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Introduction
The completely data-driven non-intrusive ROM using linear reduction methods such as the POD fails for problems characterised by a slow decay of the Kolmogorov N -width.
In this ongoing research, we are exploring the usage of a non-linear reduction approach such as the autoencoder neural network instead of the linear POD, to tackle various types
of problems within the HPC framework, taking the advantage of data parallelism techniques.

1 - The traditional data-driven non-intrusive ROM
Using Proper Orthogonal Decomposition with Interpolation (PODI):
Starting from a parametric geometrical model; if we have a database of parameter val-
ues Ξ = [µ1 . . .µN ] and a database of snapshots Θ = [u (µ1) . . . u (µN )] as in [1], we can
apply the Singular Value Decomposition (SVD) to the snapshots matrix Θ:

Θ = ΨΣΦT
N∑
i=0

where Ψ and Φ are the left and right singular vectors matrices of Θ, and Σ is the diagonal
matrix containing the singular values in decreasing order. The columns of Ψ are called the
POD modes ψ and the modal coefficients α can be obtained through α = ΨTΘ as
mentioned in [2].

Then the reduced solution of the problem can be viewed as a linear combination of
the POD modes ψ multiplied by the modal coefficients α as follows:

uN =
N∑
i=0

αiψi

Q: How to get value of the modal coefficients α for each new parameter?

In the offline phase: We compute the full-order solution using the high-fidelity
solver for some parameter points µk ∈ Ξ. Since the high fidelity solution u (µk) and the
reduced solution uN (µk) are assumed to be equal by construction, we have the following:

∀µk ∈ Ξ : u (µk) = uN (µk) =

N∑
i=0

αi (µk)ψi

Now for the set of parameters µk, we can compute the corresponding coefficients α (µk).

In the online phase: Since we obtained pairs of (µk, α (µk)), for each new parameter
µnew , we interpolate the previously computed coefficients α (µk) to find the new
coefficients α (µnew ). The new reduced solution can be obtained by:

uNnew =
N∑
i=0

αi (µnew)ψi

2 - From Linear to non-linear reduction
Linear reduction: SVD // u (µ) ≈

∑N
i=0 αi (µ)ψi

Non-linear activation

(
N∑
i=1

(xiwi) + bias

)

Non-linear reduction: AE // u (µ) ≈ f (g)

3 - Preliminary results

Note:
The non-linear reduction can achieve smaller solution manifolds with better accuracy.

4 - Data parallelism
Input of large-sized batches from FOM:

1. Divide into mini-batches and
distribute them across processing
units.

2. Replicate the full model on each
processing units to treat a mini-
batch.

3. Perform training locally and syn-
chronise local gradients.

4. The average of the local gradients
is used to update the local models.

5 - Parallel execution
Simultaneous execution of the same functions for multiple predictions or error
calculations:

//

6 - Computational science and engineering softwares: mathlab.sissa.it/cse-software

EZyRB
github.com/mathLab/EZyRB
mathlab.github.io/EZyRB

COMPSs
github.com/bsc-wdc/compss
compss-doc.readthedocs.io/en/stable/index.
html

EDDL
github.com/deephealthproject/eddl

deephealthproject.github.io/eddl/index.html

EZyRB is a python library for data-driven (non-intrusive)
model order reduction with linear and non-linear reduc-
tion and different approximation methods.

COMPSs is a programming model to ease the develop-
ment of applications for distributed infrastructures, such
as Clusters, Clouds and Containerised Platforms.

EDDL is an optimised tensor library for distributed deep
learning with hardware transparency support for CPUs,
GPUs and FPGAs.
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This work is developed as a part of the eFlows4HPC project in cooperation with 16 partners from seven different countries with the aim to deliver a workflow software stack and an additional
set of services to enable the integration of HPC simulations and modelling with big data analytics and machine learning in scientific and industrial applications. The software stack will allow for
the creation of innovative adaptive workflows that efficiently use computing resources considering novel storage solutions.


