

Reduced Order Methods Applied to Nonlinear Time Dependent Optimal Flow Control Problems in Environmental Marine Sciences and Engineering

> <u>Maria Strazzullo</u>¹, Francesco Ballarin¹, Renzo Mosetti², Gianluigi Rozza¹

¹SISSA mathLab, Trieste, Italy ²OGS, National Institute of Oceanography and Experimental Geophysics, Trieste, Italy

Motivations in Environmental Sciences

Problems dealing with environmental marine sciences must be run many times for different physical and/or geometrical parametric configurations $(\mu \in \mathcal{D} \subset \mathbb{R}^p)$ in order to describe several natural phenomena. Moreover, they are usually connect to very time consuming activities such as data assimilation and inverse problems governed by parametrized partial differential equations (PDE(μ)s).

Reduced Order Modelling \rightarrow **fast** and **reliable** tool needed in order to **manage rapidly** and **efficiently** different (potentially dangerous) **situations** thanks to numerical simulations.

Problem Formulation: Parametrized Optimal Flow Control Problems (OFCP(μ)s)

Given $\boldsymbol{\mu} \in \mathcal{D}$, a space-time domain $Q = \Omega \times [0, T]$, find the *state-control* variable $x := (y, u) \in X := Y \times U$ (suitable Hilbert spaces) which solves the PDE($\boldsymbol{\mu}$) $\mathcal{E}(y_t, y, u; \boldsymbol{\mu}) = 0$ and minimizes: $\mathcal{I} = (y, u) = \frac{1}{2} ||_{\mathcal{I}} ||_{\mathcal{I}}$

- $\mathcal{J}(y, u; \boldsymbol{\mu}) = \frac{1}{2} \left\| y(\boldsymbol{\mu}) y_d(\boldsymbol{\mu}) \right\|_{Y(\Omega_{OBS})}^2 + \frac{\alpha}{2} \left\| u(\boldsymbol{\mu}) \right\|_{U(\Omega_u)}^2$
- $\Omega_{OBS} \subseteq \Omega =$ observation domain, $\Omega_u \subseteq \overline{\Omega} =$ control domain,
- $y_d(\boldsymbol{\mu}) \in Y(\Omega_{OBS}) = \text{data}, \ \alpha \in (0, 1] = \text{penalization parameter}.$

Solved with Lagrangian Approach ($w \in Y = adjoint variable$).

From Truth Problem to Reduced Order Model (ROM)

Truth Problem [1,2]: Spatial Discretization (dim \mathcal{N}_{Ω}) + Time Discretization (dim = N_t) \rightarrow Unfeasible for many-query context and real-time context. Goal: to achieve the accuracy of a high fidelity approximation but at greatly reduced cost of a low order model

Idea:
$$x(\boldsymbol{\mu}) \xrightarrow{\text{truth problem}(\dim=\mathcal{N})} x^{\mathcal{N}}(\boldsymbol{\mu}) \xrightarrow{\text{ROM }(\dim N \ll \mathcal{N})} x_N(\boldsymbol{\mu}) \xrightarrow{\|x(\boldsymbol{\mu}) - x^{\mathcal{N}}(\boldsymbol{\mu})\| \to 0} x_N(\boldsymbol{\mu})$$

Algorithm: Apply Proper Orthogonal Decomposition (**POD**) to the solution to the solution $\delta^{\mathcal{N}} = y^{\mathcal{N}}, u^{\mathcal{N}}, w^{\mathcal{N}}$ which contains information about **all the time instances** $[4] \to POD(\delta^{\mathcal{N}}) = POD([\delta_1^{\mathcal{N}_\Omega}, \dots, \delta_{N_t}^{\mathcal{N}_\Omega}]) \to$ **Galerkin Projection**.

Steady Case: $Q = \Omega$, $y_t = 0$ and $N_t = 1 \rightarrow$ Standard POD applied to the different variables.

