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Abstract
In this work, we present GAROM, a new approach for reduced order modeling (ROM) based on generative adversarial networks (GANs). GANs attempt to learn to generate data with
the same statistics of the underlying distribution of a dataset, using two neural networks, namely discriminator and generator. While widely applied in many areas of deep learning,
little research is done on their application for ROM, i.e. approximating a high-fidelity model with a simpler one. In this work, we combine the GAN and ROM framework, introducing
a data-driven generative adversarial model able to learn solutions to parametric differential equations. In the presented methodology, the discriminator is modeled as an autoencoder,
extracting relevant features of the input, and a conditioning mechanism is applied to the generator and discriminator networks specifying the differential equation parameters. We
show how to apply our methodology for inference, provide experimental evidence of the model generalization, and perform a convergence study of the method.

Background and Goals
Reduced Order Modelling

⇒ ROMs are a class of techniques aimed to reduce the computational complexity
of mathematical models, widely used in industry

⇒ The data driven discriminative ROM approach lacks of uncertainty quantification!

Figure 1: Data driven ROMs build a model by using only high fidelity data

Goal

⇒ Learn to a probabilistic reduced order model which can quantify the uncertainty
for the generated snapshots while maintaining the accuracy of a discriminative
model.

Numerical results
Uncertainty Quantification

⇒ The variance V ar(x) = Ex∼pG(x|z,c)[(x− x̂)2] gives an estimate of the model epis-
temic uncertainty and can be efficiently computed by Monte Carlo integration.

⇒ Analytical error bounds in probability can be computed using Markov Inequality
or Probability Confidence Regions.
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Figure 2: Image of the generated snapshot with its associated variance representing the magni-
tude of the unknown field for a testing parameter in a Lid Cavity experiment varying Re number,
and Graetz Problem varying the geometry and Péclet number.

Predictive Distribution

⇒ GAROM performs similarly to SOTA methods, surpassing DL surrogate solvers in
six out of nine tests.

⇒ Possibility to obtain an uncertainty to the results, while not possible with discrimi-
native SOTA methods.

Method Gaussian Graetz Lid Cavity

4 16 64 16 64 120 16 64 120

GAROM (1.05± 0.17) (0.77± 0.20) (0.88± 0.16) (0.58± 0.16) (0.55± 0.14) (0.51± 0.1) (10.7± 0.22) (9.50± 0.15) (9.91± 0.17)
r-GAROM (0.80± 0.15) (0.60± 0.14) (0.65± 0.14) (0.32± 0.09) (0.22± 0.05) (0.20± 0.04) (5.02± 0.11) (3.41± 0.04) (3.61± 0.06)

cGAN (7.72± 0.30) (7.72± 0.30) (7.72± 0.30) (21.3± 1.10) (21.3± 1.10) (21.3± 1.10) (68.5± 1.55) (68.5± 1.55) (68.5± 1.55)
r-cGAN (6.04± 0.27) (6.04± 0.27) (6.04± 0.27) (1.65± 0.05) (1.65± 0.05) (1.65± 0.05) (51.6± 1.11) (51.6± 1.11) (51.6± 1.11)

POD–RBF 15.4 0.41 0.25 0.48 0.48 0.49 2.98 1.45 1.32
POD–NN 15.4 1.30 1.12 0.41 0.47 0.44 3.02 2.73 3.20
AE–RBF 2.06 0.89 1.00 1.08 1.42 1.60 6.96 3.01 3.90
AE–NN 1.76 1.04 1.12 1.14 1.56 2.71 3.49 3.27 3.83

DeepONet 36.1 36.1 36.1 0.73 0.73 0.65 72.2 72.2 72.2
NOMAD 1.99 1.99 1.99 0.36 0.36 0.36 63.4 63.4 63.4

Table 1: Accuracy comparison for different test cases, methods, and latent dimensions. The
table reports the mean l2 relative error ϵ (in percent).

Conclusions
⇒ A generative model approach for reduced order modelling (GAROM) is presented

⇒ Conditional BEGAN used for adversarial learning, with the discriminator auto-
encoding high fidelity snapshots

⇒ Model epistemic uncertainty is easy quantifiable due to the probabilistic nature
of the model

⇒ Results are comparable (and for some problems better) in accuracy to state of the
art methods for a variety of benchmarks

⇒ Possibility to enhance the general method by: applying different conditioning mech-
anisms (modes, shapes), benchmarking the reconstruction capacity on noisy data,
varying the generator and discriminator structure to handle scatter data points

GAROM
Distribution Learning

⇒ GAROM learns a distribution of numerical high fidelity solutions

⋆ p(x|c) distribution of high fidelity snapshots x given some conditioning c

⋆ Generator Gτ defines a probability distribution pG(x|z, c)
⋆ Inference x̂ = Ex∼pG(x|z,c)[x] is obtain by Monte Carlo approximation

⇒ Conditional BEGAN is used for adversarial learning

⋆ Generator Gτ generates snapshots x given some conditioning c

⋆ Discriminator Dϕ auto-encode snapshots given c

⋆ Specific decoders fθ and gψ for conditioning Gτ and Dϕ respectively
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Generative Adversarial Reduced Order Model

⇒ Autoencoder used as Discriminator Dϕ, assigning low (high) reconstruction error to
real (fake) ones. The objective is to learn the latent input representation only for
real snapshots.

⇒ Final goal is to match the error distribution between real/fake reconstructed data

Autoencoder pixel-wise loss

L(x | c) = |x−Dϕ(x | c)|, x sample

GAROM objective
LD(ϕ) = L(x | c)− kt L(Gτ (z | c)) minimize ϕ

LG(τ) = L(Gτ (z | c)) + η|x− Gτ (z | c)| minimize τ

kt+1 = kt + λk(γL(x | c)− L(Gτ (z | c)))

where γ ∈ [0, 1] is used to maintain an equilibrium between Gτ and Dϕ, and η =
{0, 1} depending if the solution given a parameter is unique.
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