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N. Demo, M. Tezzele, and G. Rozza. A supervised learning approach involving active subspaces
for an efficient genetic algorithm in high-dimensional optimization problems. SIAM Journal on
Scientific Computing, 43(3):B831-B853, 2021. [arxiv] [doi].

Main pOintS: . " 3 individuals

e By performing the reproduction and mutation First generation with N genes
steps in the low-dimensional subspace
identified by the active subspace (AS) we are —»  Selection Accordingly o o

able to accelerate the mono-objective
optimization of scalar functions of interest.

e Back-mapping is not unique and it allows us
to explore different regions of the parameter
space by sampling the inactive subspace. Reproduction

e The figure on the right summarizes the
concepts and the yellow boxes emphasize the
differences with respect to the classical Mutation
genetic algorithm.
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F. Romor, M. Tezzele, and G. Rozza. A local approach to parameter space reduction for
regression and classification tasks. Submitted 2021.

Main points:

e We apply parameter space reduction with AS to subsets of the data.

e We identify these subsets by applying clustering techniques which account for both the inputs
and outputs. This is done with a supervised distance metric defined using the global AS.

e The clusters align transversally with respect to the global AS, thus reducing the error introduced
by discarding the inactive variables.

e We devise a hierarchical top-down clustering with different splitting criteria specific for parameter
space reduction.

e Below a 2D example with a useless global AS and the color coded clusters the corresponding
local reductions.
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F. Romor, M. Tezzele, M. Mrosek, C. Othmer and G. Rozza. Multi-fidelity data fusion through
parameter space reduction with applications to automotive engineering. Submitted 2021. [arxiv].

Main points:

e We use the nonlinear autoregressive Gaussian process framework by Perdikaris et al. to embed
a low-dimensionality bias induced by parameter space reduction.
We use both linear AS and nonlinear level-set learning.
We use only high-fidelity data to construct the low-fidelity model, so there is no need of corser
grids of simplified physics simulations.
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M. Tezzele, L. Fabris, M. Sidari, M. Sicchiero, and G. Rozza. A multi-fidelity approach coupling
parameter space reduction and non-intrusive POD with application to structural optimization
of passenger ship hulls. To Appear in the International Journal for Numerical Methods in
Engineering, 2022. [arxiv].

Main points: High-fidelity simulations
Hogging Sagging

e We exploit the multi-fidelity model introduced above to
approximate the reduced state variables obtained
after the projection over the POD modes.

e We devise a complete numerical framework for the
structural optimization of passenger ships, that is
non-intrusive and data-driven.
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Open source software

ATHENA is a Python package for reduction of high dimensional parameter

spaces. It implements several dimensionality reduction techniques such as Active

Subspaces (AS), Kernel-based Active Subspaces (KAS), and Nonlinear Level-set

Learning (NLL). [github].

e F. Romor, M. Tezzele, and G. Rozza, ATHENA: Advanced Techniques for
High dimensional parameter spaces to Enhance Numerical Analysis,
Software Impacts, 10:100133, 2021. [doi].



https://github.com/mathLab/ATHENA
https://doi.org/10.1016/j.simpa.2021.100133