Pollutant Control in the Gulf of Trieste [3]	Nonlinear Oceanographic Solution Tracking [3]
Motivations : <i>monitor, manage</i> and predict dangerous marine phenomena in a <i>fast way</i> in order to set up an environmental plan of action.	Motivations : unify <i>standard model</i> and <i>data</i> giving more reliable simulations <i>as quickly as possible</i> .
	Aim: make the state the most similar to a given data y_d (Gulf Stream Dynamic). Given $\boldsymbol{\mu} \in [10^{-4}, 1] \times [10^{-4}, 1] \times [10^{-4}, 0.045^2]$., find $(y(\boldsymbol{\mu}), u(\boldsymbol{\mu})) \in H_0^1(\Omega) \times L^2(\Omega)$ which
(1) and solves $ \left(\mu_1 \Delta y + [\mu_2, \mu_3] \cdot \nabla y = u \chi_{\Omega_u} \text{in } \Omega \right) $	minimize (1) and solves $\begin{pmatrix} \partial y \\ \partial y \end{pmatrix} = x \text{in } O$

Time Dependent Problem: River Bed [5]

Aim: recover $y_d = [\mu_3(8(y^3 - y^2 - y + 1) + 2(-y^3 - y^2 + y + 1)), 0]$ in Ω_{OBS} with a Neumann control. Given $\boldsymbol{\mu} \in [1/20, 1/6] \times [1, 2] \times [1, 3]$, find $(y(\boldsymbol{\mu}), p(\boldsymbol{\mu}), u(\boldsymbol{\mu})) \in L^2(0, T; [H^1_{\Gamma_D}(\Omega)]^2) \times L^2(0, T; L^2(\Omega)) \times L^2(0, T; [L^2(\Omega)]^2)$ which solves

$$\min_{(y,p,u)\in X} \frac{1}{2} \int_0^T \int_{\Gamma_{OBS}} (y - y_d(\mu_3))^2 ds dt + \frac{\alpha_1}{2} \int_0^T \int_{\Gamma_C} u^2 ds dt + \frac{\alpha_2}{2} \int_0^T \int_{\Gamma_C} |\nabla u \cdot t|^2 ds dt$$

 $\begin{aligned} y_t - \mu_1 \Delta y + \nabla p &= 0 & \text{in } \Omega(\mu_2) \times [0, 1], \\ \operatorname{div}(y) &= 0 & \text{in } \Omega(\mu_2) \times [0, 1], \end{aligned}$

on $\Gamma_{IN}(\mu_2) \times [0,1],$ on $\Gamma_D(\mu_2) \times [0,1],$ on $\Gamma_C(\mu_2) \times [0,1],$ in $\Omega(\mu_2) \times \{0\},$

References

- [1] M. Stoll and A. J. Wathen, "All-at-once solution of time-dependent PDE-constrained optimization problems", Technical Report, 2010.
- [2] M. Stoll and A. J. Wathen, "All-at-once solution of time-dependent Stokes control", J. Comput. Phys., 232(1), pp. 498 515, 2013.
- [3] M. Strazzullo, F. Ballarin, R. Mosetti, and G. Rozza, "Model Reduction for Parametrized Optimal Control Problems in Environmental Marine Sciences and Engineering", SIAM Journal on Scientific Computing, Vol. 40, No. 4, pp. B1055–B1079.
- [4] M. Strazzullo, F. Ballarin, and G. Rozza, "POD-Galerkin based Model Order Reduction for Parametrized Time Dependent Linear Quadratic Optimal Control Problems", In preparation.
- [5] Z. Zainib, M. Strazzullo, F. Ballarin and G. Rozza, "Reduced order methods for parametrized nonlinear and time dependent optimal flow control problems: towards applications in biomedical and environmental sciences", In preparation.

Acknowledgements

We acknowledge the support by European Union Funding for Research and Innovation – Horizon 2020 Program – in the framework of European Research Council Executive Agency: Consolidator Grant H2020 ERC CoG 2015 AROMA-CFD project 681447 "Advanced Reduced Order Methods with Applications in Computational Fluid Dynamics". We also acknowledge the INDAM-GNCS project "Advanced intrusive and non-intrusive model order reduction techniques and applications".