Artificial neural network for bifurcating phenomena modelled by nonlinear parametrized PDEs
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Goal: Develop an integrated NN framework to deal with Forth -
i i li PDEs, frv f A ) . ) . , urther applications:
E:ﬁr/csgrl\% Ztc;gt;nei:; s. overcoming intrusive w-Vu—pAu+Vp=0 in 2, © Model a viscous, steady and incompressible flow. - Von Karman equation for buckling plate;
gles. — o Exist a critical V'5<_3°5't§/ value at which blfgrcates. - Gross-Pitaevskii model for Bose-Einstein condensates;
How: POD-NN approach which combines ROMs and Veou—10 in §2, o Costly HF approximation, need for reduction. - Driving bifurcation by optimal control problem.
non-intrusive learning of reduced coefficients.
Why: Investigate efficiently complex bifurcating behaviour Flow in a channel: the Coanda effect Triangular cavity flow
in a real-time context. 7= (1,401
L ) 1 {1,0.1,0.01,0.001}
Multi-parameter application: Benchmark application: Low viscosity causes the vortex to
Approximating nonlinear parametric PDEs P-2N-50N,, -200-6 P (052 /(05,2 P=1N=36 N, =400 attach at the top-right vertex
2 layers, 15 neurons, mini-batch Speed-up NN - 1.6+6 3 layers, 15 neurons, mini-batch
Civen ;2 € P C RY, seck X < X sueh that geom. parametrized inlet width w) ~ Speed-upRB-15 log-equispaced points v v v v
GiXop)
Low viscosity fluid tends to be attracted to a
Complex nonlinear PDEs can exhibit a bifurcating behaviour, ie. a nearby surface, due to eddies which cause a Bifurcation diagrom
sudden change in solution stability properties, usually linked to wall-hugging behaviour 1% ; 4

non-uniqueness issues and singularities.
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ey Towards geometrical parametrization and bifurcating behaviour
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Reduced manifold based bifurcation diagram

We aim at efficiently reconstruct a bifurcation diagram, where the output is entirely
based on the reduced coefficients which appears in the reduced basis expansion.
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