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Background

Example

Consider a certain physical system in steady state, formulated as a PDE.

Poisson’s equation on domain Ω = [0, 1]2:

µ∆y = u,

u ∈ U = L2(Ω) forcing term,

µ ∈ M ⊂ R parameter following some distribution,

y ∈ Y = H1
0 (Ω) the solution profile depending on µ, i.e. y = y(µ).

Reformulation in weak form:

A(µ)y(µ) = u(µ), y(µ) ∈ Y, (1)

with suitable µ-dependent operators A(µ) ∈ B(Y, Y ∗), u(µ) ∈ Y ∗.

Accurate but slow solvers for y(µ) available. Problem:

what if we need y(µ) for many values of µ in little time?

Central question

Given µ, can we build an approximation yN (µ) of y(µ) s.t.:

� ‖y(µ)− yN (µ)‖Y ≤ ε,

� computation time of yN (µ) is fast?

Solution: Redued Order Method

The Reduced Order Method (ROM) exploits inherent smoothness of µ 7→ y(µ).
Two step approach:

1. (offline) Construct YN ⊂ Y , dim(YN ) = N , based on snapshot solutions

y(µ1), . . . , y(µM ), for M > N .

2. (online) “Galerkin” Projection of y(µ) onto YN to get yN (µ).

Step 1 can be done via e.g. Proper Orthogonal Decomposition (POD):

YN = argmin
V ⊂Y,dim(V )=N

M∑
i=1

‖y(µi)− PV y(µi)‖
2

Y ,

where PV is the orthogonal projector onto V .

Illustration and assumptions

Solution manifold M well described by

YN = span(y(µ1), y(µ2)).
Projecting y(µ) onto YN gives a good

approximation yN (µ), for any µ.

Source: [3].

Answer to central question is positive under assumptions, including:

� Online projection is well-posed,

� M is sufficiently well-behaved,

� Variable separation of A and u for efficient Galerkin projection.

In case of nonlinearities, need to recover variable separation:

can use Empirical Interpolation Method (EIM) and derivatives.

Innovation & key ideas

Linear-Quadrati Optimal Control

Suppose we can choose control u(µ) in (1).

Objective:

for given desired state yd(µ) ∈ L2(Ω), find u(µ) ∈ U that minimizes

1

2

∫
Ω

|y(µ)− yd(µ)|
2 dx+

τ

2

∫
Ω

|u(µ)|2 dx,

subject to (1).

Reformulation via e.g. Lagrange multipliers:

A(µ)χ(µ) = F (µ), χ(µ) ∈ X := Y × U × P,

for suitable A(µ) ∈ B(X ,X ∗), F (µ) ∈ B(X ∗) and adjoint space P .

Usually P = Y in applications. Note the analogy to (1).

Can apply ROM: redue Y, U, P separately to YN , UN , PN . Also:

we found that for well-posedness we do not need YN = PN , which

previously was enforced by space “aggregation” of YN and PN .

Atlanti urrent inversion

State y = (v, ρ) follows Quasi-Geostrophic equation on part of Atlantic Ocean:

ρ = ∆v in Ω, ρ = 0 on ∂Ω,

µ3F(v, ρ) +
∂v

∂x1

+ µ1ρ− µ2∆ρ = u in Ω, v = 0 on ∂Ω,

∂v

∂x1

∂ρ

∂x2

−
∂v

∂x2

∂ρ

∂x1

= F(v, ρ) v, ρ ∈ Y, Y = (H1
0 (Ω))2.

Given µ, find wind action u(µ) that generates observed streamline vd.

Linear Case (µ3 = 0).

Desired state With aggregation Without aggregation

Nonlinear case: use Newton-Iteration scheme to solve state equation.

Desired state With aggregation Without aggregation

Pointwise error state With aggregation Without aggregation

Note that reduction without aggregation exhibits exponential decay of relative

errors. Thus, further computational savings can be achieved.
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