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Introduction

In this work, we introduce a reduced order model (ROM) to describe the evolution of
urban air pollutants. The underlying model is the transport-diffusion equation, where the
convective field is given by the solution of the Navier-Stokes equation, and the source term
is an empirical time series. We developed a hybrid technique based on POD with interpo-
lation (POD-I) coupled with Galerkin Projection (POD-G) to preserve the advantages of
both approaches. Our data-driven method exploits a feedforward neural network to recover
nonintrusively the convective reduced-order operator for the online evaluation. Streamlines of the velocity and a cross section of the concentration

field.

Problem Formulation
The transport-diffusion equation is a linear partial differential equa-
tion, which takes the form:

∂c

∂t
− ν∆c+∇ · (uc) = f ; (1)

where c(x, t) : Rn × [0,+∞) → R is the unknown function, which can
be thought of as the concentration of a pollutant such as NO2.
In particular, since we are working within the turbulent regime, we con-
sidered the steady Reynolds Averaged Navier-Stokes (RANS) equa-
tions:{

∇ · (u⊗ u)−∇ · 2(µL + µT )∇su = −∇p in Ω× [0, T ] ,

∇ · u = 0 in Ω× [0, T ] .
(2)

The eddy viscosity µT needs then an appropriate turbulence model, for
which we have used the k-ϵ model.
In addition, we consider the following boundary conditions:

u = 0 on ΓFrontAndBack ∪ ΓGround × [0, T ],

u = (µ1 cos(µ2), µ1 sin(µ2), 0) on ΓIn × [0, T ],

(ν∇u− pI)n = 0 on ΓOut × [0, T ].

(3)
The parameter under consideration is µ = (µ1, µ2), which codifies the inlet
velocity condition.

Ground Front and back Inlet Outlet

Reduced order model
We employed the Reduced Basis (RB) method. The POD modes are
used to approximate the solution c(t,µ) for any new value of the parameter
with a linear combination:

c(t,µ) ≈
Ns∑
i=1

ai(µ, t)ϕi(x), (4)

where ai(µ, t) are the parameter dependent coefficients and ϕi(x) are the
parameter independent basis functions.
The coefficients of Eq. 4 are then obtained solving:

Mrȧ− νTBra+Cra = fr(t), (5)

where each term inside Eq. 5 is obtained by Galerkin projection:{
(Mr)ij = (ϕi, ϕj)L2(Ω), (Br)ij = (ϕi,∆ϕj)L2(Ω),

(Cr)ij = (ϕi,∇ · (u(µ)ϕj))L2(Ω), (fr)i(t) = (ϕi, f(t))L2(Ω).
(6)

POD-NN [1] and POD-DEIM [4]
The complexity in the treatment of the Eq. 5 concerns the convective
term and the empirical source term, for which we employed the following
strategies:

• The reduced order convective matrix Cr is obtained using the POD-
NN approach, that is:

(Cr)ij(µ) =

Nϕ∑
i=1

(ϕi,∇ · (ukΨkϕj))L2(Ω); (7)

where the coefficients uk are the output of a feedforward NN.

• The DEIM is employed for the source term f(t), which is approxi-
mated as:

f(t) ≈
NDEIM∑

i=1

pi(t)χi(x). (8)

Numerical Results [3]

Test case: main campus of
the University of Bologna.

Dataset: Syntetic emis-
sion data using the fastrace
traffic model and 1 year
long empirical measure-
ments for the inlet velocity
condition. Offline (left) and Online (right) solution for Day 20, t = 7500s.
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