A reduced order model for optimisation-based domain decomposition (DD) algorithms for PDEs

Ivan Prusak*, SISSA Monica Nonino, Univesity of Vienna Francesco Ballarin, Catholic Univesity of tne Sacred Heart Gianluigi Rozza, SISSA

December 17, 2021

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

DD for Poisson's problem. Monolithic formulation

Let $\Omega \subset \mathbb{R}^2$ be open and let Γ be the boundary of Ω . Given $f: \Omega \to \mathbb{R}$, find $u: \Omega \to \mathbb{R}$ s.t.

$$-\Delta u = f \quad \text{in} \quad \Omega, \tag{1}$$
$$u = 0 \quad \text{on} \quad \Gamma. \tag{2}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

DD for Poisson's problem. DD formulation

Let Ω_i , i = 1, 2 be open subsets of Ω , s.t. $\overline{\Omega} = \overline{\Omega_1 \cup \Omega_2}$, $\Omega_1 \cap \Omega_2 = \emptyset$. Denote $\Gamma_i = \partial \Omega_i \cap \Gamma$, i = 1, 2 and $\Gamma_0 := \overline{\Omega_1} \cap \overline{\Omega_2}$. Then the DD formulation reads as follows: for i = 1, 2, given $f_i : \Omega_i \to \mathbb{R}$, find $u_i : \Omega_i \to \mathbb{R}$ s.t.

$$-\Delta u_i = f_i \quad \text{in} \quad \Omega_i, \tag{3}$$

$$u = 0$$
 on Γ_i , (4)

A D N A 目 N A E N A E N A B N A C N

$$\frac{\partial u}{\partial n_i} = (-1)^{i+1} g \quad \text{on} \quad \Gamma_0, \tag{5}$$

for some $g: \Gamma_0 \to \mathbb{R}$.

DD for Poisson's problem. Domain Decomposition

▲□▶▲□▶▲≡▶▲≡▶ ≡ のへ⊙

DD for Poisson's problem. DD formulation

- For any g the solution to the DD problem is not the same as the solution to the monolithic problem, i.e. u₁ ≠ u|_{Ω1} and u₂ ≠ Ω|₂.
- ► There exists a choice for g, i.e $g = \frac{\partial u_1}{\partial n_1}|_{\Gamma_0} = -\frac{\partial u_2}{\partial n_2}|_{\Gamma_0}$, such that the solutions coincide on the corresponding subdomains.
- So we must find such a g so that u₁ is as close as possible to u₂ on the interface Γ₀.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

DD for Poisson's problem. DD formulation

One way to accomplish is to minimise the functional

$$\mathcal{J}(u_1, u_2) =: \frac{1}{2} \int_{\Gamma_0} (u_1 - u_2)^2 \, d\Gamma.$$
 (6)

Instead of (6) we can also consider the penalised or regularised functional

$$\mathcal{J}_{\gamma}(u_{1}, u_{2}; g) =: \frac{1}{2} \int_{\Gamma_{0}} (u_{1} - u_{2})^{2} d\Gamma + \frac{\gamma}{2} \int_{\Gamma_{0}} g^{2} d\Gamma, \qquad (7)$$

where γ is a constant that can be chosen to change the relative importance of the terms in (7).

Thus we face an optimisation problem under PDE constraints: minimise the functional (6)(or (7)) over suitable function g subject to the PDE constraints. DD for Poisson's problem. DD variational formulation

V_i := {
$$u \in H^1(\Omega_i)$$
 : $u|_{\Gamma_i} = 0$ }, *i* = 1,2
Find $u_i \in V_i$ s.t.

$$(\nabla u_i, \nabla v_i)_{\Omega_i} = (f_i, v_i)_{\Omega_i} + ((-1)^{i+1}g, v_i)_{\Gamma_0}, \quad \forall v_i \in V_i.$$
 (8)

(ロ)、(型)、(E)、(E)、(E)、(O)へ(C)

DD for Poisson's problem. Lagrangian

We define Lagrangian functional as follows:

$$\mathcal{L}(u_1, u_2, \xi_1, \xi_2; g) \qquad := \mathcal{J}_{\gamma}(u_1, u_2; g) - \sum_{i=1}^2 (\nabla u_i, \nabla \xi_i)_{\Omega_i} \\ - \sum_{i=1}^2 (f_i, v_i)_{\Omega_i} - \sum_{i=1}^2 ((-1)^{i+1}g, \xi_i)_{\Gamma_0}.$$
(9)

