
Goal: Develop an integrated NN framework to deal with 
bifurcating nonlinear PDEs, overcoming intrusive 
EIM/DEIM strategies.
How: POD-NN approach which combines ROMs and 
non-intrusive learning of reduced coefficients.
Why: Investigate efficiently complex bifurcating behaviour 
in a real-time context.
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Approximating nonlinear parametric PDEs

HF RB

POD-NN

Complex nonlinear PDEs can exhibit a bifurcating behaviour, i.e. a 
sudden change in solution stability properties, usually linked to 
non-uniqueness issues and singularities.
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Navier-Stokes equations
○ Model a viscous, steady and incompressible flow.
○ Exist a critical viscosity value at which bifurcates. 
○ Costly HF approximation, need for reduction.

Flow in a channel: the Coanda effect Triangular cavity flow

Reduced manifold based bifurcation diagram
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We aim at efficiently reconstruct a bifurcation diagram, where the output is entirely 
based on the reduced coefficients which appears in the reduced basis expansion.

The idea is to take advantage of the non-smoothness of the manifold, constructing a 
detection tool that is able to track the critical points.

Further applications:
- Von Kármán equation for buckling plate;
- Gross-Pitaevskii model for Bose-Einstein condensates;
- Driving bifurcation by optimal control problem.

Mean HF-ANN error in H1(𝛺) = 1.e-2
Max HF-ANN error in H1(𝛺) =  6.e-2 

Speed-up NN = 1.e+6
Speed-up RB = 1.5 

Multi-parameter application:
P = 2, N = 50, Ntrain = 200 · 6 
2 layers, 15 neurons, mini-batch 
geom. parametrized inlet width w

Low viscosity fluid tends to be attracted to a 
nearby surface, due to eddies which cause a 
wall-hugging behaviour

Benchmark application:
P = 1, N = 36, Ntrain = 400 
3 layers, 15 neurons, mini-batch 
log-equispaced points

Towards geometrical parametrization and bifurcating behaviour

Low viscosity causes the vortex to 
attach at the top-right vertex.


