

Data Enhanced Reduced Order Methods for Turbulent Flows

Anna Ivagnes, Giovanni Stabile, Andrea Mola and Gianluigi Rozza

Mathematics Area, mathLab, SISSA, International School of Advanced Studies, Trieste, Italy

Introduction

The focus of this work is the development of **data-driven reduced order techniques** in CFD context in order to improve the pressure and velocity accuracy of standard reduced order methods. The general framework of Proper Orthogonal Decomposition with Galerkin approach is coupled with a data-driven technique, exploiting the information of full order data to build *correction/closure* terms. These terms are added in the reduced order system to reintroduce the contribution of disregarded modes. The technique is applied to the 2D study of the turbulent flow around a cylinder in two different approaches: the **SUP-ROM**, where additional velocity supremizer modes are considered, and the **PPE-ROM**, where the continuity equation in the model is replaced by the pressure Poisson equation.

1. Offline-Online Procedure

• Full Order Model: Incompressible NSE

OFFLINE PHASE

$$\begin{cases} \frac{\partial \mathbf{u}}{\partial t} = -\nabla \cdot (\mathbf{u} \otimes \mathbf{u}) + \nabla \cdot \nu \left(\nabla \mathbf{u} + (\nabla \mathbf{u})^T \right) - \nabla p, \\ \nabla \cdot \mathbf{u} = \mathbf{0}, \end{cases}$$

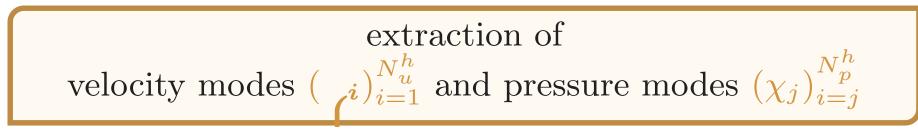
+ boundary and initial conditions.

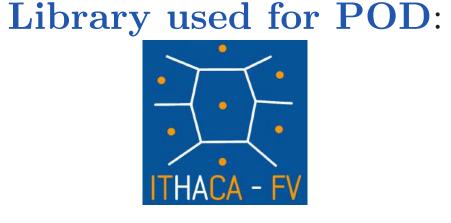
• Case study: turbulent flow around a circular cylinder

ONLINE PHASE

- Pick a reduced number of modes: $r << N_u^h, q << N_p^h$
- Approximated fields: $\boldsymbol{u}_r = \sum_{i=1}^r a_i \boldsymbol{\varphi}_i, p_r = \sum_{j=1}^q b_j \chi_j$
- Projection of the equations onto the reduced modes

- Discretization with **FVM** (*Finite Volume Method*)
- **RANS** (*Reynolds Averaged Navier–Stokes*) approach
- **POD** (*Proper orthogonal Decomposition*) with Galerkin approach





github.com/mathLab/ITHACA-FV mathlab.github.io/ITHACA-FV

2. DD-VMS-ROM: the *purely data-driven* modeling

Motivation: improve the velocity and pressure accuracy to better capture the *forces*.

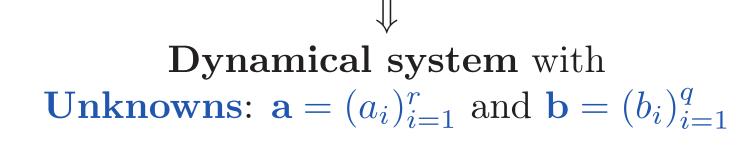
How: reintegrating the contribution of the neglected modes with *correction* terms.

