

A Proper Orthogonal Decomposition approach for parameters reduction of Single Shot Detector networks

Laura Meneghetti, Nicola Demo, and Gianluigi Rozza

INTRODUCTION

Convolutional Neural Networks (CNNs) have achieved an impressive success in solving many problems in several fields including computer vision and image processing, attracting a huge interest from the industrial sector. However, running these deep neural networks in embedded systems with limited hardware represent a challenging task for several engineering applications.

Assumption: SSD-type architecture, composed of:	h
 a base net (a CNN); 	C 2
 some additional convolutional layers; 	L t
• two siblings prodictors and for localization	L

two siblings predictors, one for localization prediction and one for class prediction.

1. Network Splitting

Let $Obj_Det : \mathbb{R}^{in} \to \mathbb{R}^{n_{class} \times 4}$ be an object detector. It can be described as the composition of Lfunctions f_i , representing the different layers of the net:

$$Obj_Det = f_{L+1} \circ f_L \circ \cdots \circ f_1 \tag{1}$$

Denoting with ℓ the cut-off index, we can define the pre-model and the post-model as:

$$basenet_{\text{pre}}^{l} = f_l \circ f_{l-1} \circ \cdots \circ f_1, \qquad (2)$$

$$basenet_{\text{post}}^{l} = f_L \circ f_{L-1} \circ \cdots \circ f_{l+1}.$$

BUT, since the number of inputs is changed, the **NOTE**: ℓ has to be chosen carefully! scale parameter and the number of anchor boxes The output of the pre-model $\mathbf{x}^{(\ell)}$ lies in a has to be adjusted.

REFERENCES

- [1] Laura Meneghetti, Nicola Demo, and Gianluigi Rozza. A Dimensionality Reduction Approach for Convolutional Neural Networks. arXiv preprint arXiv:2110.09163, 2021.
- [2] Chunfeng Cui, Kaiqi Zhang, Talgat Daulbaev, Julia Gusak, Ivan Oseledets, and Zheng Zhang. Active subspace of neural networks: Structural analysis and universal attacks. SIAM Journal on Mathematics of Data Science, 2(4):1096–1122, 2020.
- [3] Jan S. Hesthaven, Gianluigi Rozza, and Benjamin Stamm. *Certified Reduced Basis Methods for Parametrized Partial Differential Equations*. Springer Briefs in Mathematics. Springer, Switzerland, 1 edition, 2015.

OBJECTIVES

Goals of the project:

- 1. Reduction of the memory storage required for an object detector;
- 2. Application in an embedded system;
- 3. Accurate performances;
- 4. Real-time predictions.

high-dimensional space \rightarrow project into a lowdimensional one.

2. Dimensionality Reduction

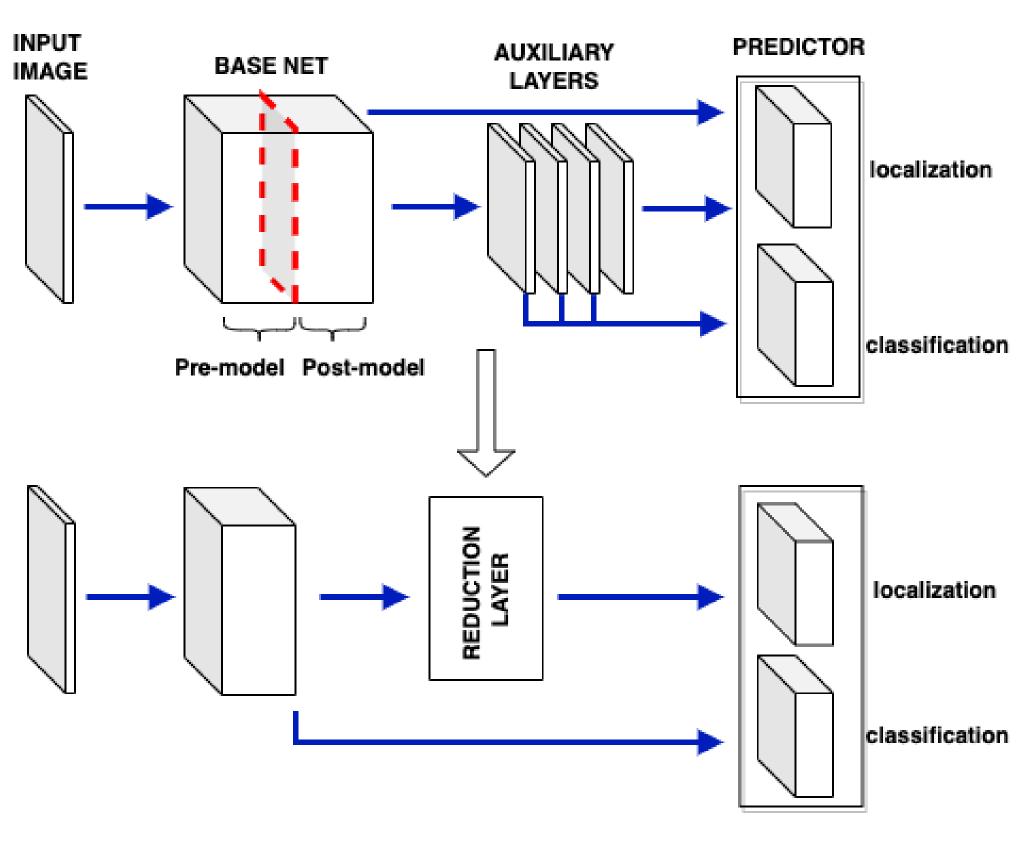
Let $\mathbf{S} = [\mathbf{x}^{(l),1}, \dots, \mathbf{x}^{(l),N_{\text{train}}}]$ be the snapshot matrix.We can compute the SVD of it:

$$\mathbf{S} = \mathbf{\Psi} \mathbf{\Sigma} \mathbf{\Theta}^T, \tag{3}$$

- the columns of Ψ are the left-singular vectors, also called POD modes;
- Σ contains the corresponding eigenvalues.

