
A reduced order model for the optimisation-based
domain decomposition algorithm for the incompressible

Navier-Stokes equations
Ivan Prusak, Monica Nonino, Francesco Ballarin, Gianluigi Rozza

Mathematics Area, mathLab, SISSA, International School of Advanced Studies, Trieste, Italy

Introduction
The aim of this work is to present a model reduction technique in the framework of optimal control problems for partial differential equations. In particular, we consider an optimisation based
domain decomposition algorithm for the incompressible Navier-Stokes equations and propose a reduced–order model for the resulting optimal control problem. The procedure is based on the Proper
Orthogonal Decomposition technique and gradient–based optimisation algorithms; the presented methodology is tested on the stationary backward–facing step and lid-driven cavity flow fluid dynamics
benchmarks.

1 - Monolithic vs. Domain Decomposition (DD) Formulation
We consider the following stationary boundary valuer problem for the incompressible
Navier–Stokes equations: given 𝑓 : Ω → R2, 𝑢𝐷 : Γ𝐷 → R2, find the velocity field
𝑢 : Ω → R2 and the pressure 𝑝 : Ω → R s.t.

−𝜈Δ𝑢 + (𝑢 · ∇) 𝑢 + ∇𝑝 = 𝑓 in Ω,

−div𝑢 = 0 in Ω,

𝑢 = 𝑢𝐷 on Γ𝐷 ,

𝜈
𝜕𝑢

𝜕𝑛
− 𝑝𝑛 = 0 on Γ𝑁 ,

ΩΓ𝐷 Γ𝑁

The DD formulation reads as follows: for 𝑖 = 1, 2, given 𝑓𝑖 : Ω𝑖 → R2 and 𝑢𝑖,𝐷 : Γ𝑖,𝐷 → R2,
find 𝑢𝑖 : Ω𝑖 → R2, 𝑝𝑖 : Ω𝑖 → R s.t. for some 𝑔 : Γ0 → R2

−𝜈Δ𝑢𝑖 + (𝑢𝑖 · ∇) 𝑢𝑖 + ∇𝑝𝑖 = 𝑓𝑖 in Ω𝑖 ,

−div𝑢𝑖 = 0 in Ω𝑖 ,

𝑢𝑖 = 𝑢𝑖,𝐷 on Γ𝑖,𝐷 ,

𝜈
𝜕𝑢𝑖

𝜕𝑛𝑖
− 𝑝𝑖𝑛𝑖 = 0 on Γ𝑖,𝑁 ,

𝜈
𝜕𝑢𝑖

𝜕𝑛𝑖
− 𝑝𝑖𝑛𝑖 = (−1)𝑖+1𝑔 on Γ0.
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For any 𝑔 the solution to the monolithic problem is not the same as the solution to the DD problem, but there exists a choice for 𝑔, 𝑔 =

(
𝜈
𝜕𝑢1
𝜕𝑛1

− 𝑝1𝑛1

)
|Γ0 = −

(
𝜈
𝜕𝑢2
𝜕𝑛2

− 𝑝2𝑛2

)
|Γ0 , such that the solutions

coincide on the corresponding subdomains. Therefore, we must find such a 𝑔, so that 𝑢1 is as close as possible to 𝑢2 on the interface Γ0. One way to accomplish this is to minimise the functional

J𝛾 (𝑢1, 𝑢2; 𝑔) =:
1
2

∫
Γ0

|𝑢1 − 𝑢2 |2 𝑑Γ + 𝛾

2

∫
Γ0

|𝑔 |2 𝑑Γ,

. Thus we face an optimisation problem under PDE constraints: minimise the functional J𝛾over a suitable function 𝑔 subject to DD-equations.

2 - Iterative Optimisation Algorithm
Choose 𝑔 (0) , 𝛼. For n=0,1,2,... until convergence
1. Determine 𝑢 (𝑛)

1 , 𝑢 (𝑛)
2 by solving the state equations

−𝜈Δ𝑢 (𝑛)
𝑖

+
(
𝑢
(𝑛)
𝑖

· ∇
)
𝑢
(𝑛)
𝑖

+ ∇𝑝 (𝑛)
𝑖

= 𝑓𝑖 in Ω𝑖

−div𝑢 (𝑛)
𝑖

= 0 in Ω𝑖

𝜈
𝜕𝑢

(𝑛)
𝑖

𝜕𝑛𝑖
− 𝑝

(𝑛)
𝑖

𝑛𝑖 = (−1)𝑖+1𝑔 (𝑛) on Γ0

2. Determine 𝜉
(𝑛)
1 , 𝜉 (𝑛)2 by solving the adjoint equations

−𝜈Δ𝜉 (𝑛)
𝑖

+
(
∇𝑢 (𝑛)

