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Introduction and Motivations
In this work we define a Subgrid Closure
model that, employed in a Large Eddy Sim-
ulation approach, exhibits correct scaling laws
in high order Structure Functions, encom-
passing intermittent effects and energy cascade
dynamics.

Due to the massive amount of data needed to
reach converged statistics of high order statisti-
cal moments, we consider the setting of Shell
Models of Turbulence [1].

Our method employs a custom-made Deep
Learning architecture comprising a Runge-
Kutta integration scheme for the large scales of
turbulence, augmented with a Recurrent Ar-
tificial Neural Network.

Shell Models of Turbulence
Shell models mimic the dynamics of Homo-
geneous Isotropic Turbulence in Fourier
space via a (small) number of scalars un, n =
0, 1, . . . , N , whose magnitude represents the en-
ergy of fluctuations at representative logarith-
mically equispaced spatial scales (wavelength
kn = k0λ

n).

The governing equations read:

dun

dt
= ϵδn,0 − νk2nun+

+ F (un−2, un−1, un, un+1, un+2)

where F (·) is a nonlinear coupling between the
shells, mimicking the convective term of NSE.

A Large Eddy Simulation (LES) consists in
evolving the large scales u< above an (arbi-
trary) cutoff scale Ncut ≪ N independently
from the small (unresolved) scales u>:

u = {un}N
n=0 =

[
u<

u>

]
=

[
{un}Ncut

n=0

{un}N
n=Ncut

]
The numerical values for the experiments:

• ν = 10−12 (Re ≈ 1012);

• Ncut = 15, N = 40.
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Results (1): Eulerian Structure Functions
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The the pth order Eulerian structure
functions, with p = 1, · · · , 10, can be
computed as:

Sp
n = ⟨|un|p⟩. (1)

On the left, results for the Fully Re-
solved Model (FRM) and our LSTM-
LES model (shell index n on the x-axis).

In the inset, the values of the anoma-
lous exponents, ξp, Sp

n ∝ k
−ξp
n , with

the predictions from the K41 theory.

Find in [3] results for high order La-
grangian structure functions, with
specifications on statistical error bars.

Results (2): Pdf of Energy Fluxes
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The convective fluxes at shell Ncut can be computed
as [2]:

ΠNcut
=

d

dt

Ncut∑
n=0

|un(t)|2

On the right, the probability distribution function for both
Fully Resolved Model (FRM) and our LSTM-LES.

Negative values of the flux correspond to backscatter
events, correctly reproduced by our model.

Find in [3] results for pdf of shell variables.

Methodology: LSTM-LES

Our method (LSTM-LES) consists of a modifi-
cation of a Runge-Kutta integration scheme for
the large scales:

u<(t+∆t) = u<(t) +
∆t

6
(k1 + 2k2 + 2k3 + k4)

The terms k1,k2,k3 and k4 are computed by
considering:

• the large scales u< ;

• the small scales u>, computed by a Long-
Short Term Memory (LSTM) Artificial
Neural Network, taking as input the large
scales u< and a memory term h.

Conclusion and Outlook
This work shows the capability of Machine Learning to capture complex multiscale dynamics and
reproduce complex multi-scale and multi-time non-gaussian behaviors, opening up the possi-
bility to use such methods to tackle turbulence modelling in Navier-Stokes Equations.