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

 $\blacktriangleright \ \mathcal{L}: V_1 \times V_2 \times V_1 \times V_2 \times L^2(\Gamma_0) \to \mathbb{R}$

DD for Poisson's problem. Optimality conditions

constrains

$$(\nabla u_1, \nabla v_1)_{\Omega_1} = (f_1, v_1)_{\Omega_1} + (g, v_1)_{\Gamma_0}, \quad \forall v_1 \in V_1,$$
(10)

$$(\nabla u_2, \nabla v_2)_{\Omega_2} = (f_2, v_2)_{\Omega_2} - (g, v_2)_{\Gamma_0}, \quad \forall v_2 \in V_2.$$
(11)

adjoint equations

$$(\nabla \eta_1, \nabla \xi_1)_{\Omega_1} = (\eta_1, u_1 - u_2)_{\Gamma_0}, \quad \forall \eta_1 \in V_1,$$

$$(\nabla \eta_2, \nabla \xi_2)_{\Omega_2} = -(\eta_2, u_1 - u_2)_{\Gamma_0}, \quad \forall \eta_2 \in V_2.$$
(13)

optimality condition

$$(g,h)_{\Gamma_0} = -\frac{1}{\gamma}(\xi_1 - \xi_2, h)_{\Gamma_0}, \quad \forall h \in L^2(\Gamma_0).$$
 (14)

Gradient (based on the sensitivity derivatives)

$$\frac{d\mathcal{J}_{\gamma}}{dg}(u_1, u_2; g) = \gamma g + (\xi_1 - \xi_2)|_{\Gamma_0}, \qquad (15)$$

DD for Poisson's problem. Gradient method

The following simple gradient method can be considered: given a starting guess $g^{(0)}$, let

$$g^{(n+1)} = g^{(n)} - \alpha \frac{d\mathcal{J}_{\gamma}}{dg} \left(u_1^{(n)}, u_2^{(n)}; g^{(n)} \right).$$
(16)

Combining with (24) we obtain

$$g^{(n+1)} = g^{(n)} - \alpha \left(\gamma g^{(n)} + (\xi_1^{(n)} - \xi_2^{(n)}) |_{\Gamma_0} \right), \quad (17)$$

or

$$g^{(n+1)} = (1 - \alpha \gamma) g^{(n)} - \alpha (\xi_1^{(n)} - \xi_2^{(n)})|_{\Gamma_0},$$
(18)

where $\xi_1^{(n)}$ and $\xi_2^{(n)}$ are determined as the solutions to the adjoint equations with g replaced by $g^{(n)}$.

▲□▶▲□▶▲□▶▲□▶ = のへの

DD for Poisson's problem. Gradient method

Algorithm 1.

- 1. Choose $g^{(0)}$, α .
- 2. For n=0,1,2,... until convergence
 - 2.1 Determine $u_1^{(n)}$, $u_2^{(n)}$ s.t.

$$(\nabla u_i^{(n)}, \nabla v_i)_{\Omega_i} = (f_i, v_i)_{\Omega_i} + ((-1)^{i+1}g^{(n)}, v_i)_{\Gamma_0}, \quad \forall v_i \in V_i, \quad i = 1, 2.$$

2.2 Determine
$$\xi_1^{(n)}$$
, $\xi_2^{(n)}$ s.t.

$$(\nabla \eta_i^{(n)}, \nabla \xi_i)_{\Omega_i} = ((-1)^{i+1}\eta_i, u_1^{(n)} - u_2^{(n)})_{\Gamma_0}, \quad \forall \eta_i \in V_i, \quad i = 1, 2.$$

2.3 Determine $g^{(n+1)}$ by

$$oldsymbol{g}^{(n+1)}:=\left(1-lpha\gamma
ight)oldsymbol{g}^{(n)}-lpha\left(\xi_1^{(n)}-\xi_2^{(n)}
ight)ert_{\mathsf{\Gamma}_0}.$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

DD for Poisson's problem. Numerical results

Tolerance - 10^{-5} . Zero initial approximation for g.