Fixed *r* to be the reduced, we define the projection matrix Ψ_r by keeping the first *r* modes.

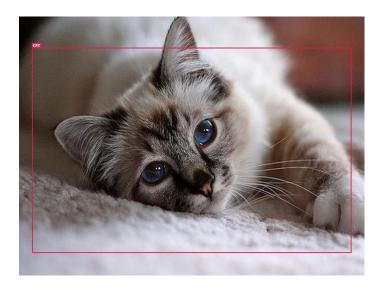
$$\mathbf{z}^{i} = \mathbf{\Psi}_{r}^{T} \mathbf{x}^{(l),i}, \quad \text{for } i = 1, \dots, N_{\text{train}}.$$
 (4)


3. Predictor

Same predictor as before:

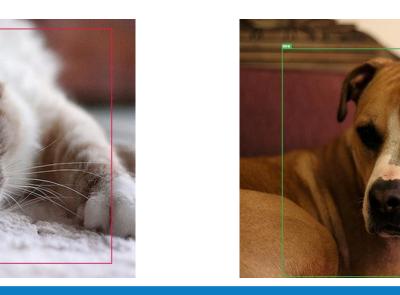
$$\hat{\mathbf{y}}_{\text{loc}}, \hat{\mathbf{y}}_{\text{cls}} = predictor(\mathbf{x}^{(l)}, \mathbf{z})$$
 (5)

SSE


Mathematics Area, mathLab, SISSA, Trieste, Italy

Reduced Approach- Main Idea

RESULTS1- CATS & DOGS


etwork	mAP	Storage (Mb)	Training Time
SSD300	70.2%	91.09	43.5 h
D300_red	59%	77.45	26 h

SSD300

Reduced SSD300

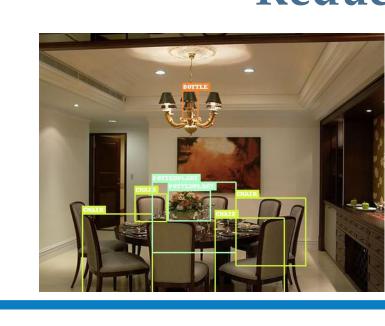
FUTURE RESEARCH

- Knowledge Distillation for Object Detection;
- Employment of hyperreduction techniques or POD variants.
- Iterative procedure for the choice of ℓ .

Inputs:

- train
- *Obj_*
- reduc
- index
- a test

Output: R


- 1: basenet
- 2: $\mathbf{x}^{(l)} =$
- 3: $\mathbf{z} = \operatorname{rec}$
- 4: $\hat{\mathbf{y}}_{\text{loc}}, \hat{\mathbf{y}}_{\text{c}}$
- 5: Training
 - $\mathcal{D}_{\text{test}}$.

RESULTS-2 PASCAL VOC

Networ SSD300

SSD300_r

Code https://github.com/mathLab/Smithers Email laura.menegheti@sissa.it nicola.demo@sissa.it gianluigi.rozza@sissa.it

Algorithm 1 Pseudo-code for the construction of the reduced object detector.

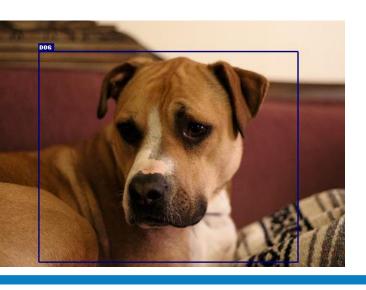
Гhe

Research Hub

Electrolux

OFESSIONAL

Paper ID: 2448


$\mathbf{h} \text{ dataset } \mathcal{D}_{\text{train}} = \{\mathbf{x}^{(0),j}, \mathbf{y}_{\text{loc}}^{j}, \mathbf{y}_{\text{cls}}^{j}\}_{j=1}^{N_{\text{train}}},$
Det = [basenet, auxlayers, predictor],
aced dimension r ,
ex of the cut-off layer l ,
st dataset $\mathcal{D}_{\text{test}} = \{\mathbf{x}^i, \mathbf{y}^i_{\text{loc}}, \mathbf{y}^i_{\text{cls}}\}_{i=1}^{N_{\text{test}}}.$
Reduced Object Detector <i>Obj_Det</i> ^{red}
f_{pre}^{l} , $basenet_{\text{post}}^{l} = \text{splitting_net}(basenet, l)$
$basenet_{pre}^{l}(\mathbf{x}^{(0)})$
$duce(\mathbf{x}^{(l)}, r)$
$_{\rm cls} = predictor(\mathbf{x}^{(l)}, \mathbf{z})$
ng of the constructed reduced net using

:k	mAP	Storage (Mb)	Training Time
0	77.8%	100.23	48 h
red	39%	76.23	18 h

SSD300

Reduced SSD300

CONTACT INFORMATION