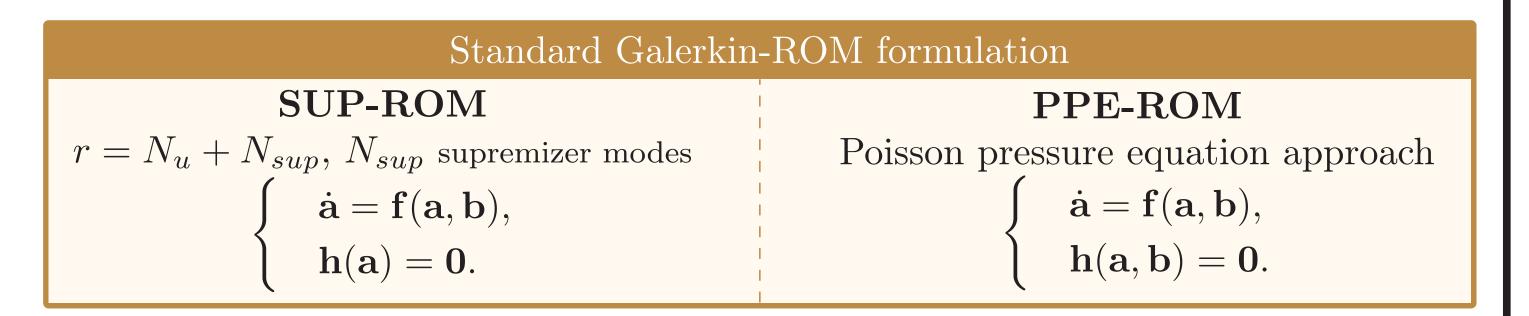
Construction of correction terms:

- 1. build the exact correction $\boldsymbol{\tau}^{\mathrm{exact}}$ from available data;
- 2. propose an ansatz for the approximated correction term $\tau^{\text{ansatz}}(\mathbf{a}, \mathbf{b})$;
- **3.** solve an optimization problem: $\min \sum_j ||\boldsymbol{\tau}^{\text{exact}}(t_j) \boldsymbol{\tau}^{\text{ansatz}}(t_j)||_{L^2}^2$.

Two different types of correction terms:

- $au_u(\mathbf{a})$: velocity correction in the momentum equation;
- $\tau_p(\mathbf{a}, \mathbf{b})$: *novel* pressure correction in the Poisson equation (in the PPE approach).





3. EV-ROM: the physically-based data-driven modeling

Motivation: Inclusion of a turbulence modeling in the ROM.

How: Addition of *reduced eddy viscosity* terms.

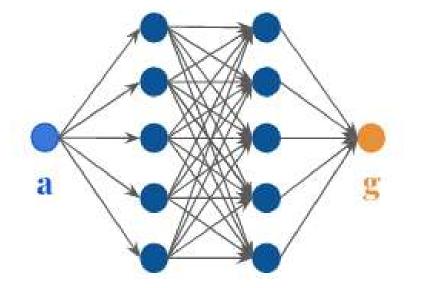
$$\nu_t = \sum_{i=1}^r g_i \eta_i$$

Construction of g: The eddy viscosity coefficients vector is modeled with *regression techniques* making use of a fully-connected neural network:

$$\mathbf{g} = \mathbf{f}(\mathbf{a})$$

 $\mathbf{g} = (g_i)_{i=1}^r$: eddy viscosity coefficients vector,

 $(\eta_i)_{i=1}^r$: eddy viscosity modes.

