

Reduced basis methods for random PDEs and control problems governed by PDEs

Universität Potsdam

UP/TUB/HUB/WIAS/GFZ

Giuseppe Carere, Maria Strazzullo, Francesco Ballarin, Gianluigi Rozza, Rob Stevenson

Background

Example

Consider a certain physical system in steady state, formulated as a PDE.

Poisson's equation on domain $\Omega = [0,1]^2$:	
	$\mu \Delta y = u,$
$u\in U=L^2(\Omega)$	forcing term,
$\mu \in \mathbb{M} \subset \mathbb{R}$	parameter following some distribution,
$y\in Y=H^1_0(\Omega)$	the solution profile depending on $\mu, \text{ i.e. } y = y(\mu).$

Reformulation in weak form:

$$A(\mu)y(\mu) = u(\mu), \quad y(\mu) \in Y,$$
(1)

with suitable $\mu\text{-dependent}$ operators $A(\mu)\in \mathcal{B}(Y,Y^*),$ $u(\mu)\in Y^*.$

Accurate but slow solvers for $y(\mu)$ available. Problem: what if we need $y(\mu)$ for many values of μ in little time?

Central question

Given μ , can we build an approximation $y_N(\mu)$ of $y(\mu)$ s.t.:

- $\|y(\mu) y_N(\mu)\|_Y \leq \varepsilon$,
- computation time of $y_N(\mu)$ is fast?

Solution: Reduced Order Method

The Reduced Order Method (ROM) exploits inherent smoothness of $\mu\mapsto y(\mu).$ Two step approach:

1. (offline) Construct $Y_N \subset Y$, dim $(Y_N) = N$, based on snapshot solutions $y(\mu_1), \ldots, y(\mu_M)$, for M > N.

2. *(online)* "Galerkin" Projection of $y(\mu)$ onto Y_N to get $y_N(\mu)$.

Step 1 can be done via e.g. Proper Orthogonal Decomposition (POD):

$$Y_N = \arg\min_{V \subset Y, \dim(V) = N} \sum_{i=1}^M \|y(\mu_i) - P_V y(\mu_i)\|_Y^2,$$

where P_V is the orthogonal projector onto V.

Illustration and assumptions

Solution manifold \mathcal{M} well described by $Y_N = \operatorname{span}(y(\mu_1), y(\mu_2))$. Projecting $y(\mu)$ onto Y_N gives a good approximation $y_N(\mu)$, for any μ . Source: [3].

Answer to central question is positive under assumptions, including:

- Online projection is well-posed,
- \mathcal{M} is sufficiently well-behaved,
- Variable separation of A and u for efficient Galerkin projection.

In case of nonlinearities, need to recover variable separation: can use Empirical Interpolation Method (EIM) and derivatives.

References

[1] Carere, G., Strazzullo, M., Ballarin, F., Rozza, G., Stevenson, R. A weighted POD-reduction approach for parametrized PDE-constrained optimal control problems with random inputs and applications to environmental sciences. *Computers and Mathematics with applications* 102:261-276, 2021.

[2] Strazzullo, M. and Ballarin, F. and Mosetti, H. and Hozza, G., Model Reduction for Parametrized Uptimal Control Problem in Environmental Marine Sciences and Engineering. SIAM Journal on Scientific Computing 40:B1055-B1079, 2017. [3] Haasdonk, B., Reduced basis methods for parametrized PDEs - a tutorial introduction for stationary and instationary problems. Model Reduction and Approximation, volume 15, chapter 2, pages 65-136, SIAM Publications, Philadelphia, 2017.

Innovation & key ideas

Linear-Quadratic Optimal Control

Suppose we can choose control $u(\mu)$ in (1).

Objective: for given desired state $y_d(\mu) \in L^2(\Omega)$, find $u(\mu) \in U$ that minimizes

$$\frac{1}{2} \int_{\Omega} |y(\mu) - y_d(\mu)|^2 \, \mathrm{d}x + \frac{\tau}{2} \int_{\Omega} |u(\mu)|^2 \, \mathrm{d}x,$$

subject to (1).

Reformulation via e.g. Lagrange multipliers:

$$\mathcal{A}(\mu)\chi(\mu) = F(\mu), \quad \chi(\mu) \in \mathcal{X} := Y \times U \times P,$$

for suitable $\mathcal{A}(\mu) \in \mathcal{B}(\mathcal{X}, \mathcal{X}^*)$, $F(\mu) \in \mathcal{B}(\mathcal{X}^*)$ and adjoint space P. Usually P = Y in applications. Note the analogy to (1).

Can apply ROM: reduce Y, U, P separately to Y_N, U_N, P_N . Also:

we found that for well-posedness we do not need $Y_N=P_N,$ which previously was enforced by space "aggregation" of Y_N and $P_N.$

Atlantic current inversion

State $y = (v, \rho)$ follows Quasi-Geostrophic equation on part of Atlantic Ocean:

$$\begin{split} \rho &= \Delta v & \text{ in } \Omega, \qquad \rho = 0 \qquad \text{ on } \partial \Omega \\ \mu_3 \mathcal{F}(v,\rho) &+ \frac{\partial v}{\partial x_1} + \mu_1 \rho - \mu_2 \Delta \rho = u & \text{ in } \Omega, \qquad v = 0 \qquad \text{ on } \partial \Omega \\ \frac{\partial v}{\partial x_1} \frac{\partial \rho}{\partial x_2} - \frac{\partial v}{\partial x_2} \frac{\partial \rho}{\partial x_1} = \mathcal{F}(v,\rho) \quad v,\rho \in Y, \quad Y = \quad (H_0^1(\Omega))^2 \end{split}$$

Given μ , find wind action $u(\mu)$ that generates observed streamline v_d .

Linear Case ($\mu_3 = 0$).

Note that reduction without aggregation exhibits exponential decay of relative errors. Thus, further computational savings can be achieved.

Acknowledgements

This research has been partially funded by Deutsche Forschungsgemeinschaft (DFG) through grant CRC 1294 "Data Assimilation", Project A07, the Eramus+ Project, the EU Horizon 2020 Program in the framework of European Research Council Executive Agency: Consolidator Grant H2020 ERC CoG 2015 AROMA-CFD project 681447 "Advanced Reduced Order Methods with Applications in Computational Fluid Dynamics", the INDAM-GNCS project, "Advanced intrusive and non-intrusive model order reduction techniques and applications", and the PRIN 2017 NA-FROM-PDEs grant.