𝑖

)𝑇
𝜉
(𝑛)
𝑖

−
(
𝑢
(𝑛)
𝑖

· ∇
)
𝜉
(𝑛)
𝑖

+ ∇𝜆 (𝑛)
𝑖

= 0 in Ω𝑖

−div𝜉 (𝑛)
𝑖

= 0 in Ω𝑖

𝜈
𝜕𝜉

(𝑛)
𝑖

𝜕𝑛𝑖
− 𝜆

(𝑛)
𝑖

𝑛𝑖 = (−1)𝑖+1
(
𝑢
(𝑛)
1 − 𝑢

(𝑛)
2

)
on Γ0

3. Update 𝑔 (𝑛+1) by setting

𝑔 (𝑛+1) := 𝑔 (𝑛) − 𝛼
𝑑J𝛾

𝑑𝑔

(
𝑢
(𝑛)
1 , 𝑢

(𝑛)
2 ; 𝑔 (𝑛)

)
𝑔 (𝑛+1) := 𝑔 (𝑛) − 𝛼

(
𝛾𝑔 (𝑛) + (𝜉 (𝑛)1 − 𝜉

(𝑛)
2 ) |Γ0

)
In practice, the typical methods used to solve problems like the one considered in this paper are Broyden–Fletcher–Goldfarb–Shanno (BFGS) and Newton Conjugate Gradient (CG) algorithms which
tend to show much faster convergence and higher efficiency with respect to the steepest-decent algorithm.
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3 - FEM discretisation
• FEM spaces 𝑉𝑖,ℎ ⊂ 𝐻1 (Ω𝑖), 𝑄𝑖,ℎ ⊂ 𝐿2 (Ω𝑖), 𝑋ℎ ⊂ 𝐿2 (Γ0)

• Inf-sup conditions inf
𝑞𝑖,ℎ ∈𝑄𝑖,ℎ\{0}

sup
𝑣𝑖,ℎ ∈𝑉𝑖,ℎ\{0}

𝑏𝑖 (𝑣𝑖,ℎ ,𝑞𝑖,ℎ)
| |𝑣𝑖,ℎ | |𝑉𝑖,ℎ | |𝑞𝑖,ℎ | |𝑄𝑖,ℎ

≥ 𝑐𝑖 > 0

• Minimise discretized functional J𝛾,ℎ (𝑢1,ℎ, 𝑢2,ℎ; 𝑔ℎ) := 1
2

∫
Γ0

��𝑢1,ℎ − 𝑢2,ℎ
��2 𝑑Γ +

𝛾

2

∫
Γ0
|𝑔ℎ |2 𝑑Γ subject to Galerkin-projection of the state equations

4A - Reduced Order Model. Offline stage
• Consider parametrised Navier–Stokes equations 𝜇 ∈ R𝑝

• Sample the parameter space {𝜇1, ..., 𝜇𝑁𝑚𝑎𝑥}

• Solve FE optimisation problem of each parameter in the training set and store the snapshots

• Perform POD-compression for each component 𝑢1, 𝑝1, 𝑢2, 𝑝2, 𝜉1, 𝜉2, 𝑔 separately

• Construct reduced spaces 𝑉𝑖,𝑁 ⊂ 𝑉𝑖 , ℎ, 𝑄𝑖,𝑁 ⊂ 𝑄𝑖,ℎ, 𝑖 = 1, 2, 𝑋𝑁 ⊂ 𝑋ℎ

4B - Reduced Order Model. Online stage
• Galerkin projection of the state and adjoint eqiations onto the reduced spaces

• Usually the dimensions of the ROM problem are much lower than of the corresponding
FEM problems

• Minimise discretized functional J𝛾,𝑁 (𝑢1,𝑁 , 𝑢2,𝑁 ; 𝑔𝑁 ) := 1
2

∫
Γ0

��𝑢1,𝑁 − 𝑢2,𝑁
��2 𝑑Γ +

𝛾

2

∫
Γ0
|𝑔𝑁 |2 𝑑Γ subject to Galerkin-projection of the state equations onto the RB spaces

• The optimisation problem of much smaller dimension: dim = # RB functions for the control

5A - Numerical results

Ω
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Γ𝑤𝑎𝑙𝑙
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• Parabolic inlet profile on Γ𝑖𝑛 with max. ve-
locity �̄�

• Two physical parameters considered: 𝜈 and �̄�

• Optimisation method: L-BFGS-B

Velocity profiles at iterations 0, 5, 10, 40 (left to right, top to bottom).

5B - Numerical results
• Reduction of the state nonlinear equation dimension: FEM - 27,890 vs. ROM - 10

• Reduction of the optimisation problem dimension: FEM - 130 vs. ROM - 10

• Reduction in terms of #iterations: FEM - 40 vs. ROM - 10

• Enhanced stability of ROM w.r.t. FOM (FOM optimisation process is very sensitive to the
initial approximation)

6 - Computational science and engineering softwares

multiphenics
https://mathlab.sissa.

it/multiphenics/

rbnics
github.com/mathLab/

rbnics

multiphenics is a python library that aims
at providing tools in FEniCS for an easy
prototyping of multiphysics problems on
conforming meshes.

The RBniCS Project contains an im-
plementation in FEniCS of several re-
duced order modelling techniques for
parametrized problems.
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