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Introduction
We present two computational pipelines able to enhance data-driven reduced order methods, exploiting the presence of active subspaces (AS). The first one, in column A, couples proper
orthogonal decomposition with interpolation and AS for the reconstruction of the pressure modal coefficients. The second one, in column B, uses dynamic mode decomposition for
future-state prediction of the lift coefficient, and dynamical AS to identify unnecessary parameters and build a more precise Gaussian Process Regression (GPR) in a lower dimensional
space. Both pipelines are applied in CFD context using Finite Volume method, and automatic mesh morphing with free form deformation and radial basis functions interpolation.

1 - Active Subspace (AS) Property [1]
Consider a function, its gradient vector and a sampling density

f = f(x), x ∈ Rm, ∇f(x) ∈ Rm, ρ : Rm → R+

Take the average outer product of the gradients and partition its decomposition,

C = E [∇xf ∇xf
T ] =

∫
(∇xf)(∇xf)

T ρ dx = WΛWT

Λ =

[
Λ1

Λ2

]
, W = [W1 W2] , W1 ∈ Rm×n

Rotate and separate the coordinates: x = WWTx = W1W
T
1 x + W2W

T
2 x = W1y + W2z.

We have that y is the active variable and z the inactive one:

y = WT
1 x ∈ Rn, z = WT

2 x ∈ Rm−n

2A - POD with interpolation (PODI)
POD with interpolation main features:

• No need to know the underlying equations/matrices (as for POD-Galerkin method)

• SVD of the snapshots matrix X = UΣV∗

• Using the first N modes, we are able to span the low-dimensional space on which
we project the original samples. The modal coefficients are: C = UT

NX

• Real-time computation of the solution fields for any new parameter by interpolating
the modal coefficients

• Offline-online paradigm allows to efficiently exploit all the collected simulations
(moreover we can enrich the database!)

3A - Modal coefficient approximation with AS [2]
We reconstruct the pressure field for a parametrized domain with free form deformation
using PODI.

We exploit AS for the approximation of the first 8 modal coefficient. This results in a
more accurate field reconstruction for small computational budget up to 55 samples in
the 8-dimensional parameter space.
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2B - Dynamic mode decomposition (DMD)
1. Collection of the snapshots

• Creation of two matrices: snapshots (X) and time-shifted snapshots (Y)

2. Eigenvalues and modes computation

• Approximation of the operator A

• SVD of the snapshots matrix

• Reduction of the operator

• Eigendecomposition

• Computation of the modes

Y ≈ AX

X = UΣV∗

Ã = U∗YVΣ−1

ÃW = WΛ

Φ = YVΣ−1W
Φ = UW

3. Reconstruction and prediction

• Computation of the amplitudes b

• Midcasting and forecasting xk = ΦΛkb

3B - GP regression for DMD enhanced by AS [3]
We parametrize a NACA 4412 airfoil profile and automatically deform the computational
mesh with RBF interpolation. Here the envelope of the deformations and the flow velocity
streamlines.

We study the evolution in time of the AS coefficients for the lift and identify 4 parameters
with little to no influence on average. By freezing these parameters we improve the GPR
capabilities even for future-state prediction with DMD.
DMD and AS training done with the first 20 s of the time-varying lift coefficient for 70
different morphed airfoils.
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4 - Computational science and engineering softwares: mathlab.sissa.it/cse-software

PyGeM
github.com/mathLab/PyGeM
mathlab.github.io/PyGeM

PyDMD
github.com/mathLab/PyDMD
mathlab.github.io/PyDMD

ITHACA-FV
github.com/mathLab/ITHACA-FV

mathlab.github.io/ITHACA-FV

EZyRB
github.com/mathLab/EZyRB
mathlab.github.io/EZyRB

PyGeM is a python package using Free
Form Deformation, Radial Basis Func-
tions, and Inverse Distance Weighting
to morph complex geometries.

PyDMD is a Python package that uses
Dynamic Mode Decomposition for a
data-driven model simplification based
on spatiotemporal coherent structures.

ITHACA-FV is an implementation in
OpenFOAM of several reduced order
modeling techniques based on Finite
Volume method.

EZyRB is a python library for data-
driven (non-intrusive) model order re-
duction with POD with interpolation.
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