂tu− divP(d, p) = bs, in Ωs

∂td− u = 0, in Ωs,

∂td− divσe(d) = 0, in Ωft × [0, T ].

Discretization: we adopt an ALE formulation, which results in a non-
linear system of equations to be solved with monolithic approach.
Solution manifold preprocessing [3]: once we have truth solutions
(u, p,d) we define a map F : Ω → Ω, smooth and invertible, so that the
manifold of the preprocessed snapshots, obtained composing the original
snapshots with the map F , features a lower Kolmogorov n-width.

Preliminary results for FSI (with Y. Maday2)

Figure: decay of the first singular values for the original and for the preprocessed
displacements.

Figure: bases functions from 1 to 4 for original (first row) and for preprocessed dis-
placements (second row): bases after preprocessing are more suitable to capture the
transport effect by a reduction of the “frequency” of oscillations.

Optimal flow control for cardiovascular haemodynamics (with P. Triverio, L. Jimenez-Juan3)
Problem: Find optimal pair (y (µ) , u (µ)) of state
and control such that min(y,u) J (y (µ) , u (µ)) is sat-
isfied subject to F (y (µ) , u (µ) ;µ) = 0.
Solution: Numerical approximation of solution to
coupled optimality system via one-shot approach:

∇J (y (µ) , u (µ)) +∇F (y (µ) , u (µ))λ = 0,
F (y (µ) , u (µ)) = 0

In cardiovascular haemodynamics: State-
constraints F (y, u;µ) are Navier-Stokes equations.
Cost-functional J (y, u;µ) represents cardiovascular
quantities of interest e.g. blood flow velocity, pressure
drop, wall shear stress or viscous energy dissipation.

Test case: Viscous Energy Dissipation and Pressure-
Tracking with Distributed Control
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−ν∆v + v (∇ · v) +∇p = u in Ω

∇ · v = 0 in Ω

v = g (µin) on Γin

v = 0 on ΓD

−pn+ ν∇v · n = 0 on ΓN

here, v, p and u denote velocity, pressure and control
respectively and ν is the viscosity. Moreover, Ω is sim-
plified domain for arterial bifurcation.

Figure: Velocity

Figure: Pressure

J reduction: ∼ O(103)

Work in progress:
Reduced order optimal
flow control on real-
patient geometries.

Geometry for triple
coronary artery bypass
grafts

Reduced OFCP(µµµ) in environmental sciences
1) Loss of pollutant in the Gulf of Trieste, Italy:
concentration of the pollutant y under a safeguard yd. Parameter
µµµ ∈ [0.5, 1]× [−1, 1]× [−1, 1] describes regional winds action.
→ Model: min

(y,u)∈Y×U
1
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2) Nonlinear solution tracking North Atlantic Ocean:
make the solution (ψ) similar to a current profile based on experimen-
tal data (Gulf Stream dynamics). Parameter µµµ ∈ [0.073, 1] × [10−4, 1] ×
[10−4, 0.0452] describing the Ocean dynamic.
→ Model: min

(ψ,u)∈Y×U
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∂q
∂x = f − µ1∆ψ + µ2∆2ψ.

Results environmental app.(with R. Mosetti4)
1) Gulf pollutant control
Left plot: Finite Element uncon-
trolled concentration.
Center plot: Reduced Order con-
trolled concentration.
Right plot: Convergence error vs
N (∼ 10−8).
Dimension Comparison FE vs
RB: 5939 vs 201.

2) Nonlinear Ocean dynamic
Left plot: Finite Element stream-
function profile.
Center plot: Reduced Order
stream-function profile.
Right plot: Convergence error vs
N (∼ 10−7).
Dimension Comparison FE vs
RB: 6490 vs 225.
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