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Introduction
The focus of this work is the development of data-driven reduced order techniques in CFD context in order to improve the pressure and velocity accuracy of standard reduced
order methods. The general framework of Proper Orthogonal Decomposition with Galerkin approach is coupled with a data-driven technique, exploiting the information of full order
data to build correction/closure terms. These terms are added in the reduced order system to reintroduce the contribution of disregarded modes. The technique is applied to
the 2D study of the turbulent flow around a cylinder in two different approaches: the SUP-ROM, where additional velocity supremizer modes are considered, and the PPE-ROM,
where the continuity equation in the model is replaced by the pressure Poisson equation.

1. Offline-Online Procedure

OFFLINE PHASE

• Full Order Model: Incompressible NSE
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+ boundary and initial conditions.

• Case study: turbulent flow around a circular
cylinder

• Discretization with FVM (Finite Volume Method)
• RANS (Reynolds Averaged Navier–Stokes) approach

ONLINE PHASE • Pick a reduced number of modes: r << Nh
u , q << Nh

p

• Approximated fields: ur =
Pr
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• Projection of the equations onto the reduced modes
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• POD (Proper orthogonal Decomposition) with
Galerkin approach

extraction of
velocity modes (φi)

Nh
u

i=1 and pressure modes (χj)
Nh

p

i=j

Library used for POD:

github.com/mathLab/ITHACA-FV
mathlab.github.io/ITHACA-FV

Standard Galerkin-ROM formulation
SUP-ROM

r = Nu +Nsup, Nsup supremizer modes(
ȧ = f(a,b),

h(a) = 0.

PPE-ROM
Poisson pressure equation approach(

ȧ = f(a,b),

h(a,b) = 0.

2. DD-VMS-ROM: the purely data-driven modeling
Motivation: improve the velocity and pressure accuracy to better capture the forces .

How: reintegrating the contribution of the neglected modes with correction terms.

Construction of correction terms:

1. build the exact correction τ exact from available data;
2. propose an ansatz for the approximated correction term τ ansatz(a,b);
3. solve an optimization problem: min

P
j ||τ exact(tj)− τ ansatz(tj)||2L2 .

Two different types of correction terms:

• τu(a): velocity correction in the momentum equation;
• τp(a,b): novel pressure correction in the Poisson equation (in the PPE approach).

4. Supremizer enrichment and Poisson Pressure approach: numerical results

• τu(a) = Ãa+ aT B̃a quadratic velocity correction
term in supremizer approach ;
• (τu(a) ,τp(a,b)) = ĨAab + abT ĨBab quadratic
pressure correction term in PPE approach, where
ab = (a,b).

DD-SUP-ROM
(

ȧ = f(a,b,g) + τu(a),

h(a) = 0.

Addition of Nsup velocity
modes to fulfill the inf-sup
condition:

a = (ai)
Nu+Nsup

i=1

DD-PPE-ROM
(

ȧ = f(a,b,g) + τu(a),

h(a,b) + τp(a,b) = 0.

Replacement of the continu-
ity equation with pressure
Poisson equation at the
reduced order level.

Percentage errors of reduced velocity and pres-
sure fields with respect to full order fields:

εu(tj) =
||ur(x, tj)− uFOM(x, tj)||L2(Ω)

||uFOM(x, tj)||L2(Ω)

,

εp(tj) =
||pr(x, tj)− pFOM(x, tj)||L2(Ω)

||pFOM(x, tj)||L2(Ω)

.
0 1 2 3 4 5 6 7 8

time [s]

101

εf
u
ll

u
[%

]

0 1 2 3 4 5 6 7 8
time [s]

101

102

εf
u
ll

p
[%

]

0 1 2 3 4 5 6 7 8
time [s]

101

εf
u
ll

u
[%

]

0 1 2 3 4 5 6 7 8
time [s]

101

102

εf
u
ll

p
[%

]

Legend: Results without any data-driven term ( ); with only turbulence modelling ( ); with only corrections ( ); with both turbulence modelling and corrections ( ); reconstruction error ( ).

3. EV-ROM: the physically-based data-driven modeling
Motivation: Inclusion of a turbulence modeling in the ROM.

How: Addition of reduced eddy viscosity terms.

νt =

rX

i=1

giηi

g = (gi)
r
i=1: eddy viscosity

coefficients vector,

(ηi)
r
i=1: eddy viscosity modes.

Construction of g: The eddy viscosity coefficients
vector is modeled with regression techniques making
use of a fully-connected neural network:

g = f(a)

5. Graphical results for the PPE approach
Reduced velocity field Reduced pressure field

6. Conclusions and Future Perspectives
Conclusions:

• The velocity correction term improves both the velocity and pressure accuracy,
whereas the pressure correction term improves the pressure accuracy in the PPE
approach.

• The combination of purely and physically-based data-driven modelings gives the
best results and acts as a stabilizer for the error in time.

• The graphical results show a better reconstruction of flow fields, especially nearby
the cylinder and it is important in the reconstruction of the forces fields.

• Significant reduction in computational cost and time w.r.t. FOM, comparable
to the standard ROM. The correction terms are found from a part of the available
snapshots and provide a good time extrapolation efficiency.

Outlooks:
• The study regards the marginally-resolved modal regime, where the number of

modes is enough to represent the underlying dynamics, but the standard ROM yields
inaccurate results. Further investigation : different modal regimes.

• Further investigation : more complex computational settings and 3D flows.
• Further investigation : introduction of parameters.
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