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Motivations in Environmental Sciences
Problems dealing with environmental marine sciences must be run many times for different physical and/or geometrical parametric configurations
(µµµ ∈ D ⊂ Rp) in order to describe several natural phenomena. Moreover, they are usually connect to very time consuming activities such as data
assimilation and inverse problems governed by parametrized partial differential equations (PDE(µ)s).

Reduced Order Modelling → fast and reliable tool needed in order to manage rapidly and efficiently different (potentially dangerous) situations
thanks to numerical simulations.

Problem Formulation: Parametrized Optimal Flow Control Problems (OFCP(µµµ)s)
Given µµµ ∈ D, a space-time domain Q = Ω× [0, T ], find the state-control variable
x := (y, u) ∈ X := Y × U (suitable Hilbert spaces) which solves the PDE(µµµ) E(yt, y, u;µµµ) = 0
and minimizes: J (y, u;µµµ) =

1

2
‖y(µµµ)− yd(µµµ)‖2Y (ΩOBS) +

α

2
‖u(µµµ)‖2U(Ωu) (1)

• ΩOBS ⊆ Ω = observation domain, Ωu ⊆ Ω̄ = control domain,
• yd(µµµ) ∈ Y (ΩOBS) = data, α ∈ (0, 1] = penalization parameter.

Solved with Lagrangian Approach (w ∈ Y = adjoint variable).

Data yd(µµµ)
Control u(µµµ)

Minimized
J (y, u, yd;µµµ)

s.t. E(yt, y, u;µµµ) = 0

Controlled
y(u(µµµ))

Change µµµ ∈ D

From Truth Problem to Reduced Order Model (ROM)
Truth Problem [1,2]: Spatial Discretization (dim NΩ) + Time Discretization (dim = Nt) → Unfeasible for many-query context and real-time context.

Goal: to achieve the accuracy of a high fidelity approximation but at greatly reduced cost of a low order model

Idea: x(µ)
truth problem(dim=N )−−−−−−−−−−−−−−−→ xN (µ)

ROM (dimN�N )−−−−−−−−−−−−→
‖x(µ)−xN (µ)‖→0

xN (µ)
Algorithm: Apply Proper Orthogonal Decomposition (POD) to the solution to the solution
δN = yN , uN , wN which contains information about all the time instances [4] → POD(δN ) =
POD([δNΩ

1 , . . . , δNΩ

Nt
])→ Galerkin Projection.

Steady Case: Q = Ω, yt = 0 and Nt = 1→ Standard POD applied to the different variables.

Pollutant Control in the Gulf of Trieste [3]
Motivations: monitor, manage and predict dangerous marine phenomena in a fast way
in order to set up an environmental plan of action.
Aim: pollutant loss y ∈ H1

ΓD
(Ω) under a safeguard threshold yd.

Given µ ∈ [0.5, 1]×[−1, 1]×[−1, 1], find (y(µ), u(µ)) ∈ H1
ΓD

(Ω)×L2(Ωu) which minimizes
(1) and solves 

µ1∆y + [µ2, µ3] · ∇y = uχΩu in Ω
∂y

∂n
= 0 on ΓN

y = 0 on ΓD

Domain ΓD = coasts, ΓN = Adriatic Sea, ΩOBS = Natural area of Miramare;
Ωu = Source of pollutant, Nmax: 100, α: 10−5,
µ1: diffusivity, µ2,µ3: advection (wind action).

Results and Relative Errors ∼ 10−15

N Speedup
5 364
10 350

15 317

Nonlinear Oceanographic Solution Tracking [3]
Motivations: unify standard model and data giving more reliable simulations as quickly
as possible.
Aim: make the state the most similar to a given data yd (Gulf Stream Dynamic).
Given µ ∈ [10−4, 1]× [10−4, 1]× [10−4, 0.0452]., find (y(µ), u(µ)) ∈ H1

0 (Ω)×L2(Ω) which
minimize (1) and solves

∂y

∂x0
+ µ1∆y − µ2∆2y + µ3

( ∂y
∂x0

∂∆y

∂x1
− ∂∆y

∂x0

∂y

∂x1

)
= u in Ω

y = 0, on ∂Ω,

∆y = 0, on ∂Ω.

Domain
Streamline Formulation: y = streamfunction, ∆y = −vorticity.
The velocity solution of Navier-Stokes Equation + Earth rotation effect
vvv is (v1, v2) = (yx1

,−yx0
).

µ1,µ2: diffusivity, µ3: advection, Nmax: 100, α: 10−5.

Results and Relative Errors ∼ 10−9

N Speedup
5 8
15 7

20 6

Time Dependent Problem: River Bed [5]
Aim: recover yd = [µ3(8(y3 − y2 − y + 1) + 2(−y3 − y2 + y + 1)), 0] in ΩOBS with a Neumann control. Given
µ ∈ [1/20, 1/6]×[1, 2]×[1, 3], find (y(µ), p(µ), u(µ)) ∈ L2(0, T ; [H1

ΓD
(Ω)]2)×L2(0, T ;L2(Ω))×L2(0, T ; [L2(Ω)]2)

which solves

min
(y,p,u)∈X

1

2

∫ T

0

∫
ΓOBS

(y − yd(µ3))2dsdt+
α1

2

∫ T

0

∫
ΓC

u2dsdt+
α2

2

∫ T

0

∫
ΓC

|∇u · t|2dsdt

s.t.



yt − µ1∆y +∇p = 0 in Ω(µ2)× [0, 1],

div(y) = 0 in Ω(µ2)× [0, 1],

y = g on ΓIN (µ2)× [0, 1],

y = 0 on ΓD(µ2)× [0, 1],

−pn+∇y · n = u on ΓC(µ2)× [0, 1],

y(0) = y0 in Ω(µ2)× {0},

Domain Errors ∼ 10−4

N Speedup
20 47579
25 34335
30 22477
35 17420

Results: velocity and pressure

µ1: diffusivity, µ2: length of Ω2 Nmax: 70, Nt: 20, α1, α2: 10−3, 10−4
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