Step α	Iterations		
1	22		
3	8		
5	18		
6	diverges		

Quantity	Value	
J	$4\cdot 10^{-10}$	
$ \nabla J $	10 ⁻⁵	
$ u_1 - u_2 _{\Gamma_0}$	$5 \cdot 10^{-5}$	
Abs. error on subdomains	$7 \cdot 10^{-6}$	
Rel. error on subdomains	10^{-4}	

CFD. Monolithic formulation

Let $\Omega \subset \mathbb{R}^2$ be open and let Γ be the boundary of Ω . Given $f: \Omega \to \mathbb{R}^2$ - forcing term ν - kinematic viscosity, u_{in} - fluid inflow profile, find $u: \Omega \to \mathbb{R}^2$ - the velocity filed and $p: \Omega \to \mathbb{R}$ - the pressure s.t.

$$-\nu\Delta u + (u\cdot\nabla) u + \nabla p = f \quad \text{in} \quad \Omega, \tag{19}$$

$$-\operatorname{div} u = 0 \quad \text{in} \quad \Omega, \tag{20}$$

$$u = u_{in}$$
 on Γ_{in} , (21)

$$u = 0$$
 on Γ_{wall} , (22)

- ロ ト - 4 回 ト - 4 □

$$\nu \frac{\partial u}{\partial n} - pn = 0 \quad \text{on} \quad \Gamma_{out}, \tag{23}$$

where n - is an outward normal vector to Γ .

CFD. DD formulation

- Ω_i , i = 1, 2 open subsets of Ω , s.t. $\overline{\Omega} = \overline{\Omega_1 \cup \Omega_2}$, $\Omega_1 \cap \Omega_2 = \emptyset$
- ► $\Gamma_{i,in}$, $\Gamma_{i,out}$ and $\Gamma_{i,wall}$, i = 1, 2
- ► For i = 1, 2, given $f_i : \Omega_i \to \mathbb{R}^2$, find $u_i : \Omega_i \to \mathbb{R}^2$, $p_i : \Omega_i \to \mathbb{R}$ s.t.

$$-\nu\Delta u_i + (u_i \cdot \nabla) u_i + \nabla p_i = f_i \quad \text{in} \quad \Omega_i, \qquad (24)$$

$$-\operatorname{div} u_i = 0$$
 in Ω_i , (25)

$$u_i = u_{in}$$
 on $\Gamma_{i,in}$, (26)

$$u_i = 0$$
 on $\Gamma_{i,wall}$, (27)

$$\nu \frac{\partial u_i}{\partial n_i} - p_i n_i = 0 \quad \text{on} \quad \Gamma_{i,out}, \tag{28}$$

$$\nu \frac{\partial u_i}{\partial n_i} - p_i n_i = (-1)^{i+1} g \quad \text{on} \quad \Gamma_0, \tag{29}$$

for some $g: \Gamma_0 \to \mathbb{R}^2$.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

CFD. DD formulation

- For any g the solution to the DD problem is not the same as the solution to the monolithic problem, i.e. u₁ ≠ u|_{Ω1}, p₁ ≠ p|_{Ω1}, u₂ ≠ u|_{Ω2} and p₂ ≠ p|_{Ω2}.
- On the other hand, there exists a choice for g, i.e $g = \left(\nu \frac{\partial u_1}{\partial n_1} - p_1 n_1\right)|_{\Gamma_0} = -\left(\nu \frac{\partial u_2}{\partial n_2} - p_2 n_2\right)|_{\Gamma_0}, \text{ s.t. the solutions on the corresponding subdomains coincide.}$
- So we must find such a g so that u₁ is as close as possible to u₂ on the interface Γ₀. One way to accomplish is to minimise the functional

$$\mathcal{J}(u_1, u_2) =: \frac{1}{2} \int_{\Gamma_0} |u_1 - u_2|^2 \, d\Gamma.$$
 (30)

Instead of (12) we can also consider the penalised or regularised functional

$$\mathcal{J}_{\gamma}(u_{1}, u_{2}; g) =: \frac{1}{2} \int_{\Gamma_{0}} |u_{1} - u_{2}|^{2} d\Gamma + \frac{\gamma}{2} \int_{\Gamma_{0}} |g|^{2} d\Gamma, \qquad (31)$$

where γ is a constant that can be chosen to change the relative importance of the terms.