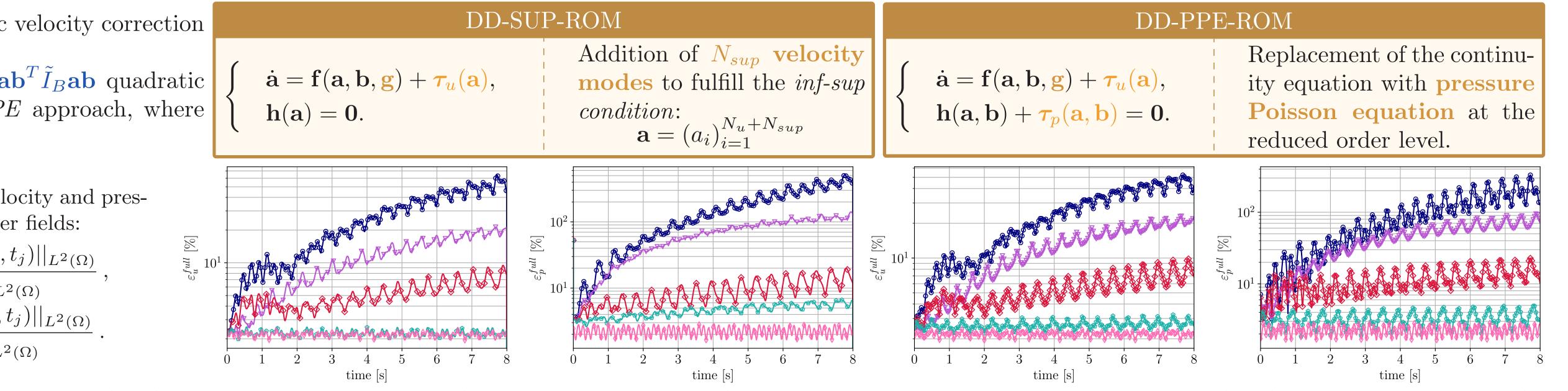


4. Supremizer enrichment and Poisson Pressure approach: numerical results

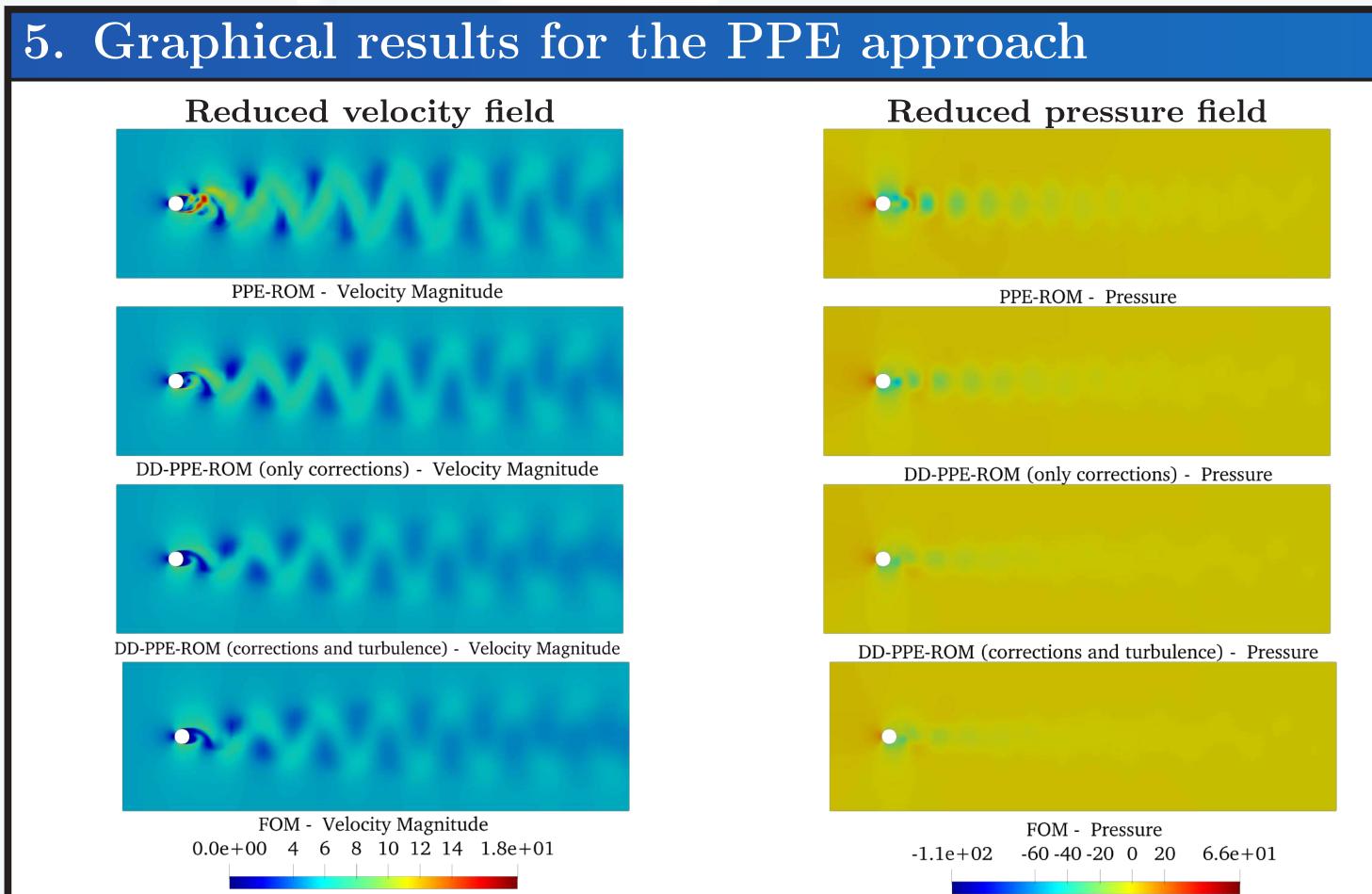
• $\tau_u(\mathbf{a}) = \tilde{A}\mathbf{a} + \mathbf{a}^T \tilde{B}\mathbf{a}$ quadratic velocity correction term in *supremizer* approach ; • $(\tau_u(\mathbf{a}), \tau_p(\mathbf{a}, \mathbf{b})) = \tilde{I}_A \mathbf{a}\mathbf{b} + \mathbf{a}\mathbf{b}^T \tilde{I}_B \mathbf{a}\mathbf{b}$ quadratic pressure correction term in *PPE* approach, where $\mathbf{a}\mathbf{b} = (\mathbf{a}, \mathbf{b}).$

