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Introduction
Advection-dominated problems are commonly noticed in nature, in engineering systems, and in wide range of industrial processes. For these problems, linear compression methods
(proper orthogonal decomposition and reduced basis method) are not suitable, as the Kolmogorov N-width decay is slow, which leads to inefficient and inaccurate reduced order models.
To accelerate the Kolmogorov N-width decay there are a few recent pre-processing techniques that can be used to transform the full-order solutions [3, 2, 1]. Here, we use
a neural-network based pre-processsing technique [2] that automatically detects the optimal non-linear transformation of the full-order solutions by exploiting a
deep-learning architecture. In this work, we use this pre-processing technique to develop purely data-driven reduced order models for 1D traveling waves and a 2D two-phase flows.
Keywords: Neural Network shifted Proper Orthogonal Decomposition (NNsPOD), Reduced Order Model (ROM).

Neural Network shifted based pre-processing [2]

We define the shift operator Tb which acts on the field u(x, t) as in (1), where b :
Ω×T → Ω, is the shifting quantity that is not a fixed value linearly depending on time as
in [3], but here it depends on both, the space and the time coordinates. We use a neural
network to learn this shift operator for a given problem. Another important step in this
pre-possessing technique is the reconstruction of the field values in each shifted-space.

ũ(x, t) = Tbu(x, t) = u(x− b(x, t), t), x,b ∈ Ω, t ∈ T (1)
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The learning process is built on the set of snapshots as a discrete field, as defined in (2),
where V is the finite dimensional functional space defined on the discretized domain, and
ti are the Ns time steps. The automatic-shift detection and the reconstruction of field
values workloads are divided between two separate neural networks, as mentioned below.
The training of ShiftNet and InterpNet separated, at first InterpNet is trained and later
the ShiftNet.

• ShiftNet quantifies the optimal-shift b(x, t), to obtain the shifted-space for each
snapshot in the FOM solution manifold and the loss function employed for this
process is,

LshiftNet =
1
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∥uref (x, ti)− u (x− b (x, ti) , ti)∥2 , x ∈ V (3)

• InterpNet will learn reference configuration, such that it reconstructs the same
configuration w.r.t each shifted space to compute the distance and employed loss
function is,

LinterpNet =
1

n
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(ũ− uref (xi, t))
2, x ∈ V (4)

NNsPOD-ROM algorithm

FOM pre-processing : offline stage

while ϵ ′ > ϵinterp do
InterpNet.forward ;
compute ϵ ′ ;
InterpNet.backward ;

end
Tinterp = InterpNet.forward; # reconstructs reference snapshot

for µi ∈ P,ui ∈ X, where i = 0 to Ntrain do
while ϵ ′′ > ϵshift do

x̃ = x - ShiftNet.forward ;
ũi = Tinterp ◦ x̃; # reconstruct snapshot in each shifted space

compute ϵ ′′ ;
ShiftNet.backward ;

end
Tshift=ShiftNet.forward; # optimal shift for given parameter

x̃ = x - Tshift ; # shifted space

L(x̃,ui) ; # linear interpolator

ũi = L ◦ x; # reconstruct snapshot in physical space

end
POD = POD(rank=N);
ROM = ROM(X , POD, •)
s = POD.singular_values ;
FOM post-processing : online stage ;

for µi ∈ P, where i = 0 to Ntest do
x̃ = x + Tshift ; # shifted space

L(x̃,uref) ; # linear interpolator

ũi = L ◦ x; # reconstruct snapshot in physical space

end
Ri= ROM.predict(µnew); # predicts snapshots for given parameters

1D Travelling Wave

Singular values

Two-Phase Flow

Conclusion
• 1D Travelling Wave : We notice sharp singular values decay and predict accurate results just by considering 1 mode.

• Two-Phase Flow : Qualitatively NNsPOD-ROM results (considering just 1 mode) outperforms standard POD-ROM results (considering 10 modes), though we do not achieve
a sharp singular values decay.
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Opensource software

EZyRB is a Python package that performs a data-driven model order

reduction for parametrized problems.

github.com/mathLab/EZyRB mathlab.github.io/EZyRB


