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Structural optimization pipeline based on Reduced Order Methods (ROMs)
We present a structural optimization computational pipeline. We exploitMSC
Patran andMSC Nastran softwares to create a solutions database for differ-
ent input parameters. Then we apply non-intrusive Reduced Order Methods
(ROMs) such as Proper Orthogonal Decomposition with Interpolation
(PODI) to predict the solution fields of interest, and Active Subspaces
(AS) to reduce the parameter space dimensionality and perform sensitivity
analysis over the parameters, using open source Python packages.
Finally Bayesian optimization is employed to minimize a target scalar function
while ROMs serve as enablers for fast and accurate real-time evaluations.
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1 - Proper Orthogonal Decomposition with Interpolation (PODI) [3]
POD with interpolation main features:

• No need to know the underlying equations/matrices (as for POD-
Galerkin method).

• SVD of the snapshots matrix X = UΣV∗.

• Using the firstN modes UN , we are able to span the low-dimensional
space on which we project the original samples.

• The modal coefficients are computed as C = UT
NX.

• Real-time computation of the solution fields for any new parameter by inter-
polating the modal coefficients

• Offline-online paradigm allows to efficiently exploit all the collected simula-
tions to make real-time predictions (moreover we can enrich the database!)

2 - Active Subspaces (AS) [1, 2]
Consider a function, its gradient vector, and a sampling p.d.f.

f = f(x), x ∈ Rm, ∇f(x) ∈ Rm, ρ : Rm → R+

Take the average outer product of the gradients and partition its eigende-
composition,

C = E [∇xf ∇xf
T ] =

∫
(∇xf)(∇xf)

T ρ dx = WΛWT

Λ =

[
Λ1

Λ2

]
, W = [W1 W2] , W1 ∈ Rm×n

Rotate and separate the coordinates:

x = WWTx = W1W
T
1 x + W2W

T
2 x = W1y + W2z

We call y the active variable and z the inactive one:

y = WT
1 x ∈ Rn, z = WT

2 x ∈ Rm−n
github.com/

mathLab/ATHENA

4 - Solution fields and constraints prediction
Using PODI we predict the stress tensor field
for new parameters with an L2 relative er-
ror smaller than 0.3%. Costraints such as the
number of yielded or buckled elements
are evaluated thorugh GP regression over
the active subspace.
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3 - Bayesian optimization
We seek a global minimizer of an unknown
function of interest using a Bayesian opti-
mization approach

xopt = argmin
x∈Ω

f(x)

We maximize the Expected Improvement acquisition function, depicted
in green below with an illustrative example, to select the next sample to
evaluate. Our design inputs are the thickness of 6 regions of the hull.
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5 - Numerical results
We minimize the mass of the parametrized decks of the hull, under the con-
straints of a prescribed maximum number of yielded and buckled elements,
for a given load condition. We achieve very good results.
ROMs are used to reconstruct the stress tensor and the buckling usage factors
fields for new untried parameters in real-time. AS is employed to reduce the
number of parameters for the constraints evaluation.
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