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Introduction
When dealing with Parametrized Partial Di�erential Equations the computational cost required by a large number of solutions for each new value of the involved parameters
may be una�ordably large. To mitigate that, di�erent methods have been studied in order to �nd solutions in a more e�cient way ([1]).
In particular, in our work we exploit a POD approach to obtain the basis functions used to project the original problem and to reconstruct an approximate solution manifold.
Everything is developed in a Finite Volume framework ([2]) where we try to manage segregated approaches also at reduced level.

1) Segregated approaches, FOM level

Incompressible Navier-Stokes equations:
∂u

∂t
+ (u · ∇)u+

∇P
ρ

= ν∇2u

∇ · (ρu) = 0

Since the equations are coupled in principle it is not possible to solve them separately:
they should be treated as a system and iterative block solvers are needed for non-linear
systems. Unluckily these methods require the storage of big matrices at each step that
makes them very une�cient for big meshes.
A good compromise between e�ciency and quality of the solution is represented by the
segregated methods employed in SIMPLE and PISO strategies solvers: momentum
and continuity equations are solved iteratively and one at a time exchanging information
at the end of each iteration.

2) SIMPLE algorithm

We based our work on the SIMPLE algorithm, one of the most spreaded segregated
approaches:

1. guess beginning pressure and velocity �elds P ∗ and u∗ respectively and set P ′ = P ∗

and u′ = u∗;

2. solve momentum predictor step: u′′ = A−1H(u′)−∇P ′;

3. solve pressure correction step: ∇2P ′′ = F(u′′);

4. if convergence check is not satis�ed put u′ = u′′ and P ′ = P ′′ and repeat from point
2 on, otherwise stop;

where A is the diagonal part of the velocity operator in the momentum equation while H
is its extra diagonal counterpart. The pressure correction step is performed by solving the
continuity equation in a modi�ed form: a pressure equation is obtained by substituting
momentum equation into continuity one.

3) Segregated approaches, ROM level

In order to be as coherent as possible with respect to the FOM model, we decided to
simulate the SIMPLE algorithm also at the ROM level so that it is possible to project
the same equations used to obtain the snapshots:

1. guess beginning discretized pressure and velocity �elds P ∗r and u∗r respectively, set
P ′r = P ∗r and u′r = u∗r , reconstruct the full velocity and pressure �elds;

2. project and solve the momentum equation;

3. reconstruct the full velocity �eld;

4. project and solve the pressure equation;

5. reconstruct the full pressure �eld;

6. update �uxes to have a divergence-free velocity solution;

7. if convergence check is not satis�ed repeat from point 2 on, otherwise stop.

4) Applications: parametrized viscosity problem

We have applyed the ROM SIMPLE algorithm to an incompressible Navier-Stokes prob-
lem where the geometry is represented by a back step and the parameter we have choosen
is the viscosity µ ∈ [0.01, 1]. 50 snapshots have been solved to apply the POD.

In the left �gure we can see the full order velocity solution for µ = 0.024 while in the right
one its reduced counterpart is represented for the same value of the parameter. It has
been obtained by projecting the problem with only 10 basis functions for both velocity
and pressure �elds.

In the plot on the left it is reported a com-
parison between the L2 norm of the error for
each value of the parameter in the training
set for the old block ROM solver (red) and
for the SIMPLE ROM solver (blue).

5) Applications: parametrized geometry problem

One of the in-progress works in the group is relative to geometrical parametrization

and hyper-reduction ([3]) In this case the angle of attack of an airfoil has been
parametrized. We �xed α ∈ [−5, 5] and solved 100 snapshots to project the problem.
To compare the di�erent snaphots it has been necessary to move the mesh in the right
way: starting from a reference one, the modi�ed one is obtained by the use of radial basis
functions interpolation. In this way it is possible to compare the solutions: all the meshes
have the same number of cells.

As we can see from the �gures before, the FOM (left) and ROM (right) velocity solutions
are pretty much the same.

Also FOM (left) and ROM (right) pressure solutions are comparable.

6) Applications: compressible �ows

Future work in the group will be devoted to compressible �ows. In this case continuum
Navier-Stokes equations are needed:
∂ρ
∂t +∇ · (ρu) = 0
∂ρu
∂t +∇ · (ρuu)−∇ · [µ(∇u+ (∇u)T )] = ρg−∇

(
P + 2

3µ∇ · u
)

∂ρe
∂t +∇ · (ρeuu)−∇ · (k∇T ) = ρg · u−∇ ·

(
2
3µ(∇ · u)u

)
+∇ · [µ(∇u+ (∇u)T ) · u]

In this last �gure it is shown the velocity
�eld obtained by a compressible FOM

SIMPLE algorithm where state and energy
equations have been added with respect to
the incompressible model. The work for the
reduced part is still in progress.
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