

Reduction of the Kolmogorov *n*-width for transport dominated fluid-structure interaction problem

<u>M. Nonino¹</u>, F. Ballarin¹, G. Rozza¹, Y. Maday²

¹SISSA mathLab, Trieste, Italy ²UPMC and LJLL, Paris, France

Introduction and motivation

Given a problem of interest, let \mathcal{M} be the solution manifold. Assumption of the reduced basis method: \mathcal{M} can be well approximated by a sequence of finite dimensional spaces, meaning the Kolmogorov n-width D_n of \mathcal{M} decays fast as a function of n. For convection dominated problems D_n can decay quite slowly, and this translates in a poor efficiency of the reduced basis method. Here we show how we have tried to overcome this situation, explaining the idea presented in [3], whose main feature is the presence of a preprocessing step, which is carried out right after the offline step.

FSI problem

Problem: simulate the displacement in the time interval [0,T] of a thin structure Σ_t at the top of a 2D rectangle filled with a fluid Ω_t^f We adopt an Arbitrary Lagrangian Eulerian (ALE) formulation.

 $\int J\rho_f(\partial_f \mathbf{u}_f + F^{-1}(\mathbf{u}_f - \partial_f d_f \mathbf{e}_u) \cdot \nabla) \mathbf{u}_f) - \operatorname{div}(J\sigma^f F^{-T}) = \mathbf{b}_f \quad \text{in } \Omega^f \times [0, T],$

$$\begin{cases} \int \rho_f(c_t u_f + 1 - c_t (u_f - c_t u_f + y) - u_f(c_t - 1 - c_t (u_f - c_t u_f + u_f + v_f (u_f - c_t u_f + y) - u_f(c_t - 1 - c_t u_f + v_f + v_f (u_f - c_t u_f + v_f + v_f$$

To impose the continuity conditions we use two Lagrange multipliers λ_u and λ_d .

Transport phenomenon

Figure: snapshots for p_f at different timesteps. Let γ_n be the abscissa of the peak of the pressure wave at timestep t_n : γ_n changes in time, since the peak of the wave travels along the domain. We have a transport phenomenon.

Kolmogorov n-widthKolmogorov n-width (of \mathcal{M}_{p_f}) $D_n(\mathcal{M}_{p_f}, ||\cdot||) = \inf_{E_n} \sup_{p \in \mathcal{M}_{p_f}} \inf_{q \in E_n} ||p - q||_X.$

Preprocessing step (for \mathcal{M}_{p_f})[3]

Family of **smooth** and **invertible** mappings $\mathcal{F} = \{F : \Omega^f \to \Omega^f\}$ s.t. $\forall t \in [0; T], \exists F_t \in \mathcal{F} \text{ s. t.}$

 $\mathcal{M}_{p_f,\mathcal{F}} = \{ p_f(F_t^{-1}(\cdot), t); t \in [0; T] \}$

 E_n is any linear subspace of dimension n embedded in X.

Link between D_n and POD

$$\int_0^T ||p_f(\cdot;t) - \prod_{POD} p_f(\cdot;t)||_X dt = \sum_{i > N_{POD}} \lambda_i,$$

has a smaller Kolmogorov *n*-width. After preprocessing: $\{\Phi_k^{p_f}\}_{k=1}^N$ s. t. span $\{\Phi_k^{p_f}\}_k$ approaches to a given

accuracy $\mathcal{M}_{p_f,\mathcal{F}}$, N small. At each time step, look for coordinates $\{\alpha_k^{n+1}\}$ and a suitable map $F_{n+1} \in \mathcal{F}$ such that $p_f(\cdot, t^{n+1})$ is well approximated by:

$$p_N^{n+1} = \sum_{k=1}^N \alpha_k^{n+1} \Phi_k^{p_f} \circ F_{n+1}.$$

Results

Left column: p_f before and after the preprocessing. The peaks of the waves are all aligned at the same point. Right column: POD on \mathcal{M}_{p_f} , \mathcal{M}_d and on $\mathcal{M}_{p_f,\mathcal{F}}$ and $\mathcal{M}_{d,\mathcal{F}}$. After the preprocessing, we reach a magnitude of 10^{-3}

with less than 15 modes.

References

[1] Ballarin F. and Rozza G., POD–Galerking monolithic reduced order models for parametrized

- fluid-structure interaction problems. IJNMF: 82(12):1010-1034, 2016.
- [2] Ballarin F., Rozza G. and Maday Y., Reduced-order semi-implicit schemes for fluid-structure interaction problems. *MS&A* vol.17: 149–167, Springer International Publishing, 2017.
- [3] Cagniart N., Maday Y. and Stamm B., Model order reduction for problems with large convection effects, 2016.
- [4] Ballarin F., Maday Y., Nonino M., Rozza G., article in preparation.

https://github.com/mathLab/RBniCS https://github.com/mathLab/multiphenics

Acknowledgements

We acknowledge the support by European Union Funding for Research and Innovation – Horizon 2020 Program – in the framework of European Research Council Executive Agency:

Consolidator Grant H2020 ERC CoG 2015 AROMA-CFD project 681447 "Advanced Reduced Order Methods with Applications in Computational Fluid Dynamics".