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1. Introduction & motivation 2. Geometrical reconstruction

Projection based reduced order methods [2| aim for exploring solutions in a low
dimensional manifold, a projection of high dimensional solution manifold. Such
Y Y

techniques can be applied to a wide range of problems including optimal flow control

problems (OFCPs) governed by partial differential equations (PDEs) [3], with the goal

to solve the problem in a many-query parameter dependent context.

Here, we focus on applications in biomedical sciences, specifically on the application of clinical

reduced OFCPs to patient-specific coronary artery bypass grafts (CABGs) [1] image reconstructed smoothed smooth recon-

: . - e e . .. : centerlines .
with the aim to minimize the misfit between clinical measurements and numerical structure centerlines structed geometry

simulations [4]. From clinical image to smooth patient-specific geometry

3. Parametrized optimal control model 4. Reduced order parametrized optimal control model

Let Q € R® be the patient-specific CABG geometry with boundary 02 = 1';,, UT'y, UT',, Let Xy = VN X Py XU be the reduced order state and control spaces and Zn = Loy XZpy
where I';,,, I'w, I'o denote the inlets, walls and outlet of the CABG. Let D C R”,~ € N be be the reduced order adjoint spaces. The reduced order coupled optimality system, derived
a set of physical parameters, v € V (2) and p € P ({2) be state velocity and pressure and from first order Karush-Kuhn-Tucker optimality conditions, is defined as:

u € U (I'y) be the unknown control variables. Parametrized optimal flow control problem,
constrained by steady incompressible Navier-Stokes equations, reads: {
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Given u € D, find optimal pair (v () ,p(w),uw(w)) € V X P x U such that, B(xn, kN k) + € (v, vn, Raw p) =0,

1 (3)

in J — 2 - 2 bject t 1 - - - -
min (v,p,u, ) = = v (1) —vally, +— JJlu(p) |l » subject to, (1) where, B : Xy XZn — R is operator associated to linear part of weak formulation of state con-
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B (v(w) (1) ) () () straints (2), £ is associated to non-linear terms, A = m (’UN () ,y,,,N) + an (UN () ,yuN)
m(v(p)—vg,v(pm)—v n(w ,U
¢ ¢ and H (n) = m (vVa, Yoy, )-

Thanks to the saddle-point structure of system (3), the parametrized optimal flow control
—nAv () + (v () - Viv(pw)+Vp () =0, n problem can be written in the following algebraic form: Given u € D, find (xny,2N) €
V-v(u) =0, in O XN X Zn such that,
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where m is unit outward normal and v;, (u) = —F& (1 B 1::22 ) Nn;in is parametrized in- Here A(p) € R xR, B(p) € R4 xR B (u) € R'P xR, C'(p) € R7% X R7w
rn N

Ny N Na Na N Naw r; N N
flow velocity with m;,, denoting outward normal to I';,,. Moreover, vg is desired velocity, M (p) € R X RY”, N(pn) €R X RY», E(p) €R X R and E (p) € R X R

distributed through veenst ( _2) t., across €. are the stiffness matrices assoctated to the operators in (3).

5. Numerical results 6. Software
Case I : One graft connection Case II : Two grafts connections
Graft connection: between right internal mam- Graft connections: between right internal mammary artery (RIMA)
mary artery (RIMA) (green) & left anterior (magenta) & left anterior descending artery (LAD) (yellow), and be-
descending artery (LAD)(red). tween saphenuous vein (SV) (green) and first obtuse marginal artery

Parameters = Reynolds number, i.e., 0 (OM1) (red). | RBNnICS
u = Rel|r, €D = [70,80] 1 Parameters = Reynolds number, i.e.,

(H’lvu’Q) — (Re‘FinlvRe‘Finz) cD = [70780] X [457 50]

Velocity approximations

Velocity approximations ['in, := inlets of RIMA and LAD
Q‘ < ['in, := inlets of SV and OM1
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captured within 6 POD modes reducing the dimensions Eigenvalues reduction Average error for variables Avg. and rel. errors for J
. . . spaces. This shall better
of the problem from 433288 dofs to 79 reduced bases. In this case, Galerkin finite element spaces have 715462 dofs. In reduced order b
: : : : : redict hemodynamics be-
Furthemore, the errors in velocity and pressure approxi- problem, 10 POD modes capture 99.9% energy of Galerkin finite element spaces. b Y
: _ _ : : : havior, dependent upon ex-
mations are reduced to 10™° and 10~ 3, respectively. A Thus, reduced order spaces spanned by 132 reduced bases sufficiently approximate » GCP b
. .. : : : : : : . . tent of stenosis and thus
similar behavior is depicted for J and the computational full order solutions, reducing the error in velocity and pressure approximations to ’
: : _ _ : . . : the model shall be more
time is reduced from 1214.3 seconds to 109.3 seconds 107 ° and 103, respectively. A similar behavior is depicted for J and the compu-
: : : : . feasible for clinical studies.
(online phase). tational time is reduced from 1848.13 seconds to 202.27 seconds (online phase).
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