Percentage errors of reduced velocity and pressure fields with respect to full order fields:

$$\varepsilon_u(t_j) = \frac{||\mathbf{u}_r(\mathbf{x}, t_j) - \mathbf{u}_{\text{FOM}}(\mathbf{x}, t_j)||_{L^2(\Omega)}}{||\mathbf{u}_{\text{FOM}}(\mathbf{x}, t_j)||_{L^2(\Omega)}},$$
$$\varepsilon_p(t_j) = \frac{||p_r(\mathbf{x}, t_j) - p_{\text{FOM}}(\mathbf{x}, t_j)||_{L^2(\Omega)}}{||p_{\text{FOM}}(\mathbf{x}, t_j)||_{L^2(\Omega)}}.$$



Legend: Results without any data-driven term (--); with only turbulence modelling (--); with both turbulence modelling and corrections (--); reconstruction error (--);



6. Conclusions and Future Perspectives

Conclusions:

- The velocity correction term improves both the velocity and pressure accuracy, whereas the **pressure correction** term improves the pressure accuracy in the PPE approach.
- The **combination** of *purely* and *physically-based* data-driven modelings gives the best results and acts as a **stabilizer** for the error in time.
- Dest results and
 The graphical r the cylinder and
 Significant reductor to the standard snapshots and p
 - The graphical results show a better reconstruction of flow fields, especially *nearby* the cylinder and it is important in the reconstruction of the **forces fields**.
 - Significant reduction in **computational cost and time** w.r.t. FOM, comparable to the standard ROM. The correction terms are found from a part of the available snapshots and provide a good **time extrapolation efficiency**.
 - The study regards the marginally-resolved modal regime, where the number of modes is enough to represent the underlying dynamics, but the standard ROM yields inaccurate results. *Further investigation*: different modal regimes.
 - *Further investigation*: more complex computational settings and 3D flows.
 - *Further investigation*: introduction of parameters.

References

[1] S. Hijazi, G. Stabile, A. Mola, and G. Rozza. Data-driven POD-Galerkin reduced order model for turbulent flows. J. Comput. Phys., page 109513, 2020.

[2] A. Ivagnes, G. Stabile, A. Mola, T. Iliescu, and G. Rozza. Hybrid Data-Driven Closure Strategies for Reduced Order Modeling. arXiv preprint arXiv:2207.10531, 2022.

[3] A. Ivagnes, G. Stabile, A. Mola, T. Iliescu, and G. Rozza. Pressure Data-Driven Variational Multiscale Reduced Order Models. arXiv preprint arXiv:2205.15118, 2022.

