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1a) Semi-discrete Optimal transport
In the first line of research semi-discrete optimal transport is used to obtain an
optimal transport map to find some intermediate geometries with some regularity
constraints. An application is design optimization, in which the quantity of material for
similar models must be the same.

1b) Generative Models of deformated geometries
The second line consists in studying generative models for shape optimization of com-
plex geometries with a large number of parameters; the objective is also to reduce the
number of relevant geometrical parameters, for example for modeling naval hulls, and cre-
ating new artificial geometries similar to real data, as there are non-generative techniques
for creating new real geometries (see the package PyGem [1] developed here at Sissa) but
using them can be costly.

2) Geometry deformation with weighted barycenters in Wasserstein spaces
Given Ω ⊆ Rn a Borel set and two measures µ and ν on Ω such that µ(Ω) = ν(Ω),
c; Ω× Ω→ R+ a convex distance function then ∃ T : Ω→ Ω such that

ν(X) = µ(T −1(X)) for any Borel subset X of Ω and
∫

Ω
c(x, T (x))dµ is minimal

and is called the optimal transport map from µ to ν. We are interested in µ continuos
and ν discrete. It this case we talk of Semi-discrete Optimal Transport.

We can approximate the optimal transport map with the following algorithm:

Algorithm 1: Semi-discrete Optimal Transport [2]
Input: Two tetrahedral meshes M and M ′, and k the desired number of

vertices in the result
Output: A tetrahedral mesh G with k vertices and a pair of points p0

i and p1
i

attached to each vertex. Transport is parameterized by time t ∈ [0, 1]
with pi(t) = (1− t)p0

i + tp1
i

1 Sample M ′ with a set Y of k points
2 Compute the weight vector W that realizes the optimal transport between M

and Y
3 Construct E = Del(Y ) where Del it the Delaunay Triangulation.
4 For each i ∈ [1 . . . k], (pi)0 ← centroid (PowW (yi) ∩M) , (pi)1 ← yi

5 G will be the mesh defined by the topology of E with the pair of points
(pi)0,(pi)1.

We modified the map to be

ϕMM ′(t) = V ol(M)
1
3

tM ′ + (1− t)M
V ol(tM ′ + (1− t)M) 1

3

in order to preserve volume in intermediate times.

Let’s now show a ship hull. Highlighted in the red square there is the
bulb, to which we applied semi-discrete
optimal transport to a bulb (using the li-
brary Geogram [4], which is currently the
state of the art for semidiscrete optimal
transport) with two of it’s deformations:
the figures at the edges are the bulb and
its deformation respectively, in the middle
there are the intermediate meshes at time
t = 1

2 .

2b) Generative models for reduction in parameter space
Two main model classes:

• Variational autoencoders(VAE): the figure describes the training using a point cloud mesh of Bulbous bow, and the right figure shows sampling of a deformed Bulbous.

E
nc

od
er

D
ecoder

D
ecoder

• Generative adversarial networks: it is characterized by a generator that samples point cloud mesh of deformed Bulbous bow and by a discriminator that accepts real Bulbous
(right figure)) and rejects deformed ones (left figure)).
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The loss for the discriminator is LGAN
D = −Ex∼pd

[log(D(x))]− Ex̂∼pg
[log(1−D(x̂))] and the one for the generator is LGAN

G = Ex̂∼pg
[log(1−D(x̂))].

5 - Preliminary results and future work
• We are able to do volume preserving continuos deformation between two bulbous bows meshes using semidiscrete optimal trasport. Our next step is to generalize it for more

complex geometries, and apply it shape optimization and reduced order modelling.
• We are able to sample bulbous bows meshes using Variational Autoencoders. However, the space Z is too much sparse, so we started studying Generative Adversarial Networks.
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