CFD. Variational formulation of state equations

$$V_{i} := \left\{ u \in H^{1}(\Omega_{i}; \mathbb{R}^{2}) : u|_{\Gamma_{i,wall}} = 0 \right\}$$

$$V_{i,0} := \left\{ u \in H^{1}(\Omega_{i}; \mathbb{R}^{2}) : u|_{\Gamma_{i,wall}} \bigcup \Gamma_{i,in} = 0 \right\}$$

$$Q_{i} := \left\{ p \in L^{2}(\Omega_{i}; \mathbb{R}) \right\}, i = 1, 2.$$
Find $u \in V_{i}, p_{i} \in Q_{i}$ s.t
$$\nu(\nabla u_{i}, \nabla v_{i})_{\Omega_{i}} + ((u_{i} \cdot \nabla) u_{i}, v_{i})_{\Omega_{i}} - (\operatorname{div} v_{i}, p_{i})_{\Omega_{i}}$$

$$= (f_{i}, v_{i})_{\Omega_{i}} + ((-1)^{i+1}g, v_{i})_{\Gamma_{0}} \quad \forall v_{i} \in V_{i,0},$$

$$-(\operatorname{div} u_{i}, q_{i})_{\Omega_{i}} = 0 \quad \forall q_{i} \in Q_{i},$$

$$u_i = u_{in}$$
 on $\Gamma_{i,in}$.

◆□▶ ◆□▶ ◆ 臣▶ ◆ 臣▶ ○ 臣 ○ の Q @

,

CFD. Lagrangian

$$egin{aligned} \mathcal{L}(u_1, p_1, u_2, p_2, \xi_1, \xi_2, \lambda_1 \lambda_2; g) &:= \mathcal{J}_\gamma(u_1, u_2; g) \ &- \sum_{i=1}^2 \left[
u(
abla u_i,
abla \xi_i)_{\Omega_i} + ((u_i \cdot
abla) u_i, \xi_i)_{\Omega_i}
ight. \ &- (ext{div} \xi_i, p_i)_{\Omega_i} - (ext{div} u_i, \lambda_i)_{\Omega_i}] \ &+ \sum_{i=1}^2 (f_i, \xi_i)_{\Omega_i} + \sum_{i=1}^2 ((-1)^{i+1}g, \xi_i)_{\Gamma_0}. \end{aligned}$$

・ロト・「四ト・「田下・「田下・(日下

CFD. Optimality conditions

state equations

$$\begin{split} \nu(\nabla u_i, \nabla v_i)_{\Omega_i} &+ ((u_i \cdot \nabla) \, u_i, v_i)_{\Omega_i} - (\operatorname{div} v_i, p_i)_{\Omega_i} \\ &= (f_i, v_i)_{\Omega_i} + ((-1)^{i+1}g, v_i)_{\Gamma_0} \quad \forall v_i \in V_{i,0}, \\ &- (\operatorname{div} u_i, q_i)_{\Omega_i} = 0 \quad \forall q_i \in Q_i. \end{split}$$

adjoint equations

$$\begin{split} \nu(\nabla\eta_i,\nabla\xi_i)_{\Omega_i} &+ ((\eta_i\cdot\nabla)\,u_i,\xi_i)_{\Omega_i} \\ &+ ((u_i\cdot\nabla)\,\eta_i,\xi_i)_{\Omega_i} - (\mathsf{div}\eta_i,\lambda_i)_{\Omega_i} \\ &= ((-1)^{i+1}\eta_i,u_1-u_2)_{\Gamma_0}, \quad \forall\eta_i\in V_{i,0}, \\ &- (\mathsf{div}\xi_i,\mu_i)_{\Omega_i} = 0, \quad \forall\mu_i\in Q_i. \end{split}$$

◆□▶ ◆□▶ ◆ 臣▶ ◆ 臣▶ ○ 臣 ○ の Q @

CFD. Optimality conditions

optimality condition

$$\gamma(h,g)_{\Gamma_0}+(h,\xi_1-\xi_2)_{\Gamma_0}=0,\quad\forall h\in L^2(\Gamma_0). \tag{32}$$

Gradient (through sensitivity derivatives)

$$\frac{d\mathcal{J}_{\gamma}}{dg}(u_1, u_2; g) = \gamma g + (\xi_1 - \xi_2)|_{\Gamma_0}, \qquad (33)$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

