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Introduction

In the field of scientific computing, reduced order models (ROMs) play a crucial role in addressing high-
dimensional systems. However, traditional ROM techniques often fail to fully capture the inherent geometric
properties of the data, such as fundamental structures, relationships, and essential features necessary for
accurate modeling.
We propose a novel ROM framework that combines optimal transport theory with neural networks. This
framework effectively captures geometric data characteristics, enhancing accuracy and computational efficiency
compared to traditional ROM methods. It utilizes Sinkhorn divergence as a loss function for training, resulting
in better stability, resistance to overfitting, and faster convergence.
To demonstrate the effectiveness of our approach, we conduct experiments on a challenging set of test cases
characterized by a gradual decay of the Kolmogorov n-width. The results demonstrate that our framework
outperforms traditional ROM methods in terms of accuracy and computational efficiency.

Wasserstein barycenters between the solution to the Burgers equation at

two different time instants.

OT-inspired Deep Learning Framework

We consider the parametrized partial differential equation (PDE) given by:

L(u(µ),µ) = 0,

where u(µ) ∈ V and µ ∈ P ⊂ R
p represents the parameter vector.

Approach:

• Nonlinear Reduction: Use kPOD with Wasserstein distance-based kernel for complex data
features.

• Deep Learning: Apply autoencoders with Sinkhorn divergence for efficient dimensionality
reduction.

• Forward and Backward Maps: Establish forward map F to project solutions into reduced
space. Find backward map F−1 to reconstruct full-order solutions.

• Complex Systems: Explore Convolutional Autoencoders (CAE) for managing high-
dimensional states.

Outcome: Integrated approach ensures accurate, efficient, and scalable parametrized PDE modeling
with forward and backward mappings.

Bottleneck

Schematic illustration of the different steps of the proposed methodology.

Sinkhorn Divergence [1]

The Sinkhorn algorithm efficiently computes the regularized Wasserstein distance (Wreg)
between probability measures by introducing entropy (ǫ) into the optimization problem.
The regularized Wasserstein distance is defined as:

Wreg(µ, ν) = min
π∈Πdis(µ,ν)

〈C,π〉 − ǫH(π);

where H(π) is the Shannon entropy, C is the cost matrix and Πdis(µ, ν) is the set of
admissible transport plans between the two probability measures µ and ν. The Sinkhorn
distance (Wǫ(µ, ν)) can be debiased to obtain Sinkhorn divergence (Sǫ(µ, ν)):

Sǫ(µ, ν) = Wǫ(ν, µ)−
1

2
Wǫ(ν, ν)−

1

2
Wǫ(ν, ν).

Sinkhorn divergence ensures Sǫ(µ, µ) = 0, serving as a valid dissimilarity measure. Com-
putationally, Sinkhorn divergence is highly parallelizable and can exploit GPUs, making
it efficient for large-scale problems (O(n log n+m logm)).

Kernel Proper Orthogonal Decomposition (kPOD) [2]

kPOD is a kernel-based extension of classical POD. It operates in a higher-dimensional
feature space, enhancing nonlinear separability. To apply kPOD, using the kernel function
κ(·, ·), compute the transformed Gram matrix G̃:

[G̃]ij = κ(ui
h,u

j
h).

Define the forward mapping F :

F : RNh → R
k, uh 7→ z = Ṽ

⋆Tg(uh), G̃ = ṼΛṼT,

Defining the backward mapping requires a suitable target space V and an approximation
criterion:

ũh = F−1(z)
def
= arg min

uh∈V
‖F (uh)− z‖.

For the inverse problem, we propose using autoencoders based on Neural Networks, which
are effective in solving kPOD’s inverse problem.

Numerical Results [3]

Poisson test case

Solution w.r.t. the source location.
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Comparison of mean relative errors for different NNs.
kPOD POD

Loss type

Architecture
FF CAE FF CAE

Sinkhorn 2.02 % 0.50 % 1.95 % 1.00 %
Autoencoder

MSE 2.22 % 0.70 % 2.08 % 1.20 %
Sinkhorn 2.60 % 1.50 % 2.84 % 1.75 %

Decoder
MSE 2.22 % 2.42 % 2.80 % 2.61 %

Burgers equation test case

Solution by varying the position of the initial condition .
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Relative errors for DL-ROM and the kPOD-autoencoder.
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Linear advection-dominated test case

Solution (top row) and relative error fields (bottom row) by

varying the diffusivity α(µ) = 10−µ .
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