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Results (1): Eulerian Structure Functions

Introduction and Motivations

In this work we define a Subgrid Closure
model that, employed in a Large Eddy Sim-
ulation approach, exhibits correct scaling laws
in high order Structure Functions, encom-
passing intermittent effects and energy cascade
dynamics.

Due to the massive amount of data needed to
reach converged statistics of high order statisti-

cal moments, we consider the setting of Shell
Models of Turbulence [1].

Our method employs a custom-made Deep
Learning architecture comprising a Runge-
Kutta integration scheme for the large scales ot

turbulence, augmented with a Recurrent Ar-
tificial Neural Network.

Shell Models of Turbulence

Shell models mimic the dynamics of Homo-
geneous Isotropic Turbulence in Fourier
space via a (small) number of scalars u,, n =
0,1,...,N, whose magnitude represents the en-
ergy of fluctuations at representative logarith-
mically equispaced spatial scales (wavelength

kn = koA™).
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The governing equations read:

du.,,
2
-+ F(un—Qa Unp—1, Un, Un+1, un—l—Q)

where F'(-) is a nonlinear coupling between the
shells, mimicking the convective term of NSE.

A Large Eddy Simulation (LES) consists in
evolving the large scales u< above an (arbi-
trary) cutoff scale N.,; < N independently
from the small (unresolved) scales u~:
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The numerical values for the experiments:
e v =101 (Re ~ 10'%);

o N., =15 N = 40.
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The the p!* order Eulerian structure
functions, with p = 1,---,10, can be
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Results (2): Pdf of Energy Fluxes

The convective fluxes at shell N.,; can be computed

as 2]

On the right, the probability distribution function for both
Fully Resolved Model (FRM) and our LSTM-LES.

Negative values of the flux correspond to backscatter

events, correctly reproduced by our model.

Find in |3]| results for pdf of shell variables.
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Methodology: LSTM-LES
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Conclusion and Outlook

Our method (LSTM-LES) consists of a modifi-

cation of a Runge-Kutta integration scheme for
the large scales:

At
” (k1 + 2ks + 2ks3 + ky)

us(t+ At) = u™(t) H

The terms kj.,ks, k3 and k, are computed by
considering:

e the large scales u< ;

e the small scales u~, computed by a Long-
Short Term Memory (LSTM) Artificial
Neural Network, taking as input the large
scales u< and a memory term h.

This work shows the capability of Machine Learning to capture complex multiscale dynamics and
reproduce complex multi-scale and multi-time non-gaussian behaviors, opening up the possi-
bility to use such methods to tackle turbulence modelling in Navier-Stokes Equations.