CFD. ROM - Offline stage

- Objective: parametrised PDEs
- Idea: to create a basis (based on snaphots) to solve the problem for any problem parameters as effective as possibile
- Proper Orthogonal Decomposition (POD) for the reduced basis formation
 - 1. Choose a partition for the parameter space
 - 2. For each value of the chosen parameters solve the optimisation problem and store the value of the state, adjoint and control

- 3. Additionaly solve for the pressure supremiser (to satisfy the inf-sup condition in the reduced problem, stability)
- 4. Perform POD for the state (with supremiser enrichment), adjoint and control variables separately
- 5. Form the reduced basis matrices Z_s , Z_a , Z_c

CFD. ROM - Online stage

- Z_s, Z_a, Z_c reduced basis matrices
- ROM approximation

$$u_h^s = Z_s u_N^s, \quad u_h^a = Z_a u_N^a, \quad g_h = Z_c g_N$$

where $u^s=\{u_1,p_1,u_2,p_2\}$ - state variables, $u^a=\{\xi_1,\eta_1,\xi_2,\eta_2\}$ - adjoint variables, g - control

Reduced optimisation problem: minimise

$$\mathcal{J}_{\gamma}(u_{1,N}, u_{2,N}; g_N) = \frac{1}{2} \int_{\Gamma_0} |u_{1,N} - u_{2,N}|^2 \, d\Gamma + \frac{\gamma}{2} \int_{\Gamma_0} |g_N|^2 \, d\Gamma$$

under the reduced PDE constraints.

- Left vertical boundary inlet, parabolic velocity profile BCS
- Right vertical boundary outlet, free outflow (homogeneous Neumann BCs)

Lateral boundary - walls, zero velocity field

Physical parameters	2 : <i>ν</i> , <i>u_{in}</i>
Range $ u$	[0.5, 2]
Range <i>u_{in}</i>	[0.5, 6.5]

1/	u _{in}	FOM		ROM			
		lts	Dim	J	lts	Dim	J
2	0.5	25	122	$9 \cdot 10^{-5}$	10	10	$2 \cdot 10^{-4}$
		40	122	$4 \cdot 10^{-5}$	15	15	$1 \cdot 10^{-5}$
2	2.5	25	122	$2 \cdot 10^{-3}$	10	10	$8 \cdot 10^{-3}$
		40	122	$1 \cdot 10^{-3}$	15	15	$7 \cdot 10^{-4}$
1	5	25	122	$3 \cdot 10^{-2}$	10	10	$3 \cdot 10^{-2}$
		40	122	$7 \cdot 10^{-3}$	15	15	$7 \cdot 10^{-3}$
0.75	4.5	25	122	$1 \cdot 10^{-2}$	10	10	$3 \cdot 10^{-2}$
		40	122	$6 \cdot 10^{-3}$	15	15	$2 \cdot 10^{-2}$

• Typical example of errors ($\nu = 2, u_{in} = 0.5$)

J	$7 \cdot 10^{-5}$		
$ \nabla J $	$4 \cdot 10^{-3}$		
u_1 rel. error	1%		
p_1 rel. error	1%		
u_2 rel. error	2%		
p_2 rel. error	3%		

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

CFD. Numerical simulations (FOM)

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

CFD. Numerical simulations (FOM)

◆□▶ ◆□▶ ◆ 臣▶ ◆ 臣▶ ○ 臣 ○ の Q @

CFD. Numerical simulations (ROM)

Iteration 5

Fluid-Structure Interaction problem. Introduction

- Core elements: fluid equations + structure equations + coupling conditions
- Coupling conditions: continuity of the velocities and the stresses on the fluid-structure interface
- Two main approaches: partitioned (segregated) or monolithic
- Partitioned schemes for FSI might be unstable due to so-called "added mass effect"
- Idea: use optimisation-based DD algorithm to provide a stable partitioned scheme for FSI
- Preliminary work done so far: ROM for monolithic scheme for stationary FSI problem (coupling conditions satisfied by the use of Lagrange multipliers)

Summary

- Optimisation-based Domain Decomposition algorithms for PDS
- Reduced-order models for PDE constraint optimisation problems
- Numerical experiments: Poisson's equation, incompressible Navier-Stokes
- Preliminary steps for the case of fluid-structure interaction problems

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Perspectives and future steps

- Optimisation-based DD for nonstationary Navier-Stokes equations, including ROMs
- Fluid-Structure interaction problems: ROMs for nonstationary optimisation-based domain decomposition algorithm

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●